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aLaboratori de Càcul Numèric (LaCàN), E.T.S. de Ingenieros de Caminos, Canales y Puertos,
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Abstract

A nonintrusive reduced order method able to solve a parametric modal analysis is proposed in this work. The

main objective is being able to efficiently identify how a variation of user-defined parameters affects the dy-

namic response of the structure in terms of fundamental natural frequencies and corresponding mode shapes.

A parametric version of the inverse power method (IPM) is presented by using the proper generalised decompo-

sition (PGD) rationale. The proposed approach utilises the so-called encapsulated PGD toolbox and includes

a new algorithm for computing the square root of a parametric object. With only one offline computation,

the proposed PGD-IPM approach provides an analytical parametric expression of the smallest (in magnitude)

eigenvalue (or natural frequency) and corresponding eigenvector (mode shape), which contains all the possible

solutions for every combination of the parameters within pre-defined ranges. A Lagrange multiplier deflation

technique is introduced in order to compute subsequent eigenpairs, which is also valid to overcome the stiff-

ness matrix singularity in the case of a free-free structure. The proposed approach is nonintrusive and it is

therefore possible to be integrated with commercial finite element (FE) packages. Two numerical examples are

shown to underline the properties of the technique. The first example includes one material and one geometric

parameter. The second example shows a more realistic industrial example, where the nonintrusivity of the

approach is demonstrated by employing a commercial FE package for assembling the FE matrices. Finally, a

multi-objective optimisation study is performed proving that the developed method could significantly assist

the decision-making during the preliminary phase of a new design process.
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1. Introduction

The dynamic response of an engineering structure depends on its material and geometric properties. Changes

in the design parameters can have considerable effects on the structural dynamic behaviour. For this reason,

during the development process of a new system, designers have to run sensitivity analysis, such that potential

problems can be identified and corrected before time, money and resources are wasted on prototyping and5

manufacturing a non-optimal design. The modal analysis is widely used in industry to predict the dynamic

properties of a structure under free-vibration conditions. This consists of solving a generalised eigenvalue

problem where the eigenvectors represent the natural deformation of the structure when vibrating (mode shapes),

and the eigenvalues are the corresponding natural frequencies. Trying to efficiently identify how the mode shapes
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and natural frequencies depend upon the design parameters is still today a challenging computational task. In10

fact, standard mesh-based discretisation methods would approach this multidimensional problem by solving it

for several combinations of the parameters. Due to the exponential increase of the computational complexity

with the dimension of the problem, this task becomes unaffordable in real industrial applications. In order

to overcome this issue, known as the curse of dimensionality, reduced order methods (ROMs) represent an

attractive alternative. ROMs are based on the idea that the essential behaviour of complex systems can be15

accurately described by simplified low-order models. Several ROMs have been developed in the last decades and

employed in the most diverse applications. Usually, they are classified into a-posteriori and a-priori methods.

Some of the most popular a-posteriori methods are the Krylov-based methods [1], the reduced basis method [2],

and the proper orthogonal decomposition (POD) technique [3], which is one the most applied in the context of

structural dynamics [4], [5], [6], [7]. These approaches first need to solve the full-order problem for a suitably20

chosen set of parameters, such that a set of basis functions describing the most relevant characteristics of the

solution can be computed. The obtained reduced model is then used to solve similar problems at a much cheaper

computational cost. Clearly, the accuracy of the solution for any new value of the parameters highly depends

on the right choice of the representative set of problems used to extract the reduced basis. An appealing

alternative is represented by the proper generalised decomposition (PGD) method [8], [9], [10], that is able25

to provide explicit parametric solutions to parametric boundary value problems. In its standard from, PGD

is an a-priori reduced order technique, in the sense that it computes the reduced basis without relying on

previously computed full-order solutions associated with arbitrary samples of the parametric space. This is

possible thanks to the main assumption of the method, that is to treat the parameters as extra coordinates and

approximate the solution of the resulting high-dimensional problem as a sum of functional products, each one30

involving the basis functions that depend separately on the parameters by assumption. The PGD algorithm is

constructed such that the basis functions are computed simultaneously and on-the-fly during an offline stage,

usually performed by employing high-performance computing resources. In order to provide the solution in the

described explicit parametric representation, the method requires the input data of the problem to be described

in the same separated format. Unfortunately, it is not always possible to find an analytical expression of the35

separated input data (such as stiffness matrices), especially when general geometric parameters are involved in

the problem. For this reason, the authors recently developed [11] a hybrid version of the PGD method. On one

hand, it can still be considered an a-priori approach, as it does not require any previous full-order computation

of the solution. On the other hand, a pre-process step is added, where the input data are only sampled (without

solving the problem) in the parametric domain of interest and then expressed in the required separated format.40

This then allows to proceed as in the standard PGD method and explore any user-defined parametric domain

with only one offline computation. Afterwards, in an online stage, the obtained solution can be particularised in

real time for any choice of the parameters in the domain. The PGD method has been successfully tested in the

most diverse fields, such as flow problems [12], [13], [14], [15], [16], [17], thermal problems [18], [19], [20], solid

mechanics [21], [22], [23], fracture mechanics [24], [25], geophysical problems [26], [27], elastic metamaterials45

and coupled magneto-mechanical problems [28], [29]. Several applications are available also in the dynamic

framework. For example, [30] and [31] proposed a POD-PGD approach to implement a real-time integration

scheme able to solve the equations of solid dynamics depending on parametric initial conditions. In [32], [33]

and [34], PGD is coupled with a hybrid integration scheme which combines modal and harmonic analysis to

efficiently solve frequency-dependent parametric problems. In this work, the PGD approach has been coupled50
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with an eigensolver technique, the inverse power (IPM) method, to efficiently identify how a variation of user-

defined material and geometric parameters affects the dynamic response of the structure in terms of dominant

eigenmodes and related natural frequencies. Similar works have been presented in the field of nuclear reactor

analysis, which confirms the potentiality of the proposed method in general areas of applications. In particular,

the PGD method has been coupled with standard eigenvalue solvers, such as the Arnoldi technique [35], the55

IPM [36] and the direct power method [37], in order to solve single- and multi-group neutron diffusion eigenvalue

problems. The PGD-IPM computational tool presented in this work uses a PGD-based library known as

Encapsulated-PGD toolbox [38]. The toolbox not only allows to solve parametric boundary value problems as

in the standard PGD approach, but it can perform basic algebraic operations with parametric objects expressed

in the standard separated PGD format. Here, in particular, it is able to perform all the algebraic parametric60

operations needed by the inverse power iteration in a transparent manner. In other words, the user only needs

to prepare the input data in the PGD separated format and perform one offline computation. As a result, the

smallest (fundamental) eigenvalue and corresponding eigenmode are obtained in the parametric format. If the

structure is unconstrained, the structure undergoes rigid body motions and the IPM can not be applied because

of the stiffness matrix singularity. To overcome this issue, first the parametric rigid body modes are computed65

as detailed in [11], where the PGD method was coupled with the Inertia Relief (IR) method to perform the

static analysis of an unconstrained structure. Here, in addition, a Lagrange multipliers technique is presented

which impose orthogonality to the set of rigid body modes and computes the first non-zero eigenvalue. The

same technique can be used to compute the subsequent non-zero eigenvalues and the corresponding eigenmodes.

Another important challenge in PGD applications is represented by complex geometric parametrisations. In70

fact, if geometric parameters are introduced in the problem, it is not trivial to find separable representation of

the input quantities. Several works have been presented in order to solve this issue [39], [40], [41], [42], [43], [44].

In the above-mentioned work [11], the authors proposed also an algebraic approach which consists of a sampling

of the input data such that they can be expressed in a separated format even when geometric parameters

are considered. By using this algebraic approach together with the Encapsulated-PGD toolbox, the method75

preserves a nonintrusive implementation. This means that, unlike the standard PGD method, it does not require

to access and modify the FE source code. As a consequence, the method can easily interact with commercial

FE packages allowing its wider application in industry.

The paper is organised as follows. Section 2 reviews the formulation of the modal analysis in the standard

non-parametric framework. In particular, the IPM is introduced as the eigensolver to be coupled with the PGD80

method. The description of the parametric modal analysis is given in Section 3. In 3.2, the implementation of a

new algorithm able to calculate the square root of a parametric quantity is introduced and used in the parametric

eigensolver. Two numerical examples are proposed in Section 4 in order to show the potential of the proposed

method. It is worth noting that the same FE models where tested under unconstrained static conditions in [11].

In the first example, the modal analysis of a simple linear elastic three-dimensional (3D) structure with one85

material and one geometric parameter is considered to underline the main properties of the developed ROM. In

the second example, an industrial application is considered, that is the modal analysis of a dummy car. Here,

the nonintrusive interaction with the commercial FE software MSC-Nastran is demonstrated. A multi-objective

optimisation study is also performed to prove the potential of the method as a fast and reliable tool to support

designers during the decision-making procedure. Finally, conclusions and outlooks are summarised in Section 5.90
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2. Problem statement: finite element discretisation and modal analysis

In the absence of volumetric forces, the unknown displacement field u(x, t) is to be computed for x ∈ Ω and

t ∈ (0, T ] such that

ρ ü = ∇ · σ(u), (1)

where ρ stands for the density, ü := ∂2u
∂t2 is the acceleration, and σ denotes the Cauchy stress tensor. The

differential equation (1) is to be complemented with boundary conditions and initial conditions. Typically, the

boundary of the domain Ω, ∂Ω, is partitioned into the disjoint parts ΓD and ΓN , where Dirichlet and Neumann

boundary conditions are prescribed. In the free-free case analysed in the following, ΓN coincides with ∂Ω and95

the Neumann boundary conditions are homogeneous everywhere.

The Cauchy stress tensor dependence on u is given by the constitutive law (here, the generalised Hooke’s

law associated with the fourth order stiffness tensor C) and the definition of the linear strain tensor, namely

σ(u) = C : ε(u), and ε(u) =
1

2

(
∇u+ ∇u>

)
. (2)

Using weighted residuals in space (integrating in Ω), problem (1) is re-written in the weak form

∫

Ω

ρv(x) · ü(x, t) dΩ

︸ ︷︷ ︸
m(ü,v)

+

∫

Ω

ε(v(x)) : σ(u(x, t)) dΩ

︸ ︷︷ ︸
a(u,v)

= 0 (3)

for every v(x) taking values in Ω, and at very time t. The discretised versions of the bilinear forms m(·, ·) and

a(·, ·) in a finite element space are the mass matrix M and the stiffness matrix K, respectively. Similarly, the

discrete version of the unknown u(x, t) is the vector of time-dependent nodal values U(t) ∈ IRndof . Thus, the

semi-discrete counterpart of Eq. (3) is the following linear system of ordinary differential equations

MÜ(t) + KU(t) = 0. (4)

2.1. Modal analysis

The modal analysis solution of Eq. (4) assumes that the time dependence of U(t) is harmonic, that is

U(t) = cos(ωt− α)φ, (5)

where ω is the angular velocity and α the phase angle. Note that the frequency of the mode is ω
2π . Hence

Ü(t) = −ω2 cos(ωt− α)φ = −ω2U(t) (6)

and therefore, replacing Eq. (6) in Eq. (4), it turns out that

Kφ = ω2Mφ. (7)

Expression (7) is an eigenvalue problem. Since M is symmetric positive-definite and K is symmetric semi-

positive, the solution of Eq. (7) provides eigenvalues ω2
i and their corresponding eigenvectors φi, for i =

1, 2, . . . , ndof (it is assumed they are sorted such that ω1 ≤ ω2 ≤ · · · ≤ ωndof
).100
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Eigenmodes φi, for i = 1, 2, . . . , ndof, associated with eigenfrequencies ωi, are the natural mode shapes,

representing the deformation of the structure as vibrating in its i-th mode. Modes associated with different

frequencies are orthogonal with respect to both M and K. That is φ>i Mφj = 0 and φ>i Kφj = 0 for i and j

such that ωi 6= ωj .

Note that once the eigenmode φi is available, the corresponding eigenfrequency is readily computed invoking

the Rayleigh quotient:

ω2
i =

φ>i Kφi

φ>i Mφi
. (8)

In order to enforce unicity (up to their sign) of the eigenmodes, they are normalised with respect to the105

metric provided by M. That is, φi are selected such that φ>i Mφi = 1, and consequently φ>i Kφi = ω2
i , for

i = 1, 2, . . . , ndof.

The solution U(t) of Eq. (4) is recovered as a linear combination of the modes φi multiplied by their time

harmonic dependence, cos(ωit − αi), and their corresponding amplitude. The amplitude and the phase αi of

each mode are to be computed using the initial conditions.110

Often, structural engineering analysis does not require obtaining the full time dependence. The fundamental

modes corresponding to the lowest eigenfrequencies provide the essential information to assess the structural

dynamics response. Thus, obtaining the lowest eigenfrequencies ωi and their corresponding eigenmodes is a

pertinent outcome for engineering analysis.

2.2. Numerical eigenvalue solver: the inverse power method115

Several numerical methods are available in the literature [45], [46], [47] in order to solve the eigenvalue prob-

lem (7). Depending on the mathematical structure, the number of eigenpairs of interest and the computational

cost associated to the algebraic operations, a different numerical eigensolver might be recommended. Roughly

speaking, two main categories can be identified: global approaches, such as the QR method [48], that approxi-

mates all the eigenvalues, or partial methods which compute a smaller set of eigenvalues, such as Lanczos [49],

Arnoldi [50], Davidson [51], and Jacobi-Davidson [52] methods. The simplest eigensolvers are the well-known

power methods, that aim at computing the largest eigenvalue and its corresponding eigenvector (direct power

method) or the lowest (inverse power method). After computing the largest (resp. lowest) eigenvalue, a defla-

tion technique is used to remove it from the problem and the same method provides the second largest (resp.

lowest). In this work we are interested only in a few lowest eigenvalues, so the IPM represents a suitable choice.

Moreover, the generalisation to the parametric problem introduced in the next section suggests adopting the

algorithmically simplest methodology. Assuming σ1 > 0, the IPM iterates approximations to eigenvector φ1.

An initial guess φ0
1 is selected. Then, the ν-th iteration φν1 is obtained solving the following linear system

Kφν1 = Mφν−1
1 , for ν = 1, 2, 3 . . . (9)

The iterative sequence is expected to converge to φ1 and the corresponding eigenvalue ω2
1 is obtaining computing

the Rayleigh quotient, as indicated in Eq. (8). Note also that the obtained value of φ1 is to be normalised by

dividing by its M-norm, that is dividing by
√

M>φ1M.

The subsequent eigenvectors and eigenvalues are computed using a deflation technique, which consist of

removing the already computed eigenvectors from the original matrix. In practice, in a power method this can

also be done at the level of the iteration (9), enforcing orthogonality to the already computed eigenvectors. Thus,
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the second smallest eigenvalue σ2 and its corresponding eigenvector φ2 are computed similarly, but enforcing

M-orthogonality to φ1 (which is already available) at every iteration, that is φ>1 Mφν2 = 0. In the standard

algorithms, this is readily done subtracting the projection of the iterated approximation, for example by means

of the Gram-Schmidt-type orthogonalisation processes (see [47]), that is replacing φν2 by

φν2 − (φ>1 Mφν2)φ1. (10)

Here, for the sake of easing the generalisation to the parametric case analysed in the next section, an equivalent

strategy is adopted, enforcing orthogonality already in the linear system to be solved at each iteration using

Lagrange multipliers. Accordingly, Eq. (9) is to be replaced by a new (ndof + 1)× (ndof + 1) system of equations


 K Mφ1

(Mφ1)> 0




φ

ν
2

λ


 =


Mφν−1

2

0


 , (11)

where λ is the Lagrange multiplier, which is an instrumental unknown to be discarded as part of the result.

When the first n eigenvalues σ1, σ2, . . . , σn are already computed and the corresponding eigenvectors are

collected in the ndof × n matrix Φn = [φ1,φ2, . . . ,φn], the iterative scheme to compute φn+1 boils down to

solve the following (ndof + n)× (ndof + n) system of equations at each iteration


 K MΦn

(MΦn)> 0




φ

ν
n+1

λ


 =


Mφν−1

n+1

0


 , (12)

where λ is the n× 1 vector of Lagrange multipliers. An important case to take into account, which is typical in120

the automotive and aerospace applications, is the case of a free-free structure (with no loads and no constrains).

The stiffness matrix K associated to this kind of systems is singular, with a six-dimensional kernel (in 3D)

containing the rigid-body modes. This is to say σi = 0 for i = 1, 2, . . . , 6 and the corresponding rigid-body

modes are precisely φ1,φ2, . . . ,φ6, collected in the ndof × 6 matrix Φ6.

The computation of the 6 rigid-body modes is to be performed using a different technique concerning only125

matrix K (therefore, independent of M) that is described in detail in [11], both for the standard implementation

and the parametric one.

Once the rigid-body modes Φ6 are obtained, the fundamental eigenfrequency and eigenvector, σ7 and φ7

are computed using the iterative scheme described in Eq. (12). This is summarised in Algorithm 1 for a general

eigenvalue ω2
n+1 and eigenvector φn+1, assuming that the previous ones are available in Φn.130

3. Parametric modal analysis

As mentioned in the introduction, the goal of this work is to solve the parametric version of the problem

stated in Section 2, and more precisely of the eigenvalue problem (7) arising from the modal analysis. The

input data of the problem are assumed to depend on a set of np parameters µ = [µ1, µ2, . . . , µnp ]T ∈M ⊂ IRnp

describing the material properties (e.g. elastic modulus, density, etc.) and the geometric characterisation of135

the shape of the structure. Typically, the multidimensional parametric domain M is defined as the Cartesian

product of sectional intervals, for each one of the parameters, namely M := M1 ×M2 × · · · × Mnp , with

µj ∈Mj ⊂ IR for j = 1, . . . , np. Based on this assumption, the parametric version of the modal analysis results
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Algorithm 1 Inverse power method to compute φn+1 and ωn+1

Input: K, M, Φn, tolerance ε and initial guess φold (for ν = 0)

1: Normalise φold ← φold/

√
φold>Mφold

2: while Eφ > ε ‖φnew‖ do

3: Solve


 K MΦn

(MΦn)> 0




φ

new

λ


 =


Mφold

0




4: Normalise φnew ← φnew/

√
φnew>Mφnew

5: Compute errors Eφ = ‖φnew − φold‖
6: Update φold ← φnew

7: Store solution φn+1 = φnew

8: Compute ωn+1 =
√
φ>n+1Kφn+1

Output: φn+1 & ωn+1

in solving the eigenvalue problem (7) for parameter-dependent input matrices, that is K(µ) and M(µ). The

solution also depends on the design parameters and it is given in terms of eigenvalues ω2(µ) and eigenvectors140

φ(µ).

3.1. Inverse power iteration and deflation with the encapsulated PGD toolbox

A coupling of the proper generalised decomposition (PGD) method with the inverse power method (IPM)

is proposed to solve the parametric eigenvalue problem. The final goal is being able to compute a set of neig

smallest (in magnitude) non-zero eigenvalues and the corresponding eigenmodes, both in a parametric format.

From a conceptual point of view, the extension of the IPM algorithm from the non-parametric to the parametric

framework is as simple as rewriting all quantities in Algorithm 1 with their parametric dependency. However,

in a numerical sense, the algorithm requires several parametric algebraic operations to be performed, which is

certainly a challenging task. The recently developed Encapsulated PGD Toolbox, see [38], plays a key role in

this work. The toolbox contains a collection of PGD-based algorithms able to perform algebraic operations

between parametric objects, such as scalars, vectors and matrices depending on the parameters µ. This allows

the introduction of a general methodology to solve all the parametric operations involved in the IPM algorithm,

that is: 1) solving a linear system of equations (line 3 in Algorithm 1); 2) divide a vector by a scalar (lines 1

and 4), vector-matrix-vector product (lines 1, 4 and 8); and 3) compute the square root of a scalar (parameter-

dependent) quantity (lines 1, 4 and 8). All operations but the square root were already available in the toolbox.

The square root routine was developed in the context of this work and added to the toolbox, following the

algorithmic structure described in Section 3.2.

According to the standard PGD philosophy, the encapsulated toolbox assumes a separated representation of

the multidimensional solution, which is obtained using a greedy-type algorithm combined with an alternated

directions scheme, as deeply described in [38] and [53]. As a consequence, the PGD approximation of the n-th

eigenmode φn(µ) can be expressed as the linear combination of an a-priori unknown number of terms nφn ,

namely

φn(µ) ≈ φPGD
n (µ) =

nφn∑

i=1

βiφn φ
i
n

np∏

j=1

F j,iφn(µj). (13)
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Every i-th term of this sum is given by the product of a series of functions, each one depending separately on

one of the problem parameters. More precisely, φin refers to the spatial dimension and F j,iφn(µj) corresponds to

the set of parametric functions depending separately on each parameter µj , for j = 1, 2, . . . , np. If spatial and

parametric terms are normalised, a factor or amplitude βiφn appears, that indicates the relevance of the i-th

term of the sum to the final separated solution.

Analogously, the PGD approximation of the angular frequency ωn(µ) reads

ωn(µ) ≈ ωPGD
n (µ) =

nωn∑

i=1

βiωn

np∏

j=1

F j,iωn(µj). (14)

Note that, being ωn a scalar, its spatial part becomes βωn . In order to perform parametric operations by means

of the encapsulated toolbox, the input data of the routines must also be provided in the separated form. In this

case, a pre-process step is necessary to define the parametric stiffness and mass matrices as

K(µ) =

nK∑

i=1

Ki

np∏

j=1

F j,iK (µj) and M(µ) =

nM∑

i=1

Mi

np∏

j=1

F j,iM (µj). (15)

If an exact analytical separated expression exist for the two matrices, the amplitudes do not appear in (15)

because no normalisation of the PGD terms is needed.

It is important to underline that it is not always trivial to find a separated analytical representation of the

input data, especially when geometric parameters are considered in the problem. Furthermore, assuming that

a separated expression can be found, standard a-priori PGD methods require a modification of the weak form

of the problem. Such an “intrusive” approach is practically not employable in the industrial context, where

commercial FE software is used, i.e. source codes are typically not accessible. For this reason, a hybrid and

nonintrusive algebraic approach was proposed by the authors in a previous work [11], which is able to deal

with general shape parametrisations and allows an easy interaction with commercial software. The main idea

is to add a pre-process step to the method. From the computational point of view, this process consists in

assembling (without solving the problem) the input matrices for every possible combination of the parametric

values in the discretized domain and then express them in the separated format. If each introduced parametric

dimension µj ∈ Mj for j = 1, 2, . . . , np is discretised using mj nodal values, then the full-order sampling of

the parametric matrices consists of evaluating K(µ) and M(µ) in the set of mtot points used to discretise the

parametric domain M :=M1×M2×· · ·×Mnp , where mtot =
∏np
j=1mj . It is worth noting that this technique

preserves efficiency, since the computational cost for the matrices assembly is small compared to the cost of a

full-order dynamic simulation. For the example tested in this work, which is discretised with a coarse FE mesh

relatively to real industrial models, the time needed to assemble the input matrices for one configuration is four

times cheaper than solving the corresponding dynamic problem. If finer meshes are considered, the cost of the

assembling is expected to be negligible compared to the full-order computation. In addition, the sampling of

the matrices can be done in parallel. Once the matrices are sampled, they can be expressed as in Eq. (15). The

number of PGD terms needed to describe the two matrices can be reduced to a much smaller number than ntot

by performing a PGD-based data compression [53]. In fact, every time a PGD operation (such as product, sum,

difference) leads to a large number of terms, data compression is advisable to reduce the number of PGD terms

whilst maintaining a desired level of accuracy.
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If the structure is unconstrained, the parametric matrix Φ6(µ) =
[
φ1(µ),φ2(µ), . . . ,φ6(µ)

]
containing the first

six (in 3D) rigid-body modes must be also given as separated input data to the IPM. As explained in detail

in [11], it can be computed in a separated format as the kernel of the stiffness matrix. These rigid-body modes

depend on the design variables only if geometric parameters are involved in the problem because, by definition,

the rigid body modes of a structure do not depend on the material properties.

Once the initial input of the problem is available, a “cascade” application of the PGD method can be performed,

in the sense that the output of each parametric algebraic operation, obtained by calling an encapsulated PGD

routine, can be directly used as the input of the next operation, until the global solution is obtained. The para-

metric input data are computed as separated multidimensional tensors, which we indicate with the superscript

�PGD. An overloading of the arithmetic operators allows to use the standard Matlab symbols to call the alge-

braic operations contained in the encapsulated library, which makes the method highly user-friendly. Table 1

summarises some of the algebraic operations available in the Encapsulated PGD library and the corresponding

Matlab symbols.

Table 1: Some of the algebraic operations available in the encapsulated PGD toolbox. Matlab symbols can be
used in a standard way.

Matlab symbol Encapsulate PGD routine

KPGD\fPGD Solve linear system

uPGD + vPGD Sum (or difference)

KPGD ∗ uPGD Product

uPGD./vPGD Division

(uPGD)
′

Transpose

sqrt(uPGD) Square root

˜uPGD Compression
[
uPGD,vPGD

]
and

[
uPGD;vPGD

]
Arrays concatenation

Figure 1 shows a pseudo-code describing the algorithmic aspects of the method when the first non-zero neig

smallest eigenpairs of an unconstrained structures are sought.

Analogously to Eq. (12), the parametric IPM consists of iteratively solving the following system of equations:


 K(µ) M(µ)Φn(µ)

(M(µ)Φn(µ))> 0




φn+1(µ)

λ(µ)


 =


M(µ)φn+1(µ)

0


 . (16)

If the first non-zero eigenmode φ7(µ) is sought, then the matrix of already known mode shapes coincides with

the matrix of rigid body modes, i.e. Φn(µ) = Φ6(µ). For every new computed eigenmode φn+1, the matrix

is updated as Φn(µ) = [Φn(µ),φn+1]. The Lagrange multipliers λ(µ) are introduced in order to get unicity

by enforcing mass-orthogonality to the set of already known eigenvectors. It is important to point out that,

according to the author’s knowledge, this deflation technique has not been proposed before in the context of the

standard IPM. This is due to the fact that in a non-parametric context other more efficient methods can be used,

as discussed in Section 2.1. Nevertheless, in this novel extension of the eigenvalue problem to the parametric

framework, the Lagrange multipliers technique proved to be the most efficient. Alternative strategies were also
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Prepare separated input data:

1. Sample and separate KPGD and MPGD

2. Compute ΦPGD
6 and set ΦPGD

n = ΦPGD
6

3. Update KPGD
LM ←

[
KPGD MPGDΦPGD

n(
MPGDΦPGD

n

)>
0

]

4. Compress ˜KPGD While
n+ 1 < neig

1. Select initial guess: φold,PGD

2. Update φold,PGD ←
[
MPGDφold,PGD

0

]

3. Compress ˜φ
old,PGD

While
Eφ < tol

Solve:

[
φnew,PGD

λ

]
= KPGD

LM\φold,PGD

Normalise φnew,PGD:

1. Product: pPGD = (φnew,PGD)> ∗MPGD ∗ φnew,PGD

2. Compress: ˜ pPGD

3. Square root: sPGD = sqrt(pPGD)

4. Division: φnew,PGD = φnew,PGD./sPGD

NO

YES

1. Store: φPGD
n+1 = φnew,PGD and update ΦPGD

n =
[
ΦPGD

n ,φPGD
n+1

]

2. Compute: (ωPGDn+1)2 = (φPGD
n+1)>KPGDφPGD

n+1

Check if
n+ 1 < neig

NO YES

φnew,PGD = φold,PGD

START
PGD-IPM

Check if
Eφ < tol

Update KPGD ←
[

KPGD MPGDΦPGD
n(

MPGDΦPGD
n

)>
0

]
STOP

PGD-IPM

Figure 1: Pseudo-code of the PGD-IPM method.
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tested. For example, Felippa et al. [54] proposed a modification of the stiffness matrix as K + Φ6Φ
>
6 , whose

eigenvalues are identical to those of K but the eigenvalues associated to the rigid body modes are raised to

unity. This overcomes the stiffness singularity but leads to full matrices, which is not advisable, especially in

the parametric format. Furthermore, extra operations should be performed in order to normalise the obtained

eigenvectors at every iteration, e.g. by means of the Gram-Schmidt orthogonalisation. The Lagrange multipliers

technique proposed here solves the singularity issue and compute an orthonormal set of eigenvectors at the same

time, reducing to the minimum the number of algebraic operations needed in the parametric case.

As it is shown in the pseudo-code, a PGD guess vector φold needs to be prepared every time a new eigenmode

is sought. Then the extended system in Eq. (16) is iteratively solved by calling the corresponding encapsulated

routine until convergence is reached, that is when a quantity Eφ is smaller than a user-defined tolerance. Here

Eφ is defined as:

Eφ =

∣∣∣∣∣∣

nφnew∑

i=1

βiφnew −
nφold∑

j=1

βj
φold

∣∣∣∣∣∣
nφold∑

j=1

βj
φold

, (17)

where βiφnew and βj
φold represent, respectively, the amplitudes of the PGD terms describing φnew and φold after

being normalised. The normalisation is performed every time a new eigenvector φnew is computed, by dividing

it by its M-norm, namely
√

(φnew,PGD)>MPGDφnew,PGD, where sqrt and ∗ are the Matlab symbols used to perform145

the encapsulated square root and product between PGD objects. Note that, in a parametric format, the

normalisation requires four algebraic operations: a product, a compression, a square root and a division.

Finally, once convergence is reached, the sought eigenvector φPGD
n+1 can be stored and the corresponding eigenvalue

can be calculated according to the Rayleigh quotient (ωPGD
n+1)2 = (φPGD

n+1)>KPGDφPGD
n+1. The same procedure is

repeated until the desired number neig of eigenpairs is obtained.150

It is worthy to emphasise that the described algorithm is solved by means of just one offline computation. The

resulting eigenpairs represent the compact version of all the possible solutions for every value of the parameters.

Once this offline stage is completed, the obtained computational vademecum can be used for optimisation studies,

or it could be uploaded on light computing devices such as a tablet, where the designers could visualise in real

time how the global response of the structure would change with a variation of the parameters.155

3.2. PGD square root

The PGD operations necessary to code the parametric version of the algorithm are collected in Table 1. All

of them but the square root were already available in the Encapsulated PGD toolbox, and the corresponding

algorithms presented in [38]. This section presents the algorithm devised to implement the square root operation

in the toolbox.160

Recall that PGD combines a greedy strategy (computing sequentially the rank-one terms) and, for each

rank-one problem, an iterative alternated directions scheme looping in all the parametric dimensions (for γ =

1, 2, . . . , np) assuming that all the sectional information is known for any other sectional dimension j 6= γ. The

core of the algorithm is summarised in the expression used to iterate (how to compute the sectional dimension

γ, assuming that the rest of the sectional dimensions are known). The goal of this section is to present this165

expression for the square root operation. In this particular case, the expression for the first term (i = 1) is

different than for the subsequent terms (i = 2, 3, . . . ).
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The input is a scalar parametric value X(µ) expressed in a separated format

X(µ) =

nX∑

i=1

βiX

np∏

j=1

F j,iX (µj), (18)

which is assumed to be nonnegative for every value of µ. Note that, in accordance with the previous develop-

ments, the amplitude βiX of each term arises from a normalisation of the parametric sectional modes F j,iX (µj).

The aim is to compute Y (µ) =
√
X(µ), that is Y (µ), nonnegative and such that Y (µ)2 = X(µ). The

solution is written in the form of a sum of nY rank-one terms, namely

Y (µ) =

nY∑

i=1

βiY

np∏

j=1

F j,iY (µj). (19)

First rank-one term (i = 1).170

The standard greedy approach in the PGD consists of computing the rank-one terms sequentially. Let’s

denote the first rank-one term, prior to the normalisation of the sectional modes that bring out amplitudes by

Ỹ (µ) =

np∏

j=1

F j
Ỹ

(µj). (20)

The idea is to find Ỹ such that

(Ỹ )2 = X. (21)

An alternated directions strategy is adopted that consists of computing the sectional mode F γ
Ỹ

(µγ) assuming

that the rest of the modes F j
Ỹ

(µj) are known for j 6= γ, and looping for γ = 1, 2, . . . , np. Given γ, the problem

is solved multiplying by a weighting function

δỸ (µ) = δF γ(µγ)
∏

j 6=γ
F j
Ỹ

(µj) (22)

and integrating in all parametric dimensions but γ, that is

∫
· · ·
∫

µj 6=µγ

(
Ỹ
)2

δỸ (µ)
∏

j 6=γ
dµj =

∫
· · ·
∫

µj 6=µγ
XδỸ (µ)

∏

j 6=γ
dµj (23)

Using expressions (20) and (22) in (23) results in


∏

j 6=γ

∫

µj

(F j
Ỹ

(µj))
3dµj




︸ ︷︷ ︸
=:β?

(F γ
Ỹ

(µγ))2δF γ(µγ) =

nX∑

i=1

βiX


∏

j 6=γ

∫

µj

F j,iX (µj)F
j

Ỹ
(µj))dµj


F i,γX (µγ)

︸ ︷︷ ︸
=:R(µγ)

δF γ(µγ) (24)

for all δF γ(µγ). Note that scalar β? and function R(µγ) introduced in (24) are computable at this stage of the

alternated directions algorithm. Thus, the resulting sectional mode F γ
Ỹ

(µγ) is updated in this iteration using

the following expression:

F γ
Ỹ

(µγ) =
√
R(µγ)/β?, (25)

which defines the core of the PGD square root algorithm (for the first term, i = 1).
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Subsequent rank-one terms (i = 2, 3, . . . ).

Now, assume that expression (19) for Y is obtained for some nY and it has to be enhanced adding the nY +1

term. This rank-one term is denoted, prior to normalisation of the sectional contributions, by

∆Y (µ) =

np∏

j=1

F j∆Y (µj). (26)

The algorithm proposed is based in the fact that in the PGD greedy algorithm, the first modes produce a

fair approximation of
√
X(µ) and therefore, in order to compute the next term, a linearisation of the equation

is sufficient to improve the approximation. The following approximated equation for ∆Y results from neglecting

the quadratic term (∆Y )2 in front of Y∆Y , namely

(Y + ∆Y )2 = X results in Y∆Y ≈ 1

2
(X − Y 2). (27)

Once again, the unknowns F j∆Y , for j = 1, 2, . . . , np are computed with the standard alternate directions

strategy, that is assuming that F j∆Y are known for j 6= γ, multiplying by a variation δY , and integrating in all

sectional dimensions but γ, analogously to (23). The variation δY reads

δY (µ) = δF γ(µγ)
∏

j 6=γ
F j∆Y (µj). (28)

Thus, in F γ∆Y is computed such that, for all δF γ(µγ)

nY∑

i=1

βiY

=:βi?︷ ︸︸ ︷
∏

j 6=γ

[∫

µj

F j,iY (µj)
(
F j∆Y (µj)

)2

dµj

]
F γ∆Y (µγ)F i,γY (µγ)δF γ(µγ) =



∫
· · ·
∫

µj 6=µγ

1

2
(X − Y 2)


∏

j 6=γ
F j∆Y (µj) dµj







︸ ︷︷ ︸
=:R(µγ)

δF γ(µγ) (29)

Thus, the expression defining the core of the alternated directions algorithm for the subsequent terms i = 2, 3, . . .

(and analogous to (25) for i = 1) reads

F γ∆Y (µγ) = R(µγ)/



nY∑

i=1

βiY β
i
?F

i,γ
Y (µγ)


 . (30)

4. Numerical examples

Two numerical examples are presented in this section to show the potential of the proposed PGD-IPM

method. In the first example, the method is used to analyse the dynamic properties of a 3D solid structure175

characterised by both material and geometric parameters. In the second example, a more realistic industrial

case is investigated, which concerns the dynamic response of a dummy car. Also, a multi-objective optimisation

study is performed, which makes the PGD-IPM method a very interesting tool to be employed in the context

of design optimisation problems.
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4.1. Parametric inverse power method with material and geometric parameters180

The modal analysis of an unconstrained linear elastic 3D structure characterised by one material and one

geometric parameter is considered. The two variables, which are treated as additional coordinates of the

problem, are denoted with µ ∈ Mµ and θ ∈ Mθ for the material and geometric parameters, respectively. As

depicted in Fig. 2, the reference domain Ω̂ consists of a block with dimensions [−Lx/2, Lx/2]× [−Ly/2, Ly/2]×
[−Lz/2, Lz/2] with an inclusion given by [−Lx/6, Lx/6]×[−Ly/4, Ly/4]×[−Lz/2, Lz/2], where Lx = 6, Ly = 12

and Lz = 1. The spatial discretisation, also shown in Fig. 2, consists of a regular mesh with 236 nodes and 742

linear tetrahedral elements.

ΩA(θ

ΩB(θ)

Ly = 12

L
x 

=
 6

Figure 2: Computational domain, showing the partition into two non-overlapping subdomains ΩA(θ) and
ΩB(θ) (left) and top view of the discretised computational domain (right).

The physical domain Ω(θ) depends upon the geometric parameter and it is split into two non-overlapping

subdomains ΩA(θ) and ΩB(θ), such that the parametric Young’s modulus E is defined as

E(x, µ) =





EA(µ) = µ for x ∈ ΩA(θ),

EB = 200 for x ∈ ΩB(θ),

(31)

where the Young modulus EA(µ) is considered varying in the range Mµ = [10, 410], and Mµ is discretised

with a uniform distribution of nµ = 41 points. The Poisson’s ratio and the density are assumed constant in the

whole domain and take values ν = 0.3 and ρ = 1 respectively.

The geometrically parametrised domain Ω(θ) is described with the Cartesian coordinates x, and it is defined

as the image of the reference domain Ω̂, with reference coordinates x̂, via a geometric mapping Ψ(x̂, θ), namely





x = ψ1(x̂, θ) = x̂+ θ sin

(
πŷ

Ly

)(
x̂− Lx

2

)
,

y = ψ2(x̂, θ) = ŷ,

z = ψ3(x̂, θ) = ẑ.

(32)

The parameter θ is taken to be in the intervalMθ = [0, 0.5], andMθ is discretised with a uniform distribution of

nθ = 21 points. The effect of the geometric parameter is depicted in Fig. 3, where the deformed computational

domain for three different values of the parameter θ is presented. The particular value θ = 0 leads to a deformed

configuration that coincides with the reference configuration, i.e. the mapping of Eq. (32) becomes the identity.

The objective of this numerical test is to explore how changing the introduced design parameters affect the

dynamic response of the structure. This can be done by performing a parametric modal analysis of the structure

by means of the proposed PGD-IPM eigensolver. As explained in the previous section, the first essential step
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Figure 3: Physical domain for three different values of the geometric parameter θ.

consists of defining the input data (i.e. stiffness and mass matrices) in a separated format. Thanks to the

linear dependence of the stiffness matrix on the Young’s modulus, an analytical separable representation of the

stiffness matrix with respect to µ can be easily constructed. For the geometric parameter θ, it is not trivial

to find a separated representation. For this reason, a novel algebraic technique is employed, as mentioned

in Section 3 and discussed in detail in [11]. The main idea behind this algebraic technique is to generate a

new geometrically deformed mesh for every nodal value of the geometric parameter θp = [θ1, θ2, . . . , θnθ ]T ,

according to the mapping of Eq. (32). For each new mesh, two stiffness-like matrices KA(θp) and KB(θp)

are assembled. The quantity KA(θp) is calculated by imposing the Young’s modulus (EA, EB) = (1, 0), thus

accounting for the contribution of the finite elements belonging to the subdomain ΩA(θp) to the global stiffness

matrix. Analogously, KB(θp) corresponds to the choice (EA, EB) = (0, 1) and accounts for the contribution

of the finite elements belonging to the subdomain ΩB(θp). Once these matrices are sampled in the parametric

nodes nθ, a separated form of the parametric global stiffness matrix is readily available, namely

K(µ, θ) = EA(µ)

nθ∑

i=1

Ki
A k

i(θ) + EB

nθ∑

i=1

Ki
B k

i(θ), (33)

with ki(θp) = δp,i, for every nodal value p = 1, 2, . . . , nθ of the geometric parameter. If the number of PGD

terms is large, it is advisable to perform data compression. This is of particular importance in the framework of

the PGD-IPM as compressing the PGD terms will alleviate the cost of the subsequent algebraic operations. In

this example, after performing compression with a tolerance of 10−5, an accurate approximation of the stiffness

matrix was obtained with only nK = 10 terms, instead of the initial 861 terms:

KPGD(µ, θ) =

nK∑

i=1

βiK KiM i
K(µ)GiK(θ). (34)

The PGD approximation of the parametric mass matrix is obtained by following the same procedure:

MPGD(µ, θ) =

nM∑

i=1

βiM MiM i
M(µ)GiM(θ). (35)

It should be mentioned that the mass matrix is actually independent on the Young modulus, that is M i
M(µ) = 1.

However, the general expression of Eq. (35) is used to maintain a consistent notation for all the inputs of the

PGD-IPM approach. Note that, from now on, the material parametric functions will be denoted by M(µ),

while G(θ) will be used for the geometric functions, omitting the subindex for a better readability.
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Once the separated representation of the input data is available, the proposed method can be finally employed

following the steps shown in Fig. 1. In this example, the goal is to compute the first three mode shapes φn(µ, θ),

with n = 7, 8, 9, corresponding to the smallest non-zero eigenvalues. For each n-th mode, the generalised PGD

solution reads:

φn(µ, θ)PGD =

Nφ∑

i=1

βiφinM
i(µ)Gi(θ). (36)

Fig. 4 plots the generalised results in terms of amplitude, parametric and spatial terms for the three modes

φPGD
7 ,φPGD

8 ,φPGD
9 . As expected, the amplitudes βi rapidly decrease as the number of PGD terms increase. Using

a tolerance of 10−3 to stop the enrichment of the PGD solution, a maximum number of 10 terms is needed to

get an accurate representation of the three parametric mode shapes. In addition, the results show that the first

four PGD terms capture the most relevant information of the generalised solution, as the fifth and subsequent

terms have an amplitude at least two orders of magnitude lower than the amplitude of the first PGD term. For

this reason, the first four parametric and spatial terms are also shown in Fig. 4. For each mode shape, same

colours are used to depict the parametric functions and amplitudes related to the same i-term. The parametric

functions seem to show a higher influence of the material parameter then the geometric one on the final response.

The spatial modes provide an illustration of the deformation induced by the four most relevant terms of the

generalised solution. Those illustrations already allow to identify the type of mode shapes. In fact, the first

mode φPGD
7 can be identified as a flexional mode, the second φPGD

8 as torsional, while the third φPGD
9 mode shows

a shear-type deformation along the longest edge of the structure.

In order to get a particularised solution for a chosen set of the parameters (µ̄, θ̄), the corresponding function

values M i(µ̄) and Gi(θ̄) are evaluated for each PGD-term i and then multiplied by the corresponding spatial

term and amplitude of the desired mode shape. This procedure can be easily performed in a post-process step,

providing real-time results for any combination of the parameters.

As already known, once the parametric mode shapes are available, the corresponding three eigenvalues can be

simply computed by means of the Rayleigh quotient. In order to validate the PGD results, the accuracy with

respect to the full-order FE computations is measured as the relative error between the PGD and FE eigenvalue

solutions in the L2(Mµ ×Mθ) norm, that is

‖εPGD‖2 =



∫
Mθ

∫
Mµ

(
ωPGD − ωFE

)2
dµ dθ

∫
Mθ

∫
Mµ

(ωFE)2 dµ dθ




1/2

. (37)

Also the maximum error is calculated as the L∞(Mµ ×Mθ) norm:

‖εPGD‖∞ = max
µ∈Mµ,θ∈Mθ

(∣∣ωPGD − ωFE
∣∣

ωFE

)
. (38)

Table 2 reports the calculated L2 and L∞ errors for the three computed eigenvalues, proving that a high level

of accuracy can be obtained by using the proposed PGD-IPM method. It is worth noting that to compute this

error measure, the problem had to be solved by means of the standard FE method for each possible combination

of the parameters, that is nµ × nθ = 21× 41 = 861 FE simulations. It is important to underline that the main

goal in the PGD context is not to reduce the computational cost, but to provide a method which is able to

explore an arbitrary large parametric space with only one offline computation. Another important advantage
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Figure 4: PGD generalised solution for the first three shape modes φPGD
7 ,φPGD

8 and φPGD
9 . For each mode, the

evolution of the amplitude βi of the PGD terms , the first four parametric functions and first four spatial terms
are shown. Same colour is assigned to amplitudes values and corresponding parametric functions.
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concerns the storage memory. In fact, the obtained PGD computational vademecum needs ˜ 182 KB of storage

memory for the three eigenmodes versus the ˜ 14900 KB needed to store 861 full-order FE solutions for each

of the three eigenmodes.

Table 2: Accuracy of the PGD results with respect to the full-order FE computations measured as the relative
error between the PGD and FE solutions in the L2 and L∞ norm according to Eqs. (37) and (38).

ωPGD7 (µ, θ) ωPGD8 (µ, θ) ωPGD9 (µ, θ)

‖εPGD‖2 9.18× 10−4 1.00× 10−3 1.00× 10−3

‖εPGD‖∞ 4.20× 10−3 3.56× 10−3 1.15× 10−1

To conclude, another important property of the method is shown, which is the possibility to explore the design

space and check, in real time, the effects of the design parameters on a predefined quantity of interest (QoI). In

this case, the frequency associated to each mode shape is chosen as QoI, which is computed as:

fPGDn (µ, θ) =
ωPGD
n (µ, θ)

2π
. (39)

The variation of the three frequencies fPGD7 , fPGD8 and fPGD9 in the parametric space is depicted in Fig. 5. This

results clearly show that the geometric parameters has less influence on the frequency, especially for values of185

µ smaller than the constant Young’s modulus E0 in the remaining domain. This conclusion could be used to

make decisions during the design process.

Figure 5: Variation of the first three smallest natural frequencies f7, f8 and f9 with respect to the parameters
µ and θ

4.2. Industrial test: parametric modal analysis of a dummy car

The PGD-IPM method is now employed to solve a more realistic problem, which is the noise, vibration and

harshness analysis (NVH) of a vehicle. Finite element modal analysis is usually employed in order to predict

the dynamic properties of a vehicle in terms of its natural frequencies and shape modes. At this purpose, the

PGD-IPM method is proposed here to study the influence of predefined design parameters on the dynamic

behaviour of the body in white (BIW) car structure, where BIW is the technical name used in the automotive

industry to indicate a car body’s frame when all the components have been joined together.

The geometry of the BIW and the mesh discretisation are shown in Fig. 6. Isoparametric quadrilateral shell

elements are used to discretise the FE model which is formed by a total number of 3,819 nodes, each one

18



characterised by six degrees of freedom (three translations and three rotations). All the car components are

characterised by a linear elastic material. In this example, the thickness of three car components highlighted in

μ1

μ2

μ3

Figure 6: Geometry and mesh properties of the BIW structure used for the dynamic global torsional stiffness
analysis (left). The tree car components highlighted (right) are characterised by parametric properties, that is
the thickness of each one of the components

Fig. 6 are introduced as extra coordinates of the problem. The three parameters are denoted by µ = [µ1, µ2, µ3]T

and they vary in the intervals Mj = [0.7, 1.5] mm, for j = 1, 2, 3. Each parametric domains is discretised with

n1 = n2 = n3 = 9 equidistant nodes. Although from a physical point of view the thickness is meant as a

geometric parameter, in the shell element formulation it is treated as a material property.

The proposed PGD-IPM approach is employed following the same procedure described in the previous example.

An important difference with respect to the previous test is that, in this numerical example, the commercial

FE package MSC-Nastran is employed, demonstrating the nonintrusive character of the proposed PGD-IPM.

The software is used to assemble the parametric input matrices for each possible combination of the parameters

(without solving the problem) and stored. Afterwards, the matrices can be expressed in the required separated

form KPGD(µ) and MPGD(µ), as done in the previous example. Also in this example the structure is in its

unconstrained configuration, so that the rigid body modes need to be computed. The goal of this numerical test

is to compute the first three eigenvectors φPGD
7 , φPGD

8 and φPGD
9 associated to the smallest non-zero eigenvalues by

means of the PGD-IPM eigensolver.

In this example, it can be verified that the first and third eigenvectors represent two different kind of flexional

modes for every combination of the parameters, while the second eigenvector always represents a torsional

mode. However, when more complex models are analysed, the order of the modes can easily change with the

parameters, so their identification would represent an important task.

Since the torsional mode plays a crucial role in the characterisation of the dynamic properties of the BIW, Fig. 7

shows only the PGD generalised solution for the second shape mode φPGD
8 , defined as:

φPGD
8 (µ1, µ2, µ3) =

N∑

i=1

βi φ
i
8 M

i
1(µ1)M i

2(µ2)M i
3(µ3). (40)

Although this example is more complex and realistic than the previous one, the amplitudes βi decreases rapidly

with the number of PGD terms and only 11 terms are needed to ensure an accuracy of 10−3. Also in this case,

the first four terms contain the most important information about the solution, since the fifth and subsequent

terms have an amplitude of at least two order of magnitude smaller than the amplitude of the first term.

The parametric functions, shown in Fig. 7, contain the information about the influence of the parameters

on the particularised eigenmode φPGD
8 (µ1, µ2, µ3). Finally, the spatial terms clearly show that this eigenmode

represents a torsional mode shape. Fig. 8 shows the deformation and the equivalent von Mises stress field
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Figure 7: PGD generalised solution for the first torsional mode φPGD
8 . Evolution of the amplitude βi of the

PGD terms (top). First four parametric functions of the generalised solution (centre). First four spatial PGD
terms (bottom). Same colour is assigned to amplitudes values and correspondent parametric functions.

for the three eigenvectors when three different set of parameters are chosen. Also the frequencies associated

to each parametric choice are indicated, which are calculated according to Eq. (39). This post-process helps

to understand which components of the BIW structure are most sensitive to changes in the parameters. In

particular, for all vibrational modes, the maximum values of the von Mises stress concentrate on the windshield

header. Furthermore, it is shown how small variations in the thicknesses of the three parametric components can

lead to variations of the frequency in the range of about 2Hz, which might change the perception of vibration

for the occupants of the vehicle. It is important to remember that this particularised solutions are calculated

in real-time, after having obtained the PGD solution by performing the offline PGD-IPM computation.

In order to have a better understanding of how the design parameters affect the dynamic response of the car,

the variation of the three smallest natural frequencies in the parametric space is shown in Fig. 9, in terms of

isosurfaces.

To conclude this numerical example, a multi-objective optimisation process is demonstrated by using the PGD-

IPM results. Let us assume that the goal of the optimisation is to find the combination of parameters able to

maximise the frequency associated to the torsional mode, while minimising the mass of the three car components
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Figure 8: Particular cases of the generalised solution, showing the von Mises stress field related to the three
eigenvectors associated to the first three smallest non-zero eigenvalues, for three different sets of the parameters.
The solutions are obtained in real-time after the PGD is applied to compute the spatial and parametric modes

Figure 9: Isosurfaces showing the variation of the first three smallest natural frequencies f7, f8 and f9 with
respect to the parameters µ1, µ2 and µ3

considered in this example. To this end, the following two objective functions are considered





g1(µ) = ρ (µ1A1 + µ2A2 + µ3A3),

g2(µ) = fPGD8 (µ).

(41)

The function g1(µ) represents the mass of the material needed to manufacture the three car components, equal

to the product of the material density ρ and the parametric volume. The latter is given by the sum of the190

products between the car components areas (A1, A2, A3) times their variable thicknesses (µ1, µ2, µ3). Clearly,

this quantity is strictly related to the production cost. The objective function g2(µ) represents the parametric

torsional frequency associated to φPGD
8 and calculated by means of the Rayleigh quotient. Thanks to the explicit
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Figure 10: Multi-objective optimisation showing the Pareto front as a function of the objectives (left) and the
PGD parameters (right).

dependency of the frequency on the parameters, the optimisation problem could be directly solved by means of

the gamultiobj function available in the Global optimisation Toolbox released by Matlab. The function uses195

a genetic algorithm in order to find the Pareto front of multiple objective functions, meant as a set of optimal

points in the parametric space that represent a trade-off between the objective functions. More specifically,

a point is considered optimal if no objective can be improved without sacrificing at least one other objective.

The results of the optimisation study are shown in Fig. 10, where the optimal Pareto front correspond to the

coloured points, while the empty points represent the whole range of configurations that should be considered if200

all the parametric combinations are analysed. The coordinates (µ1, µ2, µ3) of the optimal points are also shown

in the right plot of Fig. 10. All the optimal points belong to the boundaries of the parametric domain, except

two points which are indicated in the picture. In conclusion, the optimisation process allows to drastically

reduce the range of solutions to be considered by a designer in the decision-making process. Note that, in this

example, the Pareto front was computed by assigning the same weight to the objective functions. Nevertheless,205

it is straightforward to obtain other fronts if the user wants to put more emphasis on one of the objective

functions.

5. Conclusion and outlook

This work proposes a nonintrusive algebraic PGD approach combined with the inverse power method (PGD-

IPM) to perform the parametric modal analysis of unconstrained structures being characterised by material and210

geometric parameters. The developed eigensolver uses a library of PGD-based routines implemented by Dı́ez

et al. [38] to sequentially perform algebraic operations between parametric objects in a black-box format. In

22



addition, a new algorithm was developed and added to the encapsulated library, which computes the square

root of a parametric quantity. Furthermore a Lagrange multipliers deflation technique is proposed to overcome

singularity issues in the case of unconstrained structures and to compute a multiple set of smallest natural215

frequencies and corresponding mode shapes. Two numerical examples are tested to compute the desired para-

metric solutions. In the first example, an academic test case with one material and one geometric parameter is

proposed to show the properties of the PGD solution. The variation of the natural frequencies and mode shapes

in the parametric domain is calculated with only one offline computation and the accuracy of the generalised

solution is measured by comparing the PGD solution to the whole set of standard FE full-order solutions. In the220

second example, a more realist industrial case is presented to show the nonintrusive interaction of the proposed

method with the commercial FE package MSC-Nastran. Here, the parametric results of the modal analysis of

a dummy car are presented. The solution for specific sets of parameters are computed in real-time during a

post-process step at the negligible cost of a linear combination. Finally, a multi-objective optimisation study is

performed, which makes the method significantly appealing for industrial applications where designers urgently225

need new computational tools to support the decision-making process. With a small effort, the generalised solu-

tions generated by employing the developed technique could be uploaded on portable devices (such as tablets)

such that designers could evaluate in real time the impact of certain parameters on the global response of the

structure.
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