Vague and Fuzzy t-norms and t-conorms

D. Boixader, J. Recasens
Secció Matemàtiques i Informàtica
ETS Arquitectura del Vallès
Universitat Politècnica de Catalunya
Pere Serra 1-15
08173 Sant Cugat del Vallès
Spain
\{dionis.boixader,j.recasens\}@upc.edu

Abstract

t -norms and t -conorms are the natural connectives "and" and "or" in fuzzy logic. The unit interval with a t-norm or a t -conorm is a special monoid and some submonoids like discrete t-norms and t-conorms have been proved useful in many cases.

In the first part of this article these submonoids will be fuzzified to fuzzy t-subnorms and fuzzy t-subconorms in order to deal with imprecision. As particular examples we will provide fuzzifications of the classical and the Lukasiewicz three-valued conjunctions.

The second part of the article will define and study vague t-norms and t -conorms as fuzzy operations $\tilde{\circ}:[0,1]^{3} \rightarrow[0,1]$ where $\tilde{o}(x, y, z)$ is the degree in which z is $T(x, y)(S(x, y)$ respectively) where $T(S)$ is a t-norm (t-conorm).

Keywords: t-norms, t-conorm, indistinguishability operator, fuzzy monoid, fuzzy t-subnorm, fuzzy t-subconorm, vague monoid, vague t norm, vague t -conorm.

1 Introduction

t-norms and t-conorms are essential tools in fuzzy logic because they model the conjunction and disjunction as well as they allow us to evaluate the inter-
section and union of fuzzy subsets. They have been generalized to different algebraic structures such as Gödel algebras, MV-algebras, GL-monoids and complete residuated lattices. They have also been generalized to intervalvalued, type-2, multiset and hesitant t-norms and t-conorms among others. Also discrete and finite-valued t-norms and t-conorms [9] can be seen as discrete submonoids of them.

There are situations where imprecision, lack of accuracy or noise have to be taken into account or must be added to the problems to be solved. In these cases, the relaxation or fuzzification of logic connectives can be useful to tackle these situations.

In this paper we will develop the fuzzification of t-norms and t-conorms from two perspectives:

1. Fuzzifying the concept of submonoid, so generalizing the idea of discrete and finite-valued t-norm and t-conorm.
2. Introducing vague t-norms and t-conorms, i.e.: considering a fuzzy operation compatible with them and with a given fuzzy equivalence relation.

Regarding the first point, there is a big amount of papers fuzzifying algebraic structures such as groups, rings, actions, [2, 11]. Following this direction, in the first part of the paper we will fuzzify the concept of submonoid and then apply it to the monoids $([0,1], T)$ and $([0,1], S), T$ and S a t-norm and a t-conorm respectively to obtain what we call T-fuzzy t-subnorms and T-fuzzy t-subconorms. They generalize discrete and finite-valued t-norms and t-conorms among others. For example the crisp conjunction \wedge (considered a discrete t-norm as in Examples 3.6 and 3.13) can be fuzzified to $\bar{\pi}$ by $x \bar{\wedge} y=\max (2 x+2 y-3,0)$ for all $x, y \in[0,1]$. Also in Example 3.14 Łukasiewicz three-valued conjunction is fuzzified.

The second part of the paper studies vague t-norms and t-conorms. A vague operation is a fuzzy operation õ : $M \times M \times M \rightarrow[0,1]$ on a set M, where $\tilde{o}(x, y, z)$ is interpreted as the degree in which z is $x \circ y$, and imposing compatibility of o with a given fuzzy equivalence relation on M [6] ${ }^{1}$. For this we first study general vague monoids and then apply our results to vague monoids on t-norms and t-conorms, called T-vague t -norms and t -conorms.

[^0]In particular, for a t-norm T we can generate a T-vague t -norm \widetilde{T} where $\widetilde{T}(x, y, z)$ can be interpreted as the degree in which $T(x, y)$ is z and similarly for t -conorms.

An interesting result is that for a given t-norm T we have built a family $\left\{\widetilde{T}_{r}\right\}_{r>0}$ that allows us to relax or stress the degree in which we want to fuzzify T in the sense that if $r \rightarrow 0$ then \widetilde{T}_{r} tends to T and if $r \rightarrow \infty$ then \widetilde{T}_{r} tends to $\widetilde{T_{\infty}}(x, y, z)=1$ for all $x, y, z \in[0,1]$ meaning that $T(x, y)$ can be anything obtaining the greatest possible imprecision. Similar results are obtained for t-conorms.

There is a nice link between fuzzy t-subnorms (t -subconorms) and vague t-norms (vague t-conorms): The kernel of homomorphisms between vague t-norms (t-conorms) are fuzzy t-subnorms (t-subconorms).

2 Preliminaries

This section contains some definitions and properties related to t-norms and t-conorms that will be needed in the article. A good book on the topic is [8].

Definition 2.1. [8] At-norm is a binary operation $T:[0,1] \times[0,1] \rightarrow[0,1]$ which satisfies the following properties for all $x, y, z, t \in[0,1]$

- $T(x, y)=T(y, x)$
- $T(x, y) \leq T(z, t)$ if $x \leq z$ and $y \leq t$
- $T(x, T(y, z))=T(T(x, y), z)$
- $T(x, 1)=x$

Example 2.2.

- The minimum t-norm T_{M} defined by $T_{M}(x, y)=\min (x, y)$ for all $x, y \in$ $[0,1]$.
- The t-norm T_{E} of Eukasiewicz defined by $T_{E}(x, y)=\max (x+y-1,0)$.
- The product t-norm $T_{P}(x, y)=x \cdot y$.

Definition 2.3. [8] A t-conorm is a binary operation $S:[0,1] \times[0,1] \rightarrow[0,1]$ which satisfies the following properties for all $x, y, z, t \in[0,1]$

- $S(x, y)=S(y, x)$
- $S(x, y) \leq S(z, t)$ if $x \leq z$ and $y \leq t$
- $S(x, S(y, z))=S(S(x, y), z)$
- $S(x, 0)=x$

Example 2.4.

- The maximum t-conorm S_{M} defined by $S_{M}(x, y)=\max (x, y)$ for all $x, y \in[0,1]$.
- The t-conorm S_{E} of Łukasiewicz defined by $S_{E}(x, y)=\min (x+y, 1)$.
- The probabilistic sum t-conorm $S_{P}(x, y)=x+y-x \cdot y$.

Definition 2.5. For a t-norm T (t-conorm S) $x \in[0,1]$ is an idempotent element if and only if $T(x, x)=x(S(x, x)=x)$. $E(T)(E(S))$ will be the set of idempotent elements of $T(S)$.

Definition 2.6. A continuous t-norm T (t-conorm S) is Archimedean if and only if $E(T)=\{0,1\} \quad(E(S)=\{0,1\})$.

Example 2.7. The Eukasiewicz t-norm and t-conorm, the Product t-norm and the Probabilistic sum t-conorm are Archimedean t-norms, while the minimum t-norm and the maximum t-conorm are not.

Definition 2.8. For a t-norm T (t-conorm S), $x \in[0,1]$ is nilpotent if and only if there exists $n \in N$ such that $T^{n}(x)=0\left(S^{n}(x)=1\right) . \operatorname{Nil}(T)(\operatorname{Nil}(S))$ will be the set of nilpotent elements of $T(S) .\left(T^{n}\left(S^{n}\right)\right.$ is defined recursively: $\left.T^{n}(x)=T\left(T^{n-1}(x), x\right) \quad\left(S^{n}(x)=S\left(S^{n-1}(x), x\right)\right)\right)$.

Proposition 2.9. If a t-norm T (t-conorm S) is continuous Archimedean, then $\operatorname{Nil}(T)$ is $[0,1)$ or $\{0\}(\operatorname{Nil}(S)$ is $(0,1]$ or $\{1\})$. In the first case, T (S) is called nilpotent. In the second case it is called strict.

Proposition 2.10 (Ling's Theorem). A continuous t-norm T is Archimedean if and only if there exists a continuous and strictly decreasing function t : $[0,1] \rightarrow[0, \infty]$ with $t(1)=0$ such that

$$
T(x, y)=t^{[-1]}(t(x)+t(y))
$$

where $t^{[-1]}$ is the pseudo inverse of t, defined by

$$
t^{[-1]}(x)= \begin{cases}t^{-1}(x) & \text { if } x \in[0, t(0)] \\ 0 & \text { otherwise }\end{cases}
$$

T is strict if $t(0)=\infty$ and nilpotent otherwise. t is called an additive generator of T and two generators of the same t-norm differ only by a positive multiplicative constant.

Example 2.11.

1. $t(x)=1-x$ is an additive generator of the t-norm of Lukasiewicz.
2. $t(x)=-\log (x)$ is an additive generator of the Product t-norm.

Proposition 2.12 (Ling's Theorem). A continuous t-conorm S is Archimedean if and only if there exists a continuous and strictly increasing function s : $[0,1] \rightarrow[0, \infty]$ with $s(0)=0$ such that

$$
S(x, y)=s^{[-1]}(s(x)+s(y))
$$

where $s^{[-1]}$ is the pseudo inverse of s, defined by

$$
s^{[-1]}(x)= \begin{cases}s^{-1}(x) & \text { if } x \in[0, s(1)] \\ 1 & \text { otherwise }\end{cases}
$$

S is strict if $s(1)=\infty$ and nilpotent otherwise. s is called an additive generator of S and two generators of the same t-conorm differ only by a positive multiplicative constant.

Example 2.13.

1. $s(x)=x$ is an additive generator of the t-conorm of Eukasiewicz.
2. $s(x)=-\log (1-x)$ is an additive generator of the Probabilistic sum t-conorm.

Definition 2.14. A strong negation φ is defined as a strictly decreasing, continuous function $\varphi:[0,1] \rightarrow[0,1]$ with boundary conditions $\varphi(0)=1$ and $\varphi(1)=0$ such that φ is involutive (i.e., $\varphi(\varphi(x))=x$ holds for any $x \in[0,1]$).

Definition 2.15. Let T be a t-norm and φ a strong negation. Then $S=$ $\varphi \circ T \circ \varphi$ is the dual t-conorm of T with respect to φ. In this case (T, S, φ) is called a De Morgan triplet.

3 Fuzzy t-norms and Fuzzy t-conorms

In this section we will introduce and study fuzzy t-subnorms and fuzzy t-subconorms. t-norms and t-conorms are special monoids and fuzzy t-subnorms and fuzzy t-subconorms will fuzzify their submonoids. We will start with the general definition of monoid, define T-fuzzy submonoid and then specify our results to t-norms and t-conorms. As examples of fuzzy t-subnorms and fuzzy t-subconorms we will fuzzify discrete t-norms (Definition 3.5) and in particular the crisp conjunction and the Łukasiewicz three-valued one.

Definition 3.1. A monoid (M, \circ) consists of a set M with a binary operation ○: $M \times M \rightarrow M$ that

- is associative
- has an identity element.

Definition 3.2. A submonoid is a subset of a monoid closed by the operation and containing the identity element.

Definition 3.3. Let T be a t-norm, (M, \circ) a monoid, e its identity element and μ a fuzzy subset of $M . \mu$ is a T-fuzzy submonoid of M if and only if

- $T(\mu(x), \mu(y)) \leq \mu(x \circ y) \forall x, y \in M$.
- $\mu(e)=1$.

Proposition 3.4. Let (M, \circ) be a monoid and μ a T-fuzzy submonoid of M. Then the core H of μ (i.e., the set of elements x of M such that $\mu(x)=1$) is a submonoid of M.

Proof. Let $x, y \in H$.

$$
1=T(\mu(x), \mu(y)) \leq \mu(x \circ y)
$$

and therefore $x \circ y \in H$.
The most important monoids in fuzzy logic are the unit interval with a t-norm or a t-conorm.

In diverse situations it can be useful to consider special submonoids of a t-norm or of a t-conorm. Among them, the so-called discrete t-norms and t-conorms are of special interest.

Definition 3.5. A discrete t-norm is a submonoid of a t-norm of finite cardinality containing 0 .

Example 3.6.

1. Consider the Eukasiewicz t-norm T_{E}. For every $n \in \mathbb{N}$ the set $L_{n}=$ $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}=1\right\}$ is a discrete submonoid of $\left([0,1], T_{E}\right)$.
2. Consider the minimum t-norm T_{M}. Every finite subset of $[0,1]$ containing 1 and 0 is a discrete submonoid of ([0, 1], min).
3. Consider the Product t-norm T_{P}. For a fixed $a \in(0,1]$ the set of all numbers of the form $a^{n}, n \in \mathbb{N}$, together with 0 and 1 is a submonoid of $\left([0,1], T_{P}\right)$ of rational cardinality.

Definition 3.7. A discrete t-conorm is a submonoid of a t-norm of finite cardinality containing 1.

Example 3.8.

- Consider the Eukasiewicz t-conorm S_{E}. For every $n \in \mathbb{N}$ the set $L_{n}=$ $\left\{0, \frac{1}{n}, \frac{2}{n}, \ldots, \frac{n}{n}=1\right\}$ is a discrete submonoid of $\left([0,1], S_{E}\right)$.
- Consider the maximum t-conorm S_{M}. Every finite or countable subset of $[0,1]$ containing 1 and 0 is a discrete submonoid of ($[0,1], \max)$.

Until the rest of the section we will consider fuzzy submonoids of a given t-norm or t-conorm.

Definition 3.9. Let T_{1} and T_{2} be t-norms. A T_{1}-fuzzy submonoid of $\left([0,1], T_{2}\right)$ will be called a T_{1}-fuzzy t-subnorm of T_{2}.

More explicitly, this means that a fuzzy subset μ of $[0,1]$ is a T_{1}-fuzzy t-subnorm of T_{2} when $\mu(0)=1$ and $T_{1}(\mu(x), \mu(y)) \leq \mu\left(T_{2}(x, y)\right)$ for all $x, y \in[0,1]$.

Definition 3.10. Let T and S be a t-norm and a t-conorm respectively. A T-fuzzy submonoid of $([0,1], S)$ will be called a T-fuzzy t-subconorm of S.

In other words, a fuzzy subset μ of $[0,1]$ is a T-fuzzy t-subconorm of S when $\mu(1)=1$ and $T(\mu(x), \mu(y)) \leq \mu(S(x, y))$ for all $x, y \in[0,1]$.

The submonoid 3.6.1 can be fuzzified in the following way.

Example 3.11. Given $n \in \mathbb{N}$, we define the fuzzy subset μ of $[0,1]$ in the following way: For $i=1,2, \ldots, n$,

$$
\begin{aligned}
& \mu(x)=-n x+i \text { if } x \in\left[\frac{i-1}{n}, \frac{i-\frac{1}{2}}{n}\right] \\
& \mu(x)=n x-i+1 \text { if } x \in\left[\frac{i-\frac{1}{2}}{n}, \frac{i}{n}\right] .
\end{aligned}
$$

Proposition 3.12. μ is a T_{E}-fuzzy t-subnorm of T_{E}, where T_{E} is the Łukasiewicz t-norm.

Proof. We must prove that for all $x, y \in[0,1]$,

$$
\begin{equation*}
\max (\mu(x)+\mu(y)-1,0) \leq \mu(\max (x+y-1,0)) \tag{1}
\end{equation*}
$$

Case a) There exist $i, j=1,2, \ldots, n$ such that $x \in\left[\frac{i-1}{n}, \frac{i-\frac{1}{2}}{n}\right]$ and $y \in\left[\frac{j-1}{n}, \frac{j-\frac{1}{2}}{n}\right]$. If $\mu(x)+\mu(y)-1 \leq 0$ or $x+y-1 \leq 0$, then the inequality (1) is satisfied trivially. Otherwise,

$$
\begin{equation*}
x+y-1 \in\left[\frac{i+j-2-n}{n}, \frac{i+j-1-n}{n}\right] \tag{2}
\end{equation*}
$$

and

$$
\mu(x+y-1)= \begin{cases}-n(x+y-1)+(i+j-1-n) & \text { if } x+y-1 \in\left[\frac{i+j-2-n}{n}, \frac{i+j-\frac{3}{2}-n}{n}\right] \\ n(x+y-1)-(i+j-1-n)+1 & \text { if } x+y-1 \in\left[\frac{i+j-\frac{3}{2}-n}{n}, \frac{i+j-1-n}{n}\right]\end{cases}
$$

- In the first case, we must prove

$$
-n x+i-n y+j-1 \leq-n x-n y+n+i+j-1-n
$$

which is trivially true.

- In the second case, we must prove

$$
-n x+i-n y+j-1 \leq n x+n y-n-i-j+1+n+1
$$

or equivalently

$$
2 n x+2 n y \geq 2 i+2 j-3
$$

or equivalently

$$
x+y-1 \geq \frac{i+j-\frac{3}{2}-n}{n}
$$

which is true by (2).

Case b) There exist $i, j=1,2, \ldots, n$ such that $x \in\left[\frac{i-\frac{1}{2}}{n}, \frac{i}{n}\right]$ and $y \in\left[\frac{j-\frac{1}{2}}{n}, \frac{j}{n}\right]$. If $\mu(x)+\mu(y)-1 \leq 0$ or $x+y-1 \leq 0$, then the inequality (1) is satisfied trivially. Otherwise,

$$
x+y-1 \in\left[\frac{i+j-1-n}{n}, \frac{i+j-n}{n}\right]
$$

and
$\mu(x+y-1)= \begin{cases}-n(x+y-1)+(i+j-n) & \text { if } x+y-1 \in\left[\frac{i+j-1-n}{n}, \frac{i+j-\frac{1}{2}-n}{n}\right] \\ n(x+y-1)-(i+j-n)+1 & \text { if } x+y-1 \in\left[\frac{i+j-\frac{1}{2}-n}{n}, \frac{i+j-n}{n}\right]\end{cases}$

- In the first case, we must prove

$$
n x-i+1+n y-j+1-1 \leq-n x-n y+n+i+j-n
$$

or equivalently

$$
2 n x+2 n y \leq 2 i+2 j-1
$$

or equivalently

$$
x+y-1 \leq \frac{i+j-\frac{1}{2}-n}{n}
$$

which is true by (3).

- In the second case, we must prove

$$
n x-i+1+n y-j+1-1 \leq n x+n y-n-i-j+n+1
$$

which is trivially true.
Case c) There exist $i, j=1,2, \ldots, n$ such that $x \in\left[\frac{i-1}{n}, \frac{i-\frac{1}{2}}{n}\right]$ (4) and $y \in$ $\left[\frac{j-\frac{1}{2}}{n}, \frac{j}{n}\right]$ (5). If $\mu(x)+\mu(y)-1 \leq 0$ or $x+y-1 \leq 0$, then the inequality (1) is satisfied trivially. Otherwise,

$$
x+y-1 \in\left[\frac{i+j-\frac{3}{2}-n}{n}, \frac{i+j-\frac{1}{2}-n}{n}\right]
$$

and

$$
\mu(x+y-1)= \begin{cases}-2 n(x+y-1)+2\left(i+j-\frac{1}{2}-n\right)-1 & \text { if } x+y-1 \in\left[\frac{i+j-\frac{3}{2}-n}{n}, \frac{i+j-1-n}{n}\right] \\ 2 n(x+y-1)-2\left(i+j-\frac{1}{2}-n\right)+1 & \text { if } x+y-1 \in\left[\frac{i+j-1-n}{n}, \frac{i+j-\frac{1}{2}-n}{n}\right]\end{cases}
$$

- In the first case, the right hand side extreme of the interval containing $x+y-1$ is $\frac{i+j-1-n}{n}$ (and NOT $\frac{i+j-\frac{1}{2}-n}{n}$) and we must prove

$$
-n x+i+n y-j+1-1 \leq-n x-n y+n+i+j-n
$$

or equivalently

$$
2 n y \leq 2 j
$$

or equivalently

$$
y \leq \frac{j}{n}
$$

which is true by (5)

- In the second case, the right hand side extreme of the interval containing $x+y-1$ is $\frac{i+j-1-n}{n}$ (and NOT $\frac{i+j-\frac{1}{2}-n}{n}$) and we must prove

$$
-n x+i+n y-j+1-1 \leq n x+n y-n-i-j+1+n+1
$$

or equivalently

$$
2 n x \geq 2 i-2
$$

or equivalently

$$
x \geq \frac{i-1}{n} .
$$

which is true from (4).

Example 3.13. In particular, the classic conjunction \wedge

$$
x \wedge y=\left\{\begin{array}{l}
1 \text { if } x=y=1 \\
0 \text { otherwise }
\end{array}\right.
$$

corresponds to $n=1$ in 3.6.1. In this case,

$$
\mu(x)= \begin{cases}1-x & \text { if } x \in\left[0, \frac{1}{2}\right] \\ x & \text { if } x \in\left[\frac{1}{2}, 1\right]\end{cases}
$$

Then the fuzzification of \wedge is

$$
E(x, y, \mu(x), \mu(y))=\max (2 x+2 y-3,0) .
$$

Example 3.14. Example 3.6.1 with $n=2$ is the definition of the conjunction \wedge_{3} of Eukasiewicz three-valued logic:

$$
x \wedge_{3} y=\left\{\begin{array}{l}
1 \text { if } x=y=1 \\
\frac{1}{2} \text { if } x=1 \text { and } y=\frac{1}{2} \\
\frac{1}{2} \text { if } x=\frac{1}{2} \text { and } y=1 \\
0 \text { otherwise } .
\end{array}\right.
$$

According to 3.11 the corresponding fuzzy subset μ of $[0,1]$ is represented in Figure 1 and the fuzzification of \wedge_{3} is $E(x, y, \mu(x), \mu(y))$ represented in Figure 2. For example, the truth degree of the conjunction of 0.47 and 0.97 is 0.32 and the truth degree of 0.9 and 0.95 is 0.55 .

Figure 1:

Let us find the T_{M}-fuzzy t-subnorms of $\left([0,1], T_{M}\right)$ and T_{M}-fuzzy t-subconorms of $\left([0,1], S_{M}\right)$.

Proposition 3.15. A fuzzy subset μ of $[0,1]$ is a T_{M}-fuzzy t-subnorm of $\left([0,1], T_{M}\right)$ if and only if $\mu(1)=1$.

Proof. Every fuzzy subset μ of $[0,1]$ satisfies

$$
\min (\mu(x), \mu(y)) \leq \mu(\min (x, y))
$$

for every $x, y \in[0,1]$.
Proposition 3.16. A fuzzy subset μ of $[0,1]$ is a T_{M}-fuzzy t-subconorm of $\left([0,1], S_{M}\right)$ if and only if $\mu(0)=1$.

Figure 2: The fuzzification of \wedge_{3}.

Proof. Every fuzzy subset of $[0,1]$ satisfies

$$
\min (\mu(x), \mu(y)) \leq \mu(\max (x, y))
$$

for every $x, y \in[0,1]$.
Let us now turn out our attention to continuous Archimedean t-norms and t -conorms.

Proposition 3.17. Let T_{1} and T_{2} be two continuous Archimedean t-norms and t_{1} and t_{2} additive generators of T_{1} and T_{2} respectively. A fuzzy subset μ of $[0,1]$ is a T_{1}-fuzzy t-subnorm of $\left([0,1], T_{2}\right)$ if and only if the mapping $f:[0, \infty] \rightarrow[0, \infty] f=t_{1} \circ \mu \circ t_{2}^{[-1]}$ is subadditive.

Proof. μ is a T_{1}-fuzzy t-subnorm of $\left([0,1], T_{2}\right)$ if and only if for all $x, y \in[0,1]$

$$
T_{1}(\mu(x), \mu(y)) \leq \mu\left(T_{2}(x, y)\right)
$$

or

$$
t_{1}^{[-1]}\left(t_{1}(\mu(x))+t_{1}(\mu(y))\right) \leq \mu\left(t_{2}^{[-1]}\left(t_{2}(x)+t_{2}(y)\right)\right)
$$

which is equivalent to

$$
t_{1}(\mu(x))+t_{1}(\mu(y)) \geq t_{1}\left(\mu\left(t_{2}^{[-1]}\left(t_{2}(x)+t_{2}(y)\right)\right)\right)
$$

Putting $t_{2}(x)=a$ and $t_{2}(y)=b$,

$$
t_{1}\left(\mu\left(t_{2}^{-1}(a)\right)\right)+t_{1}\left(\mu\left(t_{2}^{-1}(b)\right)\right) \geq t_{1}\left(\mu\left(t_{2}^{[-1]}(a+b)\right)\right) .
$$

Corollary 3.18. Let $f:[0, \infty] \rightarrow[0, \infty]$ be a subadditive mapping and T_{1} and T_{2} two continuous Archimedean t-norms with t_{1} and t_{2} additive generators of T_{1} and T_{2} respectively. Then $t_{1}^{[-1]} \circ f \circ t_{2}$ is a T_{1}-fuzzy t-subnorm of $\left([0,1], T_{2}\right)$.
Example 3.19. If in the previous corollary $T_{1}=T_{2}=T, t$ is an additive generator of T and f is the identity map, we get that the identity map on the unit interval is a T-fuzzy t-subnorm of $([0,1], T)$.

Remark: Regarding of t-norms, the most important case is when the two t-norms coincide. If $T_{1}=T_{2}=T$, we can consider different additive generators of T and from the same subadditive mapping f we can obtain different T-fuzzy t-subnorms.

Example 3.20. Let T_{E} be the Eukasiewicz t-norm, $t_{1}(x)=1-x$ and $t_{2}(x)=$ $2-2 x$ two additive generators of E, and $f(x)=\sqrt{x}$. Then $\mu_{1}(x)=\left(t_{1}^{[-1]} \circ\right.$ $\left.f \circ t_{1}\right)(x)=1-\sqrt{1-x}$ and $\mu_{2}(x)=\left(t_{2}^{[-1]} \circ f \circ t_{2}\right)(x)=1-\sqrt{\frac{1-x}{2}}$ are two different T-fuzzy t-subnorms of T.

In a similar way we can prove the next proposition and corollary.
Proposition 3.21. Let T and S be a continuous Archimedean t-norm and t-conorm respectively and t and s additive generators of T and S respectively. A fuzzy subset μ of $[0,1]$ is a T-fuzzy t-subconorm of $([0,1], S)$ if and only if the mapping $f:[0, \infty] \rightarrow[0, \infty] f=t \circ \mu \circ s^{[-1]}$ is subadditive.
Corollary 3.22. Let $f:[0, \infty] \rightarrow[0, \infty]$ be a subadditive mapping and T and S a continuous Archimedean t-norm and t-conorm respectively with t and s additive generators of T and S respectively. Then $t^{[-1]} \circ f \circ s$ is a T-fuzzy t-subconorm of $([0,1], S)$.

Again, different selections of the additive generators of T and S will lead to different T-fuzzy t-subconorms of S.

The duality between a t-conorm and the corresponding t-norm is desirable. If the t-norm is nilpotent, we can consider its corresponding negation and dual t-conorm.

Proposition 3.23. [12] Let T be a nilpotent t-norm and t an additive generator of T. Then $\varphi_{T}:[0,1] \rightarrow[0,1]$ defined for all $x \in[0,1]$ by $\varphi_{T}(x)=$ $t^{[-1]}(t(0)-t(x))$ is a strong negation.

Proposition 3.24. Let T be a nilpotent t-norm, t an additive generator of T, φ_{T} its associated negation and $\left(T, S, \varphi_{T}\right)$ a De Morgan triplet. Then S is a nilpotent t-conorm and $s(x)=t(0)-t(x)$ and $s^{[-1]}(x)=t^{[-1]}(t(0)-x)$ are an additive generator of S and its corresponding pseudoinverse.
Proof. We will calculate $S(x, y)$ as $S(x, y)=\varphi_{T}\left(T\left(\varphi_{T}(x), \varphi_{T}(y)\right)\right.$) and as $S(x, y)=s^{[-1]}(s(x)+s(y))$ and see that they coincide.

$$
\begin{aligned}
& S(x, y)= \varphi_{T}\left(T\left(\varphi_{T}(x), \varphi_{T}(y)\right)\right) \\
&=t^{[-1]}\left(t(0)-t\left(t^{[-1]}\left[t\left(t^{[-1]}(t(0)-t(x))+t\left(t^{[-1]}(t(0)-t(y))\right)\right]\right)\right)\right. \\
&=t^{[-1]}\left(t(0)-t\left(t^{[-1]}((t(0)-t(x))+(t(0)-t(y)))\right)\right. \\
&=t^{[-1]}(t(0)-((t(0)-t(x))+(t(0)-t(y)))) \\
&=t^{[-1]}(t(x)+t(y)-t(0)) . \\
& \begin{aligned}
S(x, y) & =s^{[-1]}(s(x)+s(y)) \\
& =t^{[-1]}(t(0)-s(x)-s(y)) \\
& =t^{[-1]}(t(0)-t(0)+t(x)-t(0)+t(y)) \\
& =t^{[-1]}(t(x)+t(y)-t(0)) .
\end{aligned}
\end{aligned}
$$

Moreover, S is nilpotent because $s(1)=t(0)-t(1)=t(0)<\infty$.
As particular cases of Propositions 3.21 and Corollary 3.22 we obtain the following two results.
Proposition 3.25. Let T be a nilpotent t-norm, t an additive generator of T, φ_{T} its associated negation and $\left(T, S, \varphi_{T}\right)$ a De Morgan triplet. Then a fuzzy subset μ of $[0,1]$ is a T-fuzzy t-subconorm of $([0,1], S)$ if and only if $f(x)=t\left(\mu\left(t^{[-1]}(t(0)-x)\right)\right)$ is subadditive.
Proposition 3.26. Let T be a nilpotent t-norm, t an additive generator of T, φ_{T} its associated negation, $\left(T, S, \varphi_{T}\right)$ a De Morgan triplet and $f:[0, \infty] \rightarrow$ $[0, \infty]$ a subadditive mapping. Then fuzzy subset μ of $[0,1]$ defined for all $x \in[0,1]$ by

$$
\mu(x)=t^{[-1]}(f(t(0)-t(x)))
$$

is a T-fuzzy t-subconorm of S.

Example 3.27. If in the last proposition we consider $f=i d$, the identity map, then we get that φ_{T} is a T-fuzzy t-subconorm of S, the dual t-subconorm of T with respect to φ_{T}.

In the strict case, we can consider the natural negation $n(x)=1-x$.
Proposition 3.28. Let T be a strict t-norm, t an additive generator of T, n the natural negation and (T, S, n) a De Morgan triplet. Then S is a strict t conorm and $s(x)=t(1-x)$ and $s^{-1}(x)=1-t^{-1}(x)$ are an additive generator of S and its corresponding pseudoinverse.

Proof. We will calculate $S(x, y)$ as $S(x, y)=n(T(n(x), n(y)))$ and as $S(x, y)=$ $s^{-1}(s(x)+s(y))$ and see that they coincide.

$$
\begin{aligned}
S(x, y) & =n(T(n(x), n(y))) \\
& =1-T(1-x, 1-y) \\
& =1-t^{-1}(t(1-x)+t(1-y)) . \\
S(x, y) & =s^{-1}(s(x)+s(y)) \\
& =1-t^{-1}(t(1-x)+t(1-y)) .
\end{aligned}
$$

Moreover, S is strict because $s(1)=t(0)=\infty$.
As particular cases of Propositions 3.21 and Corollary 3.22 we obtain the following two results.

Proposition 3.29. Let T be a strict t-norm, t an additive generator of T, n the natural negation and (T, S, n) a De Morgan triplet. Then a fuzzy subset μ of $[0,1]$ is a T-fuzzy t-subconorm of $([0,1], S)$ if and only if $f(x)=t(\mu(1-$ $\left.t^{[-1]}(x)\right)$) is subadditive.

Proposition 3.30. Let T be a strict t-norm, t an additive generator of T, n the natural negation, (T, S, n) a De Morgan triplet and $f:[0, \infty] \rightarrow[0, \infty]$ a subadditive mapping. Then fuzzy subset μ of $[0,1]$ defined for all $x \in[0,1]$ by

$$
\mu(x)=t^{[-1]}(f(t(1-x)))
$$

is a T-fuzzy t-subconorm of S.
Example 3.31. If in the last proposition we consider $f=i d$, the identity map, then we get that n, the natural negation, is a T-fuzzy t-subconorm of S, the dual t-conorm of T with respect to n.

4 Vague Monoids

In the crisp case, if (M, \circ) is a set with an operation $\circ: M \times M \rightarrow M$ and \sim is an equivalence relation on M, then \circ is compatible with \sim if and only if

$$
x \sim x^{\prime} \text { and } y \sim y^{\prime} \text { implies } x \circ y \sim x^{\prime} \circ y^{\prime} .
$$

In this case, an operation \tilde{o} can be defined on $\bar{M}=M / \sim$ by

$$
\bar{x} \tilde{\circ} \bar{y}=\overline{x \circ y}
$$

where \bar{x} and \bar{y} are the equivalence classes of x and y with respect to \sim.
Demirci generalized this idea to the fuzzy framework by introducing the concept of vague algebra, which basically consists of fuzzy operations compatible with a given fuzzy equivalence relation [3].

In this section we will develop general results of vague monoids that will be applied to vague t-norms and t-conorms in Section 5.

The fuzzification of equivalence relations are fuzzy relations called T-fuzzy equivalences or T-indistinguishability operators. They are essential in fuzzy logic and have been widely studied [10]. We need to recall their definition.

Definition 4.1. Let T be a t-norm and X a set. A fuzzy relation E : $X \times X \rightarrow[0,1]$ is a T-indistinguishability operator if for all $x, y, z \in X$

- $E(x, x)=1$
- $E(x, y)=E(y, x)$
- $T(E(x, y), E(y, z)) \leq E(x, z)$.

If $E(x, y)=1$ implies $x=y$, then it is said that E separates points.
Definition 4.2. A fuzzy binary operation on a set M is a mapping õ : $M \times M \times M \rightarrow[0,1]$.
$\tilde{o}(x, y, z)$ is interpreted as the degree in which z is $x \circ y$.
Definition 4.3. Let E be T-indistinguishability operator on M. A T-vague binary operation on M is a fuzzy binary operation on M satisfying for all $x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in M$
a) $T\left(\tilde{o}(x, y, z), E\left(x, x^{\prime}\right), E\left(y, y^{\prime}\right), E\left(z, z^{\prime}\right)\right) \leq \tilde{o}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$.
b) $T\left(\tilde{\circ}(x, y, z), \tilde{o}\left(x, y, z^{\prime}\right)\right) \leq E\left(z, z^{\prime}\right)$.
c) For all $x, y \in M$ there exists $z \in M$ such that $\tilde{o}(x, y, z)=1$.

These conditions fuzzify the idea of compatibility between a binary operation and an equivalence relation on a set.

- Condition a) states that if z is the (vague) result of operating x and y and $x^{\prime}, y^{\prime}, z^{\prime}$ are indistinguishable from x, y, z, then z^{\prime} is the vague result of operating x^{\prime} and y^{\prime}.
- b) asserts that if z and z^{\prime} are vague results of the operation $x \circ y$, then they are indistinguishable.
- c) says that for every x and y there exists z that is exactly the result of operating x with y.

Proposition 4.4. Let E be T-indistinguishability operator on M separating points and õ a vague binary operation on M. Then the z of Definition 4.3c) is unique.

Proof. Let $z, z^{\prime} \in M$ satisfy $\tilde{o}(x, y, z)=1$ and $\tilde{o}\left(x, y, z^{\prime}\right)=1$. From Definition 4.3b) $1=T\left(\tilde{o}(x, y, z), \tilde{o}\left(x, y, z^{\prime}\right)\right) \leq E\left(z, z^{\prime}\right)$. Hence $E\left(z, z^{\prime}\right)=1$ and $z=$ z^{\prime}.

Definition 4.5. Let õ be a T-vague binary operation on M with respect to a T-indistinguishability operator E on M. Then (M, \tilde{o}) is a T-vague monoid if and only if it satisfies the following properties.

1. Associativity. $\forall x, y, z, d, m, q, w, \in M$

$$
T(\tilde{o}(y, z, d), \tilde{o}(x, d, m), \tilde{o}(x, y, q), \tilde{o}(q, z, w)) \leq E(m, w) .
$$

2. Identity. There exists a (two sided) identity element $e \in M$ such that

$$
T(\tilde{o}(e, x, x), \tilde{o}(x, e, x))=1
$$

for each $x \in M$.
A T-vague monoid is commutative if and only if

$$
\forall x, y, m, w \in M, T(\tilde{o}(x, y, m), \tilde{o}(y, x, w)) \leq E(m, w) .
$$

For a given T-vague monoid (M, \tilde{o}), the identity is unique if the T indistinguishability operator separates points.

Proposition 4.6. Let T be a t-norm, E a T-indistinguishability operator separating points on a set M and $(M, \tilde{o}) a T$-vague monoid. Then the identity element is unique.

Proof. Let e and e^{\prime} be two identity elements of M. Then, since e is an identity element,

$$
\tilde{o}\left(e, e^{\prime}, e^{\prime}\right)=1
$$

and since e^{\prime} is an identity element,

$$
\tilde{o}\left(e, e^{\prime}, e\right)=1
$$

From Definition 4.3c),

$$
1=T\left(\tilde{o}\left(e, e^{\prime}, e^{\prime}\right), \tilde{o}\left(e, e^{\prime}, e\right)\right) \leq E\left(e, e^{\prime}\right)
$$

So $E\left(e, e^{\prime}\right)=1$ and $e=e^{\prime}$ because E separates points.
Definition 4.7. Let \circ be a binary operation on M, and E a T-indistinguishability operator on $M . E$ is regular with respect to \circ if and only if for all $x, y, z \in M$

$$
E(x, y) \leq E(x \circ z, y \circ z)
$$

and

$$
E(x, y) \leq E(z \circ x, z \circ y)
$$

Proposition 4.8. Let E be a regular T-indistinguishability operator on M with respect to a binary operation o on M.
a) The fuzzy mapping õ : $M \times M \times M \rightarrow[0,1]$ defined for all $x, y, z \in M$ by

$$
\tilde{o}(x, y, z)=E(x \circ y, z) \text { for all } x, y, z \in M,
$$

is a T-vague binary operation on M.
b) If (M, \circ) is a monoid, then (M, \tilde{o}) is a T-vague monoid.

Proof.
a) We must prove that \tilde{o} satisfies the properties of Definition 4.3. Let $x, y, z, x^{\prime}, y^{\prime}, z^{\prime} \in M$.
4.3 a)

$$
\begin{aligned}
& T\left(\tilde{\circ}(x, y, z), E\left(x, x^{\prime}\right), E\left(y, y^{\prime}\right), E\left(z, z^{\prime}\right)\right) \\
& =T\left(E(x \circ y, z), E\left(x, x^{\prime}\right), E\left(y, y^{\prime}\right), E\left(z, z^{\prime}\right)\right) \\
& \leq T\left(E\left(x \circ y, z^{\prime}\right), E\left(x, x^{\prime}\right), E\left(y, y^{\prime}\right)\right) \\
& \leq T\left(E\left(x \circ y, z^{\prime}\right), E\left(x \circ y, x^{\prime} \circ y\right), E\left(y, y^{\prime}\right)\right) \\
& \leq T\left(E\left(x^{\prime} \circ y, z^{\prime}\right), E\left(y, y^{\prime}\right)\right) \\
& \leq T\left(E\left(x^{\prime} \circ y, z^{\prime}\right), E\left(x^{\prime} \circ y, x^{\prime} \circ y^{\prime}\right)\right) \\
& \leq E\left(x^{\prime} \circ y^{\prime}, z^{\prime}\right)=\tilde{o}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) .
\end{aligned}
$$

$4.3 \mathrm{~b})$

$$
\begin{aligned}
& T\left(\tilde{\circ}(x, y, z), \tilde{o}\left(x, y, z^{\prime}\right)\right) \\
& =T\left(E(x \circ y, z), E\left(x \circ y, z^{\prime}\right)\right) \\
& \leq E\left(z, z^{\prime}\right)
\end{aligned}
$$

4.3 c) For $x, y \in M$ we can consider $z=x \circ y$. Then

$$
\tilde{o}(x, y, z)=E(x \circ y, x \circ y)=1 .
$$

b)

Associativity. Using the associativity of o and the regularity of $E, \forall x, y, z, d, m, q, w \in$ M,

$$
\begin{aligned}
& T(\tilde{\circ}(y, z, d), \tilde{\circ}(x, d, m), \tilde{\circ}(x, y, q), \tilde{\circ}(q, z, w)) \\
& =T(E(y \circ z, d), E(x \circ d, m), E(x \circ y, q), E(q \circ z, w)) \\
& \leq T(E(x \circ(y \circ z), x \circ d), E(x \circ d, m), E((x \circ y) \circ z, q \circ z), E(q \circ z, w)) \\
& \leq T(E(x \circ(y \circ z), m), E((x \circ y) \circ z, w)) \\
& \leq E(m, w) .
\end{aligned}
$$

Identity element. Let e be the identity element of M. Then

$$
\begin{aligned}
& \tilde{o}(x, e, x)=E(x \circ e, x)=E(x, x)=1 \\
& \tilde{\circ}(e, x, x)=E(e \circ x, x)=E(x, x)=1
\end{aligned}
$$

and e is the identity element of \tilde{o}

From the equality $\tilde{o}(x, y, z)=E(x \circ y, z)$, fixed a regular T-indistinguishability operator separating points on a monoid (M, \circ) we obtain a vague monoid on M in a natural way. Reciprocally, from a vague monoid on M we obtain a monoid (M, \circ).

Proposition 4.9. Let (M, \tilde{o}) be a vague monoid with respect to a T-indistinguishability operator E separating points. Then (M, \circ) is a monoid where $x \circ y$ is the unique $z \in M$ such that $\tilde{o}(x, y, z)=1$.

Proof.

Associativity

$$
\begin{aligned}
1 & =T(\tilde{\circ}(y, z, y \circ z), \tilde{\circ}(x, y \circ z, x \circ(y \circ z)), \tilde{\circ}(x, y, x \circ y), \tilde{\circ}(x \circ y, z,(x \circ y) \circ z)) \\
& =T(E(y \circ z, y \circ z), E(x \circ(y \circ z), x \circ(y \circ z)), E(x \circ y, x \circ y), E((x \circ y) \circ z,(x \circ y) \circ z)) \\
& \leq E(x \circ(y \circ z),(x \circ y) \circ z))
\end{aligned}
$$

and form this, $x \circ(y \circ z)=(x \circ y) \circ z$.
Identity

$$
\begin{aligned}
& 1=\tilde{o}(x, e, x)=E(x \circ e, x) \\
& 1=\tilde{o}(e, x, x)=E(e \circ x, x)
\end{aligned}
$$

So, $x \circ e=x$ and $e \circ x=x$ and e is the identity element of (M, \circ).

Definition 4.10. In the conditions of the previous proposition, we will say that (M, \circ) is the monoid associated to the vague monoid ($M, \tilde{\circ}$).

At this point, given a monoid (M, \circ) and a t-norm T we have bijective maps between their T-vague monoids and their regular T-indistinguishability operators and a simple way to generate one of them knowing the other one:

- $\tilde{o}(x, y, z)=E(x \circ y, z)$.
- $E(x, y)=\tilde{o}(x, e, y)$.
(M, \tilde{o}) is commutative if and only if its associated monoid (M, \circ) is commutative.

Proposition 4.11. Let E be a T-indistinguishability operator separating points, ($M, \tilde{\circ}$) a T-vague operation and (M, \circ) its associated operation ($x \circ y=$ z if and only if $\tilde{o}(x, y, z)=1)$. Then (M, \tilde{o}) is commutative if and only if (M, \circ) is commutative.

Proof.
$\Rightarrow)$

$$
1=T(\tilde{\circ}(x, y, x \circ y), \tilde{\circ}(y, x, y \circ x)) \leq E(x \circ y, y \circ x) .
$$

So, $E(x \circ y, y \circ x)=1$ and $x \circ y=y \circ x$.
$\Leftarrow)$

$$
\begin{aligned}
T\left(\tilde{o}(x, y, z), \tilde{o}\left(y, x, z^{\prime}\right)\right) & =T\left(E(x \circ y, z), E\left(y \circ x, z^{\prime}\right)\right) \\
& =T\left(E(x \circ y, z), E\left(x \circ y, z^{\prime}\right)\right) \\
& \leq E\left(z, z^{\prime}\right) .
\end{aligned}
$$

In [4], [5] homomorphisms between T-vague algebras have been studied. In this section we will use them to relate vague monoids and fuzzy monoids.

Definition 4.12. Let (M, \tilde{o}) and ($N, \tilde{*}$) be two T-vague monoids with respect to the T-indistinguishability operators E and F respectively. A map $f: M \rightarrow$ N is a homomorphism from M onto N if and only if

$$
\tilde{o}(x, y, z) \leq \tilde{*}(f(x), f(y), f(z)) \forall x, y, z \in M .
$$

Lemma 4.13. Let (M, \tilde{o}) and $(N, \tilde{*})$ be two T-vague monoids with respect to the T-indistinguishability operators E and F respectively and $f: M \rightarrow N$ a homomorphism from M onto N. If e is the identity element of M, then $f(e)$ is the identity element of N.

Proof.

$$
\begin{aligned}
& 1=\tilde{o}(x, e, x) \leq \tilde{*}(f(x), f(e), f(x)) \\
& 1=\tilde{o}(e, x, x) \leq \tilde{*}(f(e), f(x), f(x))
\end{aligned}
$$

So, $\tilde{*}(f(x), f(e), f(x))=\tilde{*}(f(e), f(x), f(x))=1$ and $f(e)$ is the identity element of N.
Proposition 4.14. Let (M, \tilde{o}) and $(M, \tilde{*})$ be two T-vague monoids with respect to the T-indistinguishability operators E and F respectively such that $E \leq F$. Then the identity map id : $M \rightarrow M$ is a homomorphism from (M, \tilde{o}) onto (M, $($ ※).
Proof.

$$
\tilde{\circ}(x, y, z)=E(x \circ y, z) \leq F(x \circ y, z) \leq \tilde{*}(x, y, z)
$$

It is clear that a crisp monoid (M, \circ) is a T-vague monoid defining $\circ(x, y, z)=1$ if $x \circ y=z$ and 0 otherwise, and considering the crisp equality as the T-indistinguishability operator.
Corollary 4.15. Let (M, \tilde{o}) be a T-vague monoid with respect to a T-indistinguishability operator E separating points. Then the identity map id : $M \rightarrow M$ is a homomorphism from (M, \circ) onto (M, \tilde{o}).
Definition 4.16. Let $f: M \rightarrow N$ be a homomorphism from (M, õ) onto $(N, \tilde{*})$. The kernel of f is the fuzzy subset μ of M defined by $\mu(x)=$ $E\left(f(x), e^{\prime}\right) \forall x \in M$ where e^{\prime} is the identity element of $(N, \tilde{*})$.
Proposition 4.17. Let (M, õ) be a T-vague monoid with respect to a regular T-indistinguishability operator E separating points. The kernel of the identity map id : $M \rightarrow M$ is a T-fuzzy submonoid of (M, \circ).
Proof.
a)

$$
\operatorname{kerid}(e)=E(e, e)=1
$$

b)

$$
\begin{aligned}
T(\operatorname{kerid}(x), \operatorname{kerid}(y)) & =T(E(x, e), E(y, e)) \\
& \leq T(E(x \circ y, y), E(y, e)) \\
& \leq E(x \circ y, e)
\end{aligned}
$$

5 Vague t-norms and Vague t-conorms

The results of the previous section will be applied to the case of t-norms and t-conorms.

Given a t-norm T, we will consider always the T-indistinguishability operator E_{T} and their powers that separate points.

Definition 5.1. Let T be a left continuous t-norm. Its residuation \vec{T} is defined for all $x, y \in[0,1]$ by

$$
\vec{T}(x, y)=\sup \{\alpha \in[0,1] \mid T(x, \alpha) \leq y\}
$$

Definition 5.2. Given a t-norm T, the natural indistinguishability operator E_{T} on $[0,1]$ associated to T, is defined for all $x, y \in[0,1]$ by

$$
E_{T}(x, y)=\min (\vec{T}(x, y), \vec{T}(y, x))
$$

Note. E_{T} is usually called biresiduation. Here we prefer natural indistinguishability operator to stress the fact that it is indeed an indistinguishability operator.

Example 5.3.

- If T_{M} is the minimum t-norm, then

$$
E_{T_{M}}(x, y)= \begin{cases}\min (x, y) & \text { if } x \neq y \\ 1 & \text { if } x=y\end{cases}
$$

- If T is continuous Archimedean and t is an additive generator of T, then $E_{T}(x, y)=t^{-1}(|t(x)-t(y)|)$.
In particular
- If $T=T_{E}$ is the Eukasiewicz t-norm, then $E_{T}(x, y)=1-|x-y|$.
- If T is the product t-norm, then $E_{T}(x, y)=\frac{\min (x, y)}{\max (x, y)}$ with the convention $\frac{0}{0}=1$.

We need to recall the concept of power with respect to a t-norm $[8,10]$ to define powers of E_{T}.

Definition 5.4. [10] Given a continuous t-norm $T, T(\overbrace{x, x, \ldots, x}^{n \text { times }})$-the n-th power of x - will be denoted by by $x^{(n)}$.

The n-th root $x^{\left(\frac{1}{n}\right)}$ of x with respect to T is defined by

$$
x^{\left(\frac{1}{n}\right)}=\sup \left\{z \in[0,1] \mid z_{T}^{(n)} \leq x\right\}
$$

and for $m, n \in \mathbb{N}, x^{\left(\frac{m}{n}\right)}=\left(x^{\left(\frac{1}{n}\right)}\right)^{(m)}$.
If $r \in \mathbb{R}^{+}$is a positive real number, let $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ be a sequence of rational numbers with $\lim _{n \rightarrow \infty} a_{n}=r$. For any $x \in[0,1]$, the power $x^{(r)}$ is

$$
x^{(r)}=\lim _{n \rightarrow \infty} x^{\left(a_{n}\right)} .
$$

Proposition 5.5. [10] Let T be a continuous Archimedean t-norm with additive generator $t, x \in[0,1]$ and $r \in \mathbb{R}^{+}$. Then

$$
x^{(r)}=t^{[-1]}(r t(x)) .
$$

Proposition 5.6. [10] Let T be a continuous t-norm, E_{T} the natural indistinguishability operator associated to T and $r>0$. Then $E_{T}^{(r)}$ defined for all $x, y, \in[0,1]$ by $E(x, y)=\left(E_{T}(x, y)\right)^{(r)}$ is a T-indistinguishability operator.

Example 5.7.

- If T_{M} is the minimum t-norm, then $E_{T_{M}}^{(r)}=E_{T_{M}}$.
- If T is continuous Archimedean and t is an additive generator of T, then $E_{T}^{(r)}(x, y)=t^{[-1]}(r|t(x)-t(y)|)$.
In particular
- If $T=T_{E}$ is the Eukasiewicz t-norm, then $E_{T}^{(r)}(x, y)=\max (1-$ $r|x-y|, 0)$.
- If $T=T_{P}$ is the product t-norm, then $E_{T}^{(r)}(x, y)=\left(\frac{\min (x, y)}{\max (x, y)}\right)^{r}$.

Proposition 5.8. E_{T} is regular on $([0,1], T)$.
Proof. Let T be a left continuous t-norm. We must prove that for all $x, y, z \in$ $[0,1], E_{T}(x, y) \leq E_{T}(T(x, z), T(y, z))$. Assuming without loss of generality that $x \geq y$, this is equivalent to prove $\vec{T}(x, y) \leq \vec{T}(T(x, z), T(y, z))$ and this is done in Proposition 2.2 of [1].

Corollary 5.9. Let T be a continuous t-norm and $r>0$. Then $E_{T}^{(r)}$ is regular.

Proof. It is a consequence of the fact that if $x, y \in[0,1]$ with $x \leq y$, then $x^{(r)} \leq y^{(r)}$.

Definition 5.10. Let T be a t-norm and E a T-indistinguishability operator on $[0,1]$ separating points. A T-vague monoid $([0,1], \widetilde{T})$ whose associated operation is $T(T(x, y)=z$ if and only if $\widetilde{T}(x, y, z)=1)$ is called a T-vague t-norm.

Definition 5.11. Let T be a continuous t-norm and $r>0$. Then \widetilde{T}_{r} is defined for all $x, y, z \in[0,1]$ by

$$
\widetilde{T}_{r}(x, y, z)=E_{T}^{(r)}(T(x, y), z)
$$

Proposition 5.12. \widetilde{T}_{r} is a T-vague t-norm.
Proof. Consequence of Proposition 4.8 because $E_{T}^{(r)}$ is regular.

Example 5.13.

- If $T=T_{M}$ is the minimum t-norm, then

$$
\widetilde{T}_{r}(x, y, z)= \begin{cases}1 & \text { if } z=\min (x, y) \\ \min (x, y, z) & \text { otherwise }\end{cases}
$$

- If T is continuous Archimedean and t is an additive generator of T, then

$$
\widetilde{T}_{r}(x, y, z)= \begin{cases}t^{[-1]}(r|t(x)-t(y)|-t(z)) & \text { if } t(x)+t(y) \leq t(0) \\ t^{[-1]}(r|t(0)-t(z)|) & \text { otherwise }\end{cases}
$$

In particular

- If $T=T_{E}$ is the Eukasiewicz t-norm, then

$$
\widetilde{T}_{r}(x, y, z)= \begin{cases}z-r|x-y| & \text { if } x+y \geq 1 \text { and } z+r|x-y| \leq 2 \\ 0 & \text { if } x+y \geq 1 \text { and } z+r|x-y|>2 \\ 1-r z & \text { if } x+y<1 \text { and } r z \leq 1 \\ 0 & \text { if } x+y<1 \text { and } r z>1\end{cases}
$$

- If $T=T_{P}$ is the product t-norm, then

$$
\widetilde{T}_{r}(x, y, z)=\left(\frac{\min (x y, z)}{\max (x y, z)}\right)^{r}
$$

Proposition 5.14. Let T be a continuous t-norm and $r \geq s>0$. Then the identity map id : $[0,1] \rightarrow[0,1]$ is a homomorphism from $\left([0,1], \widetilde{T}_{r}\right)$ onto $\left([0,1], \widetilde{T}_{s}\right)$

Proof. If $r \geq s$, then $E_{T}^{(r)} \leq E_{T}^{(s)}$ and we can apply Proposition 4.14.
Proposition 5.15. Let T be a continuous t-norm and $r>0$. Then the identity map id : $[0,1] \rightarrow[0,1]$ is a homomorphism from $([0,1], T)$ onto $\left([0,1], \widetilde{T}_{s}\right)$

Proof. For every $r>0, E_{T}^{(r)} \geq$ Id where Id is the crisp equality on $[0,1]$ and we can apply Proposition 4.14.

Proposition 5.16. Let T be a continuous t-norm and $r \gtrsim s>0$. Then the kernel of the identity map id : $[0,1] \rightarrow[0,1]$ from $\left([0,1], \widetilde{T}_{r}\right)$ onto $\left([0,1], \widetilde{T}_{s}\right)$ is a T-fuzzy t-subnorm of $([0,1], T)$.

Proof. It is a special case of Proposition 4.17.
Proposition 5.17. Let T be a continuous t-norm and $r>0$. Then the kernel of the identity map id : $[0,1] \rightarrow[0,1]$ from $([0,1], T)$ onto $\left([0,1], \widetilde{T}_{s}\right)$ is a T-fuzzy t-subnorm of $([0,1], T)$.

Proof. It is a special case of Proposition 4.17.
These kernels are of the form $\mu(x)=E_{T}^{(r)}(x, 1)$. For example, if T is the Łukasiewicz t-norm, the graphics of these T-fuzzy T-subnorms of T are the segments in $[0,1]$ ending at the point $(1,1)$.

Until now, in this section we have studied vague t-norms. Analogously we can consider vague t-conorms.

First we will see that the powers of E_{T} are regular with respect to tconorms.

Proposition 5.18. Let T_{M} be the minimum t-norm and S_{M} the maximum t-conorm. Then $E_{T_{M}}$ is regular with respect to S_{M}.

Proof. We must prove that for all $x, y, z \in[0,1], E_{T_{M}}(x, y) \leq E_{T_{M}}(\max (x, z), \max (y, z))$.
Without loss of generality we can assume $x \geq y$. There are three possibilities
a) $z \geq x \geq y$: In this case $E_{T_{M}}(\max (x, z), \max (y, z))=E_{T_{M}}(z, z)=1 \geq$ $E_{T_{M}}(x, y)$.
b) $x \geq z \geq y:$ In this case $E_{T_{M}}(\max (x, z), \max (y, z))=E_{T_{M}}(x, z) \geq$ $E_{T_{M}}(x, y)$.
c) $x \geq y \geq z:$ In this case $E_{T_{M}}(\max (x, z), \max (y, z))=E_{T_{M}}(x, y)$.

Proposition 5.19. Let T be a nilpotent t-norm, φ_{T} its associated negation and $\left(T, S, \varphi_{T}\right)$ a De Morgan triplet. Then E_{T} is regular with respect to S.

Proof. We must prove that for all $x, y, z \in[0,1], E_{T}(x, y) \leq E_{T}(S(x, z), S(y, z))$.
From Proposition 3.24,
If both $t(x)+t(z)-t(0) \geq 0$ and $t(y)+t(z)-t(0) \geq 0$, then

$$
\begin{aligned}
& E_{T}\left(t^{[-1]}(t(x)+t(z)-t(0)), t^{[-1]}(t(y)+t(z)-t(0))\right) \\
& =t^{[-1]}(|t(x)+t(z)-t(0)-(t(y)+t(z)-t(0))|) \\
& =t^{[-1]}(|t(x)-t(y)|)=E_{T}(x, y)
\end{aligned}
$$

If both $t(x)+t(z)-t(0) \leq 0$ and $t(y)+t(z)-t(0) \leq 0$, then

$$
\begin{aligned}
& E_{T}\left(t^{[-1]}(t(x)+t(z)-t(0)), t^{[-1]}(t(y)+t(z)-t(0))\right) \\
& =E_{T}(1,1)=1 \geq E_{T}(x, y)
\end{aligned}
$$

If $t(x)+t(z)-t(0) \leq 0$ and $t(y)+t(z)-t(0) \geq 0,(x>y)$, then

$$
\begin{aligned}
& E_{T}\left(t^{[-1]}(t(x)+t(z)-t(0)), t^{[-1]}(t(y)+t(z)-t(0))\right) \\
& =E_{T}\left(1, t^{[-1]}(t(y)+t(z)-t(0))\right) \\
& =t^{[-1]}(t(y)+t(z)-t(0))
\end{aligned}
$$

and we must prove

$$
E_{T}(x, y)=t^{[-1]}(t(y)-t(x)) \leq t^{[-1]}(t(y)+t(z)-t(0))
$$

or

$$
t(y)-t(x) \geq t(y)+t(z)-t(0)
$$

which is true if $t(x)+t(z)-t(0) \leq 0$.
The case $t(x)+t(z)-t(0) \geq 0$ and $t(y)+t(z)-t(0) \leq 0,(x<y)$ is analogous.

Corollary 5.20. Let T be a nilpotent t-norm, φ_{T} its associated negation, $\left(T, S, \varphi_{T}\right)$ a De Morgan triplet and $r>0$. Then $E_{T}^{(r)}$ is regular with respect to S.

Proposition 5.21. Let T_{P} be the product t-norm and S_{P} its dual t-conorm with respect to the natural negation n. Then $E_{T_{P}}$ is regular with respect to S_{P}.
Proof. $S_{P}(x, y)=x+y-x y$ and, assuming without loss of generality that $x \leq y$, we must prove $\frac{x}{y} \leq \frac{x+z-x z}{y+z-y z}$. This is equivalent to prove

$$
x(y+z-y z) \leq y(x+z-x z)
$$

which is true if $x \leq y$.
Proposition 5.22. Let T_{P} be the product t-norm, S_{P} its dual t-conorm with respect to the natural negation n and $r>0$. Then $E_{T_{P}}^{(r)}$ is regular with respect to S_{P}.

Definition 5.23. Let T be a t-norm, E a T-indistinguishability operator on $[0,1]$ separating points and S a t-conorm. An S-vague monoid $([0,1], \widetilde{S})$ whose associated operation is $S(S(x, y)=z$ if and only if $\widetilde{S}(x, y, z)=1)$ is called an T-vague t-conorm.

Definition 5.24. Let T be a continuous t-norm, S a t-conorm and $r>0$. Then \widetilde{S}_{r} is defined for all $x, y, z \in[0,1]$ by

$$
\widetilde{S}_{r}(x, y, z)=E_{T}^{(r)}(S(x, y), z)
$$

As a consequence of Proposition 4.8 we have the following results concerning vague t -conorms.

Proposition 5.25. Let T_{M} be the minimum t-norm and S_{P} the maximum t-conorm. Then

$$
\widetilde{S}_{P}(x, y, z)= \begin{cases}\min (\max (x, y), z) & \text { if } \max (x, y) \neq z \\ 1 & \text { otherwise }\end{cases}
$$

is a T_{M}-vague t-conorm of S_{P}.

Proposition 5.26. Let T be a nilpotent t-norm, φ_{T} its associated negation, $\left(T, S, \varphi_{T}\right)$ a De Morgan triplet and $r>0$. Then

$$
\widetilde{S}_{r}(x, y, z)= \begin{cases}t^{[-1]}(r|t(x)+t(y)-t(z)-t(0)|) & \text { if } t(x)+t(y)-t(z) \geq 0 \\ z^{(r)} & \text { otherwise }\end{cases}
$$

is a T-vague t-conorm with respect to S.
Corollary 5.27. If $T_{ \pm}$and S_{E} are the t-norm and t-conorm of $£ u k a s i e w i c z$, then

$$
\widetilde{S}_{r}(x, y, z)= \begin{cases}\max (1-r|x+y-z|, 0) & \text { if } x+y \leq 1 \\ \max \left(1-r+r z=x^{(r)}\right) & \text { otherwise }\end{cases}
$$

is a T_{E}-vague t-conorm with respect to S_{E}.
Proposition 5.28. If T_{P} is the product t-norm and S_{P} the probabilistic sum, then

$$
\widetilde{S}_{r}(x, y, z)=\left(\frac{\min (x+y-x y, z)}{\max (x+y-x y, z)}\right)^{r}
$$

is a T_{P}-vague t-conorm with respect to S_{P}.
Proposition 5.29. Let T be a continuous t-norm and $r \geq s>0$. Then the identity map id : $[0,1] \rightarrow[0,1]$ is a homomorphism from $\left([0,1], \widetilde{S}_{r}\right)$ onto $\left([0,1], \widetilde{S}_{s}\right)$

Proposition 5.30. Let T be a continuous t-norm and $r>0$. Then the identity map id : $[0,1] \rightarrow[0,1]$ is a homomorphism from $([0,1], S)$ onto $\left([0,1], \widetilde{S}_{s}\right)$

Proposition 5.31. Let T be a continuous t-norm and $r \geqq s>0$. Then the kernel of the identity map id : $[0,1] \rightarrow[0,1]$ from $\left([0,1], \widetilde{S}_{r}\right)$ onto $\left([0,1], \widetilde{S}_{s}\right)$ is a T-fuzzy t-subconorm of $([0,1], S)$.

Proposition 5.32. Let T be a continuous t-norm and $r>0$. Then the kernel of the identity map id : $[0,1] \rightarrow[0,1]$ from $([0,1], S)$ onto $\left([0,1], \widetilde{S}_{s}\right)$ is a T-fuzzy t-subconorm of $([0,1], S)$.

6 Concluding Remarks

In this paper we have fuzzified t-norms and t-conorms in two different ways:

- by defining T-fuzzy t-subnorms and t-subconorms.
- by introducing T-vague t -norms and t -conorms.

These concepts are interrelated as kernels of T-vague t-norms and tconorms are T-fuzzy t-subnorms and t-subconorms, respectively.

A fuzzy operation \tilde{o} on a set M can be seen as a type- 2 fuzzy subset of $M \times M$: If $[0,1]^{M}$ is the set of fuzzy subsets of M, then we can define \mathbb{O} : $M \times M \rightarrow[0,1]^{M}$ by $\mathbb{O}(x, y)(z)=\tilde{o}(x, y, z)$. In this way, a T-vague t-norm \widetilde{T} can be seen as a type- 2 t-norm $\mathbb{T}:[0,1] \times[0,1] \rightarrow[0,1]^{[0,1]}: \mathbb{T}(x, y)(z)=$ $\widetilde{T}(x, y, z)$. The same applies to vague t -conorms.

It seems interesting the fuzzification of other connectives used in fuzzy logic such as implications. The authors will develop it in further works.

Acknowledgments

The second author acknowledges financial support from FEDER/Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación Proyecto PGC2018-095709-B-C21.

References

[1] D. Boixader, Some Properties Concerning the Quasi-inverse of a t-norm, Mathware \& Soft Computing 5 (1998) 5-12.
[2] D. Boixader, J. Recasens, Fuzzy Actions, Fuzzy Sets and Systems 339 (2018) 17-30.
[3] M. Demirci, Fundamentals of M-vague algebra and M-vague arithmetic operations, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10 (2002) 25-75.
[4] M. Demirci, Vague groups, J. Math. Anal. Appl. 230 (1999) 142-156.
[5] M. Demirci, Fuzzy functions and their fundamental properties, Fuzzy Sets and Systems 106 (1999) 239-246.
[6] M. Demirci, J. Recasens, Fuzzy groups, fuzzy functions and fuzzy equivalence relations, Fuzzy Sets and Systems 144 (2004) 441-458.
[7] W.L. Gau; D.J. Buehrer, Vague sets, IEEE Transactions on Systems, Man, and Cybernetics 23 (1993) 610-614
[8] E.P. Klement, R. Mesiar, E. Pap, Triangular norms, Kluwer Academic Publishers, Dordrecht, 2000.
[9] G. Mayor, J. Torrens, Triangular norms on discrete settings, in: E.P. Klement, R. Mesiar (Eds.), Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, Elsevier BV, 2005, pp. 189-230.
[10] J. Recasens, Indistinguishability Operators. Modelling Fuzzy Equalities and Fuzzy Equivalence Relations, Studies in Fuzziness and Soft Computing. Springer, 2011.
[11] A. Rosenfeld, Fuzzy subgroups, J. Math. Anal. and Applications 35, (1971) 512-517.
[12] E. Trillas, Sobre funciones de negación en la teoría de conjuntos borrosos, Stochastica 3 (1979) 47-59 (In Spanish). English translation in: On negation functions in fuzzy set theory, in: S. Barro et altri (Eds.), Advances in Fuzzy Logic, Pubs. Universidad de Santiago de Compostela, 1998, pp. 31-40.

[^0]: ${ }^{1}$ The term vague refers to a vague algebraic structure as in [6] and has nothing to do with vague sets as in [7].

