
Estimation of a Linear-Nonlinear-Poisson neural

encoding model for motor Brain-Machine Interfaces

DATA SCIENCE AND ENGINEERING

and

PHYSICS ENGINEERING

by

Mireia Cavallé Salvadó

under the supervision of

Prof. Yiwen Wang

tutored by

Xavier Giró Nieto

Hong Kong, February 2022

ABSTRACT

In recent years, the demand of prosthetic devices that substitute dysfunctional limbs in

human beings has been substantially increasing.

In order to control them with brain’s neural activity, brain-machine interfaces related studies

have developed a decoding model capable of inferring movement given the associated motor

cortical neurons spike activity. However, to meet this model’s full potential, one needs to

provide an instantaneous neural encoding model that displays the direct relationship between

the instantaneous kinematics (position, velocity and bias) and the neural spike activity.

The proposed encoder is a Linear-Nonlinear-Poisson model that predicts the firing probability

of one neuron and feeds it to a Poisson spike generator. We test the encoder on the real

neural activity collected from motor cortex of rats performing a lever pressing task. The aim

of this research is to provide a procedure to estimate neural ending parameters and check

the encoding suitability to predict neural activity.

En los últimos años, la demanda de prótesis que sustituyan extremidades disfuncionales

de los seres humanos ha aumentado considerablemente.

Para controlarlas con la actividad neuronal del cerebro, algunos estudios sobre interfaces

cerebro-computadora han desarrollado un modelo de descodificación capaz de inferir el

movimiento de estas extremidades dada la actividad eléctrica de las neuronas motoras aso-

ciadas en el córtex cerebral. Sin embargo, para aprovechar todo el potencial de este modelo,

es necesario proporcionar un modelo de codificación neuronal instantánea que exprese la

relación directa entre la cinemática (posición, velocidad y sesgo) y la actividad neuronal.

El codificador propuesto es un modelo Lineal-NoLineal-Poisson que predice la probabilidad

de activación de una neurona y se proporciona a un generador de pulsos de Poisson. Se

prueba el codificador con datos reales obtenidos del córtex motor de ratas realizando una

tarea de presión de palanca. El objetivo de esta investigación es proporcionar un proced-

imiento para estimar los parámetros neuronales finales y comprobar la adecuación de la

codificación para predecir la actividad neuronal.

1

En els últims anys, la demanda de pròtesis que substitueixin extremitats no funcionals

en els éssers humans ha augmentat considerablement.

Per controlar-les amb l’activitat neuronal del cervell, alguns estudis sobre interf́ıcies cervell-

computadora han desenvolupat un mode de descodificació capaç d’inferir el moviment d’aquestes

extremitats donada l’activitat elèctrica de les neurones motores associades en el còrtex cere-

bral. Tot i això, per aprofitar tot el potencial d’aquest model, és necessari proporcionar un

model de codificació neuronal instantani que expressi la relació directe entre la cinemàtica

(posició, velocitat i biaix) i l’activitat neuronal.

El codificador proposat és un model Lineal-NoLineal-Poisson que prediu la probabilitat

d’activació d’una neurona i se li proporciona a un generador de polsos de Poisson. Es prova

el codificador amb dades reals obtingudes del còrtex motor de rates realitzant una tasca de

pressió de palanca. L’objectiu d’aquesta investigació és proporcionar un procediment per

estimar els paràmetres neuronals finals i comprovar l’adequació de la codificació per predir

l’activitat neuronal.

KEYWORDS

Brain-machine interface, Computational neuroscience, Neuroprosthetic, Neuron, Movement

intention, LNP Encoder

Interfaz cerebro-computadora, Neurociencia computacional, Neuroprótesis, Neurona, In-

tención del movimiento, Codificador LNP.

Interf́ıcie cervell-computadora, Neurociència computacional, Neuropròtesi, Neurona, In-

tenció del moviment, Codificador LNP.

2

ACKNOWLEDGEMENTS

I would like to express my thanks to all the people that supported me during the devel-

opment of this thesis.

First and foremost to Prof. Yiwen Wang for guiding me in the whole process and instilling

in me her passion for the topic.

Thanks to CFIS, Fundació Cellex and Hong Kong University of Science and Technology

(HKUST) for giving me the opportunity to write this thesis with such a great research team

in such an amazing location.

Also, thanks to Xavier Giró Nieto for tutoring me from Spain.

And finally, I would like to thank my family and friends for their motivating and relentless

support. Without them I couldn’t have succeeded in completing this thesis.

3

Contents

List of Figures 7

List of Tables 10

1 Introduction 1

2 Problem Statement and State Of The Art 4

2.1 Brain electrical signals . 4

2.1.1 Mathematical representation: Point Process 6

2.1.2 Previous work . 8

3 Problem Resolution 10

4 Simulated Encoding 12

4.1 Input data generation . 13

4.2 Model definition: LNP and output data generation 15

4.2.1 Linear filter K . 16

4

4.2.2 Nonlinear function f(y) . 18

4.2.3 Inhomogeneous Poisson Spike Generator 21

4.2.4 Time delay ∆t consideration . 23

4.3 Model parameter estimation . 24

4.3.1 Linear filter K estimation: STA . 25

4.3.2 Time delay ∆t Estimation: Mutual information 29

4.3.3 Nonlinear function f(y) Estimation: Bayes Theorem 37

4.4 Model Results . 40

4.4.1 Linear filter K and Time delay ∆t results 40

4.4.2 Nonlinear function f(y) results . 44

4.5 Model Evaluation . 46

4.5.1 Parameters evaluation . 46

4.5.2 Output evaluation . 50

5 Experimental Encoding 58

5.1 Data collection . 59

5.1.1 Preprocessing of data . 61

5.2 Model parameter estimation . 63

5.2.1 Linear filter K estimation: STA . 64

5.2.2 Time delay ∆t estimation: Mutual information 66

5

5.2.3 Nonlinear function f(y) Estimation: Bayes Theorem 70

5.3 Model Results . 70

5.3.1 Linear filter K and time delay ∆t results 71

5.3.2 Nonlinear function f(y) result . 74

5.4 Model Evaluation . 75

5.4.1 Output evaluation . 76

6 Conclusions 81

7 Future work 83

8 Appendix 85

8.1 Time Rescaling Theorem proof . 85

8.2 Additional Figures and Tables . 88

8.2.1 Simulated Encoding additional Figure and Tables 89

8.2.2 Experimental Encoding additional Figures and Tables 92

8.3 Matlab codes . 100

8.3.1 Main code . 100

8.3.2 Depending functions . 115

Bibliography 121

6

List of Figures

4.1 Simulation kinematic vector x(t) . 14

4.2 Linear-Nonlinear-Poisson encoding model pipeline. From Williamson et al.

(2013) . 16

4.3 Simulation feature space vector y(t). Note: the values of K chosen have been

the ones specified in equation 4.5 and equation 4.6 (linear approach). 18

4.4 Firing probability pfiring(t) for Window-Exponential case 21

4.5 Resulting spike train for Window-Exponential case 22

4.6 Resulting shifted spike train along with y(t) for Window-Exponential case . . 24

4.7 Shifted spike train along with possible ylag(t) for Window-Exponential case . 35

4.8 f(y) estimation for Window cases . 39

4.9 pfiring estimation for Window cases . 41

4.10 Fast Fourier Transform (FFT) of mutual information for Window cases . . . 42

4.11 Bode diagram of the filter applied to Mutual Information for Window cases . 42

4.12 Filtered Mutual Information estimation for Window cases 43

7

4.13 Nonlinear function f(y) along with linear and exponential fittings for Window

cases . 45

4.14 Estimated feature space vector y(t) for Window cases 51

4.15 Estimated pfiring for Window cases . 51

4.16 KSS plot for Window cases . 55

5.1 Built success x(t) along with the spikes. Note: only 2 s have been plotted for

clarifying purposes. The whole signal expands for 30 s instead. 63

5.2 Window approach differences between Simulated and Experimental data . . 64

5.3 Filtered success x(t) vertical position term with several low-pass filters . . . 68

5.4 FFT plot for neuron 2 and 13 . 71

5.5 Filtered mutual information for neuron 2 and 13 72

5.6 Feature space signal y(t) along with spikes, matched in time for neuron 2 and

13 . 73

5.7 Decreasingly ordered neurons according to optimal mutual information value 74

5.8 Nonlinear function f(y) along with linear and exponential fittings for neuron

2 and 13 . 75

5.9 Estimated feature space vector y(t) for neuron 2 and 13 77

5.10 Estimated pfiring for neuron 2 and 13 . 78

5.11 KSS plot for neuron 2 and 13 . 79

5.12 Output evaluation KSS metrics comparison for the ten task-related neurons . 80

8

8.1 FFT of the mutual information plot for Constant cases 89

8.2 Filtered Mutual Information for Constant cases 89

8.3 f(y) estimation for Constant cases . 90

8.4 Nonlinear function f(y) along with linear and exponential fittings for Constant

cases . 90

8.5 pfiring estimation for Constant cases . 91

8.6 KSS plot for Constant cases . 91

8.7 Filtered Mutual Information for neuron 1, 3, 4 and 5 92

8.8 Filtered Mutual Information for neuron 6, 7, 8, 9, 10 and 11 93

8.9 Filtered Mutual Information for neuron 12, 14, 15, 16, 17 and 18 94

8.10 Filtered Mutual Information for neuron 19 and 20 95

8.11 Neuron 5 results . 97

8.12 Neuron 6 results . 97

8.13 Neuron 8 results . 97

8.14 Neuron 11 results . 98

8.15 Neuron 14 results . 98

8.16 Neuron 15 results . 98

8.17 Neuron 16 results . 99

8.18 Neuron 19 results . 99

9

List of Tables

4.1 ∆t and K estimations for simulation encoding approaches 43

4.2 Fitting coefficients for simulation encoding approaches 45

4.3 Evaluation parameter metrics estimation for simulation encoding approaches 49

4.4 Output evaluation KSS metrics for simulation encoding approaches 55

5.1 ∆t and K estimation for neuron 2 and neuron 13 72

5.2 Output evaluation KSS metrics comparison for the ten task-related neurons . 79

8.1 ∆t and K estimation for each of the neurons 96

10

Chapter 1

Introduction

Nowadays, there are progressively more and more situations in which the society is trying

to integrate computer based devices into our day to day lives. In many cases, the inclusion

of these artificial devices is motivated by the improvement of accuracy and efficiency they

can provide when executing certain functionalities. Many tasks can be easily automated by

computers that perform them way easier, better and faster, and it is not difficult to realise

many of them are already integrated in our routines: smart houses, interconnected cars, app

bots...

However, there are some other cases in which including a computer based device into

someone’s life does not only imply improvement but also entails a huge upgrade in the

standard of living of that person.

One of the most meaningful uses of artificial intelligent systems is the use of prosthetic

devices that substitute dysfunctional or amputated limbs in human beings. Unfortunately,

the number of persons suffering from either one of them has been substantially increasing

during the past years. The most common causes for limb amputation are accidents, tumours,

circulatory disorders and infections, and according to McDonald C. and Co., in 2017 there

were 57.7 million people worldwide living with some limb amputation. Based on it, a total

1

amount of 75850 prosthesis were approximately estimated to be needed to treat people

affected by this traumatic illness around the whole world.McDonald et al. (2021)

In the past decades, the inclusion of prosthesis has been fundamental for the life improve-

ment of these people. Therefore, this kind of studies are key to tackle the global challenge

of providing functional limbs to those who don’t have a proper one.

Within this topic, the most significant challenge in these cases was to be able not only

to find a proper replacement of the limb that could physically do the same movements but

also that could be controlled by the brain, as how it is done with functional limbs.

The need of this solution was one of the reasons that pushed the scientific world to start

investigating on it and as a direct consequence, a new concept emerged.

A Brain Machine Interface (BMI) - also referred as Brain Computer Interface (BCI) -

is a computer-based system that acquires brain signals, analyses them and translates them

into commands that are relayed to an output device to carry out a desired action. Shih et al.

(2012).

Therefore, with the use of these devices one can control the movement of any prosthetic

limb just by thinking about it just as if it was the real limb the one pretending to move.

In order to do so, one needs to model the relationship that exists between the neural activity

in the motor cortical region of the brain that sends the order of movement to the limb and the

actual movement of it. Basically, one needs to develop a decoding model that predicts the

kinematic vector of the limb given the generating spike trains recorded from the associated

neurons. Hence, whenever the subject thinks about moving that limb, his brain sends the

order to the prosthetic equivalent so that it behaves the same way.

Most of the different approaches that have been proposed in order to define such model

base their procedure in signal processing. Its basis is to analyse the neural activity occurring

at the motor related region of the cortex while the subject is moving one of its limbs. For the

moment, these kind of studies have only been developed with laboratory animals, properly

2

trained for the moving task they are supposed to do, but the same procedures could be

extrapolated to human beings, leading to its direct application in real prosthesis.

The approach that will be taken as the basis in this research is the use of a sequential

Monte Carlo (SMC) estimation algorithm that directly works on the neural spike activity, as

proposed by Wang et al. (2009) among others (Schwartz et al. (2001), Brockwell et al. (2004),

Shoham et al. (2005), Wu et al. (2006), Yu et al. (2007)). The model directly predicts the

movement that will be produced by the limb just by analysing the brain’s electrical activity.

This decoding algorithm itself relies on another encoding model, capable of describing the

causal relationship that exists between the instantaneous limb movement to the generating

spike train. In other words, it takes the instantaneous limb kinematic vector and predicts

the spike train that generated it. Following the literature choices, as proposed by Wang and

Principe (2010), the suggested encoder is a Linear-Nonlinear-Poisson model that predicts

the firing probability of one neuron and feeds it to a Poisson spike generator that outputs

the resulting spike train.

Having said so, this is a research study on motor cortical neuron encoding for brain-

machine interfaces, hence only the already mentioned encoding model will be exhaustively

analysed and not the whole recursive decoding algorithm. Henceforth, the main objective is

to develop a full encoding observation model that is capable of predicting the firing pattern

of a neuron from the kinematics of a physical activity developed by the subject of study.

Two different approaches have been discussed: a linear one and a nonlinear one. Hence,

a secondary objective of this thesis is to analyse whether the inclusion of nonlinearities

enhances the suitability of the model to encode the relationship between the kinematic

vector and the corresponding spike activity.

As it has been mentioned, the main motivation for developing such model is prompted

by the direct applications it has in bionic limbs. If we are capable of modelling how the body

naturally reacts from a neuron’s spike train, we can make some neuroprosthetic devices to

behave the same way when given the same input.

3

Chapter 2

Problem Statement and State Of The

Art

Before facing the different modelling approaches that have been considered in several re-

searches, one needs to better understand the basis of the signals we will be treating with.

First, a brief explanation of how the brain works and how their signals are mathematically

represented must be given.

Once having so in mind, a few outlines of some of the different approaches that have been

followed in the field will be given. This way, the choice of the proper method will be justified

somehow.

2.1 Brain electrical signals

As one may know, the nervous system and hence the brain’s fundamental unit of work is

the neuron. Neurons are cells that are excited through electrical activations and that are

capable of sending information to each other through connections called synapses. These

connections are the base of the complexity of it, as they are the ones that define the different

4

meanings of these activations. Despite so, one must get down to the basics and understand

how a single unit works and how these activations are produced.

Neurons are constituted by a cell body also referred as soma, some dendrites, an axon

and some presynaptic terminals Gazzaniga et al. (2014). While the dendrites are the ones

that receive incoming signals from other neurons, the axon is responsible for originating the

signals and send them to other neurons through the presynaptic terminals. These signals

are referred as action potentials and are electrically generated and sent.

In order to have a basic knowledge of how the brain works, one must understand how the

information is conducted from one neuron to the other as it is its main activity. Basically,

one must see the signal as a voltage spike travelling along neurons. This spike represents

a concentration gradient, which is the difference between the ion concentration inside and

outside the neuron. Thanks to some channels that connect both the inner and outer part of

it, these ions can move in and out and change this voltage difference. This is what lets the

signal travel along them.

However, in this research we are going to avoid focusing on how the signal is conducted inside

the neuron and instead, one will just describe whether one specific neuron got activated or

not along time, that is, whether a spike was generated within it or not. One must see the

spike as a signal that has an amplitude (let’s say a voltage amplitude). Bearing this in mind,

one can state that a neuron will be activated whenever the amplitude of the signal surpasses

a specific threshold. Therefore, at each time step, one will have a binary number that will

describe whether the neuron was activated or not. At the end, it will be the pattern of

these generated spikes along time that will describe what the information that is being sent

refers to. Further details on how the signal will be represented are described in section 2.1.1

Mathematical representation: Point Process.

In our case, only those neurons located in the motor-cortical region of the brain will be

considered as they are the ones that are activated when moving a limb. These regions are

5

subdivided into a primary motor area (Brodmann’s area 41) and a variety of premotor areas

(Brodmann’s area 6) Gazzaniga et al. (2014). Each of these areas is constituted by a great

amount of neurons that are connected to the brain stem and spinal cord and they are the

responsible of the intention of movement.

2.1.1 Mathematical representation: Point Process

In order to develop either the encoding or decoding models, one has to mathematically

represent the time-dependent activation and deactivation of each neuron. As it has been

said, this binary possible state will be represented by a train of deltas along time. Each delta,

also called spike, will represent the activation of such neuron at that moment. According to

Hegger (2000), in the cortex, the timing between the different spikes is quite irregular. This

irregularity in the interspike time reflects a random process. The best way to represent it is

through a point process.

A point process is a set of discrete events that occur in continuous time. For a neural

spike train this would be the set of individual spike times (Truccolo et al. (2005)).

Hence, given the continuous time dimension, we will consider the spikes as the different

discrete set of points spanning in it.

Given an observation time span of (0, T], we’ll define our spike train as one realisation of the

point process:

spk(t) =
n∑

i=1

δ(t− ui) (2.1)

where {0 ≤ u1 ≤ ... ≤ un ≤ T} is one of the realisations of the point process where ui are

the times at which a spike is found and δ(t) is the Dirac delta2. Thus, a total of n spikes

are found.

1Brain cortex has been divided into 52 different Broadmann’s areas, based on a combination of cytoar-
chitectonic and functional descriptions.

2Recall that the Dirac delta is for continuous data.

6

However, instead of treating the resulting brain activity with the resulting spikes, in the

majority of cases one will use the corresponding instantaneous firing probability instead

pfiring(t). The main advantage of it is that, when one considers the formal limit of having

infinite time steps, it is continuous. Hence and against the binary spike signal, it not only

provides with more information about the brain’s activity but also it makes it easier to

compare it with the ground truth and establish an evaluation metric. Therefore, one will use

this firing probability at each time step instead, making the whole process inhomogeneous3

and also instantaneous.

Having said so, the most suitable approach that has been considered in this neural back-

ground is the Poisson Point Process. Basically, it defines a point process of finite size in

which the number of discrete events (a.k.a. the spikes) is a random variable that follows a

Poisson distribution. Hence, one can define the probability of having n spikes in a time step

dt as:

p(n spikes in dt) = e−pfiring(t)
pfiring(t)

n

n!
(2.2)

If instead of considering the firing probability we wanted to consider the firing rate

defined as spikes/timebins, one should only divide the firing probability by the time step:

r(t) = pfiring/dt.

p(n spikes in dt) = e−r(t) dt (r(t) dt)
n

n!
(2.3)

One must take into account that this approach assumes that the spikes are independent

with each other. This assumption will be taken into account along the whole study although

it might not be totally accurate with the reality as it is quite clear that the spikes in one

neuron aren’t totally independent between them. Some of the alternatives that do take

into account this dependence are considering the refractory period or bursting which will be

briefly commented in Chapter 7 Future Work.

3It depends on time.

7

2.1.2 Previous work

During the past decades, many studies have been trying to accurately simulate the brain’s

functioning. The complexity of it receiving stimulus from the senses and reacting to them

is the main issue that the researches have been trying to address.

Focusing on the motor field and having already defined how to mathematically express the

spike activity, most of the studies tried to come up with the best approach to address the

desired decoding model. Recall that its purpose is to directly translate the motor cortical

brain’s activity into the associated limb’s movement.

The first approach that was considered was to use the population vector algorithm Geor-

gopoulos et al. (1986) as the decoding model. The algorithm basically predicts the movement

direction by taking the preferred direction deduced from each of the neurons related with

the locomotive system and weight them according to their corresponding tuning curves.

Further investigations changed this method to a recursive Bayesian one that also predicted

the kinematic vector describing the limb’s movement but this time based on probabilities

Schwartz et al. (2001), Brockwell et al. (2004), Shoham et al. (2005), Wu et al. (2006), Yu

et al. (2007).

At each time step and based on each neuron’s spike train, it computed the posterior prob-

ability density function for all the possible kinematic states. Hence, knowing the probability

distribution of all the possible kinematic states, the final movement the limb could do could

be easily guessed. At the same time, this posterior probability was computed based on the

prior density of that state given the current one. This prior was in turn computed based

on the posterior density from the previous time step along with the error between the real

generated spikes and the ones predicted from observation.

Hence, it was straightforward that there must be an accurate observation encoding model

capable of encoding the causal relationship from the limb movement to the spike train. In

8

other words, given the resulting kinematic vector, it must provide a good estimation of how

the neural response responsible of this movement looks like. This encoding model will be the

one that will let us compute the error between the prediction of the spikes and the actual

real ones in each neuron and with it, the whole decoding process shall be complete.

This approach is the one that will be considered in this research study.

All in all, the encoding model indeed plays an important role within the whole process

and will contribute to the inference of movement intention given the firing pattern of a

neuron. This is the model that will be build in the next Chapter 3 Problem Resolution.

9

Chapter 3

Problem Resolution

In this chapter, the whole simulated-experimental procedure followed along the study will

be explained in detail.

One must recall that, although in reality it is the spike train that provokes the limb

movement and hence the event of facts is in that order, the encoding goal is the opposite

one. The aim is to provide a model that is capable of obtaining the generative spike train

given the resulting limb movement. From this point on, we will refer it as stimulus kinematic

vector.

The first problem to face is that when estimating the encoding model from real data, no

ground truth model is available, hence there is no direct way to evaluate it. In order to solve

this problem, provide a good estimation of this encoding model and check for the reliability

of the estimation procedure, some tests have been done beforehand with generated triads

of input-model-output cases. The idea behind it is that, given the input stimulus and the

corresponding output spike train (generated by applying a well-known encoding model to

the input), when predicting the encoding model one will have a ground true model with

which to compare. Hence, it will be straightforward to determine whether the estimation

10

procedure followed is suitable for the problem or not when applying it to real data.

As it will be explained in the following sections, several encoding model cases will be con-

sidered and compared with simulation data in order to find the suitable one to use with real

data.

Having said so, the whole procedure followed in the encoding estimation resolution will

be divided in two different parts: on one hand the Chapter 4 Simulated Encoding, which

will include the generation of simulated data, the definition of a realistic encoding model and

its estimation procedure; and on the other hand the Chapter 5 Experimental Encoding,

which will include the collection of real experimental data and the encoding model prediction,

following the procedure already checked in simulation.

11

Chapter 4

Simulated Encoding

As it has been said, this section will gather the full generation of simulation data, the encod-

ing model prediction and its verification, directly entailing the correctness of the estimation

procedure followed before applying it to real data.

In this sense, the steps followed for it have been:

1. Generating the input kinematic vector signal from scratch, according to the assump-

tions made for it.

2. Applying a well known encoding model that generates the spike train. This model

will be considered as the ground truth in this chapter.

3. Develop a complete pipeline capable of estimating the model given the initial kine-

matic vector and the resulting spike train.

4. Checking for the correctness of the model comparing the ground truth one used in

step 2 and its estimation in step 3.

This way, one will ensure to find the proper model given any two related input-output

signals when applying the same pipeline.

12

4.1 Input data generation

The input of our encoding model represents the resulting movement of the limbs that the

subject of matter does. It must be represented by a kinematic vector that specifies the

position of the limb at each moment. It could represent any kind of motion, from the

simplest to the most complicated one. That’s why the kinematic vector can potentially be

of several dimensions, with different derivatives considering not only position but velocity

or even acceleration. However, at least for the simulated data and for simplicity reasons we

are going to consider only 1D signals, as if the limb just moved in one direction.

In order to represent the movement, it is straightforward that the signal must be time

dependent. Therefore, only 1D spatio-temporal signals will be considered and will be referred

as x(t).

The time resolution we will consider to represent such movement has been chosen so that

it was consistent with the one used in neuroscience: the millisecond. That is why the time

step between samples has been set up to dt = 0.001 s.

Regarding the length of the signal we should build, only a few seconds of these signals will

be used as they will already have enough samples to provide an accurate result.

Moreover, one must keep in mind that the simulation data must be as reliable as possible.

It should be similar to the corresponding real data we are going to use afterwards because

at the end, the procedures we apply in this chapter will be the same ones applied to real

data. Therefore, and having in mind the repetitive movement the task demands, it has been

decided to consider a periodic signal.

After reckoning several possibilities, the final signal considered as the simulated kine-

matic vector has been a 2 second sinusoidal signal with some uniform white noise. We

have defined it as

x(t) = sin

(
2π

T
t

)
+ A ϵ+B 0 ≤ t ≤ 2 (4.1)

where T is the period of the signal, A is the noise amplitude, ϵ the uniform white noise and

13

B a constant that adds amplitude to the signal.

Bearing in mind that the time step is of 1 millisecond and that it has been decided that

a signal length of a couple of seconds will be enough to develop a reliable model, the final

input signal is constituted of 2000 samples, spanning from time 0 s to time 2 s.

The choice of the sinus has been made for clearness conclusions because the different hills

and valleys in it will provide very distinguishable characteristic results that will be useful for

checking the correctness of the model.

The period of the sinus has been chosen taking into account the trade-off between having

enough oscillations along the time span but also not having them cluttered, making them

hard to interpret. The final chosen value has been of 0.3 seconds.

Moreover, the sinusoidal signal has been added an extra uniform white noise generated by

incrementing each sample by a random number between 0 and 1 weighted by an amplitude

value chosen to be A = 0.4.

Lastly and for the sake of simplicity, we have forced the signal to be positive by shifting the

whole signal above the 0 level with the parameter B.

Figure 4.1: Simulation kinematic vector x(t)

14

4.2 Model definition: LNP and output data generation

Once having the input kinematic signal, one needs to find the proper encoding model that

can build the corresponding generative spike train, the one that could potentially have sent

the order of moving to the limb.

There have been many different approaches on how to represent the process by means of a

mathematical model, starting with simple linear Wu et al. (2006) or exponential assumptions

Brockwell et al. (2004) and ending with several parametric models.

However, the latest approach and the one followed in this project is the one proposed by

Simoncelli et al Simoncelli et al. (2004): a Linear-Nonlinear-Poisson (LNP) model.

This model directly relates the kinematic vector input signal with the resulting spike train

generated in each neuron. As its name suggests, it is comprised of a linear filter, a nonlinear

transformation function and an inhomogeneous Poisson spike generator. Each of these steps

will be exhaustively detailed in the following subsections.

One must take into account that within the same LNP approach, a total of 4 differ-

ent proposals have been considered by means of changing the tuneable parameters in the

LNP structure. These 4 approaches will be referred as Constant-Linear case, Constant-

Exponential case, Window-Linear case and Window-Exponential case and will be defined in

the following subsections.

15

Figure 4.2: Linear-Nonlinear-Poisson encoding model pipeline. From Williamson et al.
(2013)

4.2.1 Linear filter K

The linear transformation is the first one applied to the input kinematic vector signal. It

consists of a filter K that projects the current signal into what is called the feature space.

We define the feature space signal as

y(t) = K x(t) (4.2)

The filter K can have many different shapes and can lead to different feature spaces. In

this study, we have contemplated two different approaches with respect to it:

(A) K = k, a constant. In this case, the whole input kinematic vector is multiplied by

this constant. From this point on, any case satisfying so will be referred as Constant

case .

(B) K = [k1, ...,km] is a fixed length window, which is convoluted instead (y(t) =

K ⊛ x(t)), as proposed by Paninski et al.(2004a, 2004b) and Shoham et al. (2005) as

well. The idea of this filter is to include some history to the feature space, that is, a

sample of the resulting y(t) will have information not only from that moment t but

16

also from the past (as it considers some previous samples)1. For the sake of simplicity,

we are going to build this window similar to a mean filter2: it is going to have the same

value in each of its positions, i.e. K = [k, ..., k], although they are not going to add up

to 1. Hence, it doesn’t compute the average value among them when convoluted but

it has the same smoothing effect on the signal. The window length has been chosen to

be m = 5. From now on, any case satisfying so will be referred as Window case .

Depending on the construction of the filter and the original kinematic vector, the re-

sulting feature space could be unidimensional or multidimensional and could have different

interpretations.

Both of the approaches considered project the initial kinematic vector to the same dimen-

sionality, that is to a 1D-spatio-temporal space, but because of the convolution performed

in the second case, the length of the resulting y(t) will be shorter.3

Notice that, as expected, in Figure 4.3(b), the K = window approach makes the feature

space signal to be less noisy. This effect is thanks to the K applied which acts similar as a

mean filter.

From this point on, all the pipelines and methodology applied to the initial kinematic

vector x(t) will be done twice, for each of the two K approaches, and their results will be

separately analysed and compared.

The values that have been given to these filters can’t be decided yet because they directly

depend on the nonlinear function definition. They will be set in the following section so that

the resulting spike train is as much realistic as possible.

1Notice that, in order to consider the past and not both the past and the future, the vector K must be
centred at its last position

2Mean filter requires that its terms add up to 1. It is not the case here
3Concretely of size n−m+ 1 = 2000− 5 + 1 = 1996 according to the properties of convolution.

17

(a) K = ct approach

(b) K = window approach

Figure 4.3: Simulation feature space vector y(t). Note: the values of K chosen have been the
ones specified in equation 4.5 and equation 4.6 (linear approach).

4.2.2 Nonlinear function f(y)

The transformation that follows is the nonlinear one, represented by a function named

f(y). It links the feature space signal y(t) with the resulting instantaneous firing proba-

bility pfiring(t), that is, the probability of the neuron firing at each time step. It can also be

seen as the firing rate fr multiplied by the time delta, that is pfiring(t) = fr(t) ∗ dt. This

resulting firing probability will be the one that will condition the number of spikes that will

be generated at each time step, hence the one that will define how the resulting spike train

will look like. Therefore, the instantaneous firing probability will be defined as

pfiring(t) = λ(t) = f(y(t)) = f(K x(t)) (4.3)

18

Several approaches can be considered when defining the nonlinear function f . This study

covers two different possibilities: a simpler linear one and a more complex one that tries to

include some nonlinearities to the process.

(A) Linear f(y(t)) = a ∗ y(t) + b, as proposed by Wu et al. (2006). Any case consid-

ering this function will be labelled as Linear case . For the sake of simplicity, we are

going to set a = 1 and b = 0 for simulated data.

(B) Exponential f(y(t)) = a ∗ exp(b ∗ y(t)) + c, as proposed by Brockwell et al. (2004).

Similarly, any case considering this function instead will be labelled as Exponential

case . Similarly, we are also going to set a = 1, b = 1 and c = 0 in this case.

Thus, the four approaches considered in this project are the result of combining both the

constant-window approach and the linear-exponential one. Hence, now one knows the dif-

ferences between the already mentioned Constant-Linear case, Constant-Exponential case,

Window-Linear case and Window-Exponential case.

One must make sure that this step leads to realistic firing probability values in line with

how often a neuron in a human brain fires. Knowing that it should lie between 0.1 and 0.74,

we can infer where the firing rate should lie and hence what should be the value of K.

Let’s differentiate the four different proposals.

Linear f(y(t)) = y(t)

pfiring(t) = f(y(t)) = y(t) = K x(t) (4.4)

Following this expression, the mean value of x(t) will be taken instead of the time varying

4Mean values proportioned by the laboratory, based on the experience when recording real spikes data

19

signal. Therefore, K should lie between

0.1

mean(x(t))
and

0.7

mean(x(t))

Considering the two K approaches we can distinguish:

• Constant-Linear case → The chosen value is the mean one in between the two

limits

K =
1

2

0.1 + 0.7

mean(x(t))
(4.5)

• Window-Linear case → The chosen window will be constituted by several terms

whose sum will add up to the K = ct value. If a mean filter of length m is used, one

has

K =
1

m
K [1, ..., 1] =

1

m

1

2

0.1 + 0.7

mean(x(t))
[1, ..., 1] (4.6)

Exponential f(y(t)) = exp(y(t))

pfiring(t) = f(y(t)) = exp(y(t)) = exp(K x(t)) (4.7)

Same way as before, x(t) will be substituted by its mean value. Consequently, K should lie

between
1

mean(x(t))
log(0.1) and

1

mean(x(t))
log(0.7)

Again, distinguishing between both K cases one has:

• Constant-Exponential case → The chosen value is the one in between both limits

K =
1

2

1

mean(x(t))
log (0.1 ∗ 0.7) (4.8)

• Window-Exponential case → The chosen window will be constituted by several

terms whose sum will add up to the K = ct value. If a mean filter of length m is used,

20

one has

K =
1

m
K [1, ..., 1] =

1

m

1

2

1

mean(x(t))
log (0.1 ∗ 0.7) [1, ..., 1] (4.9)

Only the Window-Exponential case resulting firing probability has been plotted in Figure

4.4 as it is the most general case and the equivalent graphics from the other cases are pretty

similar. It can be stated that by applying the proper K values we obtain a firing probability

laying approximately between the desired 0.1 and 0.7 values.

Figure 4.4: Firing probability pfiring(t) for Window-Exponential case

4.2.3 Inhomogeneous Poisson Spike Generator

As a final step, the estimated firing probability must derive to the generation of the final

spike train, which should represent how a single neuron fired to the given input kinematic

vector. The assumption taken is that these spikes are generated following an inhomogeneous

Poisson spike train generator whose rate parameter λ is the firing probability itself.

P

(
n spk

dt

)
= e−λλ

n

n!
(4.10)

The reason why the Poisson process is chosen is because the time between successive spikes

is quite irregular and could be fitted to an exponential distribution (as happens with the

21

Poisson process). However, one must assume that the spikes are independent with each

other which might not always be true in neuroscience. For the moment, this assumption will

be made, but more realistic approaches could be used (see chapter 7 Future Work). In

addition, it is the fact that a time varying spike rate is considered that makes the process to

be inhomogeneous.

Following the inhomogeneous Poisson spike generator premise, a spike will be generated

whenever a random number generated under the hypothesis of a uniform distribution satisfies

rand() < pfiring(t) (4.11)

The function poissonSpikeGen prob(fr prob, nBins, nTrials) has been created in order

to generate such spikes (see section 8.3 Matlab codes for the code).

The arising spike train will be mathematically expressed as a binary signal along time, with

unit value when there is a spike and null value otherwise. It will have the same length

as the pertinent kinematic vector signal (see Figure 4.5 for the Window-Exponential case).

As expected, whenever the firing probability is high, the amount of spikes generated is

considerably higher as well.

Figure 4.5: Resulting spike train for Window-Exponential case

22

4.2.4 Time delay ∆t consideration

At this point, one should consider the fact that in real neural behaviour, the whole kinematic

vector could be delayed in time.

It is true that, in the neural system, signals travel very fast along nerves, however, these

fibres aren’t optimal and as any other signal transfer, there exists a time delay between the

input signal and the corresponding output one. In this field, these kind of delays are of the

order of milliseconds but they must be taken into account as they are relevant given the time

resolution we are dealing with.

Therefore, there should exist a little time delay between the spike train and the corre-

sponding kinematic vector if they are meant to represent the reality as accurately as possible.

In order to depict that in data, once having the input signal generated, the desired time delay

will be directly applied on it. This shifted signal will be the one that will be fed to the LNP

model in order to obtain the desired shifted spike train. By doing so, one will already have

both the input and output simulated data that will be used in order to predict the model:

the shifted resulting spike train spk∆t(t) (having propagated the shifted x(t) through the

theoretical LNP model) and the original kinematic vector (without the time delay).

For the simulation data, one has chosen the time shift to be of 100 time samples, which

is of ∆t = 100 ∗ dt= 0.1s.

If we plot the feature space vector y(t) that gathers all the possible information from the

original kinematic vector along with the shifted spikes for the Window-Exponential general

case, we obtain the resulting Figure 4.65. The time delay is clearly manifested by 0 spikes at

the beginning. The idea when feeding the model with this data is that it also predicts the

time delay between both signals.

All this being said, simulated data is ready to be used in order to estimate the model

5The fact that the y(t) values are negative here in contrast with Figure 4.3(a) and Figure 4.3(b) is because
of the K value chosen in the exponential case so that the firing probability range was between 0.1 and 0.7.

23

Figure 4.6: Resulting shifted spike train along with y(t) for Window-Exponential case

it hides between the input and output results and that’s what will be done in the following

section.

4.3 Model parameter estimation

Recall that the aim of this previous analysis with simulated data was to ensure that the

pipeline followed given the input kinematic vector and the resulting spike, provided a good

estimation of the model. This is what is going to be proved in this section. The whole

procedure will be again followed by each of the 4 approaches.

Presuming that the the LNP model is suitable for this purpose, the prediction becomes a

fitting problem in which only the parameters of this LNP model have to be estimated. Hence,

both the linear filter K and the nonlinear function f(y) must be calculated, apart from the

assumed time delay.

24

4.3.1 Linear filter K estimation: STA

First of all, the method to predict the linear filter K applied between the kinematic vector

and the resulting feature space must be defined. We are going to provide the procedure given

any signal x(t) and the resulting spike train spk(t).

We will see that this estimation procedure needs to be done along with the time delay estima-

tion as they both depend on each other. The whole final procedure will be further explained

in section 4.3.2 Time Delay ∆t Estimation: Mutual information but for the moment, the

individual K estimation will be defined here as if we already knew the time delay and both

signals were already matched in time.

The Spike Triggered Average will be the tool that is going to be used for the linear filter

estimation.

Spike Triggered Average (STA)

The Spike Triggered Average (STA) method is a tool for characterising the ideal input a

neuron needs in order to fire based on both the spike train and the corresponding kinematic

vector given as input.

The idea is to consider a fixed number of samples before the generation of every spike (that

is a window in time), then take the kinematic vector signal in each of these windows and

average it over them. The result of it will be the optimal filter that will lead to the generation

of the spikes. It is named the receptive field of the current neuron.

Definition 4.3.1. Let xi be a fixed length window of the 1 dimensional kinematic vector

preceding time step i, and ni the number of spikes occurred in that i’th time bin.6 Then,

6Recall that, as how we have defined the problem, either one or zero spikes will occur in one time bin
and thus ni will be a binary variable indicating whether a spike was produced (ni = 1) or not (ni = 0)

25

the Spike Triggered Average is computed as:

STA =
1

nspk

T∑
i=1

nixi (4.12)

in which nspk is the total number of spikes along the whole signal spanning from time 0 to

T .

∗ ∗ ∗

To follow up, one must distinguish between the different approaches of encoding, starting

from the differences between the Window-Linear and the Window-Exponential approach.

The corresponding Constant-Linear and Constant-Exponential ones are straightforward.

Let’s first consider the linear one.

• Window-Linear case : we have λ(t) = pfiring(t) = y(t) = Kx(t). In matrix form and

considering that the window size is T , one has that the instantaneous firing probability

Λ is:

Λ = XK
λT

λT+1

...

 =

x1 x2 · · · xT

x2 x3 · · · xT+1

...
...

. . .
...

K1

K2

...

KT

L(Data,K) = ∥XK− Λ∥2 = (XK− Λ)⊤(XK− Λ) =

= Λ⊤Λ− Λ⊤XK−K⊤X⊤Λ +K⊤X⊤XK

∂L(Data,K)

∂K
= −2X⊤Λ + 2X⊤XK = 0

X⊤Λ = X⊤XK

K =
(
X⊤ X

)−1 (
X⊤ Λ

)
(4.13)

26

One must notice that the expression we have just deducted essentially matches with

the STA definition: the summation in equation 4.12 is translated to (XTΛ) in matrix

form (one must match the number of spikes per bin ni in the former expression with

the firing probability λi in the latter one). The remaining 1/n term that averages the

computation is translated into (XT X)−1, which is the autocorrelation matrix that has

the same effect.

Hence, this is the method we’ll use to predict the linear filter K. The case of K = ct

is a specific case of this generalisation and therefore is solved the same way.

λ1

λ2

...

 =

x1

x2

...

K

Note that against the previous case, the resulting samples start at the first time position

(hence the subindex 1 in the first λ sample), instead of at the T sample.

• Window-Exponential case , the only difference is that the result of the linear filter

and the nonlinear transformation isn’t the firing probability itself but its logarithm.

Since one has λ(t) = pfiring(t) = exp(y(t)) = exp(K x(t)), we have to use log(λ(t)) =

K x(t) to solve the problem the same way.

Consequently, the solution in this case is

K =
(
X⊤ X

)−1 (
X⊤ log(Λ)

)
(4.14)

Again, the constant approach can be solved the same way.

Using both the equation 4.13 and equation 4.14 one can predict the linear filters.

However, it must be noticed that they depend on both the kinematic vector X which we

have and the firing probability Λ which we don’t when using real data. One must always

27

remember how the real data looks like, as the only purpose of this simulation experiment is

to find the proper method to treat with real data. In this respect, one only possesses both

the kinematic vector and the spike train. That’s why one can’t use the well known firing

probability Λ when using the simulated data but we have to estimate it from the resulting

spike train.

Firing probability estimation

One must remember that this spiking probability is time dependent and must lay between 0

and 1. So, somehow one should find the way to transform the spike train along time into a

firing probability changing in time as well. Therefore, at each time step one can obtain the

instantaneous firing probability that led to the generation or not of a spike at that moment.

With the aim of estimating the firing probability, the easiest way to do that is performing

a convolution between the spike train and a Gaussian distribution function. Once having

done so, one can obtain an estimation of the firing probability density by adding all of these

Gaussian curves together. Hence, the time regions in which the neuron fired a lot will have

high firing probabilities, while those in which only a few spikes were generated will have low

firing probabilities.

One must realise that there are two parameters that must be fitted in this methodology: both

the mean µ and the variance σ of the convoluted Gaussian distribution (N(µ, σ)). While it is

quite clear that the mean should be µ = 0 in order to have the Gaussian distribution centred

when convoluted with the spikes, it is quite difficult to find a proper automated method

capable of deciding the optimal variance value σ. This parameter makes the Gaussian

distribution to be wider or narrower. In order to choose its value, we are going to try several

different values and compare the resulting firing probability with the theoretical one that

will act as ground truth.

Moreover, one can notice that by performing such convolution, the resulting values will not

have to be lower than one and hence one must normalise them. Therefore, the resulting

28

estimation of the firing probability must be divided by its maximum value.

Furthermore, and in order to make the estimation as accurate as possible, it has been decided

that the mean value of the estimated firing probability should be equal to the number of

spikes divided by the number of time steps in that realisation. Consequently, one will have

to multiply the already normalised estimated firing probability by #spikes/#timebins
mean(estimated pfiring)

. Since

this factor might be higher than one in some cases, one will only perform the multiplication

whenever it is lower than 1.

So at the end, the criterion followed to choose the σ parameter has been that the root

mean square error between the estimation and the ground truth was minimum. The final

chosen parameter has been σ = 1.9650.

All in all, the linear filter K can be estimated for all of the cases considered, linear-

nonlinear and K = ct or K = window ones.

4.3.2 Time delay ∆t Estimation: Mutual information

Along with the K parameter, the first model parameter that must be estimated is the time

delay. Once this is calculated, either the input or the output signal can be shifted so that

both keep up with each other which makes the rest of the parameters estimation to be much

easier.

According to Paninski et al. (2004b) and Wang et al. (2007), the causal time delay can be

estimated following an information theory procedure. What we are looking for is the optimal

time delay at which the input signal holds the maximum information about the subsequent

spike train. In order to measure it, the concept of mutual information is used.

29

Mutual information

Mutual information is the metric proposed by Cover and Thomas (1991) which measures the

mutual dependence between two random variables. More intuitively, it measures the amount

of information, in terms of bits, that we get to know about one of the random variables by

observing the other. It is a much more general metric than the well known correlation as it

doesn’t only consider linear relations but also any other kind.

Definition 4.3.2. Given two different random variables X, Y , its mutual information is

defined as

I(X;Y) =

∫
Y

∫
X

pX,Y (x, y) log

(
pX,Y (x, y)

pX(x)pY (y)

)
dx dy (4.15)

where pX,Y (x, y) is the joint probability density function of the random variables X and Y ,

and pX(x) and pY (Y) are the respective marginal probability density functions. Therefore,

the mutual information is bigger when the difference between pX,Y (x, y) and the product

pX(x)pY (y) is bigger as well. If both variables were totally independent, both terms will be

the same and hence the logarithm result will be log(1) = 0.

For the case we are dealing with, the mutual information is calculated for the resulting

shifted spike train 7, say X = spk∆t(t), along with an hypothetical shifted input signal. We

are going to use the feature space vector Y = ylag(t) because it gathers all the possible infor-

mation hided in x(t) (it lets us include history information for the K = window approach).

The idea is that whenever we shift the signal the right amount of samples, it will match the

shifted spikes and hence the mutual information will be maximum.

One must have noticed that one initially doesn’t have the feature vector ylag(t) as the

filter K is unknown. Hence, it must be estimated at the same time as the time lag and that’s

why their estimation depends one another. The corresponding procedure described within

section 4.3.1 Linear filter K estimation: STA will be used here and will be referred as ’STA

K estimation’.
7Recall that this spike train is the result of feeding the LNP model with the shifted input signal. The

goal is to find the time delay that was applied to this initial signal.

30

Following with the mutual information computation, the spike train is a discrete signal,

one of the integrals from the previous formula should be changed to a summation. Thus, if

we refer spk∆t(t) as spk and ylag(t) as ylag, one has:

I(spk; ylag) =

∫
y

∑
spk=0,1

p(spk, ylag) log2

(
p(spk, ylag)

p(spk) p(ylag)

)
dylag =

=

∫
y

∑
spk=0,1

p(ylag | spk)p(spk) log2
(
p(ylag | spk)

p(ylag)

)
dylag

(4.16)

where the integral is computed along the whole time span of the input signal ylag(t).
8

∗ ∗ ∗

Once we have the mathematical expression, the procedure of how to predict the optimal

time lag applied (and also the optimal linear filter K) given both the input signal x(t) and

the shifted spike train can be described as follows:

1. Estimate the firing probability from the spike train, needed for the ’STA K estima-

tion’.

2. Compute the probability of having a spike. The probability of not having a spike

will be the complementary.

p(spk = 1) =
#spikes

#time bins
(4.17)

p(spk = 0) = 1− p(spk = 1) (4.18)

3. Several hypothetical time delay guesses lag are considered. For each of them:

3.1 One shifted input signal is created, that is, the kinematic vector signal x(t) is

shifted with the time delay lag leading to xlag(t). From this step on, xlag(t), spk∆t(t)

8Bayes theorem has been used to pass from the first eqution to the second: p(spk | ylag) = p(ylag|spk)p(spk)
p(ylag)

31

and the estimated pfiring(t) will be cropped so that only the samples after that time

delay guess are considered. One has to do that because in real data, we would not

know what’s before that and one can’t use information from the past we wouldn’t have.

3.2 One performs the ’STA K estimation’ using both the xlag(t) and the shifted

spike train leading to the corresponding Koptimal. With it, one calculates the resulting

ylag(t) = Koptimal ∗ xlag(t).

3.3. Mutual information between the shifted feature space signal ylag(t) and the

resulting spike train spk∆t(t) is computed following equation 4.16. To do so, we have

to precompute the following probability density functions.

– p(ylag), the probability density function of ylag.

– p(ylag | spk), the probability density function of ylag conditioned to both options

spk = 1 and spk = 0.

4. The optimal time lag applied will be the one leading to the maximal mutual infor-

mation value.

lag∗ = argmax
lag

I (spk; ylag) (4.19)

One will also store the Koptimal obtained for such time delay which will be the final

estimation for it.

One must notice that one doesn’t know neither of the probability density functions needed

for step 3.3. Hence, they must be directly estimated from data.

In order to do that, one should consider using what is called Kernel Density Estimator.

32

Kernel Density Estimator (KDE)

Definition 4.3.3. Let (x1, x2, . . . xn) be i.i.d.9 samples from univariate distribution with

unknown density function g(). Its Kernel Density Estimator (KDE) is

gh(x) =
1

n

n∑
i=1

Kh (x− xi) =
1

nh

n∑
i=1

K

(
x− xi

h

)
(4.20)

where K is the kernel (non-negative function) and h is a smoothing parameter that can be

chosen. In our case a Gaussian kernel will be chosen: K(x) = N(0, 1).

Graphically, KDE consists in convolving the chosen kernelK(x) with each sample position

and add them all. Using a Gaussian kernel, the resulting density function estimation should

be the ‘continuous’ version of the corresponding histogram.

∗ ∗ ∗

To compute these probability densities, we are going to build a Matlab function that will

be referred as [fp, values] = kernel smoothing(var).

Definition 4.3.4. [fp,values] = kernel smoothing(var) (see section 8.3 Matlab codes

for the code)

It will create a probability density function fp for the input variable var. The values term

will be a grid of different equally spaced values spanning along the original range of the

variable var.

In it, the Matlab function histfit(var, nbins,
′ kernel′) will be first used. It builds an his-

togram of the variable var with n bins. Moreover, it tries to fit a distribution specified by

the third variable. The option that is going to be used is the ′kernel′ one, which uses a non-

parametric kernel-smoothing distribution. With it, the density is evaluated at 100 equally

9Independent identically distributed

33

spaced points that cover the range of the variable var. The input nbins has been chosen to

be 100 as well.

However, after so, the fit we have isn’t yet a distribution; that’s why we have to divide it by

the number of samples the histogram has been built with.

Then, one will just have to transform it into a function so that given a var value, it

gives the probability of having it. To do so, we have used the Matlab function F =

griddedInterpolant(grid, values grid, InterpolationMethod,ExtrapolationMethod) that cre-

ates an interpolating function F based on the values grid we have at each point defined by

the grid. Therefore, the grid will be constituted by the different var values, and values grid

will be the corresponding computed probabilities. The InterpolationMethod has been cho-

sen to be ’linear’. According to Matlab Documentation, ’The interpolated value at a query

point is based on linear interpolation of the values at neighboring grid points in each re-

spective dimension’. Similarly, the ExtrapolationMethod has been chosen to be ’nearerest’.

According to the documentation, ’Nearest neighbor interpolation. The interpolated value at

a query point is the value at the nearest sample grid point ’. It has been chosen this way as

the extrapolated values at the edges may get negative if a linear extrapolation was chosen;

hence this way, they are maintained the same as the last values from data. Consequently,

one must keep in mind that the results one will obtain near to the edges won’t be as reliable

as they will come from extrapolation and not from real data.

Hence, this function will be used to compute both p(y) and p(y | spk).

Moreover, when dividing these two probability density functions they must be evaluated at

the same points. In order to do that, both functions will be evaluated at the same equally

spaced points, more concretely, to the grid resulting from the kernel smoothing function

when used with p(y) as its range is for sure bigger or equal to the one obtained with its

conditioned p(y | spk).

Once having the estimation of the density functions, the mutual information can be

directly computed and hence the optimal time lag is found.

34

One must take into account that, as the signal y(t) we are using is periodic, the mutual

information could also be maximum at shifts that are multiples of its period T plus the time

lag (e.g. T + lag or even T/2 + lag) as we can see in Figure 4.7. That is why the mutual

information computation will only be carried out with time lag guesses smaller than half the

period of the sinusoidal signal.

lagguess <
T

2
(4.21)

Figure 4.7: Shifted spike train along with possible ylag(t) for Window-Exponential case

Once we have the resulting plot of the mutual information against the different time lag

guesses, one needs to find its maximum as it will indicate the optimal time delay to apply.

However, the mentioned plot is kind of noisy, with high frequency oscillations that make

it difficult to extract the right maximum. That’s why one needs to process it in order to

extract the general trend and hence the real maximum value.

Low-pass filtering mutual information

In order to extract the general tendency the mutual information signal has, one must apply a

low-pass filter to it. Considering that the sampling interval is the time step Ts = 1∗10−3s, we

35

can compute the sampling frequency as Fs = 1/Ts = 1/dt = 1000Hz and the corresponding

Nyquist frequency as Fn = Fs/2 = 500Hz.

One must ensure that the chosen cutoff frequency Fc10 of the filter we are designing should

be lower than the Nyquist one in order to avoid aliasing Fc < Fn.

It is not direct to obtain the optimal cutting frequency to filter the mutual information

signal but a good approach is to compute the Fast Fourier Transform (FFT) of the

signal.

FFT is a tool to transform any signal from its time domain into its frequency domain. The

idea behind it is that the same data can be decomposed in a series of sinus waves with

different periods and hence frequencies. Therefore, the FFT provides us with the frequency

spectrum of the signal, giving an insight of both the high and low frequencies that are present

in it.

With this spectrum, one can see which low frequencies represent the general trend of the

signal and which high frequencies are associated with noise. Knowing so, one is ready to

choose the cutoff frequency Fc above which the signal will be attenuated: Fc will be chosen

as the frequency at which the FFT has dropped for the first time.

In order to do so, the Matlab fft(x) function was used and the first minimum found in the

resulting spectrum was chosen as the cutoff frequency Fc. It must be taken into account

that this cutoff frequency should still be lower than the Nyquist one Fn so that no aliasing

is produced.

Once the parameters have been defined, the filter itself is computed with the Matlab

function fir1(n,Wn) which designs a window-based FIR filter of order n. However, the

function works with normalised frequencies instead that must lay between 0 and 1 so the

normalised cutoff frequency should be provided instead. Since Fn is the maximum possible

value the cutoff frequency could have, its normalisation procedure will be computed as

follows: Wn = Fc/Fn so that it led to 1 whenever Fc = Fn, its maximum value. Having

10The cutoff frequency is the one from which the low pass filter will attenuate the signal.

36

said so, the order n is yet to be decided. The impact this parameter has in the filter is just

to specify how fast the trend of the magnitude in the frequency domain drops to 0. The

highest the value, the faster it falls. Two different values were considered (n = 10, n = 20)

and based on observation, the first case was the one giving more reliable results.

∗ ∗ ∗

Having obtained the corresponding filter and having applied it to the original mutual

information signal, the maximum value has been found and the corresponding time delay

has been chosen as the optimal one. Once having it, one can shift the original kinematic

vector x(t) onwards so that it matches the originally shifted spike train in time. This way,

the further estimations are much easier.

The corresponding linear filter Koptimal is also stored as the optimal one for the model.

4.3.3 Nonlinear function f(y) Estimation: Bayes Theorem

Finally, one must estimate the nonlinear function f(y) to lastly have all of the puzzle pieces.

One can see the nonlinear function as the one that represents the conditional density function

p(spk | y) = p(spk | Kx). So, following the Bayes Theorem11, one can state that

f ∗(·) = p (spk | y) = p (spk, y)

p (y)
=

p (y | spk) p(spk)
p (y)

(4.22)

This can be seen as the well known expression of posterior = likelihood ∗ prior by

identifying p (spk | y) as the posterior, p(y | spk) as the likelihood, p(spk) as the prior and

p(y) as a normalization constant.

Recall that each of the terms is a distribution except for p(spk) which is a number; hence,

they must be estimated. To do so, and similarly as before, we are going to use Kernel Density

Estimators (KDE) (see Definition 4.3.3):

11Bayes Theorem says p(A | B) = p(A,B)
p(B) = p(B|A)p(A)

p(B)

37

• p(y | spk) is the distribution of y = Kx with both the restrictions of spk = 0 or spk = 1.

It is calculated using the defined function [fp, values] = kernel smoothing(var) with

var = y | spk (see Definition 4.3.4).

• p(spk) will be calculated adding up the amount of spikes there has been divided by

the total number of time steps. Hence it is a scalar.

• p(y) is simply the distribution of y = Kx without any restrictions. It is also calculated

with the function [fp, values] = kernel smoothing(var) but this time with var = y.

Again, the density functions must be transformed into functions and must be evaluated

at the same equally spaced points so that they can be divided.

Until here, the procedure was the same for any of the cases considered. Of course, some

differences must be found between the linear and the exponential proposals since one expects

the results to resemble such functions.

f(y) fitting

In both cases, one can try to fit a function of the same form (a ∗ y + b for the linear and

a ∗ exp(b ∗ y) + c for the exponential one), predict the optimal parameters a and b (and c if

it is the case) and compute the error with respect to the theoretical ones used.

In order to do that, one can use the Matlab g = fittype(expression) function along

with optimal fit = fit(x, y, g). They finally provide the optimal fit of the y terms along

the x values following the expression parameter. This parameter will be set as ′a ∗ x + b′

for the linear case and ′a ∗ exp(b ∗ x) + c′ for the exponential one.

However, and based on what has been said that the edges aren’t as reliable, only the

monotonically increasing regions of the nonlinear function will be considered for the fitting.

In one hand, the left limit will be the minimum value that the feature space y achieved

38

during the estimation of both the probability density p(y) and p(y|spk), both used in the

f(y) function estimation. On the other hand, the upper limit must be chosen as well.

(a) Window-Linear case (b) Window-Exponential case

Figure 4.8: f(y) estimation for Window cases

If one observes the resulting estimation of the nonlinear function in Figure 4.8, one can

notice that, although the trend initially looks like a linear (in Figure 4.8(a)) or an exponential

function (Figure 4.8(b)), it drops to zero at the end. One must be aware that this result is

totally expected because not only the leftest region of f(y) but also the rightest region of it

have a level of confidence way lower than the middle region. In other words and keeping in

mind that this estimation has been made based on data, the amount of samples we have in

these y values is not as much as the amount of samples we have in the middle region. Hence,

the estimation of both the probability densities and consequently of the f(y) computation

at these regions is not accurate at all. Having so in mind, one has chosen the y position

corresponding to the maximum value of f(y) as the upper limit one will consider when

fitting either the linear or the exponential form. One can see the final range of the nonlinear

function that has been used for the fitting marked as a thicker line.

With it, one can estimate all the different parameters that define the desired LNP model

and hence we have the pipeline well defined in order to further apply it to the experimental

data.

39

4.4 Model Results

Now that we know the whole procedure, we are going to present the results obtained for

each of the 4 different approaches.

Several partial results have been found for each of them and will be gathered in tables

below. However, the corresponding plots will only be displayed for the Window-Linear and

Window-Exponential cases as they are the most general ones and will be the ones that will

be assumed in the experimental encoding procedure. The rest of the plots corresponding

to both the Constant-Linear and Constant-Exponential will be displayed in section 8.2.1

Simulated Encoding additional Figures and Tables in the Appendix.

4.4.1 Linear filter K and Time delay ∆t results

So, starting from the beginning, the first parameters estimated are both the time delta and

the linear filter K.

Its estimation included as first step the computation of the firing probability pfiring(t)

from the shifted spike train. One can see in Figure 4.9 that it makes sense as whenever

the probability is high, more spikes are generated. Also, it lies between 0 and 1. One must

remember that it has been estimated so that its mean value matched the quotient between

the number of spikes and the number of time samples.

In order to see how accurate the results are, the root mean square error (rmse) between

the approximation and the real firing probability will be computed. The resulting values are

gathered in Table 4.3 and will be commented in that section.

40

(a) Window-Linear case (b) Window-Exponential case

Figure 4.9: pfiring estimation for Window cases

Following with the pipeline, the next computation was to find the time lag guess that led

to the maximum mutual information. However, the resulting mutual information is quite

noisy and had to be filtered.

In order to decide which filter to apply, remember that the Fast Fourier Transform (FFT)

of the mutual information plot was computed. The resulting plots for both theWindow cases

are represented in Figure 4.10. From them one wants to know which are the frequencies that

are present in the given signal. With it, if we identify the low frequencies present in the

signal we can build a filter that cancels all frequencies above that level and hence obtain a

low-filtered signal with the trend of the original one but without the noise.

With both cases, we can see that the main low frequencies lay below 20. Knowing so,

several filters were considered but the chosen one has been a 10th order low pass filter with

a Nyquist maximum frequency of Fn = Fs/2 where Fs = 1/dt is the sampling frequency,

a cutting frequency of Fc = 1Hz and a normalized frequency of wn = Fc/Fn. Its Bode

diagram is represented in Figure 4.11.

41

(a) Window-Linear case (b) Window-Exponential case

Figure 4.10: Fast Fourier Transform (FFT) of mutual information for Window cases

Figure 4.11: Bode diagram of the filter applied to Mutual Information for Window cases

As we can see, the filter leaves the low frequencies but cancels the high ones, hence it is

definitely a low-pass one.

If we plot the resulting filtered mutual information with the filter that has just been

described we obtain Figure 4.12. While the blue line is the original mutual information,

the red one is the one corresponding to the chosen filter and it is the one that has been

42

considered in order to find the position of the peak. The yellow line corresponds to another

possible filter considered with the same cutting frequency but of higher order (order 20).

(a) Window-Linear case (b) Window-Exponential case

Figure 4.12: Filtered Mutual Information estimation for Window cases

After this step, both the time delay ∆t and the optimal linear filter K are already

estimated. We can see the obtained values along with the ground truth ones (marked with

a ∗) in Table 4.1.

METRIC CL CE WL WE
∆t∗ 100 100 100 100
∆t 104 114 105 91

K∗ 0.3277 -1.0800

0.0649
0.0649
0.0649
0.0649
0.0649

−0.02155
−0.02155
−0.02155
−0.02155
−0.02155

K 0.3179 -1.2024

0.0294
0.0462
0.0611
0.0788
0.0859

−0.4302
−0.3010
−0.2094
−0.0942
−0.0245

Table 4.1: ∆t and K estimations for simulation encoding approaches

As we can see, the time delays are pretty much well estimated, specially in the linear

cases. On the other hand, the K values were also well computed in the constant cases. If we

43

consider the window cases, we see that the estimation doesn’t provide with the same value

in each of the terms but different ones and pretty far from the theoretical one.

The corresponding relative errors have been computed with respect to the ground truth.

The results are again gathered in Table 4.3 within the evaluation section.

4.4.2 Nonlinear function f(y) results

The final result is the resulting nonlinear function f(y) along with its fittings according to

either the linear or exponential approach.

The red colour has been associated to the linear approach and the yellow one to the expo-

nential one. While the thinner line represents the theoretical nonlinear function that was

used during the data building and hence it is considered the ground truth, the thicker one

is the fitting that has been obtained as the optimal one, based on the obtained blue f(y)

function. One must remember that the fittings have been done considering only the mono-

tonically increasing part of the resulting function as the edges confidence level is way much

lower due to the kernel tails. This fitting range region is marked as a thicker blue line along

the estimated function f(y).

One can see in both pictures in Figure 5.8 that the fitting results obtained are quite good.

Starting with the obtained function f(y) (in blue), one can see that it is far away from the

theoretical ground truth (coloured thin line). If one doesn’t consider both the edges, then

we can clearly see that it follows the right trend: linear in the left image and exponential in

the right one. However, if we used it as part of our model, the error of the estimation would

be huge.

Luckily, if we consider the optimal fittings in both cases, they aren’t far away from the

theoretical ground truth function, specially at the central part of the range. Therefore and

based on what we see graphically, if we take this fitting as part of our predicted model one

expects the results to be pretty good. That’s why we are going to consider these fittings

44

(a) Window-Linear case (b) Window-Exponential case

Figure 4.13: Nonlinear function f(y) along with linear and exponential fittings for Window
cases

as the resulting nonlinear function f(y) estimation as they resemble way better the ground

truth ones.

The obtained coefficient values when fitting f(y) are displayed in Table 4.2.

METRIC CL CE WL WE
a* 1 1 1 1
a 1.06 1.40 1.02 1.30
b* 0 1 0 1
b 0.00 1.20 0.03 1.30
c* - 0 - 0
c - 0.00 - 0.00

Table 4.2: Fitting coefficients for simulation encoding approaches

Once again, some evaluation metrics between these variables have been computed and are

gathered in the same Table 4.3. In this case, the relative error has been computed between

variables.

With it, we have obtained the resulting time delay ∆t, the linear filterK and the nonlinear

function f(y) estimation that constitute the prediction of our LNP encoding model. Now,

45

one only has to assess how good are these predictions for all of the 4 cases considered and

compare them, in order to find a clue on which approach to follow for real data.

4.5 Model Evaluation

In order to see how accurate the resulting LNP model is and hence how suitable the chosen

pipeline is for applying it to the experimental data, one needs to compare how similar the

estimated parameters are compared to the theoretical ones.

In order to do that, we are going to distinguish between the estimation of the different

model parameters 1. the time delay 2. the linear filter K and 3. the nonlinear function f(y).

Furthermore, we are also going to check for the accuracy of the resulting output firing

probability output with respect to the simulated one using the Time Rescaling Theorem.

4.5.1 Parameters evaluation

Time delta ∆t

Starting with the time lag between the neural activity and the resulting kinematic vector,

we are going to compare how similar are them.

In order to do that, we are just going to compute the relative error between the ground

truth value ∆t∗ and the estimation ∆t.

Definition 4.5.1. Relative error of variable var:

ϵvar =
|var∗ − var|

var∗
(4.23)

where var∗ is the ground truth value and var its estimation.

46

Hence the error has been computed as:

ϵ∆t =
|∆t∗ −∆t|

∆t∗
(4.24)

Linear filter K

Following with the linear filter K, the same evaluation metric has been used: the relative

error. However, one has to distinguish both the case in which K = constant and the one in

which K = window.

• On one hand, for theK = constant approach, the error computation is straightforward:

ϵK =
|K∗ −K|

|K∗|
(4.25)

• On the other hand, for the K = window approach, one has to compute the relative

error as well but using the vector’s 2-norm.

Definition 4.5.2. Let x = (x1, x2, ..., xn) ∈ Rn, then the 2-norm of x is:

||x||2 =
√

x2
1 + x2

2 + ...+ x2
n

Hence, the relative error is computed as:

ϵK =
||K∗ −K||2

||K∗||2
(4.26)

Nonlinear function f(y)

In this case, one wants to measure how similar one function is to another one. It is quite

difficult to obtain an evaluation metric that directly computed that and that’s why another

whole method was used.

47

Depending on which case we are dealing with, we have fit either a linear or an exponential

function to the one estimated. Therefore we can compare the found parameters a and b (and

c for the exponential case) with the theoretical ones a∗ and b∗ (and c∗), to see if they match12.

Having said so, both values a and b for the linear case will be chosen as:

a, b = argmina,b

(
1

m

m∑
i=1

|f(yi)− (a ∗ yi + b)|

)
(4.27)

Similarly, for the exponential case we will choose those parameters that satisfy:

a, b, c = argmina,b,c

(
1

m

m∑
i=1

|f(yi)− (a ∗ exp(b ∗ yi) + c)|

)
(4.28)

In order to do that, we have used the Matlab function g = fittype(expression) and

then fit = fit(yvalues, fy, g). With g we define the kind of function we want to fit (expression

= a ∗ x+ b for the linear case and a ∗ exp(b ∗ x) + c for the exponential one), and with fit,

we obtain the optimal parameters specified in expression that fit the function fy along the

specified yvalues.

In order to consider the correctness of the parameters, the relative errors have been

calculated as:

ϵa =
|a∗ − a|
|a∗ + ϵ|

ϵb =
|b∗ − b|
|b∗ + ϵ|

ϵc =
|c∗ − c|
|c∗ + ϵ|

(4.29)

where a∗, b∗ and c∗ are the theoretical parameters used when building the data and the

model. Notice we have add a ϵ = 1e− 16 value to the denominator to avoid dividing by 0.

However, the coefficient errors aren’t the ones we really want to analyse but the fitting

one. That’s why a fitting error has also been calculated based on the mean square error

between the optimal fitting function and the theoretical one. These results are gathered in

Table 4.3.

12Remember the linear form was f(y) = a ∗ y + b and the exponential one like f(y) = a ∗ exp(b ∗ y) + c

48

Metric CL CE WL WE
pfiring rmse 0.0771 0.0759 0.0733 0.0572
∆t relative error 0.0400 0.0300 0.0500 0.0900
K relative error 0.0297 0.0826 0.0423 0.1586
a relative error 0.0600 0.4000 0.0200 0.3000
b relative error 0.0000 0.2000 3e14 0.3000
c relative error - 0.0000 - 0.0000
Fitting rmse 0.0291 0.0410 0.0490 0.0552

Table 4.3: Evaluation parameter metrics estimation for simulation encoding approaches

Observing the results, we can see that in general all four approaches lead to pretty good

results.

On one hand, the firing probability rmse in all cases is lower than 10%. The window cases

here lead to better results and it is quite obvious because as we know, the window act as

a smoothing filter for the signal and hence the resulting firing probability is less noisy and

hence easier to estimate.

On the other hand, the time delay and the linear filter K relative error are in general below

15% as well which is quite impressive.

Then, if we analyse the fitting parameters, we can see that the relative errors of the coeffi-

cients are quite elevated. We see in the window linear case that the coefficient b’s error is

huge; in part because the ground truth was 0 and a value of 0.03 was predicted. However,

one must be aware that the coefficient errors aren’t as significant as the fitting one because

one can have two exponential functions that are very similar in a region but that their coef-

ficients are far away from being near to each other. If we look again at the resulting fitting

plots in Figure 5.8, we can see that even though the coefficient errors are huge, both the

theoretical fitting and the estimated one are kind of close together in the y variable span we

are considering.

Having said so, the fitting rmse obtained in all cases is lower than a 6% which is an impressive

result.

49

4.5.2 Output evaluation

One can take the parameter errors and gain an insight on how good the model is. However,

there is another method to see how accurate the estimation of the LNP model is and that

in fact makes more sense to rely on: the idea is to compare the output of the model, that

is, comparing the ground truth theoretical firing probability with its estimation, obtained

after feeding the estimated model with the same input data as the one used for obtaining

the ground truth. In order to do that, firstly one has to estimate the ground truth firing

probability from the resulting spike train.

Ground truth firing probability

First of all and in order to evaluate the correctness of the output of the model, one must

find the ground truth of the firing probability, that is the real firing probability that led

to the generation of the spike train obtained as real data. This estimation has already

been done when estimating the linear parameter K through STA (see section 4.3.1 Firing

probability estimation) so the procedure followed is the same. Basically, a Gaussian Kernel

was convoluted with each of the different resulting spikes and the results were added and

scaled so that they represented a distribution.

Output generation

Besides having the ground truth firing probability, one needs the resulting firing probability

predicted from the model. It should be obtained by feeding the estimated model with the

original kinematic vector x(t). With it, we will obtain a pfiring estimation that will be

compared to the ground truth one.

The first partial output of the LNP model built is the resulting feature space signal y(t).

It is represented in Figure 4.14. Remember that the two missing cases figures are gathered

in 8.2.1 Additional Figures and Tables.

50

(a) Window-Linear case (b) Window-Exponential case

Figure 4.14: Estimated feature space vector y(t) for Window cases

With the estimation, we have also plotted the real y(t) values obtained from projecting

the original kinematic vector x(t) with the real K. As it can be seen, the estimations are

almost perfect, which is a good sign.

The next step is to apply the nonlinear function f(y) to y(t). We have plotted the results

of f(y) along with the ones obtained with the corresponding fitting. The results can be see

in Figure 4.15.

(a) Window-Linear case (b) Window-Exponential case

Figure 4.15: Estimated pfiring for Window cases

51

As one can see, for the Window-Linear case, the estimated function brought to worse

results than the linear fitting ones. As we can see in the plot, the red line approaches more

accurately the ground truth firing probability.

On the other hand, for the Window-Exponential case, both the direct estimatino in blue and

the exponential fitting lead to similar results.

Once we have the ground truth firing probability directly obtained from the real data

spike train, we need an appropriate goodness-of-fit measure in order to compare it with the

one predicted feeding our LNP model with the kinematic vector.

For this purpose, one must review the Time Rescaling Theorem.

Time Rescaling Theorem

The time rescaling theorem is useful to assess goodness-of-fit between the output of the

statistical model that has just been fitted and the spike train from real data. Let’s first take

a look to the formalities in order to understand how the theorem will be used in order to

evaluate our model.

According to Barbieri et al. (2002) it states that ’Any inhomogeneous Poisson process may

be rescaled or transformed into an homogeneous Poisson process with a unit rate’13. More

generally, it states that ’Any point process with an integrable conditional intensity function

may be transformed into a Poisson process with unit rate’.

The mathematical definition of the theorem for a point process spanning from time 0 to time

T is as follows (find proof at Appendix 8.1).

Theorem 4.5.3. Let 0 < u1 < u2 <, ..., < un ≤ T be a realisation from a point process with

a conditional intensity function λ(t|Ht) satisfying 0 < λ(t|Ht) for all t ∈ (0, T]. Define the

13Remember that a Poisson process being inhomogeneous refers to having a time dependent rate λ(t);
whereas homogeneous refers to having it constant λ

52

transformation:

Λ(uk) =

∫ uk

0

λ(u|Hu)du (4.30)

for k = 1, ..., n, and assume Λ(t) < ∞ with probability one for all t ∈ (0, T].

Then the Λ(uk)’s are a Poisson process with unit rate.

For our case, one has to identify the realisations uk as the different times at which a spike

was generated, being n the total amount of spikes along the (0, T] time span. Also, the rate

λ(t|Ht) corresponds to the firing probability rate at each time t given the previous history

of the process Ht = {0 < u1 < ... < uN(t) < t} where N(t) is the amount of occurred spikes

in the interval (0, t]. In our case, this rate can be identified as the Poisson rate λ(t).

Hence, now one has a well-known transformation that can convert any point process

realisation into a Poisson process with unit rate.

∗ ∗ ∗

In order to assess the goodness-of-fit measure, one needs to build the following derived

variables:

τk = Λ(uk)− Λ(uk−1) for k = 2, ..., n

τT =

∫ T

un

λ(u|Hu)du
(4.31)

As proved in Appendix 8.1, if the model is correct and hence meets the specifications

required for Theorem 4.5.3, these new variables τk’s are independent identically distributed

exponential random variables with mean equal to 1.

Furthermore, some new variables must be built:

zk = 1− exp(−τk) for k = 2, ..., n, T (4.32)

53

It is direct to see that, if the τk fulfils the specifications given (i.i.d. exponential random

variable with mean equal to 1) and thus the model is correct, zk’s are independent uniform

variables between (0, 1].

This statement is the one that will be used in order to evaluate the correctness of the

LNP predicted model.

Therefore, in order to check whether these zk’s are independent uniform variables, either the

Kolmogorov-Smirnov test or the Quantile-Quantile-plot can be used.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov Test is a nonparametric test that compares one data sample with a

reference probability distribution. It basically answers the probability that the tested sample

was drawn from the hypothesis distribution. It is gonna be used to see whether the resulting

zk’s belong to a uniform distribution, as stated by the correctness hypothesis.

The steps one should follow are:

1. Order zk’s in ascending order.

2. Compute the cumulative distribution function of the uniform density as:

bk =
k − 1/2

n
fork = 1, ..., n (4.33)

3. Plot bk’s against zk’s. Since we are plotting the cumulative distribution function, if

zk’s belong to a uniform distribution and hence the model is correct, the plot should

lie on a 45-degree line.

All these steps have been gathered in the function computeKSStats(spikeTrain, lambda, opt)

(see section 8.3 Matlab codes for the code).

54

Metric CL CE WL WE
KSS f(y) prediction 1.6157 1.4074 1.1472 3.9874
KSS linear fit 1.2820 - 0.6145 -
KSS exponential fit - 2.6136 - 2.2751

Table 4.4: Output evaluation KSS metrics for simulation encoding approaches

If we plot the results obtained for both theWindow−Linear andWindow−Exponential

cases, we obtain the results in Figure 4.16. As we can see, in both cases the fitting leads to

better results than the obtained function f(y). Moreover, it seems that the linear case led

to better results than the exponential one as the corresponding KSS line approaches more

to the ideal 45º line.

(a) Window-Linear case (b) Window-Exponential case

Figure 4.16: KSS plot for Window cases

In addition, not only the KSS plot has been built but also its metric. One has to know

that the lowest the KSS metric the best. The obtained results for each of the four cases are

gathered in Table 4.4.

For the KSStats, the lower the better. Therefore, in most of the cases (except the

Constant-Exponential one), the corresponding fitting enhances the performance of the direct

f(y) prediction, hence when it comes to predict the nonlinear function in real data, the same

procedure will be followed and it will be these fittings the ones that will be considered and

55

compared.

Moreover, the linear approaches give better results than the exponential ones when com-

paring within the constant cases on one hand and the window cases on the other. The

explanation for it may be that the linear cases are easier to estimate so its results are better.

Similarly, if we now focus within the linear cases on one hand and within the exponential

cases on the other, we see that the window approaches lead to better results than the constant

ones, with metrics lower than the corresponding constant cases ones. This result could be

expected as the window approaches consider history and hence they have more information

when it comes to correctly predict the resulting firing rate.

Having said so, one can state that the models that will be considered in real data are

in first place the Window-Linear one, as it is the one that led to the lowest KS Statistic

and also the Window-Exponential one as within the exponential cases it is the best one and

being it more similar to the window-linear one makes it easier to compare between them.

In addition, considering these two cases, one is going to see the Window-Linear case as

the baseline model and the Window-Exponential as one nonlinear model proposal.

With it, one expects to determine whether including the non linearity of the function f(y)

gives to better results or not in the building of an LNP neural encoding model.

Quantile-Quantile Plot

Another option that could be used is to use the quantile-quantile plot. It is a similar graphical

method suitable to compare whether two probability distributions are comparable or not.

The idea is to plot the quantiles of both distributions one against the other.

In our case, we would need to plot the quantiles of the uniform distribution samples bk

against the ones from our estimations zk’s. If the uniform distribution assumption for zk is

fulfilled, the plot should also lie in a 45-degree line.

This plot has not been performed as the results obtained from the same KS are already

significant.

56

All in all, and after having analysed the performance of the four different approaches, it

has been decided that the both the Window-Linear and Window-Exponential cases are the

ones that suit better for describing the encoding procedure that exists between the kinematic

vector and its associated neuron activity. They will definitely be the approaches followed for

real data in the next chapter.

57

Chapter 5

Experimental Encoding

Once having ensured that the estimation procedure or pipeline is the appropriate one for

the defined problem, it will be applied to real data.

This data was experimentally collected in the laboratory by studying the behaviour of

some rats when given a stimulus. Their brain responses were simultaneously recorded along

with the stimulus that they were given. The steps that constituted the pipeline in this

section have been:

1. Simultaneously collecting the stimulus signal and the corresponding brain response

from rats.

2. Given these two signals and following the pipeline already checked with simulated

data, predicting a reliable encoding model.

A more detailed explanation of how the data was collected and what were the steps

followed constituting the whole pipeline will follow, as well as an exhaustive exposition of

the approach considered.

58

5.1 Data collection

Both the motor input and output data collection have been done in the biological laboratories

of The Hong Kong University of Science and Technology (HKUST). The idea behind the

collection of data is to train some rats to do some kind of task and simultaneously record

their neural activity, that is, the spiking pattern in several targeted neurons. The inclusion of

animals within the data collection procedure was approved by the Animal Ethics Committee

at the same University HKUST.

In this research case, the task selected for the rats to learn is a two lever discrimination

task. It consists in pressing either the high lever or the low one for at least 500ms whenever

a high (10 kHz) or low frequency (1.5 KHz) sound was emitted respectively. The fact of

requiring to hold the lever for at least 500ms is set so that the pressing of any of them isn’t

an accident. Whenever the task is correctly achieved, a container is filled with water and

thus the rats can drink from it. An audio feedback with the same feedback is produced to

denote success. The fact of drinking water has nothing to do with the stimulus signal but

it is just an incentive for the rats to learn the task properly. Whenever there is an early

releasing, wrong pressing or no pressing, it doesn’t lead to the water reward.

This being said, the data that we are going to use has been provided by the same

laboratory and has been recorded for rat number 11 during the 12 of December of 2018.

Several trials were performed with the rat each of which lasted 6 s. Also, the inter-trial

period lasted for a random amount of time in between 3 s and 6 s.

Considering the task, two different groups of data are recorded.

The first one is referred as the manual data. It contains a very simple binary stimulus

representing whether any of the levers is pressed or not and the resulting neural spike activity.

Consequently, the input stimulus is a non continuous binary signal with zeros and ones.

On the other hand, the second type of data is referred as the brain data. In this case,

the stimulus signal represents the whole movement of the rat lifting up his hand in order

59

to press the high lever and also the movement of lowering it when pressing the bottom

lever. Therefore, the resulting stimulus signal is a continuous representation of his hand’s

movement. This is the data that will be used for the encoding model estimation as it

is the most similar to the one considered during the whole simulation process: not only

it is continuous but it also contains a periodicity according to the upward and downward

movement of the rat’s hand.

However, some data characteristics differ a little bit from the simulated data ones.

On one hand, regarding the stimulus data, instead of a one dimensional variable along time,

we have a 5 dimensional kinematics vector that also evolves in time. That means, at

each time step we have a vector of five elements that correspond to position x and y of rat’s

hand, its velocity x and y and a bias. This last term is needed because in reality neurons still

fire randomly without being activated by any stimulus, hence, there is a background firing

that must be taken into account. This fifth dimension has this responsibility. The complexity

added by the different dimensions makes the encoding model a more difficult one to estimate

but also a more accurate one when built, as it considers not only the position variables but

also their first order derivatives. This fact implies that some of the steps followed with the

simulation data will have to be slightly modified. Further details on how to deal with it are

going to be explained in this section.

On the other hand, for this unique stimulus, 20 resulting train spikes have been recorded

corresponding to 20 different neurons that want to be studied. Hence, the idea is to somehow

identify which of these 20 neurons are related with the stimulus shown and to develop a

unique encoding model for each of them. The criterion for deciding which of the neurons are

related with the stimulus and hence which neurons are going to be fully analysed is going to

be detailed in the task-related neuron selection within the 5.2.2 Time delay ∆t estimation:

Mutual Information subsection.

60

5.1.1 Preprocessing of data

Furthermore, some preprocessing has to be done to this data.

One has to be aware that the process of the rat pressing the buttons is not ideal. Sometimes

the rat performs the task as needed, waiting for the alarm to sound, pressing or releas-

ing according to the sound and staying in that position for the right amount of time until

achievement, but sometimes it doesn’t. That’s why one should only consider those occur-

rences in which the whole task was correctly done. Every attempt of achieving the task will

be referred as event.

To do so, another related variable was given: the so called labelled behaviours. As its

name says, this variable contains the label of the subactivity the rat was doing at each time

within each event. The possible labels are ’HighStart ’ for when a high frequency sound is

played, ’PressHigh’ when the rat starts pressing the top button, ’HighReward ’ when the rat

presses the top button for the right amount of time and achieves the task and ’HighFail ’

whenever the rat doesn’t complete the task properly. The same variables with the word

’Low’ instead of ’High’ represent the equivalent when a low frequency sound is played and

the rat presses the bottom button instead. With it, only the triads ’HighStart’ - ’PressHigh’

- ’HighReward’ and ’LowStart’ - ’PressLow’ - ’LowReward’ are considered as success events.

So, in order to properly encode an encoding model that represents the stimulus neural

activity, only these cases should be considered. Having said so, we are going to match the

behaviour labels with the stimulus input signal in time and we are going to identify the

success triads we have just mentioned.

A whole new signal will be built from them and will be the one used as input stimulus to

our encoding model. In order to do so, we are going to consider a window that expands

±500 ms before and after each label belonging to a success event, and we are going to

concatenate them all together in time so that at the end the resulting stimulus signal will be

built from all the success blocks joined together. Doing it this way, it will properly represent

the repeatedly achievement of the task object of study. The corresponding spike train signals

61

will be cropped and joined accordingly. Recall that, if two labels are located at a distance in

time smaller than two times the time span of 500ms, when performing the window approach,

there will be a segment of the signal that will be repeated twice. This would make no sense

as it won’t represent the real signal properly. That’s why, if two windows overlap we are

going to consider the repeated region only once.

The stimulus data we begin with is a 5-kinematic vector with a total of 140000 samples

(each corresponding to 1 ms so, 140 s in total). After the preprocessing we have just said,

the length of it will still be way longer than the stimulus signal we used in the simulation

data (of only a few seconds). That’s why one will still have to cut the already built signal so

that it is shorter. The criterion we have followed for cutting it has been to include at least

10 success trials along time, so that we can have enough information to proper analyse the

signals. Considering that, in case no overlapping occurred, each of the success trials is made

of 3 ±500 ms windows, the resulting signal should be of length 3 ∗ (2 ∗ 500) ∗ 10 = 30000 ms.

If overlapping indeed occurred, we would still include at least 10 success trials if not more,

so it still works.

To sum up, the resulting data we’ll have for the modelling of the encoding model is a 30000

sample 5-dimensional kinematic input signal evolving in time containing only the time spans

corresponding to the success trials and properly cut so that at least 10 of them are present.

The identified task-related spike trains out of the possible 20 given are similarly cropped and

joined together. The Figure 5.1 shows the resulting 2nd term of the 5-dimensional success

x(t) for neuron 1 for the first 2 seconds. It is kind of periodical so it resembles the built

signal in the simulation section.

62

Figure 5.1: Built success x(t) along with the spikes. Note: only 2 s have been plotted for
clarifying purposes. The whole signal expands for 30 s instead.

5.2 Model parameter estimation

When it comes to estimate the proper encoding model, it has already been said that both the

window approaches will be considered. The Window-Exponential one will be the approach

that will give us the final estimation of the model we are looking for, while the Window-

Linear approach will be used as baseline model. However, the dimension to which we apply

the window will not be the same as the one used in simulation data and this deserves to be

explained in detail.

When the window approach has been considered in the simulation data, the aim was

to provide the model with some extra information rather than just one sample. This extra

information was represented by some history, that is, not only the present sample was taken

into account but also some past ones. Hence, the window was applied in the time dimension

so it is of size (1 xm) where the first term is the kinematic dimension and the second one is

the length of the window along time.

Nevertheless, with real data one already has 5 different dimensions for each time step and

that’s why the window will expand along these 5 dimensions instead. It is another way to

63

include some extra information to the encoding model and hence the history approach is no

longer needed. This time, the window will be of size (m x 1) with m = 5 (see Figure 5.2).

Figure 5.2: Window approach differences between Simulated and Experimental data

5.2.1 Linear filter K estimation: STA

Similarly as what has been done with the simulation data, the first parameter to estimate is

the linear parameter K. Recall that this estimation will be done along with the time delay

one; however and following the same as before, the procedure in here will be explained as if

we already knew this delay and all the signals were matched in time.

This step presents some differences with the corresponding one in simulation data. As

we have already mentioned, the real data is 5 dimensional instead and hence we need to

expand the calculations to this new multidimensional space. To do so, it is quite obvious

to see that what we need is a 5-dimensional K parameter so that when multiplied by the

original kinematic vector, it projects it to a one dimensional feature space.

Recall that the method to properly find the optimalK parameter was the Spike Triggered

Average (STA). Some adjustments must be made in order to consider the multidimensional

characteristics.

The formula that was used in simulation data was:

K =
(
X⊤ X

)−1 (
X⊤ Λ

)
(5.1)

64

However, in order to use that, one would need the firing probability Λ which is unknown for

the moment when given the real data. Here we would have two options, the first one would

be estimating it and using the equation 5.1 or computing the STA in a whole different way.

We are going to choose the second option as the estimation of Λ would bring some error to

the estimation that doesn’t want to be propagated along the computations.

In order to explain this second option, one must remember the equation of the definition

of the STA.

STA =
1

nspk

T∑
i=1

nixi (5.2)

Remember that the ni were the number of spikes in each time bin. In our case we either

have 0 or 1 spike in each bin, hence ni would be either 0 or 1 as well. Consequently, the

summation itself would only contain those cases in which we had a spike (ni = 1). Hence, the

summation can be translated into the summation of each one of the terms of the kinematic

vector samples in which a spike was generated. If we translate this into matrix form we have

that the STA K estimation can be computed as:

K =
(
X⊤ X

)−1
sum (Xspk) (5.3)

Here, the first term
(
X⊤ X

)−1
again represents the normalisation term 1/n and the second

term sum (Xspk) represents the summation of only those samples that had a spike.

In order to use this method, first, we need the kinematic vector X. Let it be the five

dimensional stimulus signal expanding along time from 0 to T , being T the number of time

samples.

X =

x1(t)
...

x5(t)

 =

x0
1 x1

1 · · · xT
1

...
...

. . .
...

x0
5 x1

5 · · · xT
5

 (5.4)

65

Besides, one also needs the conditioned matrix Xspk with those samples containing the

spikes. If {0 ≤ u1 ≤ ... ≤ un ≤ T} are the different times at which a spike was generated

(with n spikes in total), we can define Xspk as:

Xspk =

xu1
1 xu2

1 · · · xun
1

...
...

. . .
...

xu1
5 xu2

5 · · · xun
5

 (5.5)

Therefore, the summation will be:

sum(Xspk) =

∑n

i=1 x
ui
1

...∑n
i=1 x

ui
5

Then, one only has to use the STA following equation 5.3 to compute the optimal K.

Using this estimation, we obtain the desired and optimal 5-dimensional K that, when

multiplied by X, leads to a 1-dimensional feature space that evolves along time.

y = KT X (5.6)

5.2.2 Time delay ∆t estimation: Mutual information

The next step we need to follow is to compute the time delay existing between the feature

space vector y(t) and the spike train.

For each of the 20 neurons, the time delay has been estimated following the same steps as

the ones defined with the simulation data: computing the mutual information between the

spikes and different shifted stimulus guesses, low-pass filtering it and finding its maximum

value.

66

However, one must take into account that in order to do that the same way, we need to

select one of the terms among the 5 different channels the input stimulus has so that we

have a one dimensional signal instead. It is true that all of them five will be linked and their

oscillations will be related but the final taken decision is to take the y position. The reason

why we considered it instead of the x term, the velocities or the bias is because the vertical

direction is the one that is more sensible to the movement of the rat’s hand pressing both

levers as it moves vertically. Hence the y term will be the reference one from this point on.

Period estimation

Recall that in order to properly estimate the time delay, the period of the stimulus signal

must be known1. In contrast with the simulation data case, the period of the real data

is unknown and hence must be estimated. In order to do so and according to what has

been said, one will consider the vertical position of the original success kinematic vector to

properly characterise the oscillation period.

So as to proper calculate it, one should try to remove the noise that is implicit in the

original signal. The easiest way to do so is low filtering the signal to eliminate the character-

istic high frequency oscillations of noise and just leaving the low frequency oscillations that

characterise the vertical movement.

Considering that the sampling interval is the time step Ts = 1 ∗ 10−3 s, we can compute

the sampling frequency as Fs = 1/Ts = 1/dt = 1000 Hz and the corresponding Nyquist

frequency as Fn = Fs/2 = 500Hz. One must ensure that the chosen cutoff frequency Fc2

of the filter we are designing should be lower than the Nyquist one in order to avoid aliasing

Fc < Fn.

By observation it is easy to notice that the signal is full of different high frequency oscilla-

tions that are inconvenient when it comes to calculate the period and hence we only want

1When finding the possible time delays, we only have to make guesses that are lower than 0.5 times the
period divided by the time step, as specified by equation 4.21.

2The cutoff frequency is the one from which the low pass filter will attenuate the signal.

67

to keep the general trend that is behind them. That’s why the cutoff frequency has been

chosen to be of 1Hz, which is indeed way lower than the Nyquist frequency as needed. Once

the parameters have been defined, the filter itself is computed with the Matlab function

fir1(n,Wn) which designs a window-based FIR filter of order n. However, the function

works with normalised frequencies instead that must lay between 0 and 1 and hence, the

normalised cutoff frequency should be provided instead. Since Fn is the maximum possible

value the cutoff frequency could have, its normalisation procedure will be computed as fol-

lows: Wn = Fc/Fn so that it led to 1 whenever Fc = Fn, its maximum value.

Having said so, the order n is yet to be decided. The impact this parameter has in the

filter is just to specify how fast the trend of the magnitude in the frequency domain drops

to 0. The highest the value, the faster it falls to 0. Three different values were considered

(n = 100, n = 300, n = 500) and based on observation, the latest case was the one giving

more reliable results (see Figure 5.3).

Figure 5.3: Filtered success x(t) vertical position term with several low-pass filters

Having obtained the corresponding filter and having applied it to the original vertical

position term of the success kinematic vector x(t), the inter-peak times of it were found and

68

averaged in order to find the period of it. A final period of T = 0.5333 s was found.

∗ ∗ ∗

Once having obtained the period of the signal, the mutual information plot is obtained

for all the possible time lag guesses and the optimal parameters K and ∆t are found at its

maximum.

One must bear in mind that from this point on, the nonlinear function estimation won’t

be done for all the 20 neurons. Instead, and based on their optimal mutual information

value, we are going to select those that are related to the lever pressing task we are dealing

with.

Task-related neuron selection:

Once we have found the optimal time delay applied to each of the neurons, one must select

which of these neurons are proper candidates for being related with the task the rat is

performing.

To do so, what has been done is plotting the different neurons in descending order ac-

cording to their maximum mutual information. With it, only those first neurons that have

a considerable high mutual information value will be assumed to be related with the task

and will be the ones that will be used in further computations. Hence, those that lay in the

leftest part of the plot, and more specifically, those whose mutual information lays before

the trend drops significantly, will be the ones considered.

This discrimination is done because it makes no sense to estimate an encoding model for a

neuron that has nothing to do with the task object of study.

All in all, the following steps will be done for each of the task-related neurons that will

have been selected previously so one different model will be obtained for each.

69

5.2.3 Nonlinear function f(y) Estimation: Bayes Theorem

Following with the pipeline, one must perform the estimation of the nonlinear function f(y).

In this case, the procedure is the same as the one followed with the simulation data because

both the starting signal and the resulting one are of the same form as before: the former is

a one dimensional feature space signal evolving along time and the latter corresponds to the

firing rate.

Following the same procedure as the one for simulation data, kernel density estimators

are used to estimate two of the probability density function terms present in the Bayes rule

equation 4.22, which are p (Kx | spk) and p (Kx). They will be calculated again with the

defined function 4.3.4 kernel smoothing(var).

The remaining p(spk) term is equally calculated as the number of spikes divided by the

number of time samples.

Again, one will try to fit both a linear and an exponential function to the obtained f(y)

estimation. As we have seen in simulation, one expects them to bring better results than

the actual direct f(y) estimation. Similarly as before, not the whole y range will be used

for the estimation. In this case, the lower limit will be the position of the minimum value in

the first third of the nonlinear function estimation and the upper limit will be the position

of the maximum in the second half.

5.3 Model Results

Once the whole procedure has been applied to the different 20 neurons we have, we are going

to present the results obtained in each intermediate step.

The corresponding plots will only be displayed for neurons number 2 and 13. The rest of

the plots corresponding to the remaining neurons will be displayed in Chapter 8.2.2 Experi-

70

mental Encoding additional Figures and Tables. Also, several tables containing some of the

estimations will be gathered in this section as well.

5.3.1 Linear filter K and time delay ∆t results

One has computed the estimation of the linear filter K for each of the neurons along with

the time delay ∆t. The resulting mutual information was again noisy and had to be filtered.

The filter used has been the same as the one used in simulation data for all the neurons (see

Figure 4.11) as the resulting Fast Fourier Transform of the signal was quite similar for all

the cases (see Figure 5.4 for neurons 2 and 13).

(a) Neuron 2 (b) Neuron 13

Figure 5.4: FFT plot for neuron 2 and 13

The resulting filtered Mutual Information graphics for both neurons 2 and 13 are repre-

sented in Figure 5.5. As we can see, the general trend of it is obtained and it is from this

filtered plot that one will find its maximum value.

The resulting estimations of both the time delay ∆t and the linear filter K are gathered

in Table 8.1. If we only represent the ones from neuron 2 and 13 we obtain the following

table.

71

(a) Neuron 2 (b) Neuron 13

Figure 5.5: Filtered mutual information for neuron 2 and 13

METRIC n2 n13
∆t 66 151

K

−0.0469
−0.0046
0.1750
−0.0115
0.0814

0.0004
0.0059
0.2844
0.0061
0.0731

Table 5.1: ∆t and K estimation for neuron 2 and neuron 13

In this case, we can’t compute any error as we don’t have any ground truth regarding

any of the two parameters that we are considering.

Knowing the optimal time delay and the linear filter one can now shift the signals so

that they match in time. If we plot the spikes along with the shifted feature space signal

resulting from y(t) = K ∗ x(t), then we obtain the plots represented in Figure 5.6.

72

(a) Neuron 2 (b) Neuron 13

Figure 5.6: Feature space signal y(t) along with spikes, matched in time for neuron 2 and 13

Task-related neuron selection

At this point and after having estimated both parameters for all the 20 neurons, they have

been placed in optimal mutual information descending order so that we could choose the

neurons that were task related.

Hence, according to the Figure 5.7, neurons from 15 to 6 (15, 2, 5, 16, 13, 14, 11, 19, 8,

6) will be considered as related with the lever task and hence will be the only ones for which

an encoding model will be estimated. Hence, we have ten different related neurons that will

be analysed.

73

Figure 5.7: Decreasingly ordered neurons according to optimal mutual information value

5.3.2 Nonlinear function f(y) result

Finally, one wants to obtain the nonlinear function f(y) along with both the linear and the

exponential fittings.

Matching the simulation encoding section, the red colour has been associated to the linear

approach and the yellow one to the exponential one. Again, the thinner blue line represents

the direct estimated nonlinear function f(y) while the thicker region of it marks the range

of values that have been considered for the fitting.

In both cases, the linear and exponential approaches don’t differ that much and hence

we expect them to provide similar results in terms of evaluation metrics. This is what is

going to be discussed in the following section.

74

(a) Neuron 2 (b) Neuron 13

Figure 5.8: Nonlinear function f(y) along with linear and exponential fittings for neuron 2
and 13

5.4 Model Evaluation

Now that we already have developed a model for each of the neurons that were related

with the task of pressing the high and low levers, one needs to evaluate how accurate the

encoding models are for each of them. Recall that the following steps will be done for each

of the task-related neurons but the procedure will be described as if only we had only one

individual case.

The idea behind the evaluation method would be: given the original kinematic vector, if

the neuron predicted LNP model was applied leading to an estimated firing probability, how

similar would it be to the one coming from the real data spike train.

As one may have already realised, in this case we have no ground truth in terms of the

parameters of the model and hence no parameter evaluation can be done. However, one can

still measure the accuracy of the output of the model when fed with the data compared to

a ground truth firing probability. We will see that this ground truth pfiring isn’t directly

obtained from data but it must be estimated.

75

5.4.1 Output evaluation

Ground truth firing probability

First of all and in order to evaluate the model, one must find the ground truth of the firing

probability, that is the real firing probability that led to the generation of the spike train

obtained as real data. One must remember that this spiking probability is time dependent

and must lay between 0 and 1. So, somehow one should find the way to transform the spike

train along time into a firing probability changing in time as well. Therefore, at each time

step one can obtain the instantaneous firing probability that led to the generation or not of

a spike at that moment.

The procedure followed is the same one that was followed in section 4.3.1 Firing Proba-

bility Estimation within simulation data.

It consisted in performing a convolution between the spike train and a Gaussian distribu-

tion function. Once having done so, one can obtain an estimation of the firing probability

density by adding all of these Gaussian curves together. Hence, the time regions in which

the neuron fired a lot will have high firing probabilities, while those in which only a few

spikes were generated will have low firing probabilities.

The two parameters that must be fitted in this methodology are both the mean µ and the

variance σ of the convoluted Gaussian distribution (N(µ, σ)). The values used in here have

been the same ones used in simulation data as we expect both firing probabilities to be

similar to each other and hence to need similar parameters when estimated. Therefore, we

cans set µ = 0 and σ = 1.9650.

Besides from that, when adding the different Gaussian distributions, the resulting signal

doesn’t lie between 0 and 1 and hence we had to normalise it by dividing the whole resulting

signal by its maximum value. Moreover, it has been imposed that the mean of the estimated

firing probability along time should match the quotient #spikes
#samples

. Hence, we have multiplied

the whole signal by #spikes/#samples
mean(pfiring)

. One must notice that this quotient can sometimes be

76

bigger than one. In that case, we didn’t apply the rescaling because it would lead to firing

probabilities greater than one.

Output generation

Once we have the ground truth firing probability with which to compare we need to take

the kinematic vector as input and feed it to the model we have just predicted. With it, we

will obtain a resulting firing probability that will be compared to the ground truth one.

The first partial output of the LNP model built is the resulting feature space signal y(t).

It is represented in Figure 5.9.

(a) Neuron 2 (b) Neuron 13

Figure 5.9: Estimated feature space vector y(t) for neuron 2 and 13

Not many things can be extracted from these plots as they belong to an unknown feature

space that tries to weight the importance of each of the 5 dimensions in the input kinematic

vector.

The next step is to apply the nonlinear function f(y) to y(t). We have plotted the results

using first the actual estimation of f(y), second the linear fitting and third the exponential

one. The results can be seen in Figure 5.10.

77

(a) Neuron 2 (b) Neuron 13

Figure 5.10: Estimated pfiring for neuron 2 and 13

As one can see, for neuron 2, the actual original estimation of the nonlinear function (in

blue) is very similar to the ground truth one, following its hills and valleys along time. In

this case both the linear and exponential cases also follow the trends but with way much less

amplitude. Hence, they kind of like homogenise the resulting pfiring.

On the other hand, for neuron 13, something similar happens. In this case, it is clear that

the fittings help the estimation to be more constant and less fluctuating.

Kolmogorov-Smirnov Test

Once we have the ground truth firing probability directly obtained from the real data spike

train and the resulting firing probability obtained after feeding our estimated model with

data, we need an appropriate goodness-of-fit measure. As it has been used in simulation,

the proper measure is the Kolmogorov-Smirnov Test, which bases its realibility in the Time

Rescaling Theorem (see section 4.5.2 Time Rescaling Theorem for more details on it).

Hence, after following the proper steps described in section 4.5.2 Kolmogorov-Smirnov

Test, one has obtained the following KSS plots for neurons 2 and 13.

78

(a) Neuron 2 (b) Neuron 13

Figure 5.11: KSS plot for neuron 2 and 13

As we can see in Figure 5.11(a), all three approaches lead to quite good results while in

Figure 5.11(b), we can see a small improvement of the fittings with respect to the original

nonlinear function estimation. The latter behaviour is the one we found in simulation data

and the one we were expecting. Still, one must look at the resulting metrics.

METRIC n15 n2 n5 n16 n13
KSS 16.2726 2.1850 3.1916 44.6294 8.1764

KSS linear 6.7685 1.8842 5.9441 3.5623 4.1671
KSS exponential 9.2153 2.6621 8.9506 2.3470 5.1386

n14 n11 n19 n8 n6
KSS 18.0825 14.3594 4.5381 10.7801 29.1903

KSS linear 2.0217 2.3678 5.2771 5.8199 7.2290
KSS exponential 1.9103 4.3620 5.3195 3.4403 13.6398

Table 5.2: Output evaluation KSS metrics comparison for the ten task-related neurons

If we gather the obtained metrics for the ten different considered related neurons we

can see that in general, both the fittings enhance the results compared to the direct f(y)

estimation, getting lower KSS metrics.

Moreover, if we compare the linear with the exponential approaches we can see that in the

majority of the cases the linear approach gets better results than the exponential one (with

79

Figure 5.12: Output evaluation KSS metrics comparison for the ten task-related neurons

exception of neuron 16, 14 and 8). This behaviour is the same as the one we obtained in

simulated data and it shows us that the nonlinearities introduced by the exponential function

doesn’t provide with useful extra information that helps the model to better predict the firing

probability.

In general term though, both the linear and the exponential fittings provide pretty good

fittings of the nonlinear function with KSS values below 10 in most of the cases.

This results lead to the conclusion that in general, the linear fit already represents data

quite well. It is only in some punctual neurons, more concretely in neurons 16, 14 and 8, that

the exponential approach brings extra information that makes the model predict a better

estimation of the whole procedure.

80

Chapter 6

Conclusions

Finally, to conclude with this thesis, we can state that the LNP approach is a good model to

encode the relationship between the given kinematic vector x(t) and the related spike train;

or more specifically, the resulting firing probability pfiring(t).

Regarding the simulation results, we found that the 4 different approaches considered are

suitable for our purpose, leading to pretty good KS metrics.

In all cases, the corresponding parameter errors were quite low, achieving estimations quite

near the theoretical ground truth values. Moreover, when considering the nonlinear func-

tion f(y), the corresponding fittings (either linear or exponential) enhanced the performance

when compared to that when using the direct estimated function.

We found out that in general, the linear approaches gave better results than the exponen-

tial ones (maybe because of them being easier to estimate) and that in turn, the window

approaches overperformed the constant ones. This last fact highlights the fact that the win-

dow approaches use more information as they not only consider the current sample but the

history before it. Hence, the best approach expected from simulation is the Window-Linear

case. This one has been used as the baseline model and it has been compared with the

Window-Exponential case.

81

Once knowing so, the procedure has been applied to real experimental data as well. The

model proportions a good methodology to predict firing probability in terms of mean value

and trend, but it isn’t capable of accurately predicting the little oscillations in it. The results

obtained are quite similar to those in simulation: in most of the cases the linear approach

fitted even better than the exponential one and hence the nonlinearities included by the

latter were not remarkable when predicting the resulting firing probability.

All in all, we have obtained a proper model that establishes the relationship between the

kinematic vector and the resulting firing probability. The hypothesis that including some

nonlinearities could help the encoding model to be a better one has been disproved with

most of the neurons as the linear approach fits better. Hence, we can state that for most

of the neurons, a linear encoding model will be good enough for the prediction to lead to

reliable and good results.

82

Chapter 7

Future work

The fact that we encountered that for most of the task-related neurons the exponential

nonlinearity didn’t give extra useful information made us think that there might still exist

other nonlinear behaviours within the process that couldn’t be represented by such nonlinear

function f(y). This statement arises some new challenges that could be considered in order

to enhance the model estimation and its performance after all.

There are several issues that haven’t been taken into account when modelling the encoding

procedure through a LNP model.

First, the spikes were assumed to be independent with each other when considering the

inhomogeneous Poisson spike generator. However, and as one may expect, they have a

dependency between them so adding some relations between them could enhance the model

performance

Also, one could consider the refractory period. The refractory period is the time after

a generated spike in which that neuron is unable to fire again. In real life, the neurons need

this time in order to ’recover’ from previous firings so that they can throw another action

potential.

83

In the LNP model approach we considered, no refractory period is taken into account: at

each time step, one decides whether a spike is generated or not, and no ’recovery’ period is

considered after each spike.

Alongside, one could also consider bursting. The term bursting refers to the state of

a neuron when it repeatedly fires creating bursts of spikes. These moments in time aren’t

treated distinctively in the proposed encoding model. These moments could be predicted so

that the resulting encoding model could adapt to them an provide with a better estimation.

Finally, the next step would be to consider also the relationship between the different

neurons. At the end, with our LNP model we are treating each neuron as an independent

isolated unit that doesn’t interact with the others. However, this is not true, all neurons

are connected and they depend on each other and it might be helpful to try to include

such relationships in the model so that at the end it better encodes the reality of what is

happening in our brains

Hence, I encourage the scientific world to try to keep working on that as these kind of

studies are key to tackle the global challenge of providing functional limbs to those who don’t

have a proper one.

84

Chapter 8

Appendix

8.1 Time Rescaling Theorem proof

Theorem 8.1.1. Time Rescaling Theorem Let 0 < u1 < u2 < ... < un ≤ T be a

realisation from a point process with a conditional intensity function λ(t | Ht) satisfying

0 < λ(t | Ht) for all t ∈ (0, T]. Define the transformation:

Λ(uk) =

∫ uk

0

λ(u|Hu)du (8.1)

for k = 1, ..., n, and assume Λ(t) < ∞ with probability one for all t ∈ (0, T].

Then the Λ(uk)’s are a Poisson process with unit rate.

Proof. Lets first define some equation that will be needed for the proof itself.

Let N(t) be the number of spikes in the interval (0, t].

Then we can define the conditional intensity function as:

λ(t | Ht) = lim∆t→0

(
Pr(N(t+∆t)−N(t) = 1 | Ht)

∆t

)
(8.2)

85

where Ht = 0 < u1 < ... < uN(t) < t is the history of the process at time t. One must notice

that if the point process is an inhomogeneous Poisson process, then λ(t | Ht) = λ(t), the

Poisson rate. Hence, one can say that the definition of the conditional intensity function is

a generalisation of the Poisson rate.

Also, one may notice that the conditional intensity function can be expressed in terms

of the spike time probability density f(t | Ht).

In order to do so one should consider the Hazard function

Pr(N(t+∆t)−N(t) = 1 | Ht) = Pr(uk ∈ [t, t+∆t) | uk > t,Ht) =eq.8.4

=
Pr(uk ∈ [t, t+∆t) | Ht)

Pr(uk > t | Ht)
=

∫ t+∆t

t
f(u | Ht)du

1−
∫ t

uN(t)
f(u | Ht)du

≈

≈ f(t | Ht)∆t

1−
∫ t

uN(t)
f(u | Ht)du

=eq.8.2 λ(t | Ht)∆t

(8.3)

where we have used that

P (A | B,C) =
P (B | A,C)P (A | C)

P (B | C)
(8.4)

with A = uk ∈ [t, t +∆t), B = uk > t and C = Ht. Hence P (B | A,C) = Pr(uk > t | uk ∈

[t, t+∆t), Ht) = 1.

So, taking the last two expressions, we can express the conditional intensity function as:

λ(t | Ht) =
f(t | Ht)

1−
∫ t

uN(t)
f(u | Ht)d

(8.5)

We want to use this result with a spike train, so one needs to compute the joint probability

86

density of exactly n spikes in (0, T]. Therefore we have:

f(u1, ..., un ∩N(T) = n) = f(u1, ..., un ∩ un+1 > T) =

= f(u1, ..., un ∩N(un) = n)Pr(un+1 > T | u1, ..., un) =

=
n∏

k=1

λ(uk | Huk
) exp

(
−
∫ uk

uk−1

λ(u | Hu)du

)
exp

(
−
∫ T

un

λ(u | Hu)du

)
(8.6)

where we have assumed the Poisson spike generator approach with probability function

f(x) = λx

x!
exp(.λ). This implies that f(x = 1) = λexp(−λ) and therefore the joint probability

density of n events in (0, un] is f(u1, ..., un∩N(un) = n) =
∏n

k=1 λ(uk | Huk
)exp

(
−
∫ uk

uk−1
λ(u | Hu)du

)

Now that we have this, if we take the following transformations

τk = Λ(uk)− Λ(uk−1) for k = 2, ..., n

τT =

∫ T

un

λ(u | Hu)du
(8.7)

then one has to prove that the τk’s are independent identically distributed exponential ran-

dom variables with mean 1.

Since the τk transformation is one-to-one, then τn+1 > τT iff un+1 > T and then the

joint probability density of τk’s is:

f(τ1, ..., τn ∩ τn+1 > τT) = f(τ1, ..., τn)Pr(τn+1 > τT | τ1, ..., τn) (8.8)

Let’s take the first term and apply a multivariate change of variable from τk’s to un’s. One

knows that if we have y = g(x), then pY (y) = |Jy→x|pX(x) where |Jy→x| is the determinant

of the Jacobian of the transformation between x and y. In our case x = uj and y = τk.

87

The determinant is computed as |J | = |
∏n

k=1 Jkk| with Jkk =
δuk

δτk
= λ(uk | Huk

)−1. Hence:

f(τ1, ..., τn) = |J |f(u1, ..., un ∩N(un) = n) =eq.8.6

=
n∏

k=1

λ(uk | Huk
)−1

n∏
k=1

λ(uk | Huk
) exp

(
−
∫ uk

uk−1

λ(u | Hu)du

)
=

=
n∏

k=1

exp (−[Λ(uk)− Λ(uk−1)]) =
n∏

k=1

exp(−τk)

(8.9)

If we take the second term we have:

Pr(τn+1 > τT | τ1, ..., τn) = Pr(un+1 > T | u1, ..., un) =eq.8.6

= exp

(
−
∫ T

un

λ(u | Hu)du

)
=eq.8.7

= exp(−τT)

(8.10)

Therefore, if we join the two results, equation 8.8 becomes:

f(τ1, ..., τn ∩ τn+1 > τT) =
n∏

k=1

(exp(−τk)) exp(−τT) (8.11)

where the first term is a history-dependent rescaling term and the second one is the

probability density function of a Poisson distribution with unit rate.

Therefore, the Time Rescaling Theorem is proved.

8.2 Additional Figures and Tables

In this section, one gathers the figures that were not displayed in the body of the thesis.

88

8.2.1 Simulated Encoding additional Figure and Tables

Rearding the simulated encoding, the associated pictures for both the Constant-Linear and

Constant-Exponential approach are displayed one next to the other.

Model Results

(a) Constant-Linear case (b) Constant-Exponential case

Figure 8.1: FFT of the mutual information plot for Constant cases

(a) Constant-Linear case (b) Constant-Exponential case

Figure 8.2: Filtered Mutual Information for Constant cases

89

(a) Constant-Linear case (b) Constant-Exponential case

Figure 8.3: f(y) estimation for Constant cases

(a) Constant-Linear case (b) Constant-Exponential case

Figure 8.4: Nonlinear function f(y) along with linear and exponential fittings for Constant
cases

90

(a) Constant-Linear case (b) Constant-Exponential case

Figure 8.5: pfiring estimation for Constant cases

(a) Constant-Linear case (b) Constant-Exponential case

Figure 8.6: KSS plot for Constant cases

91

8.2.2 Experimental Encoding additional Figures and Tables

Model Results

Here we gather the results of the rest neurons that weren’t displayed in the body of the

thesis (except neuron 2 and 13).

From the K computation and ∆t estimation we only plot the resulting filtered mutual

information plot.

(a) Neuron 1 (b) Neuron 3

(c) Neuron 4 (d) Neuron 5

Figure 8.7: Filtered Mutual Information for neuron 1, 3, 4 and 5

92

(a) Neuron 6 (b) Neuron 7

(c) Neuron 8 (d) Neuron 9

(e) Neuron 10 (f) Neuron 11

Figure 8.8: Filtered Mutual Information for neuron 6, 7, 8, 9, 10 and 11

93

(a) Neuron 12 (b) Neuron 14

(c) Neuron 15 (d) Neuron 16

(e) Neuron 17 (f) Neuron 18

Figure 8.9: Filtered Mutual Information for neuron 12, 14, 15, 16, 17 and 18

94

(a) Neuron 19 (b) Neuron 20

Figure 8.10: Filtered Mutual Information for neuron 19 and 20

95

The resulting time delay ∆t and linear filter K estimations for each of the 20 neurons

are gathered in Table 8.1.

METRIC n1 n2 n3 n4 n5
∆t 266 66 1 220 201

K

0.0437
−0.0005
0.2181
0.0587
0.1509

−0.0469
−0.0046
0.1750
−0.0115
0.0814

0.0285
0.0070
−0.6614
−0.0981
0.0579

−0.0364
−0.0126
−0.0013
0.0934
0.1239

−0.0230
−0.0130
0.0252
−0.0083
0.0912

METRIC n6 n7 n8 n9 n10

∆t 84 266 39 159 36

K

−0.0443
0.0056
−0.3438
−0.0348
0.1481

−0.0097
−0.0059
−0.0018
0.0462
0.0847

−0.0001
0.0194
0.2767
0.0192
0.1110

−0.0307
0.0093
−0.6582
−0.1333
0.1508

−0.0235
−0.0012
0.1394
0.0623
0.0540

METRIC n11 n12 n13 n14 n15

∆t 210 215 151 176 266

K

0.0158
0.0085
−0.1415
−0.0314
0.1045

−0.0236
−0.0057
0.3652
0.1039
0.0713

0.0004
0.0059
0.2844
0.0061
0.0731

0.0275
−0.0112
−0.0743
0.0215
0.0984

−0.0035
−0.0087
−0.0234
0.0143
0.0148

METRIC n16 n17 n18 n19 n20

∆t 213 9 266 106 266

K

−0.0110
0.0020
0.1857
0.0018
0.0365

0.0325
−0.0400
2.6536
0.4703
0.1405

0.0556
0.0164
0.1596
−0.0797
0.1898

0.0407
0.0041
−0.6122
−0.0919
0.1129

−0.0011
−0.0029
0.0343
−0.0583
0.0736

Table 8.1: ∆t and K estimation for each of the neurons

From this point on, the plots displayed will only be from those neurons belonging to

the task-related list (again avoiding those from neuron 2 and 13 already displayed in the

main body). The resulting estimated f(y) is plotted along with the estimation of the firing

probability and the KSS plot.

96

(a) f(y)fittings (b) Estimation of pfiring (c) KSS plot

Figure 8.11: Neuron 5 results

(a) f(y)fittings (b) Estimation of pfiring (c) KSS plot

Figure 8.12: Neuron 6 results

(a) f(y)fittings (b) Estimation of pfiring (c) KSS plot

Figure 8.13: Neuron 8 results

97

(a) f(y)fittings (b) Estimation of pfiring (c) KSS plot

Figure 8.14: Neuron 11 results

(a) f(y)fittings (b) Estimation of pfiring (c) KSS plot

Figure 8.15: Neuron 14 results

(a) f(y)fittings (b) Estimation of pfiring (c) KSS plot

Figure 8.16: Neuron 15 results

98

(a) f(y)fittings (b) Estimation of pfiring (c) KSS plot

Figure 8.17: Neuron 16 results

(a) f(y)fittings (b) Estimation of pfiring (c) KSS plot

Figure 8.18: Neuron 19 results

99

8.3 Matlab codes

This section gathers the Matlab codes used to perform all the computations mentioned in

the thesis.

Only the experimental codes are provided as they are a generalisation of how the simu-

lation ones are.

8.3.1 Main code

The main Matlab code is displayed below.

1 %% EXPERIMENTAL DATA: KINEMATIC WINDOW - LINEAR & EXPONENTIAL APPROACH
2 % Linear-nonlinear-Poisson cascade model
3 clear; clc;
4 load('Rat11 M1 BC 20181212.mat')
5 load('EventLabel.mat')
6

7 % Epsilon value, added to avoid 0 denominators
8 eps = 1e-16;
9

10 % Define color for graphics
11 blue = [0, 0.4470, 0.7410];
12 dark blue = [0 0.286274522542953 0.47843137383461];
13 green = [0.4660 0.6740 0.1880];
14 dark green = [0.356862753629684 0.513725519180298 0.141176477074623];
15

16 red = [0.8500, 0.3250, 0.0980];
17 yellow = [0.9290, 0.6940, 0.1250];
18

19 %% Experimental data
20 % To run this code, one must import the variables X and Spk from a matlab
21 % .mat object.
22

23 % Signal
24 % We consider the y position movement as it is the one more relatable to
25 % the reality of the experiment (the movement to push the button is ...

vertical)
26 dt = 1e-3;
27 tVec initial = 0:dt:(length(X(:,2))-1)*dt;
28 plot signal spikes(tVec initial, Spk(1,:), X(:,2), 'Time [s]', 'x(t)', ...

'Kinematic vector x(t) (vertical position) with spikes from neuron 1')
29

30 %{
31 figure(1)
32 plot(X(:,2))
33 xlabel('Time [s]', 'FontSize', 12); ylabel('x(t)', 'FontSize', 12)
34 title('Stimulus x(t) (only vertical position movement)', 'FontSize', 14)
35

36 % Spikes

100

37 figure(2)
38 bar(Spk(1,:), 'FaceColor', dark blue)
39 xlabel('Time [s]', 'FontSize', 12); ylabel('Spikes', 'FontSize', 12);
40 title('Spikes of first neuron', 'FontSize', 14)
41 %}
42

43 %% LABEL Construction
44 % The time unit is second while the index of data is 10ms.
45 % Therefore, you can multiply the label time by 100 to transform the ...

time into data index.
46 % We'll order the events in time, labelling each of the events as:
47 % 1 - HighFail
48 % 2 - HighReward
49 % 3 - HighStart
50 % 4 - LowFail
51 % 5 - LowReward
52 % 6 - LowStart
53 % 7 - PressHigh
54 % 8 - PressLow
55

56 % Set labels as they happened in time
57 time labels = [100*HighFail, ones(length(HighFail),1); 100*HighReward, ...

2*ones(length(HighReward),1); 100*HighStart, ...
3*ones(length(HighStart),1);100*LowFail, ...
4*ones(length(LowFail),1);100*LowReward, ...
5*ones(length(LowReward),1);100*LowStart, ...
6*ones(length(LowStart),1);100*PressHigh, ...
7*ones(length(PressHigh),1); 100*PressLow, 8*ones(length(PressLow),1)];

58 time labels = sortrows(time labels);
59

60 % The proper order should be HighStart, PressHigh, HighReward or LowStart,
61 % PressLow, LowReward. Hence: 3 - 7 - 2 or 6 - 8 - 5
62 % Let's create a matrix with the triads of times of the success ...

occurrences in
63 % every row. The first row contains whether the ocurrence is high (1) ...

or low
64 % case (0)
65

66 success = [];
67 first start = find(time labels(:,2) == 3 | time labels(:,2) == 6);
68 for idx = 1:length(first start)-1
69 i = first start(idx);
70 triad = time labels(i:i+2,2);
71

72 % Make sure there are is more than 1 s between events
73 %{
74 ∆ t 1 = time labels(i+1,1) - time labels(i,1);
75 ∆ t 2 = time labels(i+2,1) - time labels(i+1,1);
76 %}
77

78 if triad == [3; 7; 2] %& ∆ t 1 ≥ 1000 & ∆ t 2 ≥ 1000
79 success = [success; 1, time labels(i:i+2,1)'];
80 elseif triad == [6; 8; 5] %& ∆ t 1 ≥ 1000 & ∆ t 2 ≥ 1000
81 success = [success; 0, time labels(i:i+2,1)'];
82 end
83 end
84

85 % We will consider the signal only at these successes: we'll consider 500
86 % ms pre and post of each behaviour and we are going to concatenate ...

them in
87 % time
88

89 pre post = 500;
90 data limit = length(X(:,2));

101

91

92 x success = [];
93 spikes success = [];
94 last post = 0;
95

96 % For each row (success)
97 for i = 1:length(success(:,1))
98 valid = 0;
99 signal = [];

100 spk signal = [];
101

102 post = 0;
103 % For each column (event)
104 for j = 2:4
105 event = success(i, j);
106

107 % Pre
108 pre = event - pre post;
109 if pre ≤ 0 pre = 1; % pre out of data
110 elseif pre ≤ post pre = post + 1; % overlapping within success
111 end
112 if j == 2 && pre ≤ last post pre = last post + 1; end % ...

overlapping between success
113

114 % Post
115 post = event + pre post;
116

117 % Check all three events belong to data
118 if pre > 0 && post < data limit
119 valid = valid + 1;
120 signal = [signal; X(pre:post,:)];
121 spk signal = [spk signal, Spk(:,pre:post)];
122 end
123 end
124

125 if valid == 3
126 x success = [x success; signal];
127 spikes success = [spikes success, spk signal];
128 last post = post; % Keep last position of success
129 end
130 end
131

132 tVec success = 0:dt:(length(x success(:,2))-1)*dt;
133 plot signal spikes(tVec success, spikes success(1,:), x success(:,2), ...

'Time [s]', 'x(t)', 'Success x(t) (vertical position) with spikes ...
from neuron 1')

134

135 %{
136 figure(3)
137 plot(x success(:,2))
138 xlabel('Time [s]', 'FontSize', 12); ylabel('x(t)', 'FontSize', 12)
139 title('Stimulus x(t) (only vertical position movement)', 'FontSize', 14)
140

141 figure(4)
142 bar(spikes success(1,:))
143 xlabel('Time [s]', 'FontSize', 12); ylabel('Spikes', 'FontSize', 12)
144 title('Spikes of first neuron', 'FontSize', 14)
145 %}
146

147 %% FOR EACH NEURON, compute the encoding model
148

149 dt = 0.001;
150

151 % We should sample the signal and spikes so that we have at least 10 ...

102

triad successes
152 % If no overlaps were found, we should consider 10 succeses * (2 * 500) ...

windows * 3 events = 30000 samples
153 % If there are overlaps we are still considering 10 successes (and even ...

more)
154

155 samples = 30000; % 30 seconds are used to model
156 tVec = 0:dt:samples*dt-dt;
157 spikes = spikes success(1, 1:samples);
158 x = x success(1:samples, :)';
159

160 samples plot = 3000; % Only 2 seconds are plotted
161 plot signal spikes(tVec(1:samples plot), spikes(1:samples plot), ...

x(2,1:samples plot), 'Time [s]', 'x(t)', 'Cropped success x(t) ...
(vertical position) with spikes from neuron 1')

162

163 %{
164 % Cropped signal
165 figure(5)
166 plot(tVec, x(2,:))
167 title('Cropped signal');
168 xlabel('Time [s]', 'FontSize', 12); ylabel('Stimulus (y position ...

movement)', 'FontSize', 12)
169

170 % Cropped spikes
171 figure(6)
172 bar(tVec, spikes)
173 title('Cropped spikes');
174 xlabel('Time [s]', 'FontSize', 12); ylabel('Spikes', 'FontSize', 12)
175 %}
176

177 %% Low pass filtering the signal to find the period (consider y ...
position movement)

178

179 Ts = dt; % Sampling Interval (s)
180 Fs = 1/Ts; % Sampling Frequency (Hz)
181 Fn = Fs/2; % Nyquist Frequency (Hz) -> maximal possible one to use as ...

the cutoff frequency in the filter
182 tVec filterX = 0:Ts:(length(x(2,:))-1)*Ts;
183

184 Fc = 1; % Low pass filter at a cutting frequency of ¬1Hz
185 wn = Fc/Fn; % We need to normalize the frequency so that it lays ...

between 0 and 1.
186 % Since the Nyquist frequency is the biggest we could choose, we divide it
187 % by it so that the maximum normalized value was 1.
188

189 % The order is just to specify how fast the trend of the magnitude in the
190 % frequency domain drops to 0. The highest, the fastest it drops.
191 b 1 X = fir1(100,wn,'low');
192 b 2 X = fir1(300,wn,'low');
193 b 3 X = fir1(500,wn,'low');
194

195 % filtered signal
196 a = 1; % fir filter does not have poles (transfer function denominator ...

= 1)
197

198 figure()
199 plot(tVec filterX(1:samples plot),x(2,1:samples plot)); hold on;
200 X 1 = filtfilt(b 1 X,a,x(2,1:samples plot));
201 plot(tVec filterX(1:samples plot),X 1(1:samples plot)); hold on;
202 X 2 = filtfilt(b 2 X,a,x(2,1:samples plot));
203 plot(tVec filterX(1:samples plot),X 2(1:samples plot)); hold on;
204 X 3 = filtfilt(b 3 X,a,x(2,1:samples plot));
205 plot(tVec filterX(1:samples plot),X 3(1:samples plot)); hold off;

103

206 grid on;
207 legend('original signal','filtered order 100', 'filtered order 300', ...

'filtered order 500'); lgd.FontSize = 12;
208 title({'Filtered success kinematic vector x(t)'}, 'Fontsize', 14)
209 xlabel('Time [s]','FontSize', 12); ylabel('x(t)','FontSize', 12)
210

211 % We are going to consider the order 300 filter
212 [pks,locs] = findpeaks(X 2);
213 period = mean(diff(locs))*dt; % in seconds
214

215 %% TIME DELAY ESTIMATION --> through mutual information
216 % Generate result arrays
217 ground truth fr prob results = {};
218 time delay results = {};
219 mutual info results = {};
220 K results = {};
221 ground truth spikes results = {};
222

223

224 for neuron = 1:20
225 spikes = spikes success(neuron, 1:samples);
226

227 %
228 % ESTIMATION OF ground truth firing probability
229 % Creating Gaussian Kernel with the parameters that led to a ...

minimum rmse
230 % in window-exponential case in simulating data
231 mean value = 0; sigma = 1.9650;
232 wide = 5*sigma;
233 x tunning = [-wide:.1:wide];
234 y tunning = normpdf(x tunning, mean value, sigma); % Gaussian kernel.
235 ground truth fr prob = conv2(spikes, y tunning, 'same');
236 ground truth fr prob = ...

ground truth fr prob/max(ground truth fr prob); % normalize so ...
that maximum is probability 1

237 % Make mean values to coincide
238 mean ratio = (sum(spikes)/length(spikes))/mean(ground truth fr prob);
239 if mean ratio < 1
240 ground truth fr prob = ground truth fr prob * mean ratio;
241 end
242 ground truth fr prob results{end+1} = ground truth fr prob;
243

244 % Plot the resulting estimation of firing probability
245 plot signal spikes(tVec(1:samples plot), spikes(1:samples plot), ...

ground truth fr prob(1:samples plot), 'Time [s]', 'Firing ...
probability fr * dt', sprintf('NEURON %d, ground truth firing ...
probability', neuron))

246

247 %
248 % Time delay ESTIMATION: mutual information with feature vector y(t)
249

250 % p spk
251 p spk = sum(spikes)/length(spikes);
252 p nospk = 1 - p spk;
253

254 mutual info v = [];
255 for time delay try = [1:1:0.5*period/dt]
256 x delayed try = [zeros(length(x(:,1)), time delay try), ...

x(:,1:end - time delay try)];
257

258 cropped x delayed try = x delayed try(:,time delay try + 1:end);
259 cropped ground truth fr prob = ...

ground truth fr prob(time delay try + 1:end);

104

260 cropped spikes = spikes(time delay try+1:length(spikes));
261

262 %
263 % K ESTIMATION, through Spike Triggered Average (STA)
264 cropped x delayed try spk = cropped x delayed try(:, ...

find(cropped spikes));
265 guessed K = (cropped x delayed try * ...

cropped x delayed try')ˆ(-1) * ...
sum(cropped x delayed try spk,2);

266

267 % OPTION 2: using estimated fprob
268 % guessed K = (cropped x delayed try * ...

cropped x delayed try')ˆ(-1) * cropped x delayed try * (eps ...
+ cropped ground truth fr prob'); %TRET LOG!!!

269

270 %
271 % Compute y = K*x
272 cropped y delayed try = guessed K' * cropped x delayed try;
273

274 %
275 % Compute mutual information
276 % f y
277 [f y, y values] = kernel smoothing(cropped y delayed try);
278 p y = f y(y values);
279 % p y |spk
280 [f y spk, foo] = ...

kernel smoothing(cropped y delayed try(find(cropped spikes)));
281 p y spk = f y spk(y values);
282 [f y nospk, foo] = ...

kernel smoothing(cropped y delayed try(find(cropped spikes ...
== 0)));

283 p y nospk = f y nospk(y values);
284

285

286 % Mutual information
287 spk term = @(y) f y spk(y) .* p spk .* log2(f y spk(y)/f y(y));
288 nospk term = @(y) f y nospk(y) .* p nospk .* ...

log2(f y nospk(y)/f y(y));
289 MI function = @(y) spk term(y) + nospk term(y);
290

291 mutual info = integral(MI function, ...
min(cropped y delayed try), max(cropped y delayed try));

292 mutual info v = [mutual info v; time delay try mutual info];
293 end
294

295 %
296 % Low pass filtering mutual information
297

298 Ts = dt; % Sampling Interval (s)
299 Fs = 1/Ts; % Sampling Frequency (Hz)
300 Fn = Fs/2; % Nyquist Frequency (Hz) -> maximal possible one to use ...

as the cutoff frequency in the filter
301 tVec filterMI = 0:Ts:(length(mutual info v(:,2))-1)*Ts;
302

303 % --> Which filter order should we choose?
304 % We have to plot the power spectrum fft of the signal. Whenever we ...

find a
305 % tremendous drop of the power, we have the cutoff frequency Fc
306 % After it, we will have to check visually if the order is suitable
307

308 N = length(mutual info v(:,2));
309 xdft = fft(mutual info v(:,2));
310 xdft = xdft(1:N/2+1);
311 psdx = (1/(Fs*N)) * abs(xdft).ˆ2;

105

312 psdx(2:end-1) = 2*psdx(2:end-1);
313 freq = 0:Fs/length(mutual info v(:,2)):Fs/2;
314

315 figure()
316 y fft = 10*log10(psdx);
317 plot(freq(1:30), y fft(1:30)) % plot only a few samples
318 grid on
319 title(sprintf('NEURON %d, Periodogram of mutual information using ...

FFT', neuron), 'FontSize', 14)
320 xlabel('Frequency (Hz)', 'FontSize', 12)
321 ylabel('Power/Frequency (dB/Hz)', 'FontSize', 12)
322

323 % We need to find the first minimum, that will be the cutoff frequency.
324 periodogram = 10*log10(psdx);
325 [peaks periodogram, position peaks periodogram] = ...

findpeaks(periodogram);
326 [min periodogram, freq min periodogram] = ...

min(periodogram(1:position peaks periodogram(1)));
327 Fc = freq min periodogram; % We obtain the cutoff frequency
328

329 % 'fir1' uses a Hamming window to design an nth-order lowpass FIR
330 % filter with linear phase (will be symmetric between 0 - pi and pi ...

- 2*pi)
331 % Normalized frequency wn is the cutoff frequency, frequency at ...

which the normalized gain of the filter is -6 dB.
332 % Below this frequency, the signal should be attenuated.
333 % Hence we should set the cutoff frequency to a value equal to the ...

Fc found.
334 % As the function fir1 needs it to be normalized so that it lays ...

between 0
335 % and 1, since the Nyquist frequency is the biggest we could ...

choose, we divide it
336 % by it so that the maximum normalized value was 1. -> Fc/fn
337 % We will use both order 10 and 20. We'll choose which order to choose
338 % visually.
339

340 wn = Fc/Fn;
341 b 1 MI = fir1(10, wn,'low'); % wn given as multiples of pi
342 b 2 MI = fir1(20, wn,'low');
343

344 % filtered signal
345 a = 1; % fir filter does not have poles (transfer function ...

denominator = 1)
346

347 figure()
348 plot(tVec filterMI,mutual info v(:,2)); hold on;
349 MI 1 = filtfilt(b 1 MI,a,mutual info v(:,2));
350 plot(tVec filterMI,MI 1); hold on;
351 MI 2 = filtfilt(b 2 MI,a,mutual info v(:,2));
352 plot(tVec filterMI,MI 2); hold off;
353 xlabel('Time delay \Delta t [s]', 'FontSize', 12);
354 ylabel('Mutual information', 'FontSize', 12);
355 legend('original signal','filtered order 10', 'filtered order 20'); ...

lgd.FontSize = 12;
356 title(sprintf('NEURON %d, Filtered mutual information', neuron), ...

'Fontsize', 14)
357

358 % We will use the filter of order 10
359 figure()
360 freqz(b 1 MI,a,512);
361 title(sprintf('NEURON %d, Lowpass filter frequency response (order ...

10)', neuron), 'Fontsize', 14)
362 % X axis shows multiples of pi/samples
363

106

364 %
365 % We choose the parameters that give to a maximum mutual information
366 % (already low filtered):
367

368 [max mutual info, index] = max(MI 1);
369 params = mutual info v(index,:);
370 optimal time delay = params(1);
371 optimal mutual info = params(2);
372

373 % From this point on, we will be working with the cropped shifted
374 % signals: shift signals by the time delay and only consider those ...

samples after the time
375 % delay as we are missing the signal information from the previous ones
376 optimal x delayed = [zeros(length(x(:,1)), optimal time delay), ...

x(:,1:end - optimal time delay)];
377 cropped optimal x delayed = optimal x delayed(:,optimal time delay ...

+ 1:end);
378 cropped ground truth fr prob = ...

ground truth fr prob(optimal time delay + 1:end);
379 cropped spikes = spikes(optimal time delay+1:length(spikes));
380

381 % Build optimal K
382 cropped optimal x delayed spk = cropped optimal x delayed(:, ...

find(cropped spikes));
383 optimal K = (cropped optimal x delayed * ...

cropped optimal x delayed')ˆ(-1) * ...
sum(cropped optimal x delayed spk,2);

384 % Compute y
385 cropped optimal y delayed = optimal K' * cropped optimal x delayed;
386 optimal y delayed = [zeros(1, optimal time delay), ...

cropped optimal y delayed];
387

388 plot signal spikes(tVec(1:samples plot), spikes(1:samples plot), ...
optimal y delayed(1:samples plot), 'Time [s]', sprintf('shifted ...
y'), sprintf('NEURON %d, Shifted feature vector y(t - \Delta t) ...
matched with spikes', neuron))

389

390 % Save results
391 time delay results{end+1} = optimal time delay;
392 mutual info results{end+1} = optimal mutual info;
393 K results{end + 1} = optimal K;
394 ground truth spikes results{end+1} = cropped spikes;
395 end
396

397 %% TASK-RELATED NEURON SELECTION
398 % Only those neurons related with the activity will be considered for the
399 % analysis. We'll choose the ones before the huge drop in it.
400

401 optimal mutual infos = cell2mat(mutual info results);
402 [sorted mutual infos, sorted index] = sort(optimal mutual infos, ...

'descend');
403

404 figure()
405 plot(sorted mutual infos)
406 ax = gca;
407 ax.XTick = 1:size(sorted index,2);
408 ax.XTickLabel = string(sorted index);
409 grid on;
410 xlabel('neuron', 'FontSize', 12); ylabel('Optimal mutual information', ...

'FontSize', 12)
411 title('Optimal mutual information neuron decreasing order', 'FontSize', 14)
412 related neurons = sorted index(1:10);
413

107

414 %% ENCODING MODEL ESTIMATION
415 % Generate results arrays
416 f y results = {};
417 y values results = {};
418 f cropped y results = {};
419 cropped y values results = {};
420

421 for neuron = related neurons
422 spikes = spikes success(neuron, 1:samples);
423

424 % Load estimations
425 ground truth fr prob = ground truth fr prob results{neuron};
426 optimal time delay = time delay results{neuron};
427 optimal K = K results{neuron};
428

429 % From this point on, we will be working with the cropped shifted
430 % signals: shift signals by the time delay and only consider those ...

samples after the time
431 % delay as we are missing the signal information from the previous ones
432 optimal x delayed = [zeros(length(x(:,1)), optimal time delay), ...

x(:,1:end - optimal time delay)];
433 cropped optimal x delayed = optimal x delayed(:,optimal time delay ...

+ 1:end);
434 cropped ground truth fr prob = ...

ground truth fr prob(optimal time delay + 1:end);
435 cropped spikes = spikes(optimal time delay + 1:length(spikes));
436 tVec = 0:dt:(length(cropped spikes)-1)*dt;
437 % Compute y
438 cropped optimal y delayed = optimal K' * cropped optimal x delayed;
439

440 %
441 % f() ESTIMATION through Bayes Theorem and Kernel density ...

estimation (KDE)
442 % f = p(spk, y)/p(y)
443

444 % f y
445 [f y, y values] = kernel smoothing(cropped optimal y delayed);
446 p y = f y(y values);
447 % p y |spk
448 [f y spk, foo] = ...

kernel smoothing(cropped optimal y delayed(find(cropped spikes)));
449 p y spk = f y spk(y values);
450 [f y nospk, foo] = ...

kernel smoothing(cropped optimal y delayed(find(cropped spikes ...
== 0)));

451 p y nospk = f y nospk(y values);
452

453 %
454 % Plots
455 %%Denominator p(Ks)
456 normalization = p y;
457

458 figure()
459 plot(y values, normalization)
460 xlabel('y', 'FontSize', 12); ylabel('p(y)', 'FontSize', 12)
461 title(sprintf('NEURON %d, normalization density function p(y)', ...

neuron), 'FontSize', 14)
462

463 %%Numerator p(spk, Kx) = p(Kx |spk)p(spk)
464 % p(Kx |spk)
465 likelihood = p y spk;
466

467 figure()

108

468 plot(y values, likelihood)
469 xlabel('y', 'FontSize', 12); ylabel('f(y |spk)', 'FontSize', 12)
470 title(sprintf('NEURON %d, likelihood density function f(y |spk)', ...

neuron), 'FontSize', 14)
471

472 % p(spk)
473 prior = sum(cropped spikes)/length(cropped spikes); % scalar number
474

475 %%Posterior probability
476 posterior = (likelihood*prior)./(normalization + eps);
477 if (max(posterior) - min(posterior) > 1000)
478 posterior = (likelihood*prior)./(normalization + 0.001);
479 end
480

481 figure()
482 plot(y values, posterior)
483 xlabel('y', 'FontSize', 12); ylabel('f(spk |y) estimation', ...

'FontSize', 12)
484 title(sprintf('NEURON %d, posterior f(spk |y), estimation of ...

nonlinear function f(y)', neuron), 'FontSize', 14)
485 f y estimation = griddedInterpolant(y values, posterior);% Convert ...

it to a function
486

487 f y results{end+1} = f y estimation;
488 y values results{end+1} = y values;
489

490 %
491 % Corrections
492 % When using kernel smoothing(), the estimated probability ...

function is
493 % smoothed in the edges (going to 0 in the nearby values of the
494 % edges).
495 % When computing the posterior, a division by '0' is produced and the
496 % results are not accurate (at least graphically they make no sense).
497 % That's why we cut the results from both sides an amount of samples
498 % (y precision) so that we can properly see the resulting posterior
499 % function.
500

501 % 1st cut
502 [min value, low cut] = min(posterior(1:length(posterior)/3)); % ...

minimum in 1st 1/3
503 [max value, high cut] = ...

max(posterior(length(posterior)/2:length(posterior))); % ...
maximum in 2nd half

504 high cut = high cut + length(posterior)/2 - 1;
505 %[max value, high cut] = max(posterior); % maximum in general
506 if low cut > high cut
507 low cut = 1;
508 end
509

510 %{
511 if neuron == 14
512 [foo, low cut] = min(posterior(1:length(posterior)/10)); % ...

minimum in 1st 1/10
513 [max value, high cut] = max(posterior);
514 elseif neuron == 4
515 [foo, pos max] = max(posterior);
516 [foo, pos min] = min(posterior(pos max:pos max+10));
517 low cut = pos max + pos min - 1;
518 [foo, pos max2] = max(posterior(low cut:end));
519 high cut = low cut + pos max2 - 1;
520 end
521 %}

109

522

523 cropped posterior = posterior(low cut:high cut);
524 cropped y values = y values(low cut:high cut);
525 cropped f y estimation = griddedInterpolant(cropped y values, ...

cropped posterior); % Convert it to a function
526

527 figure()
528 plot(cropped y values, cropped posterior); hold off;
529 xlabel('y', 'FontSize', 12); ylabel('f(spk |y) estimation', ...

'FontSize', 12)
530 title(sprintf('NEURON %d, cropped posterior f(spk |y), estimation ...

of nonlinear function f(y)', neuron), 'FontSize', 14)
531

532 % Save iteration results
533 f cropped y results{end+1} = cropped f y estimation;
534 cropped y values results{end+1} = cropped y values;
535 end
536

537 %% LINEAR Finetunning
538

539 % Values obtained from fit exponential with g = fittype('a*x+b');
540 % and then fit = fit(cropped y values',cropped posterior',g);
541 %{
542 g = fittype('a*x+b');
543 linear coeffs = [];
544 for i = 1:length(related neurons)
545 cropped y values = cropped y values results{i};
546 cropped posterior = f cropped y results{i}(cropped y values);
547 fit = fit(cropped y values',cropped posterior',g)
548 linear coeffs = [linear coeffs; fit.a fit.b]
549 end
550 %}
551 load('linear coeffs.mat')
552

553 linear coefs results = {};
554 linear functions = {};
555

556 for i = 1:length(related neurons)
557 neuron = related neurons(i);
558 y values = y values results{i};
559 posterior = f y results{i}(y values);
560 cropped y values = cropped y values results{i};
561 cropped posterior = f cropped y results{i}(cropped y values);
562

563 a estimated linear = linear coeffs(i,1);
564 b estimated linear = linear coeffs(i,2);
565

566 linear estimated = a estimated linear * cropped y values + ...
b estimated linear;

567 % Should make sure that it is 1 at its most
568 unit index = min(find(linear estimated ≥ 1));
569 if unit index > 0 % if it is not empty
570 linear estimated = [linear estimated(1:unit index-1), ones(1, ...

length(linear estimated) - unit index + 1)];
571 end
572

573 figure()
574 plot(y values, posterior); hold on;
575 plot(cropped y values, linear estimated, 'color', red); hold on;
576 plot(cropped y values, cropped posterior, 'color', blue, ...

'lineWidth', 2); hold off;
577 xlabel('y', 'FontSize', 12); ylabel('f(y)', 'FontSize', 12)
578 legend('estimated f a()', 'fitted exponential')

110

579 title(sprintf('NEURON %d, exponential fit of nonlinear function ...
f(y)', neuron), 'FontSize', 14)

580

581 % Convert fitting into function
582 linear f = griddedInterpolant(cropped y values, linear estimated); ...

% Convert it into function
583

584 linear coefs results{end + 1} = [a estimated linear, ...
b estimated linear];

585 linear functions{end + 1} = linear f;
586 end
587

588 %% EXPONENTIAL Finetunning
589

590 % Values obtained from fit exponential with g = fittype('a*exp(b*x)+c');
591 % and then fit i = fit(cropped y values',cropped posterior',g);
592 %{
593 g = fittype('a*exp(b*x)+c');
594 exponential coeffs = [];
595 for i = 1:length(related neurons)
596 cropped y values = cropped y values results{i};
597 cropped posterior = f cropped y results{i}(cropped y values);
598 fit = fit(cropped y values',cropped posterior',g)
599 exponential coeffs = [exponential coeffs; fit.a fit.b fit.c]
600 end
601 %}
602 load('exponential coeffs.mat')
603

604 exponential coefs results = {};
605 exponential functions = {};
606

607 for i = 1:length(related neurons)
608 neuron = related neurons(i);
609 y values = y values results{i};
610 posterior = f y results{i}(y values);
611 cropped y values = cropped y values results{i};
612 cropped posterior = f cropped y results{i}(cropped y values);
613

614 a estimated exponential = coeffs(i,1);
615 b estimated exponential = coeffs(i,2);
616 c estimated exponential = coeffs(i,3);
617

618 exponential estimated = a estimated exponential * ...
exp(b estimated exponential * cropped y values) + ...
c estimated exponential;

619 % Should make sure that it is 1 at its most
620 unit index = min(find(exponential estimated ≥ 1));
621 if unit index > 0 % if it is not empty
622 exponential estimated = ...

[exponential estimated(1:unit index-1), ones(1, ...
length(exponential estimated) - unit index + 1)];

623 end
624

625 figure()
626 plot(y values, posterior); hold on;
627 plot(cropped y values, exponential estimated, 'color', yellow); ...

hold on;
628 plot(cropped y values, cropped posterior, 'color', blue, ...

'lineWidth', 2); hold off;
629 xlabel('y', 'FontSize', 12); ylabel('f(y)', 'FontSize', 12)
630 legend('estimated f a()', 'fitted exponential')
631 title(sprintf('NEURON %d, exponential fit of nonlinear function ...

f(y)', neuron), 'FontSize', 14)

111

632

633

634 % Convert fitting into function
635 exponential f = griddedInterpolant(cropped y values, ...

exponential estimated); % Convert it into function
636

637 exponential coefs results{end + 1} = [a estimated exponential, ...
b estimated exponential, c estimated exponential];

638 exponential functions{end + 1} = exponential f;
639

640 end
641

642 %% TUNING RESULTS
643

644 for i = 1:length(related neurons)
645 neuron = related neurons(i);
646

647 % Load original f y
648 y values = y values results{i};
649 posterior = f y results{i}(y values);
650

651 % Load cropped f y
652 cropped y values = cropped y values results{i};
653 cropped posterior = f cropped y results{i}(cropped y values);
654

655 % Load finetunning functions and limits
656 linear f = linear functions{i};
657 linear limits i = linear limits{i};
658 linear min index = linear limits i(1); linear max index = ...

linear limits i(2);
659

660 exponential f = exponential functions{i};
661 exponential limits i = exponential limits{i};
662 exponential min index = exponential limits i(1); ...

exponential max index = exponential limits i(2);
663

664 figure()
665 plot(y values, posterior); hold on;
666 plot(cropped y values, linear f(cropped y values)); hold on;
667 plot(cropped y values, exponential f(cropped y values)); hold on;
668 plot(cropped y values, cropped posterior,'LineWidth',2, 'color', ...

blue); hold off;
669 %plot(cropped y values(exponential min index:exponential max index), ...

cropped posterior(exponential min index:exponential max index),'LineWidth',2); ...
hold off;

670 grid on;
671 xlabel('y', 'FontSize', 12); ylabel('f(y)', 'FontSize', 12)
672 %legend('Estimated f(y)', 'Linear fitting', 'Exponential fitting', ...

'Linear estimation range','Exponential estimation range'); ...
lgd.FontSize = 12;

673 legend('Estimated f(y)', 'Linear fitting', 'Exponential fitting', ...
'Estimation range'); lgd.FontSize = 12;

674 title(sprintf('NEURON %d, linear and exponential fit of nonlinear ...
function f(y)', neuron), 'FontSize', 14)

675

676 end
677

678 %% MODEL RESULTS
679

680 % Generate results arrays
681 predicted fr prob results = {};
682 predicted spikes results = {};
683

112

684 for i = 1:length(related neurons)
685 ground truth fr prob = ground truth fr prob results{i};
686

687 %
688 % PREDICTION OF firing probability through predicted model
689 % Load spikes and signal x
690 neuron = related neurons(i);
691 spikes = spikes success(neuron, 1:samples);
692 optimal time delay = time delay results{neuron};
693 optimal mutual info = mutual info results{neuron};
694

695 % Shift x by the time delay, only consider those samples after the time
696 % delay as we are missing the signal information from the previous ones
697 optimal x delayed = [zeros(length(x(:,1)), optimal time delay), ...

x(:,1:end - optimal time delay)];
698 cropped optimal x delayed = optimal x delayed(:,optimal time delay ...

+ 1:end);
699 cropped spikes = spikes(optimal time delay+1:length(spikes));
700 tVec = 0:dt:(length(cropped spikes)-1)*dt;
701

702 % Load model parameters
703 K = K results{i};
704 f y = f y results{i};
705 y values = y values results{i};
706

707 linear f y = linear functions{i};
708 exponential f y = exponential functions{i};
709

710 %
711 % Compute feature space y = K * x
712 cropped predicted y = K' * cropped optimal x delayed;
713

714 figure()
715 plot(tVec(1:samples plot), cropped predicted y(1:samples plot))
716 xlabel('Time [s]', 'FontSize', 12); ylabel('y = K*x estimation', ...

'FontSize', 12)
717 title(sprintf('NEURON %d, y = K*x', neuron), 'FontSize', 14)
718

719 %
720 % Compute firing probability
721 % The function f provides with the firing probability fr*dt= f(y)
722 % Hence, we have to divide by dt the result to obtain the desired ...

firing rate fr
723 predicted fr prob = f y(cropped predicted y);
724 predicted fr prob linear = linear f y(cropped predicted y);
725 predicted fr prob exponential = exponential f y(cropped predicted y);
726

727 predicted fr prob results{i} = [predicted fr prob; ...
predicted fr prob linear; predicted fr prob exponential];

728

729 figure()
730 plot(tVec(1:samples plot), predicted fr prob(1:samples plot)); hold on;
731 plot(tVec(1:samples plot), ...

predicted fr prob linear(1:samples plot)); hold on;
732 plot(tVec(1:samples plot), ...

predicted fr prob exponential(1:samples plot)); hold on;
733 plot(tVec(1:samples plot), ...

ground truth fr prob(1:samples plot),'color', dark blue); hold off;
734 xlabel('Time [s]', 'FontSize', 12); ylabel('\lambda = f(y) ...

estimation', 'FontSize', 12);
735 ylim([0, 1]);
736 title(sprintf('NEURON %d, firing probability estimation', neuron), ...

'FontSize', 14)

113

737 legend('Predicted from model', 'Linear fit', 'Exponential ...
fit','Estimated ground truth from reality'); lgd.FontSize = 12;

738

739 % Generate spike train
740 nTrials = 1;
741 nBins = length(predicted fr prob);
742 predicted spikes = poissonSpikeGen(predicted fr prob, dt, nBins, ...

nTrials);
743 predicted spikes results{end+1} = predicted spikes;
744 end
745

746 %% EVALUATION: Time Rescaling Theorem
747

748 KS results = {};
749

750 for i = 1:length(related neurons)
751 neuron = related neurons(i);
752

753 % Load ground truth fprob(t)
754 ground truth fr prob = ground truth fr prob results{i};
755 f ground truth fr prob = griddedInterpolant(ground truth fr prob); ...

% Convert it into function
756

757 % Load fprob(y) approaches
758 predicted fr prob approaches = predicted fr prob results{i};
759

760 predicted fr prob = predicted fr prob approaches(1,:);
761 predicted fr prob linear = predicted fr prob approaches(2,:);
762 predicted fr prob exponential = predicted fr prob approaches(3,:);
763 f predicted fr prob = griddedInterpolant(predicted fr prob); % ...

Convert it into function
764 f predicted fr prob linear = ...

griddedInterpolant(predicted fr prob linear); % Convert it into ...
function

765 f predicted fr prob exponential = ...
griddedInterpolant(predicted fr prob exponential);% Convert it ...
into function

766

767 % Load spikes, ground truth and predicted
768 ground truth spikes = ground truth spikes results{i};
769 predicted spikes = predicted spikes results{i};
770 tk = find(predicted spikes);
771

772 %
773 % Kolmogorov-Smirnov test
774 opt = struct('DTCorrelation', 1, 'sampleRate', dt, 'neuron', ...

neuron, 'color', dark blue);
775 KS = DBR calc approaches(predicted fr prob approaches, ...

ground truth spikes, opt);
776

777 KS results{end+1} = KS;
778 end
779

780

781 %
782 % KS metric comparison
783

784 KS = [];
785 KS linear = [];
786 KS exponential = [];
787

788 for i = 1:length(related neurons)
789 KS approaches = KS results{i};

114

790 KS = [KS KS approaches(1)];
791 KS linear = [KS linear KS approaches(2)];
792 KS exponential = [KS exponential, KS approaches(3)];
793 end
794

795 figure()
796 plot(KS); hold on;
797 plot(KS linear); hold on;
798 plot(KS exponential); hold off;
799 ax = gca;
800 %ax.XTick = 1:size(related neurons);
801 ax.XTickLabel = string(related neurons);
802 xlabel('Related neurons', 'FontSize', 12); ylabel('KS metric', ...

'FontSize', 12);
803 title('KS metric comparison', 'FontSize', 14);
804 legend('f(y) predicted from model', 'Linear fit', 'Exponential fit'); ...

lgd.FontSize = 12;
805

806 %% METRICS
807 experimental metrics = KS results;
808 save('experimental metrics', 'experimental metrics');

8.3.2 Depending functions

The following functions are those defined functions that were used in the main code.

1 function spikeMat = poissonSpikeGen prob(fr prob, nBins, nTrials)
2 % fr prob: vector of instantaneous firing probabilities (fr(t)*dt)
3 % nBins: number of time steps (bins)
4 % nTrials: number of trials
5 spikeMat = rand(nTrials , nBins) < fr prob; % Uniformly distributed
6 end

1 function [f p, values] = kernel smoothing(var)
2 set(gcf,'Visible','off')
3 histogram = histfit(var,100,'kernel');
4 fit = histogram(2);
5 values = fit.XData; p = fit.YData;
6 p = p/length(var);
7

8 f p = griddedInterpolant(values, p, 'linear', 'nearest'); % Convert it ...
to a function

9 end

1 function [Z, U, xAxis, KSSorted, ks stat] = computeKSStats(...
spikeTrain, lambda, opt)

2 % COMPUTEKSSTATS Compute related KS statistics.
3 % Input:
4 % spikeTrain - 1 * #timeslot
5 % lambda - 1 * #timeslot
6 % opt - need opt.sampleRate, opt.DTCorrelation

115

7 % Output:
8 % Z: rescaled spike times
9 % U: Zjs tranformed to be uniform(0,1)

10 % xAxis: x-axis of the KS plot
11 % KSSorted: y-axis of KS plot
12 % ks stat: the KS statistic. Maximum deviations from the 45
13 % degree line for each conditional intensity function.
14

15 if (opt.DTCorrelation == 1)
16 pk = lambda .* (1/opt.sampleRate);
17 pk = max(pk, 1e-10);
18 minDim = min(length(spikeTrain), length(lambda));
19 pk = pk(1:minDim);
20 spikeTrain = spikeTrain(1:minDim);
21

22 pk = nanmin(nanmax(pk, 0), 1);
23 intValues = ksdiscrete(pk, spikeTrain, 'spiketrain');
24 intValues = intValues';
25 else
26 pk = lambda .* (1/opt.sampleRate);
27 pk = max(pk, 1e-10);
28 minDim = min(length(spikeTrain), length(lambda));
29 pk = pk(1:minDim);
30 spikeTrain = spikeTrain(1:minDim);
31

32 spikes = find(spikeTrain ̸= 0);
33 spikes = [1 spikes'];
34 intValues = zeros(1, length(spikes)-1);
35

36 for spikeIdx = 1:length(spikes) -1
37 accum = sum(pk(spikes(spikeIdx):spikes(spikeIdx+1)));
38 intValues(1, spikeIdx) = accum;
39 end
40 end
41

42 Z = intValues;
43 U = 1 - exp(-Z);
44 KSSorted = sort(U, 'ascend');
45 N = size(KSSorted, 2);
46 if (N ̸= 0)
47 xAxis = (([1:N]-.5)/N);
48 ks stat = max(abs(KSSorted - (([1:N]-.5)/N)));
49 end
50

51 end
52

53

54 function [rst,varargout] = ksdiscrete(pk,st,spikeflag)
55

56 %%%
57 %
58 % ksdiscrete.m
59 % written by Rob Haslinger, December 2009
60 %
61 % This function performs time rescaling of ISIs based upon the discrete
62 % time version of the time rescaling theorem as described in Haslinger,
63 % Pipa and Brown (2010?). This method corrects for biases in the KS plot
64 % caused by the temporal discretization.
65 %
66 % This function can be called in two ways
67 %
68 % 1) input the discrete time conditional probabilities "pk" where ...

0≤pk≤ 1
69 % and the spike train "spiketrain" which has elements either equal to 0 (no

116

70 % spike) or 1 (spike). There is also a flag 'spiketrain' to indicate that
71 % it is the full spike train.
72 %
73 % [rst,rstsort,xks,cb,rstoldsort] = ksdiscrete(pk,spiketrain,'spiketrain')
74 %
75 % 2) input the discrete time conditional probabilities "pk" and a list of
76 % the indicies "spikeind" of the bin indicies that the spikes are ...

locaed in.
77 % There is also a flag 'spikeind' to indicate that the indicies are
78 % being given, not the full spike train
79 %
80 % [rst,rstsort,xks,cb,rstoldsort] = ksdiscrete(pk,spikeind,'spikeind');
81 %
82 % required output:
83 %
84 % rst : a vector of unsorted uniformly distributed rescaled times. This is
85 % the only output that is required.
86 %
87 % optional output, given in the order they appear in the list function
88 % outputs :
89 %
90 % rstsort : a vector of rescaled times sorted into ascending order
91 % xks : a vector of x axis values to plot the sorted rescaled times against
92 % cb : the value of the 95% confidence bounds
93 % rstoldsort : a vector of sorted rescaled times done without the discrete
94 % time correction
95 %
96 % To make a KS plot one would do
97 % plot(xks,rstsort,'k-');
98 % hold on;
99 % plot(xks,xks+cb,'k--',xks,xks-cb,'k--');

100 %
101 % To make a Differential KS plot one would do
102 % plot(xks,rstsort-xks,'k-');
103 % hold on;
104 % plot(xks,zeros(length(xks))+cb,'k--',xks,zeros(length(xks))-cb);
105 %
106 %%%
107

108 % Start with determining the inputs and some basic input error checking
109

110 if nargin < 3 | | nargin > 3
111 error('Number of input arguments must be equal to 3');
112 end
113

114 % make pk into a column vector;
115

116 [m1,m2]=size(pk);
117 if (m1 ̸=1 && m2 ̸=1)
118 error('pk must be a vector'); end
119 if (m2>m1)
120 pk=pk'; end
121 [m1,m2]=size(pk);
122

123 % make sure pk's are within [0,1]
124 index=find(pk<0);
125 if isempty(index) ̸=1
126 error('all values for pk must be within [0,1]');
127 end
128 index=find(pk>1);
129 if isempty(index) ̸=1
130 error('all values for pk must be within [0,1]');
131 end
132 clear index;

117

133

134 % make column vector of spike indicies
135

136 if strcmp(spikeflag,'spiketrain') % spike train input
137

138 [n1,n2]=size(st);
139 if (n1 ̸=1 && n2 ̸=1); error('spike train must be a vector'); end
140 if (n2>n1); st=st'; end
141 [n1,n2]=size(st);
142 if m1 ̸= n1; error('pk and spike train must be same length'); end
143

144 spikeindicies=find(st==1);
145

146 Nspikes=length(spikeindicies);
147

148 elseif strcmp(spikeflag,'spikeind') % spike index input
149

150 [n1,n2]=size(st);
151 if (n1 ̸=1 && n2 ̸=1); error('spike indicies must be a ...

vector'); end
152 if (n2>n1); st=st'; end
153

154 spikeindicies=unique(st);
155 Nspikes=length(spikeindicies);
156

157 end
158

159 % check that those indicies are in [1:length(pk)];
160

161 if(isempty(spikeindicies))
162 rst = pk;
163 return;
164 end
165 if spikeindicies(1)<1
166 error('There is at least one spike with index less than 0');
167 end
168 if spikeindicies(Nspikes)>length(pk)
169 error('There is at least one spike with a index greater than ...

the length of pk');
170 end
171

172 % error checking done
173

174 %%%
175 % Now do the actual discrete time KS test
176 %%%
177

178 % initialize random number generator
179 s = RandStream('mt19937ar','Seed', sum(100*clock));
180 RandStream.setGlobalStream(s);
181 %rand('twister',sum(100*clock));
182

183 % make the qk's
184

185 qk=-log(1-pk);
186

187 % make the rescaled times
188

189 rst=zeros(Nspikes-1,1);
190 rstold=zeros(Nspikes-1,1);
191

192 for r=1:Nspikes-1
193

194 total = 0;

118

195

196 ind1=spikeindicies(r);
197 ind2=spikeindicies(r+1);
198

199 total=total+sum(qk(ind1+1:ind2-1));
200

201 ∆=-(1/qk(ind2))*log(1-rand()*(1-exp(-qk(ind2))));
202

203 total=total+qk(ind2)*∆;
204

205 rst(r)=total;
206

207 rstold(r)=sum(qk(ind1+1:ind2));
208

209 end
210

211 % rst=1-exp(-rst);
212 % rstold=1-exp(-rstold);
213

214 % optional outputs
215

216 rstsort=sort(rst);
217 varargout{1}=rstsort;
218

219 inrst=1/(Nspikes-1);
220 xrst=(0.5*inrst:inrst:1-0.5*inrst)';
221 varargout{2}=xrst;
222

223 cb=1.36*sqrt(inrst);
224 varargout{3}=cb;
225

226 varargout{4}=sort(rstold);
227 end

1 function y approaches = DBR calc(fr prob approaches, spk,opt, exponential)
2 dark blue = [0 0.286274522542953 0.47843137383461];
3 color v = [0, 0.4470, 0.7410; 0.8500, 0.3250, 0.0980; 0.9290, 0.6940, ...

0.1250];
4

5 y approaches = [];
6 figure()
7 for i = 1:length(fr prob approaches(:,1))
8 fr prob = fr prob approaches(i,:);
9

10 xAxis = [];
11 KSSorted = [];
12 for ks trail = 1:20
13 [Z, U, xAxis(ks trail,:), KSSorted(ks trail,:), ...

KSValue GLM(ks trail)] = computeKSStats(spk', fr prob'* ...
opt.sampleRate, opt);

14 end
15

16 xAxis = mean(xAxis);
17 KSSorted = mean(KSSorted);
18 KSValue GLM = mean(KSValue GLM);
19 y = KSValue GLM/1.36*sqrt(sum(spk == 1));
20

21 y approaches = [y approaches, y];
22

23 if isfield(opt,'exponential') & opt.exponential == 1 & i == 2 ...
color line = color v(3,:);

24 else color line = color v(i,:);

119

25 end
26

27 plot(xAxis, KSSorted ,'linewidth', 2, 'color', color line); hold on;
28 end
29

30 plot(((1:sum(spk == 1)))/sum(spk == 1), (1:sum(spk == 1))/sum(spk == ...
1), 'Color', dark blue, 'linewidth', 1);

31 plot((1:sum(spk == 1))/sum(spk == 1), (1:sum(spk == 1))/sum(spk == ...
1)+1.36/sqrt(sum(spk == 1)),'--', 'Color', dark blue, 'linewidth', 0.5);

32 plot((1:sum(spk == 1))/sum(spk == 1), (1:sum(spk == 1))/sum(spk == ...
1)-1.36/sqrt(sum(spk == 1)),'--', 'Color', dark blue, 'linewidth', 0.5);

33 axis([0 1 0 1]); hold off;
34 if isfield(opt,'neuron') title(sprintf('NEURON %d, KSS regression ...

plot', opt.neuron), 'FontSize', 14)
35 else title(sprintf('KSS regression plot'), 'FontSize', 14)
36 end
37

38 if isfield(opt,'exponential')
39 if opt.exponential == 1 legend('f(y) predicted from model', ...

'Exponential fit', 'Ideal 45 line'); lgd.FontSize = 12;
40 else legend('f(y) predicted from model', 'Linear fit', 'Ideal 45 ...

line'); lgd.FontSize = 12;
41 end
42 else legend('f(y) predicted from model', 'Linear fit', 'Exponential ...

fit', 'Ideal 45 line'); lgd.FontSize = 12;
43 end
44 end

120

Bibliography

R. Barbieri, R. Kass, V. Ventura., and L. M Frank. The time-rescaling theorem and its

application to neural spike train data analysis. Neural Computation, 14(2):325 – 346,

2002. URL https://pubmed.ncbi.nlm.nih.gov/11802915/.

A.E. Brockwell, A.L. Rojas, and R.E. Kass. Recursive bayesian decoding of motor cortical

signals by particle filtering. J. Neurophysiol., pages 1899–1907, 2004. URL ’’.

S. Chen, X. Zhang, X. Shen, Y. Huang, and Y. Wang. Tracking fast neural adaptation by

globally adaptive point process estimation for brain-machine interface. IEEE Transactions

on Neural Systems and Rehabilitation Engineering, 29:1690–1700, 2021. URL ’https:

//ieeexplore.ieee.org/document/9517295/authors#authors’.

T.M. Cover and J.A. Thomas. Elements of Information Theory. New York: Wiley, 1991.

M. S. Gazzaniga, R. B. Ivry, and G. R. Mangun. Cognitive Neuroscience: the biology of

mind. Fourth Edition. W. W. Norton Company, 2014.

A.P. Georgopoulos, A.B. Schwartz, and R.E. Kettner. Neuronal population coding of move-

ment direction. Science, 233:1416–1419, 1986.

D. Hegger. Poisson model of spike generation. 2000.

E. R. Kandel, J. H. Schwartz, and T. M. Jessell. Principles of Neural Science. Fourth

Edition. McGraw-Hill, 2000.

121

https://pubmed.ncbi.nlm.nih.gov/11802915/
''
'https://ieeexplore.ieee.org/document/9517295/authors#authors'
'https://ieeexplore.ieee.org/document/9517295/authors#authors'

C. McDonald, S. Westcott-McCoy, M. Weaver, J. Haagsma, and D. Kartin. Global prevalence

of traumatic non-fatal limb amputation. Prosthetics and Orthotics International, 45:105

– 114, 2021. URL ’https://journals.lww.com/poijournal/Abstract/2021/04000/

Global_prevalence_of_traumatic_non_fatal_limb.4.aspx’.

L. Paninski, M.R. Fellows, N.G. Hatsopoulos, and J.P. Donoghue. Spatiotemporal tuning of

motor cortical neurons for hand position and velocity. J. Neurophysiol., pages 515–532,

2004a. URL ’’.

L. Paninski, S. Shoham, M.R. Fellows, N.G. Hatsopoulos, and J.P. Donoghue. Superlinear

population encoding of dynamic hand trajectory in primary motor cortex. J. Neurosci.,

pages 8551–8561, 2004b. URL ’’.

A.B. Schwartz, D.M. Taylor, and S.I.H. Tillery. Extraction algorithms for cortical control of

arm prosthetics. Curr. Opin. Neurobiol, 11:701–708, 2001.

J.J. Shih, D.J. Krusienski, and J.R. Wolpaw. Brain-computer interfaces in medicine. Mayo

Clinic Proceedings, 87:268 – 279, 2012. URL ’https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3497935/’.

S. Shoham, L.M. Paninski, M.R. Fellows, N.G. Hatsopoulos, J.P. Donoghue, and A. Nor-

mann. Statistical encoding model for a primary motor cortical brain–machine interface.

IEEE Trans. Biomed. Eng., pages 1312–1322, 2005. URL ’’.

E.P. Simoncelli, L. Paninski, J. Pillow, and O. Schwartz. Characterization of neural responses

with stochastic stimuli. The Cognitive Neurosciences, pages 327–38, 2004. URL ’’.

W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown. A point process

framework for relating neural spiking activity to spiking history, neural ensemble, and

extrinsic covariate effects. J Neurophysiol, 93:1074 – 1089, 2005.

Y. Wang and J.C. Principe. Instantaneous estimation of motor cortical neural encoding

for online brain–machine interfaces. Journal of neural engineering, 7(5), 2010. URL

’https://doi.org/10.1088/1741-2560/7/5/056010’.

122

'https://journals.lww.com/poijournal/Abstract/2021/04000/Global_prevalence_of_traumatic_non_fatal_limb.4.aspx'
'https://journals.lww.com/poijournal/Abstract/2021/04000/Global_prevalence_of_traumatic_non_fatal_limb.4.aspx'
''
''
'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497935/'
'https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3497935/'
''
''
'https://doi.org/10.1088/1741-2560/7/5/056010'

Y. Wang, J. Sanchez, and Principe J.C. Information theoretical estimators of tuning depth

and time delay for motor cortex neurons. 3rd Int. IEEE/EMBS Conf. CNE ’07, pages

502–505, 2007. URL ’’.

Y. Wang, J.C. Principe, A. R: C. Paiva, and J. Sanchez. Sequential monte carlo point process

estimation of kinematics from neural spiking activity for brain machine interfaces. Neural

Comput., 21:2894–2930, 2009.

R.S. Williamson, M. Sahani, and J.W. Pillow. The equivalence of information-

theoretic and likelihood-based methods for neural dimensionality reduction. 11,

2013. URL https://www.researchgate.net/publication/255965833_The_

Equivalence_of_Information-Theoretic_and_Likelihood-Based_Methods_for_

Neural_Dimensionality_Reduction.

W. Wu, Y. Gao, E. Bienenstock, J.P. Donoghue, and M.J. Black. Bayesian population

decoding of motor cortical activity using a kalman filter. Neural Comput., pages 80–118,

2006. URL ’’.

B.M. Yu, C. Kemere, G. Santhanam, A. Afshar, S.I. Ryu, T.H. Meng, M. Sahani, and K.V.

Shenoy. Mixture of trajectory models for neural decoding of goal-directed movements. J.

Neurophysiol., 97:1312–1322, 2007.

123

''
https://www.researchgate.net/publication/255965833_The_Equivalence_of_Information-Theoretic_and_Likelihood-Based_Methods_for_Neural_Dimensionality_Reduction
https://www.researchgate.net/publication/255965833_The_Equivalence_of_Information-Theoretic_and_Likelihood-Based_Methods_for_Neural_Dimensionality_Reduction
https://www.researchgate.net/publication/255965833_The_Equivalence_of_Information-Theoretic_and_Likelihood-Based_Methods_for_Neural_Dimensionality_Reduction
''

	List of Figures
	List of Tables
	Introduction
	Problem Statement and State Of The Art
	Brain electrical signals
	Mathematical representation: Point Process
	Previous work

	Problem Resolution
	Simulated Encoding
	Input data generation
	Model definition: LNP and output data generation
	Linear filter K
	Nonlinear function f(y)
	Inhomogeneous Poisson Spike Generator
	Time delay t consideration

	Model parameter estimation
	Linear filter K estimation: STA
	Time delay t Estimation: Mutual information
	Nonlinear function f(y) Estimation: Bayes Theorem

	Model Results
	Linear filter K and Time delay t results
	Nonlinear function f(y) results

	Model Evaluation
	Parameters evaluation
	Output evaluation

	Experimental Encoding
	Data collection
	Preprocessing of data

	Model parameter estimation
	Linear filter K estimation: STA
	Time delay t estimation: Mutual information
	Nonlinear function f(y) Estimation: Bayes Theorem

	Model Results
	Linear filter K and time delay t results
	Nonlinear function f(y) result

	Model Evaluation
	Output evaluation

	Conclusions
	Future work
	Appendix
	Time Rescaling Theorem proof
	Additional Figures and Tables
	Simulated Encoding additional Figure and Tables
	Experimental Encoding additional Figures and Tables

	Matlab codes
	Main code
	Depending functions

	Bibliography

