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Abstract

t-norms and t-conorms are the natural connectives “and” and “or”
in fuzzy logic. The unit interval with a t-norm or a t-conorm is a spe-
cial monoid and some submonoids like discrete t-norms and t-conorms
have been proved useful in many cases.

In the first part of this article these submonoids will be fuzzified
to fuzzy t-subnorms and fuzzy t-subconorms in order to deal with
imprecision. As particular examples we will provide fuzzifications of
the classical and the  Lukasiewicz three-valued conjunctions.

The second part of the article will define and study vague t-norms
and t-conorms as fuzzy operations ◦̃ : [0, 1]3 → [0, 1] where ◦̃(x, y, z)
is the degree in which z is T (x, y) (S(x, y) respectively) where T (S)
is a t-norm (t-conorm).

Keywords: t-norms, t-conorm, indistinguishability operator, fuzzy
monoid, fuzzy t-subnorm, fuzzy t-subconorm, vague monoid, vague t-
norm, vague t-conorm.

1 Introduction

t-norms and t-conorms are essential tools in fuzzy logic because they model
the conjunction and disjunction as well as they allow us to evaluate the inter-
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section and union of fuzzy subsets. They have been generalized to different
algebraic structures such as Gödel algebras, MV-algebras, GL-monoids and
complete residuated lattices. They have also been generalized to interval-
valued, type-2, multiset and hesitant t-norms and t-conorms among others.
Also discrete and finite-valued t-norms and t-conorms [9] can be seen as
discrete submonoids of them.

There are situations where imprecision, lack of accuracy or noise have to
be taken into account or must be added to the problems to be solved. In
these cases, the relaxation or fuzzification of logic connectives can be useful
to tackle these situations.

In this paper we will develop the fuzzification of t-norms and t-conorms
from two perspectives:

1. Fuzzifying the concept of submonoid, so generalizing the idea of discrete
and finite-valued t-norm and t-conorm.

2. Introducing vague t-norms and t-conorms, i.e.: considering a fuzzy
operation compatible with them and with a given fuzzy equivalence
relation.

Regarding the first point, there is a big amount of papers fuzzifying alge-
braic structures such as groups, rings, actions, [2, 11]. Following this direc-
tion, in the first part of the paper we will fuzzify the concept of submonoid
and then apply it to the monoids ([0, 1], T ) and ([0, 1], S), T and S a t-norm
and a t-conorm respectively to obtain what we call T -fuzzy t-subnorms and
T -fuzzy t-subconorms. They generalize discrete and finite-valued t-norms
and t-conorms among others. For example the crisp conjunction ∧ (consid-
ered a discrete t-norm as in Examples 3.6 and 3.13) can be fuzzified to ∧
by x∧y = max(2x + 2y − 3, 0) for all x, y ∈ [0, 1]. Also in Example 3.14
 Lukasiewicz three-valued conjunction is fuzzified.

The second part of the paper studies vague t-norms and t-conorms. A
vague operation is a fuzzy operation ◦̃ : M × M ×M → [0, 1] on a set M ,
where ◦̃(x, y, z) is interpreted as the degree in which z is x ◦ y, and imposing
compatibility of ◦̃ with a given fuzzy equivalence relation on M [6] 1. For
this we first study general vague monoids and then apply our results to vague
monoids on t-norms and t-conorms, called T -vague t-norms and t-conorms.

1The term vague refers to a vague algebraic structure as in [6] and has nothing to do
with vague sets as in [7].
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In particular, for a t-norm T we can generate a T -vague t-norm T̃ where
T̃ (x, y, z) can be interpreted as the degree in which T (x, y) is z and similarly
for t-conorms.

An interesting result is that for a given t-norm T we have built a family
{T̃r}r>0 that allows us to relax or stress the degree in which we want to

fuzzify T in the sense that if r → 0 then T̃r tends to T and if r → ∞ then
T̃r tends to T̃∞(x, y, z) = 1 for all x, y, z ∈ [0, 1] meaning that T (x, y) can
be anything obtaining the greatest possible imprecision. Similar results are
obtained for t-conorms.

There is a nice link between fuzzy t-subnorms (t-subconorms) and vague
t-norms (vague t-conorms): The kernel of homomorphisms between vague
t-norms (t-conorms) are fuzzy t-subnorms (t-subconorms).

2 Preliminaries

This section contains some definitions and properties related to t-norms and
t-conorms that will be needed in the article. A good book on the topic is [8].

Definition 2.1. [8] A t-norm is a binary operation T : [0, 1] × [0, 1] → [0, 1]
which satisfies the following properties for all x, y, z, t ∈ [0, 1]

• T (x, y) = T (y, x)

• T (x, y) ≤ T (z, t) if x ≤ z and y ≤ t

• T (x, T (y, z)) = T (T (x, y), z)

• T (x, 1) = x

Example 2.2.

• The minimum t-norm TM defined by TM(x, y) = min(x, y) for all x, y ∈
[0, 1].

• The t-norm T L of  Lukasiewicz defined by T L(x, y) = max(x + y− 1, 0).

• The product t-norm TP (x, y) = x · y.

Definition 2.3. [8] A t-conorm is a binary operation S : [0, 1]×[0, 1] → [0, 1]
which satisfies the following properties for all x, y, z, t ∈ [0, 1]
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• S(x, y) = S(y, x)

• S(x, y) ≤ S(z, t) if x ≤ z and y ≤ t

• S(x, S(y, z)) = S(S(x, y), z)

• S(x, 0) = x

Example 2.4.

• The maximum t-conorm SM defined by SM(x, y) = max(x, y) for all
x, y ∈ [0, 1].

• The t-conorm S L of  Lukasiewicz defined by S L(x, y) = min(x + y, 1).

• The probabilistic sum t-conorm SP (x, y) = x + y − x · y.

Definition 2.5. For a t-norm T (t-conorm S) x ∈ [0, 1] is an idempotent
element if and only if T (x, x) = x (S(x, x) = x). E(T ) (E(S)) will be the
set of idempotent elements of T (S).

Definition 2.6. A continuous t-norm T (t-conorm S) is Archimedean if and
only if E(T ) = {0, 1} (E(S) = {0, 1}).

Example 2.7. The  Lukasiewicz t-norm and t-conorm, the Product t-norm
and the Probabilistic sum t-conorm are Archimedean t-norms, while the min-
imum t-norm and the maximum t-conorm are not.

Definition 2.8. For a t-norm T (t-conorm S), x ∈ [0, 1] is nilpotent if and
only if there exists n ∈ N such that T n(x) = 0 (Sn(x) = 1). Nil(T ) (Nil(S))
will be the set of nilpotent elements of T (S). (T n (Sn) is defined recursively:
T n(x) = T (T n−1(x), x) (Sn(x) = S(Sn−1(x), x))).

Proposition 2.9. If a t-norm T (t-conorm S) is continuous Archimedean,
then Nil(T ) is [0, 1) or {0} (Nil(S) is (0, 1] or {1}). In the first case, T (S)
is called nilpotent. In the second case it is called strict.

Proposition 2.10 (Ling’s Theorem). A continuous t-norm T is Archimedean
if and only if there exists a continuous and strictly decreasing function t :
[0, 1] → [0,∞] with t(1) = 0 such that

T (x, y) = t[−1](t(x) + t(y))
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where t[−1] is the pseudo inverse of t, defined by

t[−1](x) =

{
t−1(x) if x ∈ [0, t(0)]
0 otherwise.

T is strict if t(0) = ∞ and nilpotent otherwise. t is called an additive gen-
erator of T and two generators of the same t-norm differ only by a positive
multiplicative constant.

Example 2.11.

1. t(x) = 1 − x is an additive generator of the t-norm of  Lukasiewicz.

2. t(x) = − log(x) is an additive generator of the Product t-norm.

Proposition 2.12 (Ling’s Theorem). A continuous t-conorm S is Archimedean
if and only if there exists a continuous and strictly increasing function s :
[0, 1] → [0,∞] with s(0) = 0 such that

S(x, y) = s[−1](s(x) + s(y))

where s[−1] is the pseudo inverse of s, defined by

s[−1](x) =

{
s−1(x) if x ∈ [0, s(1)]
1 otherwise.

S is strict if s(1) = ∞ and nilpotent otherwise. s is called an additive
generator of S and two generators of the same t-conorm differ only by a
positive multiplicative constant.

Example 2.13.

1. s(x) = x is an additive generator of the t-conorm of  Lukasiewicz.

2. s(x) = − log(1 − x) is an additive generator of the Probabilistic sum
t-conorm.

Definition 2.14. A strong negation ϕ is defined as a strictly decreasing,
continuous function ϕ : [0, 1] → [0, 1] with boundary conditions ϕ(0) = 1 and
ϕ(1) = 0 such that ϕ is involutive (i.e., ϕ(ϕ(x)) = x holds for any x ∈ [0, 1]).

Definition 2.15. Let T be a t-norm and ϕ a strong negation. Then S =
ϕ ◦ T ◦ ϕ is the dual t-conorm of T with respect to ϕ. In this case (T, S, ϕ)
is called a De Morgan triplet.

5



3 Fuzzy t-norms and Fuzzy t-conorms

In this section we will introduce and study fuzzy t-subnorms and fuzzy t-sub-
conorms. t-norms and t-conorms are special monoids and fuzzy t-subnorms
and fuzzy t-subconorms will fuzzify their submonoids. We will start with
the general definition of monoid, define T -fuzzy submonoid and then specify
our results to t-norms and t-conorms. As examples of fuzzy t-subnorms and
fuzzy t-subconorms we will fuzzify discrete t-norms (Definition 3.5) and in
particular the crisp conjunction and the  Lukasiewicz three-valued one.

Definition 3.1. A monoid (M, ◦) consists of a set M with a binary operation
◦ : M ×M → M that

• is associative

• has an identity element.

Definition 3.2. A submonoid is a subset of a monoid closed by the operation
and containing the identity element.

Definition 3.3. Let T be a t-norm, (M, ◦) a monoid, e its identity element
and µ a fuzzy subset of M . µ is a T -fuzzy submonoid of M if and only if

• T (µ(x), µ(y)) ≤ µ(x ◦ y) ∀x, y ∈ M .

• µ(e) = 1.

Proposition 3.4. Let (M, ◦) be a monoid and µ a T -fuzzy submonoid of M .
Then the core H of µ (i.e., the set of elements x of M such that µ(x) = 1)
is a submonoid of M .

Proof. Let x, y ∈ H .

1 = T (µ(x), µ(y)) ≤ µ(x ◦ y)

and therefore x ◦ y ∈ H .

The most important monoids in fuzzy logic are the unit interval with a
t-norm or a t-conorm.

In diverse situations it can be useful to consider special submonoids of a
t-norm or of a t-conorm. Among them, the so-called discrete t-norms and
t-conorms are of special interest.
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Definition 3.5. A discrete t-norm is a submonoid of a t-norm of finite
cardinality containing 0.

Example 3.6.

1. Consider the  Lukasiewicz t-norm T L. For every n ∈ N the set Ln =
{0, 1

n
, 2
n
, ..., n

n
= 1} is a discrete submonoid of ([0, 1], T L).

2. Consider the minimum t-norm TM . Every finite subset of [0, 1] con-
taining 1 and 0 is a discrete submonoid of ([0, 1],min).

3. Consider the Product t-norm TP . For a fixed a ∈ (0, 1] the set of all
numbers of the form an, n ∈ N, together with 0 and 1 is a submonoid
of ([0, 1], TP ) of rational cardinality.

Definition 3.7. A discrete t-conorm is a submonoid of a t-norm of finite
cardinality containing 1.

Example 3.8.

• Consider the  Lukasiewicz t-conorm S L. For every n ∈ N the set Ln =
{0, 1

n
, 2
n
, ..., n

n
= 1} is a discrete submonoid of ([0, 1], S L).

• Consider the maximum t-conorm SM . Every finite or countable subset
of [0, 1] containing 1 and 0 is a discrete submonoid of ([0, 1],max).

Until the rest of the section we will consider fuzzy submonoids of a given
t-norm or t-conorm.

Definition 3.9. Let T1 and T2 be t-norms. A T1-fuzzy submonoid of ([0, 1], T2)
will be called a T1-fuzzy t-subnorm of T2.

More explicitly, this means that a fuzzy subset µ of [0, 1] is a T1-fuzzy
t-subnorm of T2 when µ(0) = 1 and T1(µ(x), µ(y)) ≤ µ(T2(x, y)) for all
x, y ∈ [0, 1].

Definition 3.10. Let T and S be a t-norm and a t-conorm respectively. A
T -fuzzy submonoid of ([0, 1], S) will be called a T -fuzzy t-subconorm of S.

In other words, a fuzzy subset µ of [0, 1] is a T -fuzzy t-subconorm of S
when µ(1) = 1 and T (µ(x), µ(y)) ≤ µ(S(x, y)) for all x, y ∈ [0, 1].

The submonoid 3.6.1 can be fuzzified in the following way.
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Example 3.11. Given n ∈ N, we define the fuzzy subset µ of [0, 1] in the
following way: For i = 1, 2, ..., n,

µ(x) = −nx + i if x ∈
[
i− 1

n
,
i− 1

2

n

]

µ(x) = nx− i + 1 if x ∈
[
i− 1

2

n
,
i

n

]
.

Proposition 3.12. µ is a T L-fuzzy t-subnorm of T L, where T L is the  Lukasiewicz
t-norm.

Proof. We must prove that for all x, y ∈ [0, 1],

max(µ(x) + µ(y) − 1, 0) ≤ µ(max(x + y − 1, 0)). (1)

Case a) There exist i, j = 1, 2, ..., n such that x ∈
[
i−1
n
,
i− 1

2

n

]
and y ∈

[
j−1
n
,
j− 1

2

n

]
.

If µ(x)+µ(y)−1 ≤ 0 or x+y−1 ≤ 0, then the inequality (1) is satisfied
trivially. Otherwise,

x + y − 1 ∈
[
i + j − 2 − n

n
,
i + j − 1 − n

n

]
(2)

and

µ(x+y−1) =





−n(x + y − 1) + (i + j − 1 − n) if x + y − 1 ∈
[
i+j−2−n

n
,
i+j− 3

2
−n

n

]

n(x + y − 1) − (i + j − 1 − n) + 1 if x + y − 1 ∈
[
i+j− 3

2
−n

n
, i+j−1−n

n

]

– In the first case, we must prove

−nx + i− ny + j − 1 ≤ −nx− ny + n + i + j − 1 − n

which is trivially true.

– In the second case, we must prove

−nx + i− ny + j − 1 ≤ nx + ny − n− i− j + 1 + n + 1

or equivalently
2nx + 2ny ≥ 2i + 2j − 3

or equivalently

x + y − 1 ≥ i + j − 3
2
− n

n
which is true by (2).
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Case b) There exist i, j = 1, 2, ..., n such that x ∈
[
i− 1

2

n
, i

n

]
and y ∈

[
j− 1

2

n
, j

n

]
. If

µ(x) +µ(y)−1 ≤ 0 or x+ y−1 ≤ 0, then the inequality (1) is satisfied
trivially. Otherwise,

x + y − 1 ∈
[
i + j − 1 − n

n
,
i + j − n

n

]

and

µ(x+y−1) =





−n(x + y − 1) + (i + j − n) ifx + y − 1 ∈
[
i+j−1−n

n
,
i+j− 1

2
−n

n

]
(3)

n(x + y − 1) − (i + j − n) + 1 if x + y − 1 ∈
[
i+j− 1

2
−n

n
, i+j−n

n

]

– In the first case, we must prove

nx− i + 1 + ny − j + 1 − 1 ≤ −nx − ny + n + i + j − n

or equivalently
2nx + 2ny ≤ 2i + 2j − 1

or equivalently

x + y − 1 ≤ i + j − 1
2
− n

n

which is true by (3).

– In the second case, we must prove

nx− i + 1 + ny − j + 1 − 1 ≤ nx + ny − n− i− j + n + 1

which is trivially true.

Case c) There exist i, j = 1, 2, ..., n such that x ∈
[
i−1
n
,
i− 1

2

n

]
(4) and y ∈

[
j− 1

2

n
, j

n

]
(5). If µ(x) + µ(y) − 1 ≤ 0 or x + y − 1 ≤ 0, then the

inequality (1) is satisfied trivially. Otherwise,

x + y − 1 ∈
[
i + j − 3

2
− n

n
,
i + j − 1

2
− n

n

]

and

µ(x+y−1) =





−2n(x + y − 1) + 2(i + j − 1
2
− n) − 1 ifx + y − 1 ∈

[
i+j− 3

2
−n

n
, i+j−1−n

n

]

2n(x + y − 1) − 2(i + j − 1
2
− n) + 1 if x + y − 1 ∈

[
i+j−1−n

n
,
i+j− 1

2
−n

n

]

9



– In the first case, the right hand side extreme of the interval con-

taining x + y − 1 is i+j−1−n

n
(and NOT

i+j− 1

2
−n

n
) and we must

prove

−nx + i + ny − j + 1 − 1 ≤ −nx− ny + n + i + j − n

or equivalently
2ny ≤ 2j

or equivalently

y ≤ j

n
.

which is true by (5)

– In the second case, the right hand side extreme of the interval

containing x + y − 1 is i+j−1−n

n
(and NOT

i+j− 1

2
−n

n
) and we must

prove

−nx + i + ny − j + 1 − 1 ≤ nx + ny − n− i− j + 1 + n + 1

or equivalently
2nx ≥ 2i− 2

or equivalently

x ≥ i− 1

n
.

which is true from (4).

Example 3.13. In particular, the classic conjunction ∧

x ∧ y =

{
1 if x = y = 1

0 otherwise

corresponds to n = 1 in 3.6.1. In this case,

µ(x) =

{
1 − x if x ∈

[
0, 1

2

]

x if x ∈
[
1
2
, 1
]
.

Then the fuzzification of ∧ is

 L(x, y, µ(x), µ(y)) = max(2x + 2y − 3, 0).
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Example 3.14. Example 3.6.1 with n = 2 is the definition of the conjunction
∧3 of  Lukasiewicz three-valued logic:

x ∧3 y =





1 if x = y = 1
1
2
if x = 1 and y = 1

2
1
2
if x = 1

2
and y = 1

0 otherwise.

According to 3.11 the corresponding fuzzy subset µ of [0, 1] is represented in
Figure 1 and the fuzzification of ∧3 is  L(x, y, µ(x), µ(y)) represented in Figure
2. For example, the truth degree of the conjunction of 0.47 and 0.97 is 0.32
and the truth degree of 0.9 and 0.95 is 0.55.

Figure 1:

Let us find the TM -fuzzy t-subnorms of ([0, 1], TM) and TM -fuzzy t-sub-
conorms of ([0, 1], SM).

Proposition 3.15. A fuzzy subset µ of [0, 1] is a TM -fuzzy t-subnorm of
([0, 1], TM) if and only if µ(1) = 1.

Proof. Every fuzzy subset µ of [0, 1] satisfies

min(µ(x), µ(y)) ≤ µ(min(x, y))

for every x, y ∈ [0, 1].

Proposition 3.16. A fuzzy subset µ of [0, 1] is a TM -fuzzy t-subconorm of
([0, 1], SM) if and only if µ(0) = 1.
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Figure 2: The fuzzification of ∧3.

Proof. Every fuzzy subset of [0, 1] satisfies

min(µ(x), µ(y)) ≤ µ(max(x, y))

for every x, y ∈ [0, 1].

Let us now turn out our attention to continuous Archimedean t-norms
and t-conorms.

Proposition 3.17. Let T1 and T2 be two continuous Archimedean t-norms
and t1 and t2 additive generators of T1 and T2 respectively. A fuzzy subset
µ of [0, 1] is a T1-fuzzy t-subnorm of ([0, 1], T2) if and only if the mapping

f : [0,∞] → [0,∞] f = t1 ◦ µ ◦ t[−1]
2 is subadditive.

Proof. µ is a T1-fuzzy t-subnorm of ([0, 1], T2) if and only if for all x, y ∈ [0, 1]

T1(µ(x), µ(y)) ≤ µ(T2(x, y))

or
t
[−1]
1 (t1(µ(x)) + t1(µ(y))) ≤ µ(t

[−1]
2 (t2(x) + t2(y)))

which is equivalent to

t1(µ(x)) + t1(µ(y)) ≥ t1(µ(t
[−1]
2 (t2(x) + t2(y)))).
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Putting t2(x) = a and t2(y) = b,

t1(µ(t−1
2 (a))) + t1(µ(t−1

2 (b))) ≥ t1(µ(t
[−1]
2 (a + b))).

Corollary 3.18. Let f : [0,∞] → [0,∞] be a subadditive mapping and T1 and
T2 two continuous Archimedean t-norms with t1 and t2 additive generators of
T1 and T2 respectively. Then t

[−1]
1 ◦f ◦t2 is a T1-fuzzy t-subnorm of ([0, 1], T2).

Example 3.19. If in the previous corollary T1 = T2 = T , t is an additive
generator of T and f is the identity map, we get that the identity map on the
unit interval is a T -fuzzy t-subnorm of ([0, 1], T ).

Remark: Regarding of t-norms, the most important case is when the
two t-norms coincide. If T1 = T2 = T , we can consider different additive
generators of T and from the same subadditive mapping f we can obtain
different T -fuzzy t-subnorms.

Example 3.20. Let T L be the  Lukasiewicz t-norm, t1(x) = 1−x and t2(x) =

2 − 2x two additive generators of  L, and f(x) =
√
x. Then µ1(x) = (t

[−1]
1 ◦

f ◦ t1)(x) = 1 −
√

1 − x and µ2(x) = (t
[−1]
2 ◦ f ◦ t2)(x) = 1 −

√
1−x

2
are two

different T -fuzzy t-subnorms of T .

In a similar way we can prove the next proposition and corollary.

Proposition 3.21. Let T and S be a continuous Archimedean t-norm and
t-conorm respectively and t and s additive generators of T and S respectively.
A fuzzy subset µ of [0, 1] is a T -fuzzy t-subconorm of ([0, 1], S) if and only if
the mapping f : [0,∞] → [0,∞] f = t ◦ µ ◦ s[−1] is subadditive.

Corollary 3.22. Let f : [0,∞] → [0,∞] be a subadditive mapping and T and
S a continuous Archimedean t-norm and t-conorm respectively with t and s
additive generators of T and S respectively. Then t[−1] ◦ f ◦ s is a T -fuzzy
t-subconorm of ([0, 1], S).

Again, different selections of the additive generators of T and S will lead
to different T -fuzzy t-subconorms of S.

The duality between a t-conorm and the corresponding t-norm is desir-
able. If the t-norm is nilpotent, we can consider its corresponding negation
and dual t-conorm.
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Proposition 3.23. [12] Let T be a nilpotent t-norm and t an additive gen-
erator of T . Then ϕT : [0, 1] → [0, 1] defined for all x ∈ [0, 1] by ϕT (x) =
t[−1](t(0) − t(x)) is a strong negation.

Proposition 3.24. Let T be a nilpotent t-norm, t an additive generator of
T , ϕT its associated negation and (T, S, ϕT ) a De Morgan triplet. Then S is
a nilpotent t-conorm and s(x) = t(0)− t(x) and s[−1](x) = t[−1](t(0)− x) are
an additive generator of S and its corresponding pseudoinverse.

Proof. We will calculate S(x, y) as S(x, y) = ϕT (T (ϕT (x), ϕT (y))) and as
S(x, y) = s[−1](s(x) + s(y)) and see that they coincide.

S(x, y) = ϕT (T (ϕT (x), ϕT (y)))

= t[−1](t(0) − t(t[−1][t(t[−1](t(0) − t(x)) + t(t[−1](t(0) − t(y)))]))

= t[−1](t(0) − t(t[−1]((t(0) − t(x)) + (t(0) − t(y))))

= t[−1](t(0) − ((t(0) − t(x)) + (t(0) − t(y))))

= t[−1](t(x) + t(y) − t(0)).

S(x, y) = s[−1](s(x) + s(y))

= t[−1](t(0) − s(x) − s(y))

= t[−1](t(0) − t(0) + t(x) − t(0) + t(y))

= t[−1](t(x) + t(y) − t(0)).

Moreover, S is nilpotent because s(1) = t(0) − t(1) = t(0) < ∞.

As particular cases of Propositions 3.21 and Corollary 3.22 we obtain the
following two results.

Proposition 3.25. Let T be a nilpotent t-norm, t an additive generator of
T , ϕT its associated negation and (T, S, ϕT ) a De Morgan triplet. Then a
fuzzy subset µ of [0, 1] is a T -fuzzy t-subconorm of ([0, 1], S) if and only if
f(x) = t(µ(t[−1](t(0) − x))) is subadditive.

Proposition 3.26. Let T be a nilpotent t-norm, t an additive generator of T ,
ϕT its associated negation, (T, S, ϕT ) a De Morgan triplet and f : [0,∞] →
[0,∞] a subadditive mapping. Then fuzzy subset µ of [0, 1] defined for all
x ∈ [0, 1] by

µ(x) = t[−1](f(t(0) − t(x)))

is a T -fuzzy t-subconorm of S.
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Example 3.27. If in the last proposition we consider f = id, the identity
map, then we get that ϕT is a T -fuzzy t-subconorm of S, the dual t-subconorm
of T with respect to ϕT .

In the strict case, we can consider the natural negation n(x) = 1 − x.

Proposition 3.28. Let T be a strict t-norm, t an additive generator of T , n
the natural negation and (T, S, n) a De Morgan triplet. Then S is a strict t-
conorm and s(x) = t(1−x) and s−1(x) = 1−t−1(x) are an additive generator
of S and its corresponding pseudoinverse.

Proof. We will calculate S(x, y) as S(x, y) = n(T (n(x), n(y))) and as S(x, y) =
s−1(s(x) + s(y)) and see that they coincide.

S(x, y) = n(T (n(x), n(y)))

= 1 − T (1 − x, 1 − y)

= 1 − t−1(t(1 − x) + t(1 − y)).

S(x, y) = s−1(s(x) + s(y))

= 1 − t−1(t(1 − x) + t(1 − y)).

Moreover, S is strict because s(1) = t(0) = ∞.

As particular cases of Propositions 3.21 and Corollary 3.22 we obtain the
following two results.

Proposition 3.29. Let T be a strict t-norm, t an additive generator of T , n
the natural negation and (T, S, n) a De Morgan triplet. Then a fuzzy subset
µ of [0, 1] is a T -fuzzy t-subconorm of ([0, 1], S) if and only if f(x) = t(µ(1−
t[−1](x))) is subadditive.

Proposition 3.30. Let T be a strict t-norm, t an additive generator of T ,
n the natural negation, (T, S, n) a De Morgan triplet and f : [0,∞] → [0,∞]
a subadditive mapping. Then fuzzy subset µ of [0, 1] defined for all x ∈ [0, 1]
by

µ(x) = t[−1](f(t(1 − x)))

is a T -fuzzy t-subconorm of S.

Example 3.31. If in the last proposition we consider f = id, the identity
map, then we get that n, the natural negation, is a T -fuzzy t-subconorm of
S, the dual t-conorm of T with respect to n.
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4 Vague Monoids

In the crisp case, if (M, ◦) is a set with an operation ◦ : M ×M → M and ∼
is an equivalence relation on M , then ◦ is compatible with ∼ if and only if

x ∼ x′ and y ∼ y′ implies x ◦ y ∼ x′ ◦ y′.

In this case, an operation ◦̃ can be defined on M = M/ ∼ by

x◦̃y = x ◦ y

where x and y are the equivalence classes of x and y with respect to ∼.
Demirci generalized this idea to the fuzzy framework by introducing the

concept of vague algebra, which basically consists of fuzzy operations com-
patible with a given fuzzy equivalence relation [3].

In this section we will develop general results of vague monoids that will
be applied to vague t-norms and t-conorms in Section 5.

The fuzzification of equivalence relations are fuzzy relations called T -fuzzy
equivalences or T -indistinguishability operators. They are essential in fuzzy
logic and have been widely studied [10]. We need to recall their definition.

Definition 4.1. Let T be a t-norm and X a set. A fuzzy relation E :
X ×X → [0, 1] is a T -indistinguishability operator if for all x, y, z ∈ X

• E(x, x) = 1

• E(x, y) = E(y, x)

• T (E(x, y), E(y, z)) ≤ E(x, z).

If E(x, y) = 1 implies x = y, then it is said that E separates points.

Definition 4.2. A fuzzy binary operation on a set M is a mapping ◦̃ :
M ×M ×M → [0, 1].

◦̃(x, y, z) is interpreted as the degree in which z is x ◦ y.

Definition 4.3. Let E be T -indistinguishability operator on M . A T -vague
binary operation on M is a fuzzy binary operation on M satisfying for all
x, y, z, x′, y′, z′ ∈ M

a) T (◦̃(x, y, z), E(x, x′), E(y, y′), E(z, z′)) ≤ ◦̃(x′, y′, z′).
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b) T (◦̃(x, y, z), ◦̃(x, y, z′)) ≤ E(z, z′).

c) For all x, y ∈ M there exists z ∈ M such that ◦̃(x, y, z) = 1.

These conditions fuzzify the idea of compatibility between a binary oper-
ation and an equivalence relation on a set.

• Condition a) states that if z is the (vague) result of operating x and
y and x′, y′, z′ are indistinguishable from x, y, z, then z′ is the vague
result of operating x′ and y′.

• b) asserts that if z and z′ are vague results of the operation x ◦ y, then
they are indistinguishable.

• c) says that for every x and y there exists z that is exactly the result
of operating x with y.

Proposition 4.4. Let E be T -indistinguishability operator on M separating
points and ◦̃ a vague binary operation on M . Then the z of Definition 4.3c)
is unique.

Proof. Let z, z′ ∈ M satisfy ◦̃(x, y, z) = 1 and ◦̃(x, y, z′) = 1. From Definition
4.3b) 1 = T (◦̃(x, y, z), ◦̃(x, y, z′)) ≤ E(z, z′). Hence E(z, z′) = 1 and z =
z′.

Definition 4.5. Let ◦̃ be a T -vague binary operation on M with respect to a
T -indistinguishability operator E on M . Then (M, ◦̃) is a T -vague monoid
if and only if it satisfies the following properties.

1. Associativity. ∀x, y, z, d,m, q, w,∈M

T (◦̃(y, z, d), ◦̃(x, d,m), ◦̃(x, y, q), ◦̃(q, z, w)) ≤ E(m,w).

2. Identity. There exists a (two sided) identity element e ∈ M such that

T (◦̃(e, x, x), ◦̃(x, e, x)) = 1

for each x ∈ M .

A T -vague monoid is commutative if and only if

∀x, y,m,w ∈ M,T (◦̃(x, y,m), ◦̃(y, x, w)) ≤ E(m,w).
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For a given T -vague monoid (M, ◦̃), the identity is unique if the T -
indistinguishability operator separates points.

Proposition 4.6. Let T be a t-norm, E a T -indistinguishability operator
separating points on a set M and (M, ◦̃) a T -vague monoid. Then the identity
element is unique.

Proof. Let e and e′ be two identity elements of M . Then, since e is an
identity element,

◦̃(e, e′, e′) = 1

and since e′ is an identity element,

◦̃(e, e′, e) = 1.

From Definition 4.3c),

1 = T (◦̃(e, e′, e′), ◦̃(e, e′, e)) ≤ E(e, e′).

So E(e, e′) = 1 and e = e′ because E separates points.

Definition 4.7. Let ◦ be a binary operation on M , and E a T -indistinguish-
ability operator on M . E is regular with respect to ◦ if and only if for all
x, y, z ∈ M

E(x, y) ≤ E(x ◦ z, y ◦ z)

and
E(x, y) ≤ E(z ◦ x, z ◦ y).

Proposition 4.8. Let E be a regular T -indistinguishability operator on M
with respect to a binary operation ◦ on M .

a) The fuzzy mapping ◦̃ : M ×M ×M → [0, 1] defined for all x, y, z ∈ M
by

◦̃(x, y, z) = E(x ◦ y, z) for all x, y, z ∈ M,

is a T -vague binary operation on M .

b) If (M, ◦) is a monoid, then (M, ◦̃) is a T -vague monoid.

Proof.

a) We must prove that ◦̃ satisfies the properties of Definition 4.3. Let
x, y, z, x′, y′, z′ ∈ M .

18



4.3 a)

T (◦̃(x, y, z), E(x, x′), E(y, y′), E(z, z′))

= T (E(x ◦ y, z), E(x, x′), E(y, y′), E(z, z′))

≤ T (E(x ◦ y, z′), E(x, x′), E(y, y′))

≤ T (E(x ◦ y, z′), E(x ◦ y, x′ ◦ y), E(y, y′))

≤ T (E(x′ ◦ y, z′), E(y, y′))

≤ T (E(x′ ◦ y, z′), E(x′ ◦ y, x′ ◦ y′))
≤ E(x′ ◦ y′, z′) = ◦̃(x′, y′, z′).

4.3 b)

T (◦̃(x, y, z), ◦̃(x, y, z′))

= T (E(x ◦ y, z), E(x ◦ y, z′))
≤ E(z, z′)

4.3 c) For x, y ∈ M we can consider z = x ◦ y. Then

◦̃(x, y, z) = E(x ◦ y, x ◦ y) = 1.

b)

Associativity. Using the associativity of ◦ and the regularity of E, ∀x, y, z, d,m, q, w ∈
M ,

T (◦̃(y, z, d), ◦̃(x, d,m), ◦̃(x, y, q), ◦̃(q, z, w))

= T (E(y ◦ z, d), E(x ◦ d,m), E(x ◦ y, q), E(q ◦ z, w))

≤ T (E(x ◦ (y ◦ z), x ◦ d), E(x ◦ d,m), E((x ◦ y) ◦ z, q ◦ z), E(q ◦ z, w))

≤ T (E(x ◦ (y ◦ z), m), E((x ◦ y) ◦ z, w))

≤ E(m,w).

Identity element. Let e be the identity element of M . Then

◦̃(x, e, x) = E(x ◦ e, x) = E(x, x) = 1

◦̃(e, x, x) = E(e ◦ x, x) = E(x, x) = 1

and e is the identity element of ◦̃
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From the equality ◦̃(x, y, z) = E(x◦ y, z), fixed a regular T -indistinguish-
ability operator separating points on a monoid (M, ◦) we obtain a vague
monoid on M in a natural way. Reciprocally, from a vague monoid on M we
obtain a monoid (M, ◦).

Proposition 4.9. Let (M, ◦̃) be a vague monoid with respect to a T -indis-
tinguishability operator E separating points. Then (M, ◦) is a monoid where
x ◦ y is the unique z ∈ M such that ◦̃(x, y, z) = 1.

Proof.

Associativity

1 =T (◦̃(y, z, y ◦ z), ◦̃(x, y ◦ z, x ◦ (y ◦ z)), ◦̃(x, y, x ◦ y), ◦̃(x ◦ y, z, (x ◦ y) ◦ z))

=T (E(y ◦ z, y ◦ z), E(x ◦ (y ◦ z), x ◦ (y ◦ z)), E(x ◦ y, x ◦ y), E((x ◦ y) ◦ z, (x ◦ y) ◦ z))

≤E(x ◦ (y ◦ z), (x ◦ y) ◦ z))

and form this, x ◦ (y ◦ z) = (x ◦ y) ◦ z.

Identity
1 = ◦̃(x, e, x) = E(x ◦ e, x)

1 = ◦̃(e, x, x) = E(e ◦ x, x)

So, x ◦ e = x and e ◦ x = x and e is the identity element of (M, ◦).

Definition 4.10. In the conditions of the previous proposition, we will say
that (M, ◦) is the monoid associated to the vague monoid (M, ◦̃).

At this point, given a monoid (M, ◦) and a t-norm T we have bijective
maps between their T -vague monoids and their regular T -indistinguishability
operators and a simple way to generate one of them knowing the other one:

• ◦̃(x, y, z) = E(x ◦ y, z).

• E(x, y) = ◦̃(x, e, y).

(M, ◦̃) is commutative if and only if its associated monoid (M, ◦) is com-
mutative.
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Proposition 4.11. Let E be a T -indistinguishability operator separating
points, (M, ◦̃) a T -vague operation and (M, ◦) its associated operation (x◦y =
z if and only if ◦̃(x, y, z) = 1). Then (M, ◦̃) is commutative if and only if
(M, ◦) is commutative.

Proof.

⇒)
1 = T (◦̃(x, y, x ◦ y), ◦̃(y, x, y ◦ x)) ≤ E(x ◦ y, y ◦ x).

So, E(x ◦ y, y ◦ x) = 1 and x ◦ y = y ◦ x.

⇐)

T (◦̃(x, y, z), ◦̃(y, x, z′)) = T (E(x ◦ y, z), E(y ◦ x, z′))
= T (E(x ◦ y, z), E(x ◦ y, z′))
≤ E(z, z′).

In [4], [5] homomorphisms between T -vague algebras have been studied.
In this section we will use them to relate vague monoids and fuzzy monoids.

Definition 4.12. Let (M, ◦̃) and (N, ∗̃) be two T -vague monoids with respect
to the T -indistinguishability operators E and F respectively. A map f : M →
N is a homomorphism from M onto N if and only if

◦̃(x, y, z) ≤ ∗̃(f(x), f(y), f(z)) ∀x, y, z ∈ M.

Lemma 4.13. Let (M, ◦̃) and (N, ∗̃) be two T -vague monoids with respect
to the T -indistinguishability operators E and F respectively and f : M → N
a homomorphism from M onto N . If e is the identity element of M , then
f(e) is the identity element of N .
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Proof.
1 = ◦̃(x, e, x) ≤ ∗̃(f(x), f(e), f(x))

1 = ◦̃(e, x, x) ≤ ∗̃(f(e), f(x), f(x))

So, ∗̃(f(x), f(e), f(x)) = ∗̃(f(e), f(x), f(x)) = 1 and f(e) is the identity
element of N .

Proposition 4.14. Let (M, ◦̃) and (M, ∗̃) be two T -vague monoids with re-
spect to the T -indistinguishability operators E and F respectively such that
E ≤ F . Then the identity map id : M → M is a homomorphism from (M, ◦̃)
onto (M, ∗̃).

Proof.
◦̃(x, y, z) = E(x ◦ y, z) ≤ F (x ◦ y, z) ≤ ∗̃(x, y, z).

It is clear that a crisp monoid (M, ◦) is a T -vague monoid defining
◦(x, y, z) = 1 if x ◦ y = z and 0 otherwise, and considering the crisp equality
as the T -indistinguishability operator.

Corollary 4.15. Let (M, ◦̃) be a T -vague monoid with respect to a T -in-
distinguishability operator E separating points. Then the identity map id :
M → M is a homomorphism from (M, ◦) onto (M, ◦̃).

Definition 4.16. Let f : M → N be a homomorphism from (M, ◦̃) onto
(N, ∗̃). The kernel of f is the fuzzy subset µ of M defined by µ(x) =
E(f(x), e′) ∀x ∈ M where e′ is the identity element of (N, ∗̃).

Proposition 4.17. Let (M, ◦̃) be a T -vague monoid with respect to a regular
T -indistinguishability operator E separating points. The kernel of the identity
map id : M → M is a T -fuzzy submonoid of (M, ◦).

Proof.

a)
kerid(e) = E(e, e) = 1.

b)

T (kerid(x), kerid(y)) = T (E(x, e), E(y, e))

≤ T (E(x ◦ y, y), E(y, e))

≤ E(x ◦ y, e).
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5 Vague t-norms and Vague t-conorms

The results of the previous section will be applied to the case of t-norms and
t-conorms.

Given a t-norm T , we will consider always the T -indistinguishability op-
erator ET and their powers that separate points.

Definition 5.1. Let T be a left continuous t-norm. Its residuation
−→
T is

defined for all x, y ∈ [0, 1] by

−→
T (x, y) = sup{α ∈ [0, 1] | T (x, α) ≤ y}.

Definition 5.2. Given a t-norm T , the natural indistinguishability operator
ET on [0, 1] associated to T , is defined for all x, y ∈ [0, 1] by

ET (x, y) = min(
−→
T (x, y),

−→
T (y, x)).

Note. ET is usually called biresiduation. Here we prefer natural indistin-
guishability operator to stress the fact that it is indeed an indistinguishability
operator.

Example 5.3.

• If TM is the minimum t-norm, then

ETM
(x, y) =

{
min(x, y) if x 6= y
1 if x = y

• If T is continuous Archimedean and t is an additive generator of T ,
then ET (x, y) = t−1(|t(x) − t(y)|).

In particular

– If T = T L is the  Lukasiewicz t-norm, then ET (x, y) = 1 − |x− y|.
– If T is the product t-norm, then ET (x, y) = min(x,y)

max(x,y)
with the con-

vention 0
0

= 1.

We need to recall the concept of power with respect to a t-norm [8, 10]
to define powers of ET .
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Definition 5.4. [10] Given a continuous t-norm T , T (

n times︷ ︸︸ ︷
x, x, ..., x) -the n-th

power of x- will be denoted by by x(n).
The n-th root x( 1

n
) of x with respect to T is defined by

x( 1

n
) = sup{z ∈ [0, 1] | z(n)T ≤ x}

and for m,n ∈ N, x(m
n
) = (x( 1

n
))(m).

If r ∈ R+ is a positive real number, let {an}n∈N be a sequence of rational
numbers with limn→∞ an = r. For any x ∈ [0, 1], the power x(r) is

x(r) = lim
n→∞

x(an).

Proposition 5.5. [10] Let T be a continuous Archimedean t-norm with ad-
ditive generator t, x ∈ [0, 1] and r ∈ R+. Then

x(r) = t[−1](rt(x)).

Proposition 5.6. [10] Let T be a continuous t-norm, ET the natural indis-

tinguishability operator associated to T and r > 0. Then E
(r)
T defined for all

x, y,∈ [0, 1] by E(x, y) = (ET (x, y))(r) is a T -indistinguishability operator.

Example 5.7.

• If TM is the minimum t-norm, then E
(r)
TM

= ETM
.

• If T is continuous Archimedean and t is an additive generator of T ,
then E

(r)
T (x, y) = t[−1](r|t(x) − t(y)|).

In particular

– If T = T L is the  Lukasiewicz t-norm, then E
(r)
T (x, y) = max(1 −

r|x− y|, 0).

– If T = TP is the product t-norm, then E
(r)
T (x, y) = ( min(x,y)

max(x,y)
)r.

Proposition 5.8. ET is regular on ([0, 1], T ).

Proof. Let T be a left continuous t-norm. We must prove that for all x, y, z ∈
[0, 1], ET (x, y) ≤ ET (T (x, z), T (y, z)). Assuming without loss of generality

that x ≥ y, this is equivalent to prove
−→
T (x, y) ≤ −→

T (T (x, z), T (y, z)) and this
is done in Proposition 2.2 of [1].
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Corollary 5.9. Let T be a continuous t-norm and r > 0. Then E
(r)
T is

regular.

Proof. It is a consequence of the fact that if x, y ∈ [0, 1] with x ≤ y, then
x(r) ≤ y(r).

Definition 5.10. Let T be a t-norm and E a T -indistinguishability operator
on [0, 1] separating points. A T -vague monoid ([0, 1], T̃ ) whose associated

operation is T (T (x, y) = z if and only if T̃ (x, y, z) = 1) is called a T -vague
t-norm.

Definition 5.11. Let T be a continuous t-norm and r > 0. Then T̃r is
defined for all x, y, z ∈ [0, 1] by

T̃r(x, y, z) = E
(r)
T (T (x, y), z).

Proposition 5.12. T̃r is a T -vague t-norm.

Proof. Consequence of Proposition 4.8 because E
(r)
T is regular.

Example 5.13.

• If T = TM is the minimum t-norm, then

T̃r(x, y, z) =

{
1 if z = min(x, y)
min(x, y, z) otherwise.

• If T is continuous Archimedean and t is an additive generator of T ,
then

T̃r(x, y, z) =

{
t[−1](r|t(x) − t(y)| − t(z)) if t(x) + t(y) ≤ t(0)
t[−1](r|t(0) − t(z)|) otherwise.

In particular

– If T = T L is the  Lukasiewicz t-norm, then

T̃r(x, y, z) =





z − r|x− y| if x + y ≥ 1 and z + r|x− y| ≤ 2
0 if x + y ≥ 1 and z + r|x− y| > 2
1 − rz if x + y < 1 and rz ≤ 1
0 if x + y < 1 and rz > 1.
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– If T = TP is the product t-norm, then

T̃r(x, y, z) = (
min(xy, z)

max(xy, z)
)r.

Proposition 5.14. Let T be a continuous t-norm and r ≥ s > 0. Then
the identity map id : [0, 1] → [0, 1] is a homomorphism from ([0, 1], T̃r) onto

([0, 1], T̃s)

Proof. If r ≥ s, then E
(r)
T ≤ E

(s)
T and we can apply Proposition 4.14.

Proposition 5.15. Let T be a continuous t-norm and r > 0. Then the
identity map id : [0, 1] → [0, 1] is a homomorphism from ([0, 1], T ) onto

([0, 1], T̃s)

Proof. For every r > 0, E
(r)
T ≥ Id where Id is the crisp equality on [0, 1] and

we can apply Proposition 4.14.

Proposition 5.16. Let T be a continuous t-norm and r ≥ s > 0. Then the
kernel of the identity map id : [0, 1] → [0, 1] from ([0, 1], T̃r) onto ([0, 1], T̃s)
is a T -fuzzy t-subnorm of ([0, 1], T ).

Proof. It is a special case of Proposition 4.17.

Proposition 5.17. Let T be a continuous t-norm and r > 0. Then the
kernel of the identity map id : [0, 1] → [0, 1] from ([0, 1], T ) onto ([0, 1], T̃s) is
a T -fuzzy t-subnorm of ([0, 1], T ).

Proof. It is a special case of Proposition 4.17.

These kernels are of the form µ(x) = E
(r)
T (x, 1). For example, if T is the

 Lukasiewicz t-norm, the graphics of these T -fuzzy T -subnorms of T are the
segments in [0, 1] ending at the point (1, 1).

Until now, in this section we have studied vague t-norms. Analogously
we can consider vague t-conorms.

First we will see that the powers of ET are regular with respect to t-
conorms.

Proposition 5.18. Let TM be the minimum t-norm and SM the maximum
t-conorm. Then ETM

is regular with respect to SM .
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Proof. We must prove that for all x, y, z ∈ [0, 1], ETM
(x, y) ≤ ETM

(max(x, z),max(y, z)).
Without loss of generality we can assume x ≥ y. There are three possi-

bilities

a) z ≥ x ≥ y: In this case ETM
(max(x, z),max(y, z)) = ETM

(z, z) = 1 ≥
ETM

(x, y).

b) x ≥ z ≥ y: In this case ETM
(max(x, z),max(y, z)) = ETM

(x, z) ≥
ETM

(x, y).

c) x ≥ y ≥ z: In this case ETM
(max(x, z),max(y, z)) = ETM

(x, y).

Proposition 5.19. Let T be a nilpotent t-norm, ϕT its associated negation
and (T, S, ϕT ) a De Morgan triplet. Then ET is regular with respect to S.

Proof. We must prove that for all x, y, z ∈ [0, 1], ET (x, y) ≤ ET (S(x, z), S(y, z)).
From Proposition 3.24,

If both t(x) + t(z) − t(0) ≥ 0 and t(y) + t(z) − t(0) ≥ 0, then

ET (t[−1](t(x) + t(z) − t(0)), t[−1](t(y) + t(z) − t(0)))

= t[−1](|t(x) + t(z) − t(0) − (t(y) + t(z) − t(0))|)
= t[−1](|t(x) − t(y)|) = ET (x, y).

If both t(x) + t(z) − t(0) ≤ 0 and t(y) + t(z) − t(0) ≤ 0, then

ET (t[−1](t(x) + t(z) − t(0)), t[−1](t(y) + t(z) − t(0)))

= ET (1, 1) = 1 ≥ ET (x, y).

If t(x) + t(z) − t(0) ≤ 0 and t(y) + t(z) − t(0) ≥ 0, (x > y), then

ET (t[−1](t(x) + t(z) − t(0)), t[−1](t(y) + t(z) − t(0)))

= ET (1, t[−1](t(y) + t(z) − t(0)))

= t[−1](t(y) + t(z) − t(0))

and we must prove

ET (x, y) = t[−1](t(y) − t(x)) ≤ t[−1](t(y) + t(z) − t(0))
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or
t(y) − t(x) ≥ t(y) + t(z) − t(0).

which is true if t(x) + t(z) − t(0) ≤ 0.
The case t(x) + t(z) − t(0) ≥ 0 and t(y) + t(z) − t(0) ≤ 0, (x < y) is

analogous.

Corollary 5.20. Let T be a nilpotent t-norm, ϕT its associated negation,
(T, S, ϕT ) a De Morgan triplet and r > 0. Then E

(r)
T is regular with respect

to S.

Proposition 5.21. Let TP be the product t-norm and SP its dual t-conorm
with respect to the natural negation n. Then ETP

is regular with respect to
SP .

Proof. SP (x, y) = x + y − xy and, assuming without loss of generality that
x ≤ y, we must prove x

y
≤ x+z−xz

y+z−yz
. This is equivalent to prove

x(y + z − yz) ≤ y(x + z − xz)

which is true if x ≤ y.

Proposition 5.22. Let TP be the product t-norm, SP its dual t-conorm with
respect to the natural negation n and r > 0. Then E

(r)
TP

is regular with respect
to SP .

Definition 5.23. Let T be a t-norm, E a T -indistinguishability operator
on [0, 1] separating points and S a t-conorm. An S-vague monoid ([0, 1], S̃)

whose associated operation is S (S(x, y) = z if and only if S̃(x, y, z) = 1) is
called an T -vague t-conorm.

Definition 5.24. Let T be a continuous t-norm, S a t-conorm and r > 0.
Then S̃r is defined for all x, y, z ∈ [0, 1] by

S̃r(x, y, z) = E
(r)
T (S(x, y), z).

As a consequence of Proposition 4.8 we have the following results con-
cerning vague t-conorms.

Proposition 5.25. Let TM be the minimum t-norm and SP the maximum
t-conorm. Then

S̃P (x, y, z) =

{
min(max(x, y), z) if max(x, y) 6= z
1 otherwise.

is a TM -vague t-conorm of SP .
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Proposition 5.26. Let T be a nilpotent t-norm, ϕT its associated negation,
(T, S, ϕT ) a De Morgan triplet and r > 0. Then

S̃r(x, y, z) =

{
t[−1](r|t(x) + t(y) − t(z) − t(0)|) if t(x) + t(y) − t(z) ≥ 0
z(r) otherwise.

is a T -vague t-conorm with respect to S.

Corollary 5.27. If T L and S L are the t-norm and t-conorm of  Lukasiewicz,
then

S̃r(x, y, z) =

{
max(1 − r|x + y − z|, 0) if x + y ≤ 1
max(1 − r + rz = x(r)) otherwise.

is a T L-vague t-conorm with respect to S L.

Proposition 5.28. If TP is the product t-norm and SP the probabilistic sum,
then

S̃r(x, y, z) =

(
min(x + y − xy, z)

max(x + y − xy, z)

)r

is a TP -vague t-conorm with respect to SP .

Proposition 5.29. Let T be a continuous t-norm and r ≥ s > 0. Then
the identity map id : [0, 1] → [0, 1] is a homomorphism from ([0, 1], S̃r) onto

([0, 1], S̃s)

Proposition 5.30. Let T be a continuous t-norm and r > 0. Then the
identity map id : [0, 1] → [0, 1] is a homomorphism from ([0, 1], S) onto

([0, 1], S̃s)

Proposition 5.31. Let T be a continuous t-norm and r ≥ s > 0. Then the
kernel of the identity map id : [0, 1] → [0, 1] from ([0, 1], S̃r) onto ([0, 1], S̃s)
is a T -fuzzy t-subconorm of ([0, 1], S).

Proposition 5.32. Let T be a continuous t-norm and r > 0. Then the
kernel of the identity map id : [0, 1] → [0, 1] from ([0, 1], S) onto ([0, 1], S̃s) is
a T -fuzzy t-subconorm of ([0, 1], S).

6 Concluding Remarks

In this paper we have fuzzified t-norms and t-conorms in two different ways:
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• by defining T -fuzzy t-subnorms and t-subconorms.

• by introducing T -vague t-norms and t-conorms.

These concepts are interrelated as kernels of T -vague t-norms and t-
conorms are T -fuzzy t-subnorms and t-subconorms, respectively.

A fuzzy operation ◦̃ on a set M can be seen as a type-2 fuzzy subset of
M × M : If [0, 1]M is the set of fuzzy subsets of M , then we can define O :
M ×M → [0, 1]M by O(x, y)(z) = ◦̃(x, y, z). In this way, a T -vague t-norm

T̃ can be seen as a type-2 t-norm T : [0, 1] × [0, 1] → [0, 1][0,1]: T(x, y)(z) =

T̃ (x, y, z). The same applies to vague t-conorms.

It seems interesting the fuzzification of other connectives used in fuzzy
logic such as implications. The authors will develop it in further works.
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