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The emergence of cell resistance in cancer treatment is a complex phenomenon that
emerges from the interplay of processes that occur at different scales. For instance,
molecular mechanisms and population-level dynamics such as competition and cell–cell
variability have been described as playing a key role in the emergence and evolution of cell
resistances. Multi-scale models are a useful tool for studying biology at very different times
and spatial scales, as they can integrate different processes occurring at the molecular,
cellular, and intercellular levels. In the present work, we use an extended hybrid multi-scale
model of 3T3 fibroblast spheroid to perform a deep exploration of the parameter space of
effective treatment strategies based on TNF pulses. To explore the parameter space of
effective treatments in different scenarios and conditions, we have developed an HPC-
optimized model exploration workflow based on EMEWS. We first studied the effect of the
cells’ spatial distribution in the values of the treatment parameters by optimizing the supply
strategies in 2D monolayers and 3D spheroids of different sizes. We later study the
robustness of the effective treatments when heterogeneous populations of cells are
considered. We found that our model exploration workflow can find effective
treatments in all the studied conditions. Our results show that cells’ spatial geometry
and population variability should be considered when optimizing treatment strategies in
order to find robust parameter sets.

Keywords: multi-scale modeling, model exploration, treatment optimization, TNF, cell resistance, multi-scale
modeling and simulation, agent-based model, optimization via simulation

1 INTRODUCTION

Optimizing drug treatment and efficiently screening the effect of drugs is key to improving clinical
treatments and ultimately extending patients’ life expectancy (Kessler et al., 2014). The emergence of
resistant cancer cells is a complex phenomenon due to the inherent complexity of biological (Shaffer
et al., 2017), the interplay of processes that occur at different scales, and an environment with an
active role in this resistance (Lee et al., 2012; Goldman et al., 2015). Molecular mechanisms and
population-level dynamics such as competition and cell–cell variability have been described as
playing a key role in the emergence and evolution of cell resistances (Kim et al., 2018). For instance,
high gene expression variability has been linked to aggressiveness in chronic lymphocytic leukemia
(Ecker et al., 2015). Genetic heterogeneity and phenotype variability have also been related to the
emergence of cell resistance (McGranahan and Swanton, 2015; Brady et al., 2017; Shaffer et al., 2017).
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Furthermore, the environment has been described to have an
effect on the cells’ response to drugs: 2D-cultured cell line screens
failed in clinical studies (Horvath et al., 2016) as cell cultures do
rarely recapitulate the heterogeneity and drug sensitivity of the
original tumor (Jabs et al., 2017).

Multi-scale models (MSM) are a useful tool for studying
biology at very different time (no s) and spatial scales, as they
can integrate different processes occurring at the molecular,
cellular, and intercellular levels (Metzcar et al., 2019;
Montagud et al., 2021). In the domain of cancer biology,
MSMs have been used to connect cellular mechanisms
underlying cancer drug resistance to population-level patient
survival (Sun et al., 2016), study the role of physiologic
resistance due to diffusion gradients of different nutrients and
drugs (Frieboes et al., 2009), and quantitatively characterize
pressure for invasion (Anderson et al., 2006), among many
other applications (Metzcar et al., 2019). In general, multi-
scale models provide a genotype-to-phenotype simulation
framework, which is ideal for the study of in silico drug
screenings (Flobak et al., 2015), the optimization of treatment
regimens (Akasiadis et al., 2021), and the exploration of genetic or
environmental perturbations (Letort et al., 2018).

Multi-scale simulation can be used to conduct in silico
experiments and generate new experimentally testable
hypotheses, accelerating the discovery of new potential
treatment strategies (An, 2010). Nevertheless, due to the
hybrid approaches used to describe multi-scale models (e.g.,
discrete, continuous, and stochastic), these models cannot be
studied using formal analytical tools, and thus the analysis and
exploration of simulated trajectories require complex workflows
to guide the exploration of the parameter spaces associate with
these models (Ozik et al., 2016). For this reason, distributed
workflows to perform parallel optimization via simulation and
model exploration are critical tools for exploiting the full
potential of simulations (Ozik et al., 2018b; Reuillon et al.,
2013). Model exploration workflows are required to efficiently
fit parameters for which there are no available experimental
measurements (Akasiadis et al., 2021; Ozik et al., 2019),
explore complex and vast parameter spaces, and optimize user
desirable goals, such as the space of optimal treatment strategies
for a given cancer model. Optimization methods such as
evolutionary algorithms have proven their usefulness in such
studies for fitting unknown parameters (Akasiadis et al., 2021), as
well as high-throughput hypotheses testing in cancer research
(Ozik et al., 2018a).

In previous work, Letort et al. (2018) developed the multi-scale
model of 3T3 fibroblast spheroids that integrates the Cell Fate
Boolean network Calzone et al. (2010) inside individual cell
agents. The Boolean network rules the phenotype of the cells
(e.g., proliferation and apoptosis) based on the environmental
conditions (e.g., drugs presence and oxygen concentration). The
authors used the model to investigate the tumor response to
different regimes with tumor necrosis factor supplies (TNF) and
reported complex behaviors in the simulated conditions. While a
set of values of pulse period, pulse duration, and TNF
concentration was optimal to reduce the number of alive
tumor cells, different sets of values turned the cells resistant to

TNF (Letort et al., 2018). The effects of TNF in the Booleanmodel
reported by Calzone et al. (2010) are multifaceted: TNF triggers
cells to go from a naive to a proliferative state and commits cells to
necrosis and apoptosis. Once the cells are committed to either
survival, necrosis, or apoptosis, they cannot go back, causing
resistance due to phenotypic variability. Interestingly, it has been
described that prolonged TNF exposure causes the cells to be
resistant to the effect of the cytokine (Lee et al., 2016).

In the present work, we use an extended hybrid multi-scale
model to perform a deep exploration of the parameter space of
effective treatment strategies based on TNF pulses to unravel the
mechanistic details behind the complex emergent dynamics of the
TNF pulses in in silico experiments and guide the optimization of
effective treatments. We extended the multi-scale model of 3T3
fibroblast spheroid by integrating an explicit kinetic description
of the TNF-receptor dynamics based on the molecular biology of
the TNF receptor (Fischer et al., 2011; Li et al., 2013; Sedger and
McDermott, 2014). Furthermore, we couple the TNF-receptor
kinetic model with the cancer cell Boolean model from Calzone
et al. (2010) to simulate the downstream propagation of the signal
that induced the binding of the TNF. To explore the parameter
space of effective treatments in different scenarios and conditions,
we have developed an HPC-optimized model exploration
workflow based on EMEWS (Ozik et al., 2018b). Our
workflow includes two previously used model exploration
strategies, sweep search and genetic algorithm (Akasiadis et al.,
2021; Ozik et al., 2019), together with a new approach named the
Covariance Matrix Adaptation Evolutionary Strategy, which
exhibited good convergence in global optimization problems
with continuous variables (Hansen and Ostermeier, 2001).

We applied our framework to characterize the space of
effective treatments in different experimental scenarios by
simulating the treatment outcome with our multi-scale model
of tumor growth. We first studied the effect of the cells’ spatial
distribution in the values of the treatment parameters by
optimizing the supply strategies in 2D monolayers and 3D
spheroids of different sizes. We found that our model
exploration workflow can find non-trivial in silico drug
scheduling strategies that minimize the tumor below 1% of its
initial size while avoiding the emergence of resistant cells. Our
results also show that effective treatment strategies can be found
in the two different cell geometries studied. We also found that
the parameter spaces of effective treatments for the 2Dmonolayer
and 3D spheroid exhibit different distributions for the
parameters. We later study the robustness of the effective
treatments when heterogeneous populations of cells are
considered. Specifically, we model population heterogeneity by
introducing different levels of cell-based variability into the
kinetic parameters of the TNF-receptor models. The
parameters’ variability aims to mimic population-level
variability in the kinetic parameters of the receptor, as well as
different levels of expression in the receptor, among different
cells. We found that effective treatment strategies are robust to a
low level of variability, whereas, with a high level of variability,
those treatment strategies optimized for populations with no
variability cannot reduce tumor growth. However, when the
treatments are optimized directly on a heterogeneous
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population, we observe that the optimization algorithms can
retrieve effective treatment.

Altogether, we found that our model exploration workflow can
find effective treatments in all the studied conditions, showing
that multi-scale simulations and model exploration are promising
tools for in silico exploring treatment strategies. Finally, our
results also show that cells’ spatial geometry and population
variability should be considered when optimizing treatment
strategies to find robust parameter sets. In future work, we
plan to extend these results by studying other experimental
setups and different cancer models.

2 MATERIALS AND METHODS

2.1 Hybrid Multi-Scale Model of Cancer
Cells With Signaling
Herein, we present a multi-scale model of tumor growth that
considers, at the individual cell level, the dynamics of the tumor
necrosis factor (TNF) receptor and its downstream effect using a
hybrid approach (Figure 1). Our model was implemented using
PhysiCell (Ghaffarizadeh et al., 2018) together with the
PhysiBoSS add-on (Ponce-de-Leon et al., in preparation). The
microenvironment is simulated in both the 2D and 3D domains,
and it accounts for the presence of oxygen and the cytokine tumor
necrosis factor (TNF). On the contrary, cells are simulated as
individual agents, including intracellular submodels that account
for the cell cycle, the different death models (i.e., necrosis and
apoptosis), a model for TNF receptor dynamics, and a gene
regulatory network.

For the cell cycle, we use PhysiCell live cell cycle with a
doubling time of 22h, and for the death models, we used
PhysiCell standard ones with default parameters. The

binding of the TNF to its receptor is modeled using mass-
action kinetics in which TNF binds to a cell receptor TNFR at a
given rate kbind; the complex TNF-TNFR is internalized at a
rate of kendo where the TNF is degraded and the receptor
recycled at a rate of krecycle (see Supplementary Figure S1).
The TNF-receptor submodel was developed based on the
known molecular biology of the molecular system (Fischer
et al., 2011; Li et al., 2013; Sedger and McDermott, 2014). The
equation below describes the submodel for the TNF-receptor
dynamics:

Re[ ]
dt

� −kbind Re[ ] TNF[ ] + krecycle Rp
i[ ]

Rp
e[ ]

dt
� kbind Ri[ ] TNF[ ] − kendo Rp

e[ ]

Rp
i[ ]

dt
� kendo Rp

e[ ] − krecycle Rp
i[ ]

(1)

where [R], [TNF], and [R*] are the concentrations of the receptor,
TNF, and TNF-TNFR complex, respectively. Furthermore, the
TNF-TNFR complex [R*] can be found in two states, in the cell
membrane (Re*) or internalized (Ri′).

The gene regulatory model used is an extended version of the
Boolean network (BN) reported in Calzone et al. (2010) and is
simulated using the MaBoSS algorithm. The BN is coupled to
the agent in two different ways (see Supplementary Figure S2).
The BN has an input node that represents the presence of TNF
and is coupled to the amount of active TNF-TNFR complex
(Re*) through a transfer function that converts the continuous
value of Re* into a Boolean one. Additionally, the BN has three
mutually exclusive output nodes representing three alternative
cell fates: proliferation, apoptosis, and NonAD (non-apoptotic
death or necrosis). The fate or phenotype of each cell agent is
ruled by the current state of the fate nodes of its internal

FIGURE 1 | Diagram representing the intracellular submodels of the multi-scale model of tumor growth. Each individual cell agent has a kinetic model of the TNF
receptor dynamics connected to the microenvironment through the presence of surrounding TNF and coupled to the Boolean network through a transfer function. The
Boolean network has three readout nodes (proliferation, NonACD, and apoptosis), which rule the fate of the cell agent.
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regulatory network. For instance, if the proliferation node is
active, the cell will grow and divide, whereas if the apoptosis
becomes active, the cell agent will commit to apoptosis (see
Supplementary Figure S2).

2.2 Model Exploration Framework
2.2.1 Workflow Overview
The parallel simulation framework used in our evaluation is a
workflow that follows the Extreme-scale Model Exploration
with Swift (EMEWS) paradigm. It uses the spheroid_TNF_v2
as an example model and is publicly available in our online
repository1. An overview of our model exploration workflow
is shown in Figure 2. We have integrated three different
search strategies: 1) a sweep search approach that evaluates a
predetermined set of candidate parameters (generated from
uniform sampling, or a regular grid), 2) a Covariance Matrix
Adaptation Evolutionary Strategy (CMA-ES), and 3) a
genetic algorithm (GA). For the cases of CMA-ES and GA,
we use the available implementations provided by the DEAP
package (version 1.3.1), a mature and widely used package for
evolutionary optimization (Fortin et al., 2012). Using
EMEWS queues, multi-scale simulation instances are
configured with the specific parameter values
corresponding to the points that each exploration
procedure targets and are then submitted for parallel
execution in an HPC environment.

The number of each “batch” of points is relative to the number
of computational nodes available in the HPC. The multi-scale
simulator incorporates PhysiCell (v1.7) (Ghaffarizadeh et al.,
2018) together with the PhysiBoSS 2.0 extension (Ponce-de-
Leon et al., in preparation), which is an add-on version of
PhysiBoSS. We merged our mass-action kinetics model, as
explained in Section 2.1, with the multi-scale model proposed
by Letort et al. (2018) that used the Boolean model from Calzone
et al. (2010). Finally, the simulation results are returned, the
points are evaluated according to the performance of the
particular drug treatment, and the workflow iterates over the
next “batch” of points. Each point is a three-dimensional vector
that configures the following simulation parameters: 1) the
duration of the TNF pulse; 2) the TNF pulse period; and 3)
the concentration of TNF. The exploration space ranges from 5 to
800 min for the pulse period, from 5 to 200 min for the pulse
duration, and from 0.001 to 1 ng/L for the TNF concentration.

We checked the number of alive tumor cells at the last time
point of each simulation to evaluate the results of each particular
treatment and used these values as the fitness or objective of the
optimization algorithms. Note that, to ensure that the
characterization is robust and not a subject of extreme
randomness accruing from inherent PhysiBoSS stochasticity,
we perform three replicate simulations with the same
configuration parameters, using a different seed to initialize
the random number generator, and calculate the average value
of the final alive tumor cells count over the replicates as the final
score. We now proceed to describe the different search methods
we use in detail.

FIGURE 2 | Workflow overview. The diagram depicts the structure of the model exploration workflow. EMEWS communicates to the different search strategies
using a queue system. The search strategy generates candidate parameters, and the treatments to be evaluated via PhysiBoSS simulations are distributed as parallel
jobs to the HPC infrastructure. Upon completion, the simulation outcomes are returned to EMEWS, which, in the case of the GA and CMA-ES, sends the fitness of the
evaluated parameters, so the algorithm can update its internal state and generate new candidate parameters.

1https://github.com/bsc-life/spheroid-tnf-v2-emews

Frontiers in Molecular Biosciences | www.frontiersin.org April 2022 | Volume 9 | Article 8367944

Ponce-de-Leon et al. Optimizing Drug Treatments

https://github.com/bsc-life/spheroid-tnf-v2-emews
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


2.2.2 Sweep Search
The sweep search comprises a simple exhaustive approach that
requires the user to specify a predetermined number of points to
be evaluated. Our code offers a points generating script, which
can be configured to choose among different distributions. In
other words, points can either be selected to belong on a grid, with
equal distances between each point along the dimensions, or a
second option is to select random points by sampling particular
probability distributions. For the purposes of the experimentation
presented in this study, we have implemented the uniform
distribution point selection, though this can be easily
configured to use other types, such as Gaussian and Beta.

2.2.3 Covariance Matrix Adaptation Evolutionary
Strategy
Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) is a stochastic, derivative-free method for numerical
optimization for black-box optimization functions (Hansen
and Ostermeier, 2001). This method requires, as input, a set
of points, σ value that controls the range of exploration,
covariance matrix C used to guide the search, the number
of points population to execute the algorithm upon, and a
total number of iteration or stop criteria. In a nutshell, CMA-
ES generates an initial population sampling from a
multivariate normal distribution, evaluates each generated
point, and then calculates mutation steps of the best points to
form the mutation distribution. By this, a new population of
points is generated and evaluated, and the iterative process
continues up to a user-defined number of times. Note that, for
every update of the mutation distribution in each algorithm
iteration, all past paths from previous iterations are also
considered, and the most favorable points are granted a
larger probability for being selected by the evolutionary
strategy. This way, the length of each mutation step can be
adapted to be longer in cases of greater fitness score
improvement or shorter for the opposite case.

2.2.4 Genetic Algorithm
Genetic algorithm (GA) is a widely known and tested
metaheuristic approach, also belonging to the family of
evolutionary strategies algorithms, which mimics the evolution
principles of biological organisms and operates directly on the
values of points (Holland, 1975; Whitley, 1994). Similar to CMA-
ES, an initial population of points is generated and evaluated, and
then, following an iterative approach, a series of genetic operators
are applied to each of them in order to produce the next evolved
population of points. More specifically, the GA applies the
selection, crossover, and mutation operators. Typically, the
first operator selects the evaluated individuals in a weighted
manner so that the ones with better fitness scores have an
increased probability of being selected to proceed to the next
generation, compared to fewer fit points. Then, the crossover
mixes the point values in a principle similar to that of the gene
propagation from parents to offspring as it happens in organisms.
Finally, the mutation operator changes a point value (e.g., one of
its dimensions) with a small probability, similarly to the process

that has been observed in DNA sequences. The main idea is that
combinations of points with good fitness scores would lead to
even better ones, especially if the search domain is smooth.
However, because the algorithm considers only the previously
observed fitness scores, without having any other domain-specific
knowledge, as a consequence, its search may be constrained
around locally optimal points, never managing to reach the
global optimal ones. Despite these shortcomings, GAs have
been shown to work very well for non-smooth search spaces
(Fitzpatrick and Grefenstette, 1988; Tang et al., 1996).

3 RESULTS

3.1 Multi-Scale Simulations and Model
Exploration Setup
Herein, we use a multi-scale model of tumor growth to investigate
different treatment strategies. The model, which is also used in
Akasiadis et al. (2021), simulates the dynamics of a population of
cancer cells growing under different drug treatment conditions. A
treatment strategy consists of the supply of periodic pulses of the
cytokine tumor necrosis factor (TNF) with fixed duration and
concentration (see Section 2). At the molecular level, when the
TNF binds to the cell’s receptor TNFR forming a complex, and
the TNF-TNFR complex concentration reaches a given threshold,
the signal is propagated through the Boolean regulatory network,
inducing cell death. However, if the stimulus is sustained for a
longer period of time, cells activate the NFkB node and the
survival node, becoming resistant to the death induced by the
TNF. For this reason, optimal treatments should expose the cell
for a sufficient time to induce death but not too much as to
become resistant to it (Letort et al., 2018).

To explore the parameter space associated with the treatment, we
have extended our model exploration workflow based on EMEWS
(Akasiadis et al., 2021). In each in silico experiment, we simulate the
growth of a population of cancer cells for 4,640 min (i.e., three days)
subject to a given treatment strategy. In order to account for the
inherent stochasticity of the model, each simulation is always run in
three replicates and the average behavior is considered (see Section
2). We evaluate the effect of the treatment strategies by analyzing the
total number of alive cells at the end of the simulations relative to the
initial population size and use these values as the score or cost
function associated with a treatment strategy. We define, as effective
treatments, those strategies that reduce the number of the alive cell
below 1% of its initial numbers in the three replicates. Based on this
definition, we investigate the parameter space of the effective
treatments in two different spatial arrangements of cells: a
monolayer disc of radius 100 μm (151 cells) and a 3D spheroid
of radius 100 μm (1,173 cells).

3.2 Effective Treatment Parameters Differs
for 2D and 3D Cell Arrangements
To investigate the structure of the parameter space of the
effective treatments, we perform a uniform sampling of
10,000 candidate sets of parameters corresponding to
different treatment strategies. We use these sets of
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parameters (sweep search) as inputs for multi-scale
simulations and evaluate each treatment effect on the
growth of the cancer cells in the 2D and 3D arrangements.
From the 10,000 evaluated parameter sets in each condition,
the results show that 113 strategies are effective treatments
for the 2D setup, whereas, in the 3D case, only 11 strategies
are effective treatments (see Supplementary Table S1). This
indicates that the region containing the effective treatments
for the 3D spheroid is more constrained than in the 2D disc
arrangement.

Interestingly, if we restrict the definition of effective
treatments to kill all cancer cells at the end of the simulation
and in the three replicates, only eight sets of parameters can reach

the goal for the 2D cases, whereas no effective parameter sets are
found for the 3D setup (see Supplementary Table S1 and
Supplementary Figure S3).

We compared the distributions and summary statistics of
the parameters of the effective treatments in the two
arrangements (Figure 3). The comparison shows that the
distribution values for the evaluated parameters indicate that
the effective treatments of the 3D arrangement are notably
more constrained than those that work in the 2D
arrangement, in particular regarding the concentration of
TNF and the pulse duration. In general, the effective
treatments in 2D arrangements exhibit bigger values and
larger ranges in the three parameters (Table 1).

FIGURE 3 | Effective TNF treatment parameters distribution from uniform random sampling. The distribution of the three parameters of the pulse treatment,
sampled from a uniform distribution and filtered to belong to the feasible region that can reduce the tumor size below 1% of its initial size.

TABLE 1 | Summary statistics for the parameters from the effective treatments found by sampling 10,000 random candidates.

Parameter Layout Mean Std. Min Median Max

Pulse duration (min) 2D 34.66 24.54 5.00 30.17 127.21
3D 19.97 12.31 9.37 14.99 46.66

Pulse period (min) 2D 440.83 128.53 161.44 438.86 738.09
3D 343.28 113.64 171.28 398.79 487.19

TNF (ng/L) 2D 0.14 0.16 0.02 0.10 0.99
3D 0.05 0.03 0.02 0.04 0.11
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We also found that some parameters’ combinations exhibit
correlations (see Supplementary Figure S4). On the one hand, we
observe that the Pulse period positively correlates with TNF in the 2D
and 3D but only correlates with pulse duration in the 2D case. On the
other hand, TNF shows a negative correlation with pulse duration
only for the 2D case. Altogether, these correlations indicate that the
treatment parameters can compensate each other: a shorter pulse
might be as effective as a longer one if it carries more TNF.

Although herein we are considering a spheroid composed only
of tumor cells, more complex scenarios will also contain healthy
cells. In such cases, effective treatments will also need to consider the
cytotoxic effect of the drug on the healthy cells. To address this issue,
we have also calculated the total concentration of TNF supplied
during each treatment based on the pulse parameters as follows:

TNFtotal = Pulseduration*Pulseconcentration*n,
where n is the total number of pulses supplied calculated by

dividing the total treatment (simulation) duration (min) over the pulse
period (min). Using the calculated values, we ranked the feasible
solutions to find the ones that minimize the total concentration of
TNF used during the whole treatment (see Supplementary Table S1).
The results show that the distribution of total TNF is biased to lower
values of the total TNF supplied in both the 2D and 3D (see
Supplementary Figure S5). Strikingly, when we analyze the
effective treatments that minimize the total amount of TNF
supplied in the 2D and 3D, we found a very similar value of 5 ng/L.

3.3 Optimal Treatment Parameters Differs
for 2D and 3D Cell Arrangements
To further investigate the structure of the parameter space of the
effective treatments, we conducted an optimization via

simulation to find the set of treatment parameters that
minimizes the number of alive cells at the end of the
application of the treatment. We performed the parameter
optimization in both cell arrangements (i.e., 2D disc and 3D
spheroid of radius 100 μm), focusing on the same parameters as
in Section 3.2: pulse duration, pulse period, and TNF. These
optimizations were run using two evolutionary algorithms:
Covariance Matrix Adaptation Evolutionary Strategy (CMA-
ES) and genetic algorithm (GA) (see Section 2 for details).

The results showed that both algorithms converge to optimal
(leaving no remaining cells) or near-optimal sets of parameters
for the 2D and 3D case, respectively (Figure 4). Interestingly, in
both cases, the GA found effective treatments after two iterations,
whereas the CMA-ES only does after 15 iterations. Nonetheless,
both algorithms are capable of finding effective treatments. In
addition, the CMA-ES algorithm also estimated a multivariate
normal distribution for the region of effective treatments
parameters that is updated at each iteration. In the last
iteration, the population sampled by the CMA-ES showed a
very low variance (Figure 4) in the 2D and the 3D
arrangements, indicating that the estimated distribution
captures, at least, part of the structure of the parameters
associated with the effective treatments.

We compared the parameter sets for the effective treatments
predicted by both algorithms and uncovered that each one
converges to different regions of the parameter space (see
Supplementary Figure S6). The CMA-ES found effective
treatments parameter distributions different for the 2D and
3D. In both cases, the parameter ranges were narrower than
those found in uniform sampling. Moreover, the CMA-ES
converged to distributions for the pulse period different for

FIGURE 4 | Algorithmic convergence for the optimization of treatment parameters. The average% of alive cells at the end of each iteration step of the CMA-ES and
GA optimization algorithms. Panels (A) and (B) show the convergence of the algorithms for simulations considering a population of cancer cells arranged in a 2D disc
and a 3D spheroid, respectively.
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the 2D and the 3D arrangement. In addition, the parameters
corresponding to effective treatments found by the GAwere more
scattered showing wider ranges of values. In both cases, the pulse
duration seemed to be the less critical or constrained parameter.

We analyzed the time course of the total number of alive,
apoptotic, and necrotic cells for one of the optimal treatments
found. Furthermore, for this simulation, we also checked the
internal state of the TNF-receptor model (i.e., the values for Re,
Re*, Ri′ variables) at each time step of the simulation and averaged
these values over all the cells to investigate the coarse grain
dynamics of the submodel. Figure 5A shows how the number of
alive cells periodically drops until it reaches zero as a consequence
of the TNF pulses. When analyzing the average dynamics of the
TNFR receptor model in effective treatments, we found that the
TNF pulse needs to trigger the activation of the receptor of 50% of
the population for short periods of time to be effective (5b). If the
average number of cells that got activated is lower than this
threshold, then the rate of cells entering necrosis will be lower
than the population growth rate, and therefore the number of
alive cancer cells will steadily grow. On the contrary, if the average
number of activated cells is above this threshold for extended
periods of time, many cells will become resistant to the treatment.
We found similar results for the case of the 3D spheroid (data not
shown).

3.4 Robustness Analysis of the Effective
Treatments in Heterogeneous Populations
In the previous section, we showed that effective treatments could
be found for 2D and 3D cell arrangements, using either the CMA-
ES or the GA algorithms. Nonetheless, those treatments were
optimized on monoclonal or homogeneous tumors, that is, the
population of cells with identical parameters. In this section, we
study the robustness of effective treatments by studying

heterogeneous populations of cells. We forced the population
heterogeneity by introducing variability into the three kinetic
parameters of the TNF receptor, that is, the TNFR binding rate,
the TNFR endocytosis rate, and the TNFR recycling rate. The
variability is applied by considering a normal distribution
centered in each parameter’s default value and with a standard
deviation, the control parameter that varies from zero
(homogeneous population) to one (almost uniformly
distributed random parameters). Then, when the population is
initialized, the kinetic parameters of each cell are sampled from
the corresponding distribution.

To evaluate the robustness of the effective treatments in
heterogeneous populations, we considered the top 30
effective treatments parameter sets that had no final tumor
cells in any of their replicates for the 2D and for the 3D cell
arrangements. Then, for each set of parameters, we run the
simulations with different levels of variability from 0 to 1. As
expected, we observed that, for low values of the variability
control parameter (< 0.2), most of the evaluated effective
treatments still can reduce the initial tumor size to the 1% of
the initial size. However, for higher variability values (> 0.2),
most of the evaluated treatments could not reduce the tumor
size below its initial size (Figure 6). This indicates that, as the
level of variability on the TNFR receptor kinetic parameters
increases, the effectiveness of the treatments dramatically
decreases (Figure 6).

Interestingly, the critical value at which most effective treatments
were no longer effective is different for the 2D and the 3D cell
arrangements. In the case of the 2D disc, the critical value is close to
0.25, whereas, in the 3D spheroid cases, this value is around 0.15
(Figure 6).When the variability value is above this threshold, some of
the sampled kinetic parameters make the cell insensitive to the
treatment, and thus it can grow even in the presence of TNF. The
differences in the critical threshold were possibly due to the different

FIGURE 5 | Time course for effective treatment in 2D cell arrangement. Panel (A) shows the time course for the number of alive, apoptotic, and necrotic cells. The
light grey curve shows the TNF pulses. Panel (B) shows the average state of the TNFR receptor model across all the alive cells. The horizontal line indicates the threshold
at which the signal induced by the binding of the TNF propagates downstream to the Boolean network.
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number of initial cells considered in the 2D and the 3D cell
arrangements. To assess this, we tested the effect of the radius size
of the 2D simulations in this robustness analysis.

We evaluated radius sizes of 50, 275, and 500 μm
corresponding to initial tumor sizes of 37, 1,069, and 3,559
cells, respectively. We tested three levels of variability with
each radius size in three replicates and averaged their results.
As already discussed, we can observe that the more variability, the
worse the outcome (see Supplementary Figure S7). Interestingly,
we did not see a clear correlation between the radius length and
the decrease of the effectiveness of the treatments, with the 50 μm

being the one with worse outcomes with the higher
variability level.

3.5 Optimization via Simulation Can Find
Effective Treatments in Heterogeneous
Populations of Cancer Cells
To evaluate the performance of model exploration workflow in
more complex scenarios, we investigated the optimization of
treatment strategies in tumors with different levels of
heterogeneity. This use case was considered as a way to

FIGURE 6 | Evaluation of the top 30 best effective treatments in heterogeneous populations of cancer cells with different degrees of variability in the kinetic
parameters of the TNFR. For a given value kinetic parameters’ variability (x-axis), each pair of boxes depicts the distribution % of alive cells at the end of the simulations
obtained after evaluating the top 30 best effective treatments founded when zero variability was considered.

FIGURE 7 | Time course for effective treatment in the 2D cell arrangement with variability of 0.25. Panel (A) shows the time course for the number of alive,
apoptotic, and necrotic cells. The light grey curve shows the TNF pulses. Panel (B) shows the average state of the TNFR receptor model across all the alive cells. The
horizontal line indicates the threshold at which the signal induced by the binding of the TNF propagates downstream to the Boolean network.
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evaluate what would happen when using this methodology in a
less ideal situation as it can be the drug screens in cell lines or
tumors with heterogeneous non-clonal cells. For this purpose, we
conducted the optimization via simulation to find effective
treatments in two conditions with different degrees of
variability in the kinetic parameters.

At first, we set the variability value on the kinetic parameters of
the TNFR receptor model to 0.25 and then run the GA and CMA-
ES to find treatments that minimize the total number of alive
cells. We found that, with this level of variability, neither of the
algorithms could converge (see Supplementary Figure S8).
Nonetheless, this did not prevent the algorithms from finding
effective treatments for both arrangements: the 2D disc and the
3D spheroid. While, for the 2D disc, several candidate sets of
parameters were found, only a few candidate effective treatments
were found by the CMA-ES for the 3D spheroid.

Interestingly, for the 2D cell arrangement, the CMA-ES
algorithm was able to find two optimal treatment strategies,
that is, a set of parameters for the TNF pulse that kills every
tumor cell in all three replicates. These two sets of treatment
parameters are similar to those effective treatments that worked
when variability was not introduced (see the previous section).
Figure 7A shows the time course for the effective treatments
optimized in the 2D cell arrangement. The plot shows how the
number of alive cells steadily decreases until zero (Figure 7B). It
also shows the average internal dynamic of the receptor model
exhibiting some noisy behavior due to the heterogeneity present
in the population.

We also performed a similar experiment with a higher
variability value (0.50) on the kinetic parameters of the TNFR
receptor model. We ran the treatment optimization using the GA
and CMA-ES and found that, as expected, with this level of
variability, the convergence of both algorithms was even worse
than for the case of 0.25 (see Supplementary Figure S9).
Furthermore, the algorithms could only find effective
treatments for the 2D disc arrangement. Nevertheless, the
number of different parameter sets found were fewer than in
the previous scenario, with a variability value of 0.25, as expected
for a more complex landscape. For the 3D spheroid case, the best
treatment reduced the initial tumor size to 1.05% of its initial size
when averaged over the three replicates. If we relax the definition
of effective treatment to a threshold of 2% and compare the
distribution of the effective parameters between the cases with
variability set to 0.25 and 0.50, we found that the ranges of values
were wider in the second case. Altogether the results presented in
this section indicate that the higher the variability in the
population, the harder to find effective treatments.
Nonetheless, the results also show that even with high values
of parameters variability, it is still possible to find very effective
treatment strategies.

4 DISCUSSION

In this work, we used a hybrid multi-scale model that merges a
mass-action kinetics model of the TNF receptor with a cancer cell
Boolean model of different signaling pathways. Moreover, these

models are embedded in an agent-based framework that allows
considering populations of cells in a defined microenvironment.
By performing a model exploration, we have shown that the
effective treatments parameter can be found in different cells’
geometries, including 2D monolayers and 3D spheroids.
Furthermore, by performing a uniform random sampling of
the effective treatment spaces, we found that the parameters
for 2D and 3D arrangements exhibit different distributions.
These differences are more pronounced in the case of the TNF
concentration and the pulse duration, where the effective
treatments for the 3D spheroid case are notably more
constrained than those found for the 2D disc. We hypothesize
that the 3D configuration imposes spatial constraints in the
diffusion of the TNF, which restraint the space of values for
the candidate’s effective treatment.

We also found that some parameters’ combinations exhibit
correlations, indicating that one parameter change can be
compensated by adjusting another one. For instance, we
observe that the pulse period positively correlates with TNF in
the 2D and 3D. This means that increasing the period between
pulses can be compensated by increasing the pulse concentration.
Interestingly, the correlation between these two parameters is
stronger in the 3D spheroid than in the 2D monolayer, showing
how the former case is more constrained than the latter. For the
3D spheroid, we also found a strong positive correlation between
the pulse period and its duration, showing that these two
parameters can also compensate for each other. Nonetheless,
the correlation between these two parameters is very low and does
not show statistical significance in the 2D monolayer. Finally, we
found a negative correlation between the pulse concentration and
its duration in the 2D monolayer showing that, in these cases, an
increase in the concentration of the pulse can be compensated by
a reduction of its duration. Altogether these results indicate that
the structure of parameters spaces of effective treatment depends
on the spatial cell distribution. Therefore, treatment strategies
that work in a 2D monolayer may not work in a 3D spheroid.

Although our model only considers tumor cells, the total drug
supplied will be critical when healthy cells are also present. For
this reason, we analyzed the total TNF supplied during each
experiment as a way to estimate the cytotoxicity associated with
the effective treatments. Our results showed that, in general, the
distribution of this value tends to be skewed to lower values. We
also found that the minimum value of the total TNF for the 2D
and 3D are quite similar. Nonetheless, the specific treatment’s
parameters are very different; in the 2D case, the effective
treatments that use the minimum TNF values has a period
around twice times larger than the one in 3D, but the
duration of the pulse has half of the duration; the pulse
concentration is around four times higher in the 2D case. This
analysis also indicates that spatial cell distribution is important
for the design of efficient strategies.

We later investigate treatment optimization using two different
evolutionary algorithms: GA and CMA-ES. Our results showed that
both algorithms could quickly converge to effective treatments, but
while the GA can find candidates in the first iteration, the CMA-ES
converge to a more robust region of the parameter space.
Furthermore, the CMA-ES also finds a statistical distribution for
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the region of effective treatments. Strikingly, both algorithms converge
to slightly different regions of the parameter space in both the 2D and
the 3D arrangements. This suggests that the fitness landscape of
effective treatments is very rough, exhibiting several valleys of effective
treatments regions.

In order to unravel the molecular mechanism behaving like the
effective treatments, we analyzed the coarse-grained dynamics of the
TNF receptor models for working and none working treatment
strategies. The non-working strategies can be grouped into two
classes. On the one hand, there are those sets of treatment
parameters that do not allow the receptor to reach the threshold
needed to propagate the signal downstream of the Booleanmodel. On
the other hand, there are treatment strategies that keep the activation
of the receptor for long periods enough to induce cell resistance. In this
context, if we define drug resistance as the inability of a cell to respond
to a given drug, we find that resistance can come from two aspects:
from the dynamics of the Boolean model in response to TNF and
from the characteristics of the TNF receptors. The effects of TNF in
this Booleanmodel reported by Calzone et al. (2010) are multifaceted:
TNF triggers cells to go from a naive to a survival state but to commit
cells to necrosis and apoptosis. Once the cells are committed to either
survival, necrosis, or apoptosis, they cannot go back, causing a
resistance that can be due to phenotypic variability. As this model
was studied using a stochastic Boolean simulator (Stoll et al., 2012), it
was possible to capture its dynamics and see that these commitments
were not equally fast, or even, that there was a window of activation
that allowed controlling the commitment to survival and commiting
the cells to necrosis (Letort et al., 2018).

In addition to the Boolean model, our hybrid model also has a
mass-action kinetics model that can cause another type of
resistance. As we see in Section 3.2 and Section 3.3, there are
values for the receptor’s kinetic parameters that prevent the cell
from the regulatory effects produced by the binding of TNF.
Therefore, when we consider heterogeneous populations by
introducing variability in the kinetic parameters of the TNF
receptor, we observed that beyond a critical value of the
parameter that controls variability, most of the effective
treatments that work in the homogeneous population fail to
reduce tumor growth. Our hypothesis is that, with high
variability, some of the cells could have kinetic parameters
that make them insensitive to the treatment, and thus they
will produce the relapse after the sensitive ones have been
killed by the treatment. We found that this is the main cause
of the non-optimal parameters sets found by the optimization
techniques within heterogeneous populations.

Regarding the critical value for the control parameter, it is
different for the 2D and the 3D cell arrangements, with a lower
value in the latter case. We hypothesize that this difference may be
due to two factors. The first is because the space of effective
treatments strategies is more constrained in the 3D case. The
second reason we propose is due to the differences in the total
number of cells simulated in the 2D and 3D.While we set the same
radius for the disc and the spheroid, the numbers of initial cells are
~150 and ~1,000, respectively. Because variability is generated by
the sampling of random parameters, a larger number of cells
increases the probability of getting a set of kinetic parameters
that make the cell insensitive to the TNF. We have shown that

population variability can cause resistance. The higher the
variability, the harder to find effective treatments. However,
even in the cases of the maximum variability analyzed, the
algorithms can find a few sets of candidate effective treatments.

5 CONCLUSION

Multi-scale modeling allows for gaining mechanistic insights in
dynamic drug dosages and predicting novel strategies for
treatments. Even though, in the last few years, it has been great
progress in the field (Montagud et al., 2021), it is known that virtual
drug screens seldommatchwith clinical trials results. Thus, we need to
acknowledge that we are far from using these models at the patient’s
bedside (Horvath et al., 2016). One of the improvements that would
help close this gap would be to have simulations and optimizations
that account for and embrace uncertainty. We have hereby presented
a free-to-use, open-source framework that allows optimizing
treatment strategies with varying levels of uncertainty. We tested
the framework using amulti-scalemodel of cancer growth in different
cell arrangements introducing population variability to show that
population heterogeneity is critical, either caused by the cells’ state,
their parameters, or the population size, affecting the optimal
parameter sets. We found that our model exploration workflow
can find effective treatments in all the studied conditions. Most
importantly, our results show that cells’ spatial geometry and
population variability should be considered when optimizing
treatment strategies to find robust parameter sets.
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