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ABSTRACT

On the occasion of the fiftieth anniversary of the publication of Zadeh’s significant
paper Similarity Relations and Fuzzy Orderings, an account of the development of
similarity relations during this time will be given. Moreover the main topics related
to these fuzzy relations will be reviewed.
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1. Introduction

Fifty years ago L.A. Zadeh published one of his most influential articles: Similarity
Relations and Fuzzy Orderings (Zadeh 1971). These are the two most important types
of fuzzy relations because they fuzzify the concepts of (crisp) equivalence relation and
(crisp) preorder. Zadeh’s article constitutes the start of its systematic study. Here
we will focus on similarity relations by describing the relevance of the article and
presenting the main advances and contributions during these fifty years.

In this introductory section we will show the importance of similarity relations and
the most relevant results on Zadeh’s article.

1.1. The Need of Fuzzy Equivalence Relations

The concept of equality is a fundamental notion in any theory since it is essential
to the ability of discerning the objects to whom it concerns. Its need and importance
come from the fact that it allows us to classify. Classifying is one of the most important
processes of knowledge because it permits to relate, organize, generalize, find general
laws, etc.

In many real situations, the objects of a universe of discourse do not verify a property
completely but in general they satisfy it only at a certain degree and the properties
become fuzzy. In the same way, we cannot talk about identical objects but equality
between objects becomes fuzzy as well. Crisp equivalence relations are in these cases
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too rigid to model this kind of equalities and have to be replaced by some fuzzification
where “equal” must be replaced by “indistinguishable”.

As early as 1901, H. Poincaré (Poincaré 1902) was already concerned about this
kind of disquisitions. He considered that in the physical (real) world, equal means
indistinguishable because when we declare that two objects are equal what we can
only be sure of is that they cannot be distinguished. This leads to the paradox that
two objects A and B can be equal (indistinguishable), B equal to a third object C but
A and C can be different (distinguishable) meaning the non-transitivity of equality
relations in the real world. Fuzzy equivalence relations try to overcome this problem
at least to a certain extent. These relations are now valued on a complete residuated
lattice in many papers but in this survey we will restrict to the unit interval with a
t-norm (mainly left-continuous). This is their definition.

Definition 1.1. Let T be a t-norm. A fuzzy relation E on a universe X is a fuzzy
equivalence relation or T -fuzzy equivalence relation if for all x, y, z ∈ X,

1) E(x, x) = 1 (Reflexivity)
2) E(x, y) = E(y, x) (Symmetry)
3) T (E(x, y), E(y, z)) ≤ E(x, z) (T -transitivity).

If moreover

4) E(x, y) = 1 implies x = y,

then E is called a fuzzy equality or a fuzzy equality relation. We also say that E
separates points.

Definition 1.1 is the natural fuzzification of the concept of equivalence relation.
Reflexivity and symmetry are translated in a straightforward way. Transitivity is more
delicate and deserves a comment. Property 1.1.3) provides a lower bound to the degree
of equivalence or indistinguishability E(x, z) between x and z knowing the values
E(x, y) and E(y, z). From a logical point of view, if the t-norm is left-continuous,
1.1.3) is equivalent to

T (E(x, y), E(y, z)) → E(x, z) = 1

where → is the residuated implication associated to T and T is interpreted as a
conjunctive connector.

The selection of a particular t-norm to model the transitivity depends on the type
of logic we are using and provides flexibility to the definition of fuzzy equivalence
relation.

Selecting the minimum t-norm we recover the original Zadeh’s similarity relations.
They are especially useful in taxonomy because their α-cuts (see Definition 4.4) gen-
erate hierarchical trees as we will see in Section 4. The next example provides a justi-
fication for using the minimum t-norm.

Example 1.2. Use of the minimum t-norm (Kruse, Gebhardt and Klawonn 1994).
Assume that the objects can only be observed through cloudy glasses of thickness

ranging from 0 to 1. If after observing the objects x and y through a glass of thickness
α we cannot distinguish them, we will say that they are α−indistinguishable and define
E(x, y) = sup{1− α | x and y are α−indistinguishable}. It is easy to check that E is
min-transitive and hence a similarity relation.
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The use of the product t-norm TP was proposed in (Menger 1951) where he considers
E(x, y) as the probability of finding x and y equal as we will see in the next subsection.

E.H. Ruspini considers the use of the  Lukasiewicz t-norm  L in (Ruspini 1977)
mainly because if E is an  L-fuzzy equivalence relation, then 1− E is a pseudometric.
The following example gives an intuitive justification of the use of this t–norm.

Example 1.3. Use of the  Lukasiewicz t-norm (Sols 2012).
Consider a universe of objects defined by a set Ω of binary features. If we pick up

one of this features ω we consider that two objects x and y are equal with respect to
ω if x(ω) = y(ω) and then define E(x, y) as the proportion of features for which x and
y are equal. Then

E(x, z) = P ({ω ∈ Ω | x(ω) = z(ω)})
≥ P ({ω ∈ Ω | x(ω) = y(ω), y(ω) = z(ω)})
= P ({ω ∈ Ω | x(ω) = y(ω)}) + P ({ω ∈ Ω | y(ω) = z(ω)})
− P ({ω ∈ Ω | x(ω) = y(ω) or y(ω) = z(ω)})
≥ E(x, y) + E(y, z) − 1

and E is transitive with respect to the t-norm of  Lukasiewicz.

Another justification can be found in (Bezdek and Harris 1978).

Example 1.4. Use of t-norms of the Schweizer Sklar family (Sols 2012).
If in the last example we consider that the degree of indistinguishability E(x, y)

between two objects x and y is the probability of finding at least n features coinciding
in x and y, then E is transitive with respect to the t-norm T (x, y) = max{0, (x 1

n +

y
1

n − 1)n} belonging to the Schweizer Sklar family.

1.2. Previous Works

Some previous works to Zadeh’s article are to be commented going back to (Poincaré
1902). As previously said, Poincaré considers that in the observable physical continuum
“equal” means “indistinguishable” because when we say that two objects are equal we
only know that they cannot be distinguished. This leads to the paradox that for three
objects A,B and C we can have

A = B, B = C but A 6= C

failing the transitivity property.
To overcome this paradox, Karl Menger (Menger 1951) associates to any couple

(a, b) a number E(a, b) meaning the probability that a and b are equal and calls E a
probabilistic relation if it satisfies the following axioms

1) E(a, a) = 1 for every a
2) E(a, b) = E(b, a) for every a and b
3) E(a, b) ·E(b, c) ≤ E(a, c) for every a, b, c.

1) and 2) correspond to the reflexivity and the symmetry of the equality relation, 3)
expresses a minimum of transitivity.

Menger realized that − logE = d is a pseudometric and that from a pseudometric d
a probabilistic relation E = e−d can be obtained. These results were generalized later
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on to continuous Archimedean t-norms in (Valverde 1985).
Menger also contemplates that limitations in perceiving and measuring some prop-

erties would lead to an approximate equality. Let us consider the case of a particular
appliance providing measurements on the real line with an error margin ε. We have
then the following approximate equality:

a ≈ b when |a− b| ≤ ε.

But then the relation ≈ is not transitive and hence not an equivalence relation. To
solve this problem Menger considers the probabilistic relation E(a, b) = e−|a−b|.

The problem with the imprecision with measurements was also treated in (Menger
1942) in the study of Probabilistic Metric Spaces. He again considers unrealistic in
many situations to think that a precise number can be assigned to the distance between
a pair of points p and q and rather associates a distribution function Fp,q with p and
q. The value Fp,q(x) for x ≥ 0 may then be interpreted as the probability that the
distance between p and q is strictly less than x. It took a while before a good definition
of the triangular inequality was given as it appears for example in (Schweizer and Sklar
1983) based on triangular functions. These functions can be defined as a convolution,
obtaining what is called a Wald space, or by the use of a t-norm, and having what
they are known as Menger spaces. 1

1.3. Zadeh’s Similarity Relations

In this subsection we will comment the most relevant aspects on similarity relation of
Zadeh’s original article.

Zadeh starts by acknowledging the relevance of the concepts of equivalence and
similarity in many fields of pure and applied science. He also admits the existence of
a number of techniques for dealing with problems involving equivalence, similarity,
clustering, preference patterns, etc. as well as that many of these techniques are quite
effective in numerical taxonomy, factor analysis, pattern classification and analysis of
proximities. The purpose of the article is hence not to provide a new technique but
rather to introduce a unifying point of view based on fuzzy sets and fuzzy relations.
In 1971 he uses the already consolidated theory of fuzzy sets to develop the concept of
similarity (fuzzy) relation and explore its properties and future applications, though
the article is purely theoretic.

In Section 2, some basic definitions and properties of fuzzy relations are exposed
starting with the definition of fuzzy (binary) relation R from universe X to universe
Y as a fuzzy subset of X × Y or equivalently, a mapping R : X × Y → [0, 1] and, for
x ∈ X a y ∈ Y , R(x, y) is interpreted as the strength of the relation between x and
y. He continues giving some definitions such as domain, range, height, support of a
fuzzy relation, the inclusion or containment of a fuzzy relation R in a fuzzy relation
S and the union and intersection of fuzzy relations defined with the use of max and
min respectively.

If R is a fuzzy relation from X to Y and S a fuzzy relation from Y to Z, the
sup−min product R ◦ S of R and S is the fuzzy relation from X to Z defined for all

1It is worth noticing that t-norms appear for the first time in this context.
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x ∈ X and z ∈ Z by

(R ◦ S)(x, z) = sup
y∈Y
{min(R(x, y), S(y, z))}.

Due to the associativity of ◦, if R is a fuzzy relation from X to X (simply a fuzzy

relation on X), then for n ∈ N the power Rn =

n times
︷ ︸︸ ︷

R ◦R ◦ ... ◦R is well defined.
At this point Zadeh comments the possibility of replacing the minimum by another

operation ∗ being at least associative and monotone non-decreasing in each of its
arguments and gives the product as the easiest example. (The reader will notice that
t-norms and t-subnorms satisfy these conditions).

Next he points out that for finite universes, a fuzzy relation R can be considered as
a matrix where the corresponding (x, y) element is R(x, y) and the sup−min product
of fuzzy relations coincides with the max−min product of their matrices.

For a fuzzy relation from X to Y and α ∈ [0, 1], Zadeh defines the α-level-set Rα
or α-cut Rα of R and proves in Proposition 1 that R can be recovered from its α-cuts
by R = supα∈[0,1]{α ·Rα}

Section 3 is devoted to the specific study of similarity relations.
According to Zadeh, the definition of similarity relation is as follows.

Definition 1.5. A fuzzy relation R on a universe X is a similarity relation if for all
x, y, z ∈ X,

1) E(x, x) = 1 (Reflexivity)
2) E(x, y) = E(y, x) (Symmetry)
3) supy∈X{min(E(x, y), E(y, z))} ≤ E(x, z) (min-transitivity).

It is clear that Condition 1.5.3) is equivalent to

min(E(x, y), E(y, z)) ≤ E(x, z) for all y ∈ X.

This is the way min-transitivity is usually written. Nevertheless, in Zadeh’s article
Condition 1.5.3) stresses that a fuzzy relation E is min-transitive if and only if E◦E ≤
E, where ◦ means the sup−min product. The relationship between min-transitivity,
the sup−min product and the min-transitive closure of a fuzzy relation is established.
(In Section 2.1 of the present article the results will be given for general left-continuous
t-norms.)

The situation already analyzed by Menger that a ≈ b when |a−b| ≤ ε (see Subsection
1.2) is studied by Zadeh and he proves that e−β|x−y| with β a positive number is a
fuzzy equivalence relation with respect to the product t-norm.

The important fact that E is a similarity relation if and only if 1−E is a pseudoul-
trametric is proved. The most relevant consequence of this fact is that the α-cuts of
a similarity relation E are (crisp) equivalence relations and if α < β, then Eα ≥ Eβ .
Therefore there is a bijection between indexed trees and similarity relations if the
universe of discourse has finite cardinality (see Section 4).

The study of similarity relations in (Zadeh 1971) ends with the definition of fuzzy
equivalence class: If E is a similarity relation on a universeX and x ∈ X, then the fuzzy
equivalence class Ex associated to x is the fuzzy subset Ex defined by Ex(y) = E(x, y)
for all y ∈ Y . If X is a finite universe, then Ex can be identified with the column x of
E.
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It is amazing that in the study of similarity relations Zadeh opened the door to
almost all their relevant aspects. Namely,

• The max–min product.
• The min–transitivity property of a fuzzy relation.
• The min–transitive closure of a fuzzy relation.
• The definition of similarity relation as it is still valid now.
• The possibility of replacing the minimum with other operations of the unit in-

terval to model transitivity including t-subnorms and t-norms.
• If E is a similarity relation transitive with respect to the product, then e−E is a

pseudo-metric.
• The fact that the α-cuts of a similarity relations form a nested family of (crisp)

equivalence relations and hence a hierarchical tree.
• The relationship between similarity relations and pseudo-ultrametrics.
• The definition of fuzzy equivalence class.

Extensionality (see Section 3) is perhaps the only important property related to
similarity relations that Zadeh does not consider in his article. Curiously enough this
is the central property in one of his most relevant ideas: granularity.

As Zadeh points out in his article, in the same year a paper was published containing
some of these results (Tamura, Higuchi and Tanaka 1971), which proves that great
ideas evolve and get ripe at the same time in different places.

The rest of the article is structured as follows: In the next section we will study the
way fuzzy equivalence relations can be generated. Section 3 is devoted to extensionality,
the most important property that a fuzzy subset can fulfill with respect to a fuzzy
equivalence relation. In Section 4 we will study similarity relations (transitive with
respect to the minimum t-norm). The article ends with a section providing different
aspects of the usefulness of fuzzy equivalence relations in different areas.

Different names have been given to fuzzy equivalence relations: indistinguishability
operators, T -equivalences, fuzzy equalities, similarity relations, etc. Here we will use
fuzzy equivalence relation or T -fuzzy equivalence relation.

Fuzzy equivalence relations have been generalized in different ways.

• They have been defined in more general structures like interval valued, type 2,
intuitionistic, hesitant fuzzy sets and fuzzy equivalence relations valued on finite
subsets of the unit interval.

• The definition has been relaxed in some ways. For example U. Hoehle (Hoehle
1988) replaces reflexivity with E(x, x) ≥ λ ∈ [0, 1] and defines E(x, x) as the
degree of existence of x. J. Mart́ın and G. Mayor consider multiindistinguisha-
bilities, that is: fuzzy equivalence relations with more than two objects (Mart́ın
and Mayor 2009) a concept dual to Menger’s n-dimensional metrics (Menger
1928).

• The t-norm has been replaced by other operations such as quasi-arithmetic
means, conjunctors or semi-copulas.

• Fuzzy equivalence relations have also been valued in more general structures like
MV and GL algebras and complete residuated lattices.

• They have also been studied in the setting of category theory (Hoehle 1988,
1992).
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For the sake of simplicity in this article we will restrict to left-continuous t-norms
to model the transitive property because this assures that the sup−T product is
associative (Drewniak and Pȩkala 2007) and that the t-norm and its residuation satisfy
the adjointness property (Boixader 1998).

2. Generating Fuzzy Equivalence Relations

One of the most interesting issues related to fuzzy equivalence relations is the way
they can be generated, which depends on the way in which the data are given and on
the use we want to make of them. It also helps to understand their structure. The four
most common ways are:

• By calculating the T -transitive closure of a reflexive and symmetric fuzzy relation
(a proximity or tolerance relation).

• By using the Representation Theorem.
• By generating a decomposable operator from a fuzzy subset.
• By obtaining a transitive opening of a proximity relation.

2.1. Transitive Closure

The results of this subsection can be found scattered in many places. A book that
contains all the results with proofs is (Klir and Yuan 1995).

Given a t-norm T , the transitive closure of a reflexive and symmetric fuzzy relation
R on a set X is the smallest T -fuzzy equivalence relation R on X greater than or equal
to R.

It is instructive to see first what happens in the crisp case: If R is a reflexive and
symmetric crisp relation on a finite set X, it can be represented by a graph GR with
vertices the elements of X and with two vertices x and y connected by an edge when
xRy. Its transitive closure is the smallest graph that contains GR and such that all its
connected components are complete subgraphs. This makes R an equivalence relation.
Figure 1 shows a graph corresponding to a reflexive and symmetric relation and the
graph of its corresponding transitive closure.

•a

•b •c

•d

•e

•f

•g

•a

•b •c

•d

•e

•f

•g

Figure 1. A graph GR corresponding to a crisp reflexive and symmetric relation R on {a, b, c, d, e, f, g} on
the left and the graph of its transitive closure R on the right.

This produces the well-known chain effect or chaining: two vertices of the graph
connected by a chain but very distant belong to the same equivalence class of R. In
Figure 1, for instance, though that the vertices a and d are very far away in GR,
they are in the same connected subgraph of GR and therefore related by R. It is in
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•a

•b •c

•d

•e

•f

•g

•a

•b •c

•d

•e

•f

•g

Figure 2. A graph GR corresponding to a crisp reflexive and symmetric relation R on {a, b, c, d, e, f, g} on
the left and the graph of R2 on the right.

general an undesirable property though in some cases can produce good results (see for
instance the Example 13.3 of (Klir and Yuan 1995) borrowed from (Tamura, Higuchi
and Tanaka 1971)).

Coming back to fuzzy relations, an interesting way to obtain their transitive closure
is by using the sup−T product.

Definition 2.1. Let R and S be two fuzzy relations on X and T a t-norm. The
sup−T product of R and S is the fuzzy relation R ◦ S on X defined for all x, y ∈ X
by

(R ◦ S)(x, y) = sup
z∈X
{T (R(x, z), S(z, y))}.

If the t-norm is left-continuous, then the sup−T product is associative and the nth

power Rn of a fuzzy relation R is

Rn =

n times
︷ ︸︸ ︷

R ◦ ... ◦R .

If the relation R is crisp, then

xR2y if and only if ∃z such that xRz and zRy.

Figure 2 illustrates this with an example.

Lemma 2.2. Let T be a left-continuous t-norm and R a fuzzy relation on a universe
X. Then R is T -transitive if and only if R2 ≤ R.2

Proof. For x, z ∈ X

R2(x, z) = sup
y∈X
{T (R(x, y), R(y, z))} ≤ R(x, z)

is equivalent to

T (R(x, y), R(y, z)) ≤ R(x, z)

2Recall that given two fuzzy relations R, S on a universe X, R ≤ S when R(x, y) ≤ S(x, y) for all x, y ∈ X.
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for all y ∈ X.

Proposition 2.3. Let T be a left-continuous t-norm and R a fuzzy relation on a
universe X. Then the fuzzy relation supn∈N{Rn} is the transitive closure R of R.

Proposition 2.4. Let T be a left-continuous t-norm and (Ei)i∈I a family of T -fuzzy
equivalence relations on a universe X. Then infi∈I{Ei} is a T -equivalence relation on
X.

Proof. Reflexivity and symmetry is trivial. Let us prove T -transitivity.

T (inf
i∈I
{E(x, z)}, inf

i∈I
{E(z, y)}) ≤ inf

i∈I
{T (E(x, z), E(z, y))} ≤ inf

i∈I
E(x, y).

Corollary 2.5. The T -transitive closure R of a reflexive and symmetric fuzzy relation
R on a universe X is the intersection of all T -fuzzy equivalence relations on X greater
than or equal to R.

The next lemma proves the importance of the reflexivity property.

Lemma 2.6. Let T be a left-continuous t-norm and R a reflexive fuzzy relation on X
Then Rn ≤ Rm if n ≤ m.

If X is a finite set we get the following practical result.

Proposition 2.7. Let T be a left-continuous t-norm and R a reflexive and symmetric
fuzzy relation on a universe of finite cardinality n ≥ 2. Then R = Rn−1.

Example 2.8. Let R be the fuzzy relation given by the matrix







1 0.9 0.3 0.4
0.9 1 0.5 0.4
0.3 0.5 1 0.9
0.4 0.4 0.9 1







The transitive closure with respect to the  Lukasiewicz, product and minimum t-norms
respectively are







1 0.9 0.4 0.4
0.9 1 0.5 0.4
0.4 0.5 1 0.9
0.4 0.4 0.9 1






,







1 0.9 0.45 0.4
0.9 1 0.5 0.45
0.45 0.5 1 0.9
0.4 0.45 0.9 1






,







1 0.9 0.5 0.5
0.9 1 0.5 0.5
0.5 0.5 1 0.9
0.5 0.5 0.9 1






.

2.2. The Representation Theorem

As we will see in this subsection, from a fuzzy subset µ of a universe X a fuzzy
equivalence relation Eµ on X can be generated in a very natural way. This is a very
important result because it says that from a feature or characteristic represented by
a fuzzy subset we can get a fuzzy equivalence relation. The Representation Theorem
states that a fuzzy relation E on a universe X is a fuzzy equivalence relation if and
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only if it can be obtained as the infimum of fuzzy equivalence relations generated by
a family of fuzzy subsets.

Apart from the important fact that every fuzzy equivalence relation can be obtained
from a family of features, the Representation Theorem is very much related to the
extensionality of fuzzy subsets as we will see in Section 3.

The Representation Theorem is much inspired in a similar (dual) result on metric
spaces (Fréchet 1910). Given a mapping f : X → [0,∞] on a universeX, mf : X×X →
[0,∞] defined for all x, y ∈ X by mf (x, y) = |f(x) − f(y)| is a pseudometric and a
representation theorem for metric spaces states that a mapping m : X×X → [0,∞] is
a pseudometric on X if and only if there exists a family (fi)i∈I of mappings fi : X →
[0,∞] such that m = supi∈I{mfi}.

Considering this result and that m is a pseudometric if and only if e−m is a fuzzy
equivalence relation with respect to the product t-norm, Ovchinnikov proved a Repre-
sentation Theorem for these fuzzy relations (Ovchinnikov 1984) and for fuzzy preorders
with respect to this t-norm.

The previous results were generalized in (Valverde 1985) to general continuous t-
norms, though all results and proofs remain valid for complete residuated lattices and
in particular for left-continuous t-norms.

(Fodor and Roubens 1995) proved a representation theorem for transitive fuzzy
relations and in (Calvo and Recasens 2021) a representation theorem for local fuzzy
equivalence relations (i.e., non-necessarily reflexive) can also be found.

We need to recall the definition of residuation and biresiduation of a left-continuous
t-norm.

Definition 2.9. The residuation
−→
T of a left-continuous t-norm T is the mapping−→

T : [0, 1] × [0, 1]→ [0, 1] defined for all x, y ∈ [0, 1] by

−→
T (x|y) = sup{α ∈ [0, 1] | T (x, α) ≤ y}.

Definition 2.10. The biresiduation
←→
T of a left-continuous t-norm T is the mapping←→

T : [0, 1] × [0, 1] → [0, 1] defined for all x, y ∈ [0, 1] by

←→
T (x, y) = min(

−→
T (x|y),

−→
T (y|x)).

Example 2.11.

• If T is a continuous Archimedean t-norm with additive generator t, then←→
T (x, y) = t−1(|t(x) − t(y)|) for all x, y ∈ [0, 1].

As special cases,

◦ If  L is the  Lukasiewicz t-norm, then
←→
 L (x, y) = 1−|x−y| for all x, y ∈ [0, 1].

◦ If T is the product t-norm, then
←→
T (x, y) = min(xy ,

y
x) for all x, y ∈ [0, 1]

with the convention z
0 = 1.

• If T is the minimum t-norm, then

←→
T (x, y) =

{
min(x, y) if x 6= y
1 otherwise.

Proposition 2.12. Let T be a left-continuous t-norm. Then
←→
T is a T -fuzzy equiva-

lence relation on [0, 1] that separates points.

10



Proposition 2.13. Let µ be a fuzzy subset of a universe X and T a left-continuous
t-norm. The fuzzy relation Eµ on X defined for all x, y ∈ X by

Eµ(x, y) =
←→
T (µ(x), µ(y))

is a T -fuzzy equivalence relation.

When µ = A is a crisp subset of X, EA generates a partition of X into A and its
complementary set X −A, since in this case EA(x, y) = 1 if and only if x and y both
belong to A or to X −A.

Representation Theorem 2.14. (Valverde 1985) Let E be a fuzzy relation on a
universe X and T a left-continuous t-norm. E is a T -fuzzy equivalence relation if and
only if there exists a family (µi)i∈I of fuzzy subsets of X such that for all x, y ∈ X

E(x, y) = inf
i∈I

Eµi
(x, y).

(µi)i∈I is called a generating family of E. A fuzzy subset belonging to a generating
family of E is called a generator of E. A generating family of E with minimal cardi-
nality is called a basis of E and the cardinality of the corresponding set of indexes its
dimension.

The following result is trivial but will have important consequences in Section 3 as
it shows the equivalence of being a generator and being extensional.

Lemma 2.15. µ is a generator of E if and only if Eµ ≥ E.

Example 2.16. Let µ = (0.3, 0.5, 0.8) be a fuzzy subset of X = {x1, x2, x3}. The
fuzzy equivalence relations generated by µ with respect to the minimum, product and
 Lukasiewicz t-norms are respectively





1 0.3 0.3
0.3 1 0.5
0.3 0.5 1



 ,





1 0.6 0.375
0.6 1 0.625

0.375 0.625 1



 ,





1 0.8 0.5
0.8 1 0.7
0.5 0.7 1



 .

2.3. Decomposable Fuzzy Equivalence Relations

The study of decomposable fuzzy equivalence relations (Recasens 2008) is interesting
basically for three reasons.

• They satisfy an interesting (though trivial) tetrahedral relation.
• They generate radial betweenness relations for continuous Archimedean t-norms

as we will see in Section 5.1.
• t-norms are decomposable local (i.e.: non-reflexive) fuzzy equivalence relations

(Calvo and Recasens 2021).

Definition 2.17. Let T be a t-norm and X a universe. The decomposable fuzzy
relation Eµ generated by a fuzzy subset µ of X is defined for all x, y ∈ X by

Eµ(x, y) = T (µ(x), µ(y)).
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The normalized decomposable fuzzy relation Eµ1 is

Eµ1 (x, y) =

{
T (µ(x), µ(y)) if x 6= y
1 otherwise.

Proposition 2.18. Let T be a t-norm and µ a fuzzy subset of a universe X. Then
Eµ1 is a T -fuzzy equivalence relation and Eµ a local T -fuzzy equivalence.

Proposition 2.19. Let T be a continuous Archimedean t-norm with additive gener-
ator t and µ a fuzzy subset of a universe X. If the decomposable local T -fuzzy equiv-
alence relation Eµ on X generated by µ satisfies Eµ(x, y) 6= 0 for all x, y ∈ X, then
it generates the following tetrahedral relation on X: Given four different elements
x, y, z, u ∈ X,

T (Eµ(x, y), Eµ(z, u)) = T (Eµ(x, z), Eµ(y, u)).

Figure 3 shows this kind of relation.

•z •y

•x •u

Figure 3. The tetrahedral relation of a decomposable fuzzy equivalence relation.

Definition 2.20. A fuzzy subset µ of a universe X is normal if there exists an x ∈ X
with µ(x) = 1.

Proposition 2.21. Let T be a continuous Archimedean t-norm with additive gener-
ator t and µ a normal fuzzy subset of a universe X with a ∈ X and µ(a) = 1. If the
decomposable T -equivalence relation Eµ on X generated by µ satisfies Eµ(x, y) 6= 0
for all x, y ∈ X, then for all x, y ∈ X,

T (Eµ(x, a), Eµ(a, y)) = Eµ(x, y) and

T (Eµ1 (x, a), Eµ1 (a, y)) = Eµ1 (x, y).

This means that the betweenness relation (see Subection 5.3) generated by Eµ1 is
radial in the sense that a is between any pair of points of X and makes decomposable
fuzzy equivalence relations suitable for modelling radial systems where there is a center,
node or hub.

2.4. Transitive Openings

The T -transitive closure of a reflexive and symmetric fuzzy relation R is a T -fuzzy
equivalence relation greater than or equal to R. It is the best upper approximation since

12



the infimum of T -fuzzy equivalence relations is also a T -fuzzy equivalence relation. If
we want a lower approximation, then the situation is more complicated since the
supremum of fuzzy equivalence relations is not such a relation in general. What we
can find is T -fuzzy equivalence relations maximal among the ones that are smaller
than or equal to a given reflexive and symmetric fuzzy relation. These relations are
called transitive openings and in general they are not unique, but there can be an
infinite quantity of them, even in sets of finite cardinality.

In (Fodor and Roubens 1995), an algorithm to find maximal transitive openings of
a given fuzzy relation is given, but the obtained openings are not symmetric in general
and in the process of symmetrizing them, maximality can be lost. Heuristic methods
to obtain T -fuzzy equivalence relations smaller than or equal to a given fuzzy relation
close to maximal ones have been proposed in (De Baets and De Meyer 2003) and in
(Boixader and Recasens 2011) a procedure is given for calculating all the transitive
openings of a reflexive and symmetric fuzzy relation with rational values on a finite
set X with respect to the  Lukasiewicz t-norm.

The minimum t-norm is an exception because of the special behavior of min-fuzzy
equivalence relations. In this case there are a number of algorithms to find at least
some of the min-transitive openings of a given reflexive and symmetric fuzzy relation.
A classic method is the complete linkage. Other algorithms can be found in (Dawyndt,
De Meyer and De Baets 2005; Garmendia et al 2009).

2.4.1. The  Lukasiewicz t-norm

In this subsection a method for calculating all the transitive openings of a reflexive
and symmetric fuzzy relation with rational values on a finite set X with respect to the
 Lukasiewicz t-norm will be explained. The method is very effective when combined
with heuristic algorithms such as the ones proposed in (De Baets and De Meyer 2003)
(see Example 2.26).

Definition 2.22. A reflexive and symmetric fuzzy relation on a universe X will be
called a proximity or tolerance relation on X.

Definition 2.23. Let R be a proximity relation on a universe X and T a t-norm. A
T -fuzzy equivalence relation R on X is a T -transitive opening of R if

• R ≤ R
• If E is another T -fuzzy equivalence relation on X satisfying E ≤ R, then E ≤ R.

Proposition 2.24. Let R be a proximity relation on a finite set X = {r1, r2, ..., rs}
of cardinality s and T a t-norm. S is a T -fuzzy equivalence relation smaller than or
equal to R if and only if its entries satisfy the following system of inequalities for all
i, j, k = 1, 2, ..., s.

0 ≤ S(ri, rj) ≤ R(ri, rj)

T (S(ri, rj), S(rj , rk)) ≤ S(ri, rk)

S(ri, rj) = S(rj , ri)

Example 2.25. Let us consider the reflexive and symmetric relation R on X =
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{s1, s2, s3} with matrix

R =





1 2
3 0

2
3 1 2

3
0 2

3 1



 .

A fuzzy relation S on X with matrix

S =





1 p q
p 1 r
q r 1





is a fuzzy equivalence relation smaller than or equal to R if and only if

0 ≤ p ≤ 2

3
0 ≤ q ≤ 0 0 ≤ r ≤ 2

3
T (p, q) ≤ r T (p, r) ≤ q T (q, p) ≤ r
T (q, r) ≤ p T (r, p) ≤ q T (r, q) ≤ p.

If  L is the  Lukasiewicz t-norm and we are looking for transitive openings, we can
consider only solution with a 3 on the denominator (see (Boixader and Recasens 2011)),
then there are 8 possible solutions in {0, 13 , 23 , 1}:

p = 0,
1

3
, q = 0, r = 0,

1

3
,
2

3

p =
2

3
, q = 0, r = 0,

1

3
.

Among them, there are 2  L-transitive openings of R. Namely





1 1
3 0

1
3 1 2

3
0 2

3 1









1 2
3 0

2
3 1 1

3
0 1

3 1



 .

The method is very greedy and in general needs many calculations. Fortunately,
when combined with heuristic algorithms it can be very effective as it is shown in the
next example.

Example 2.26. Consider the reflexive and symmetric fuzzy relation R on a set of
cardinality 5 with matrix

R =









1.0 0.5 0.5 0.7 0.6
0.5 1.0 0.8 0.7 0.5
0.5 0.8 1.0 0.9 0.8
0.7 0.7 0.9 1.0 0.9
0.6 0.5 0.8 0.9 1.0









.

In (De Baets and De Meyer 2003) an algorithm is used to calculate an  L-fuzzy equiv-
alence relation S which is not a transitive opening of R but smaller than R and close
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to a transitive opening:

S =









1.0 0.5 0.5 0.6 0.6
0.5 1.0 0.8 0.6 0.5
0.5 0.8 1.0 0.8 0.7
0.6 0.6 0.8 1.0 0.9
0.6 0.5 0.7 0.9 1.0









.

There are only 2 T -fuzzy equivalence relations with entries in {0, 0.1, 0.2, ..., 1} greater
than or equal to S and smaller than R that can be obtained in the same way as in
Example 2.25:









1.0 0.5 0.5 0.6 0.6
0.5 1.0 0.8 0.6 0.5
0.5 0.8 1.0 0.8 0.7
0.6 0.6 0.8 1.0 0.9
0.6 0.5 0.7 0.9 1.0









,









1.0 0.5 0.5 0.7 0.6
0.5 1.0 0.8 0.6 0.5
0.5 0.8 1.0 0.8 0.7
0.6 0.6 0.8 1.0 0.9
0.6 0.5 0.7 0.9 1.0









.

The second matrix is a  L-transitive opening of R.

2.4.2. Complete Linkage. The minimum t-norm

In the complete linkage, the entries of a proximity relation R = (aij) on a finite
set X = {x1, x2, ...xn} are modified according to the next algorithm to obtain a min-
transitive opening. Given two disjoint subsets C1, C2 of X their similarity degree S is
defined by S(C1, C2) = minxi∈C1,xj∈C2

(aij).

(1) Initially a cluster Ci is assigned to every element xi of X (i.e. the clusters of the
first partition are singletons).

(2) In each new step two clusters are merged in the following way.
If {C1, C2, ..., Ck} is the actual partition, then we must select the two clusters

Ci and Cj for which the similarity degree S(Ci, Cj) is maximal. (If there are
several such maximal pairs, one pair is picked at random). The new cluster
Ci ∪Cj replaces the two clusters Ci and Cj , and all entries of amn and anm of R
with m ∈ Ci and n ∈ Cj are lowered to S(Ci, Cj).

(3) Step 2 is repeated until there remains one single cluster containing all the ele-
ments of X.

Example 2.27. Let us consider the proximity R on X = {x1, x2, x3, x4} with matrix







x1 x2 x3 x4
x1 1 0.1 0.7 0.4
x2 0.1 1 0.4 0.3
x3 0.7 0.4 1 0.5
x4 0.4 0.3 0.5 1






.

The first partition is C1 = {x1}, C2 = {x2}, C3 = {x3}, C4 = {x4}. The greatest
similarity degree between clusters is S(C1, C3) = 0.7. These two clusters are merged
to form C13 = {x1, x3}. The matrix does not change in this step.
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The new partition is C13, C2, C4. The similarity degrees are

S(C13, C2) = min(a12, a32) = min(0.1, 0.4) = 0.1

S(C13, C4) = min(a14, a34) = min(0.4, 0.5) = 0.4

S(C2, C4) = a24 = 0.3.

The greatest similarity degree is 0.4 and the new partition is therefore C134 =
{x1, x3, x4}, C2 = {x2}. The entries a14, a41, a34, a43 of the matrix R are replaced by
0.4 obtaining







x1 x2 x3 x4
x1 1 0.1 0.7 0.4
x2 0.1 1 0.4 0.3
x3 0.7 0.4 1 0.4
x4 0.4 0.3 0.4 1






.

In the last step, we merge the two clusters C134, C2. The similarity degree is

S(C134, C2) = min(a12, a32, a42) = min(0.1, 0.4, 0.3) = 0.1.

The transitive opening of R obtained by complete linkage is then







x1 x2 x3 x4
x1 1 0.1 0.7 0.4
x2 0.1 1 0.1 0.1
x3 0.7 0.1 1 0.4
x4 0.4 0.1 0.4 1






.

3. Extensional Fuzzy Subsets

Extensionality is the most important property that a fuzzy subset can satisfy with
respect to a fuzzy equivalence relation because extensional fuzzy subsets are the only
ones that can be observed when the fuzzy equivalence relation is considered.

Let us analyze for the moment what happens in the crisp case where there is a
universe X and an equivalence relation ∼ defined on X. In this situation X is par-
titioned into equivalence classes that constitute the smallest parts of X that can be
observed through ∼. Then all observable subsets of X are combinations (unions (and
intersections if we want to obtain the empty set)) of equivalence classes of ∼. A subset
A of X can be approximated by observable ones from above and from bellow and the
result is a rough set (see figure 4).

If we have a fuzzy equivalence relation E on X, then the observable fuzzy subsets
of X with respect to E are exactly the extensional ones. This section will start with
the study of the structure of the set HE of all extensional fuzzy subsets of X with
respect to E. Then we will study two operators, φE and ψE , allowing us to obtain the
optimal upper and lower approximations of a fuzzy subset of X by extensional ones.
Finally, the concept of fuzzy point will be introduced.

We will see that the extensional fuzzy subsets can be obtained as combination
of fuzzy equivalence classes and hence are the basis of the granularity of the system.
Granularity, according to L.A. Zadeh, is one of the basic concepts that underlie human
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Figure 4. A subset in red and its upper and lower approximations.

cognition and the elements within a granule ’have to be dealt with as a whole rather
than individually’.

Informally, granulation of an object A results in a collection of granules of A, with a
granule being a clump of objects (or points) which are drawn together by indistinguisha-
bility, similarity, proximity or functionality. L.A. Zadeh

In this section all t-norms are assumed to be left-continuous.

3.1. The Set HE of Extensional Fuzzy Subsets

Definition 3.1. Let E be a T -fuzzy equivalence relation on a set X. A fuzzy subset
µ of X is extensional with respect to E (or simply extensional) if for all x, y ∈ X

T (E(x, y), µ(y)) ≤ µ(x).

HE will be the set of extensional fuzzy subsets of X with respect to E.

Remark. This definition fuzzifies the predicate

If x and y are equivalent and y ∈ µ, then x ∈ µ.

The extensional sets of E coincide with its generators in the Representation Theo-
rem.

Proposition 3.2. Let E be a T -fuzzy equivalence relation on X, µ a fuzzy subset
of X and Eµ the T -fuzzy equivalence relation generated by µ. µ ∈ HE if and only if
Eµ ≥ E.

The columns of E (its fuzzy equivalence classes) are extensional.

Proposition 3.3. Given a T-fuzzy equivalence relation E on a set X and an element
x ∈ X, the column µx = E(x, ·) of x is extensional.

Proposition 3.4. (Klawonn and Castro 1995) Let E be a T -fuzzy equivalence relation
on a set X. The following properties are satisfied for all µ ∈ HE, (µi)i∈I a family of
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extensional fuzzy subsets and α ∈ [0, 1].

(1) supi∈I{µi} ∈ HE.
(2) inf i∈I{µi} ∈ HE.
(3) T (α, µ) ∈ HE.

(4)
−→
T (µ|α) ∈ HE.

(5)
−→
T (α|µ) ∈ HE.

where T (α, µ),
−→
T (µ|α) and

−→
T (α|µ) are the fuzzy subsets of X defined for all x ∈ X

by T (α, µ)(x) = T (α, µ(x)),
−→
T (µ|α)(x) =

−→
T (µ(x)|α) and

−→
T (α|µ)(x) =

−→
T (α|µ(x)).

The next important Proposition 3.5 states that there is a bijection between the sets
satisfying the properties of the last proposition and the sets HE.

Proposition 3.5. (Klawonn and Castro 1995) Let H be a subset of [0, 1]X satisfying
the properties of the last proposition. Then there exists a T -fuzzy equivalence relation
E on X such that H = HE. E is uniquely determined and it is generated (using the
Representation Theorem) by the family of elements of H.

Reinterpreting the proof of this result, we obtain the important fact that the exten-
sional fuzzy subsets of E can be obtained (are combinations) of the fuzzy equivalence
classes of E, which generalizes the fact that the observable crisp subsets of a crisp
equivalence relation are unions of its equivalence classes.

Corollary 3.6. (Boixader and Recasens 2018b) Let FC be the set of fuzzy equivalence
classes or columns of a T -fuzzy equivalence relation E on a set X (i.e., FC = {µy ∈
[0, 1]X | µy(x) = E(x, y) ∀x, y ∈ X}). Then HE is the smallest subset of [0, 1]X closed
by the operations of Proposition 3.4 and containing FC.

In other words, for every extensional fuzzy subset µ of E and x ∈ X, µ(x) =
supy∈X{T (µy(x), µ(y))}.

Remark. The obtained expression for µ: µ(x) = supy∈X{T (µy(x), µ(y))} fuzzifies the
predicate

x ∈ µ if and only if there exists an equivalence class [y] of E such that x ∈ [y] and
[y] ⊆ µ.

In other words, in the crisp case µ is the union of equivalence classes of E.

In view of these results HE can be interpreted as the set of fuzzy subsets of X/E.

To finish this subsection, let us point out that for local fuzzy equivalence relations
(i.e.: non-necessarily reflexive) extensionality must be referred to couples of fuzzy sub-
sets (Calvo and Recasens 2021).

Definition 3.7. Let E be a local T -fuzzy equivalence relation on a universe X. A
couple (µ, ν) of fuzzy subsets of X is extensional with respect to E if µ ≥ ν and for
all x, y ∈ X

T (E(x, y), µ(y)) ≤ ν(x).
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3.2. The Mappings φE and ψE

φE and ψE are operators associated to a fuzzy equivalence relation E that allow us
to find the optimal upper and lower approximation of a fuzzy subset by extensional
ones. They are a fuzzy consequence and fuzzy interior operator respectively.

Fuzzy consequence and fuzzy interior operators appear in many branches of Soft
Computing. They have been used as logic operators in fuzzy logic (Elorza and Burillo
1999; Pavelka 1979) and in Approximate Reasoning (Klawonn and Castro 1995). They
have also been proved useful for finding upper and lower approximations of fuzzy
rough sets (Morsi and Yakout 1998; Boixader, Jacas and Recasens 2000b), for finding
extensional fuzzy subsets of fuzzy relations (Jacas and Recasens 1994a), as closure
and interior operators of a fuzzy topology (Jacas and Recasens 1994a) and in fuzzy
mathematical morphology (Bloch and Mâıtre 1995), among others.

Definition 3.8. Let E be a T -fuzzy equivalence relation on a set X. The map φE :
[0, 1]X → [0, 1]X is defined for all x ∈ X by

φE(µ)(x) = sup
y∈X
{T (E(x, y), µ(y))}.

Proposition 3.9. (Klawonn and Castro 1995; Morsi and Yakout 1998) Let E be a
T -fuzzy equivalence relation on a universe X, µ, µ′ fuzzy subsets of X, (µi)i∈I a family
of fuzzy subsets of X and α ∈ [0, 1]. Then

(1) If µ ≤ µ′ then φE(µ) ≤ φE(µ′).
(2) µ ≤ φE(µ).
(3) φE(φE(µ)) = φE(µ).
(4) φE(supi∈I{µi}) = supi∈I{φE(µi)}.
(5) φE({x})(y) = φE({y})(x)
(6) φE(T (α, µ)) = T (α, φE(µ)).

The extensional fuzzy subsets are characterized as the fixed points of φE .

Proposition 3.10. Let E be a T -fuzzy equivalence relation on a universe X and µ a
fuzzy subset of X. Then µ ∈ HE if and only if φE(µ) = µ.

φE(µ) is therefore an upper approximation of µ. The next proposition says that
φE(µ) is the most specific extensional set that contains µ and in this sense it is the
optimal upper approximation of µ in HE .

Proposition 3.11. Let E be a T -fuzzy equivalence relation on a universe X and µ a
fuzzy subset of X. Then

φE(µ) = inf
µ′∈HE

{µ ≤ µ′}.

φE is defined from the fuzzy equivalence relation E. Reciprocally, E can be recovered
form φE.

Proposition 3.12. Let φ : [0, 1]X → [0, 1]X be a map satisfying the properties of
Proposition 3.9. The fuzzy relation Eφ on X defined for all x, y ∈ X by

Eφ(x, y) = φ({x})(y)
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is a T -fuzzy equivalence relation on X.

This proposition provides a bijection between the operators satisfying the properties
of Proposition 3.9 and fuzzy equivalence relations.

Dual to the operator φE providing upper approximations of fuzzy subsets by exten-
sional ones, another operator ψE can be defined that gives lower approximations.

Definition 3.13. Let E be a T -fuzzy equivalence relation on a set X. The map
ψE : [0, 1]X → [0, 1]X is defined for all x ∈ X by

ψE(µ)(x) = inf
y∈X
{−→T (E(x, y)|µ(y))}.

Proposition 3.14. (Morsi and Yakout 1998) Let E be a T -fuzzy equivalence relation
on a universe X, µ, µ′ fuzzy subsets of X, (µi)i∈I a family of fuzzy subsets of X and
α ∈ [0, 1]. Then

(1) µ ≤ µ′ ⇒ ψE(µ) ≤ ψE(µ′).
(2) ψE(µ) ≤ µ.
(3) ψE(ψE(µ)) = ψE(µ).
(4) ψE(inf i∈I{µi}) = inf i∈I{ψE(µi)}.
(5) ψE(

−→
T ({x} |α))(y) = ψE(

−→
T ({y} |α))(x).

(6) ψE(
−→
T (α|µ)) =

−→
T (α|ψE(µ)).

where the singleton {x} is interpreted as the fuzzy subset defined for all z ∈ X by

{x}(z) =

{

1 if z = x

0 otherwise.
(similarly with {y}).

The extensional fuzzy subsets of E are characterized as the fixed point of ψE .

Proposition 3.15. Let E be a T -fuzzy equivalence relation on a universe X and µ a
fuzzy subset of X. Then µ ∈ HE if and only if ψE(µ) = µ.

The next proposition shows that ψE(µ) is the best lower approximation of µ by
extensional fuzzy subsets.

Proposition 3.16. Let E be a T -fuzzy equivalence relation on a universe X and µ a
fuzzy subset of X. Then

ψE(µ) = sup
µ′∈HE

{µ′ ≤ µ}.

E can also be recovered from ψE.

Proposition 3.17. Let ψ : [0, 1]X → [0, 1]X be an operator satisfying the properties
of the Proposition 3.14. Then the fuzzy relation Eψ on X defined for all x, y ∈ X by

Eψ(x, y) = inf
α∈[0,1]

{−→T (ψ(
−→
T ({x} |α)(y)|α))}.

is a T -fuzzy equivalence relation on X.

This proposition provides a bijection between the operators satisfying the properties
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of Proposition 3.14 and fuzzy equivalence relations.

3.3. Fuzzy Points

Zadeh fuzzified the concept of equivalence classes as the columns of a fuzzy equivalence
relations. Fuzzy points (Boixader and Recasens 2008) are another generalization of
equivalence classes with non-necessarily normal fuzzy subsets.

Definition 3.18. Let E be a T -fuzzy equivalence relation on a set X. µ ∈ HE is a
fuzzy point of X with respect to E if for all x1, x2 ∈ X

T (µ(x1), µ(x2)) ≤ E(x1, x2).

PX will denote the set of fuzzy points of X with respect to E.

The above definition fuzzifies the sentence

If x1 and x2 belong to µ, then x1 and x2 are equivalent.

The following map ΛE allows us to characterize the columns, the fuzzy points and
the maximal fuzzy points of a fuzzy equivalence relation E.

Definition 3.19. Let E be a T -fuzzy equivalence relation on a set X. The map
ΛE : [0, 1]X → [0, 1]X is defined by

ΛE(µ)(x) = inf
y∈X
{−→T (µ(y)|E(y, x))} ∀x ∈ X.

Proposition 3.20. Let E be a T -fuzzy equivalence relation on X and µ a normal
fuzzy subset of X. Then ΛE(µ) = µ if and only if µ is a column of E.

Proposition 3.21. Let E be a T -fuzzy equivalence relation on X and µ ∈ HE.
ΛE(µ) ≥ µ if and only if µ ∈ PX .

Proposition 3.22. Let E be a T -fuzzy equivalence relation on X. The set of fixed
point of ΛE is the set of all maximal fuzzy points of X.

The next two propositions relate fuzzy points, decomposable fuzzy equivalence re-
lations and the Representation Theorem.

Proposition 3.23. (Klawonn and Castro 1995) Let (µi)i∈I be a family of normal
fuzzy subsets of X and (xi)i∈I a family of elements of X such that µi(xi) = 1 for all
i ∈ I. Then the following two properties are equivalent.

a) There exists a T -fuzzy equivalence relation E on X such that

µi(x) = E(x, xi) ∀i ∈ I ∀x ∈ X.

b) For all i, j ∈ I,

sup
x∈X
{T (µi(x), µj(x))} ≤ inf

y∈X
{←→T (µi(y), µj(y))}.

Proposition 3.24. (Klawonn and Castro 1995) Let (µi)i∈I be a family of normal
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fuzzy subsets of X and (xi)i∈I a family of elements of X such that µi(xi) = 1 for all
i ∈ I satisfying

sup
x∈X
{T (µi(x), µj(x))} ≤ inf

y∈X
{←→T (µi(y), µj(y))}.

for all i, j ∈ I. Then the T -fuzzy equivalence relation E = supi∈I{Eµi} is the smallest
T -fuzzy equivalence relation on X satisfying

µi(x) = E(x, xi) ∀i ∈ I, ∀x ∈ X.

4. Similarity Relations

Similarity relations (min-fuzzy equivalence relations) are widely used in Taxonomy
because they are closely related to hierarchical trees. Indeed, given a min-fuzzy equiv-
alence relation on a set X and α ∈ [0, 1], the α-cuts of E are partitions of X and
if α ≥ β, then the α-cut is a refinement of the partition corresponding to the β-cut.
Therefore, E generates an indexed hierarchical tree. Reciprocally, from an indexed hi-
erarchical tree a min-fuzzy equivalence relation can be generated. These results follow
from the fact that 1−E is a pseudoultrametric. The topologies generated by ultramet-
rics are very peculiar, since if two balls are not disjoint, then one of them is included
in the other one. The results of this section were already obtained in Zadeh’s article.

4.1. Similarity Relations and Ultrametrics

Definition 4.1. A map m : X ×X → R is a pseudoultrametric if and only if for all
x, y, z ∈ X

(1) m(x, x) = 0.
(2) m(x, y) = m(y, x).
(3) max(m(x, y),m(y, z)) ≥ m(x, z).

If m(x, y) = 0 implies x = y, then it is called an ultrametric.

Pseudoultrametrics are pseudodistances where the triangular inequality has been
strengthen by replacing the addition by the maximum.

Ultrametric spaces have a very special behavior.

Proposition 4.2. Let m be an ultrametric on X. Then

(1) If B(x, r) denotes the ball of center x and radius r and y ∈ B(x, r), then
B(x, r) = B(y, r). (All elements of a ball are its center).

(2) If two balls have non-empty intersection, then one of them is contained in the
other one.

Proposition 4.3. Let E be a fuzzy relation on a set X. E is a similarity relation on
X if and only if m = 1− E is a pseudoultrametric.

From this proposition interesting results follow. One of them is that the cardinality
of Im(E) = {E(x, y)} is smaller than or equal to the cardinality of X. In particular,
if X is finite of cardinality n and E is identified with its matrix, then the number of
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different entries of the matrix is less than or equal to n, which simplifies calculation
and storage.

Another important result relates to the α-cuts.

Definition 4.4. For a fuzzy relation E on X and α ∈ [0, 1], the α-cut of E is the set
Eα of pairs (x, y) ∈ X ×X such that E(x, y) ≥ α.

If α ≥ β, then Eα ≤ Eβ and as a consequence of Propositions 4.2 and 4.3 we have
the following result.

Proposition 4.5. Let E be a fuzzy relation on X. E is a similarity relation on X if
and only if for each α ∈ [0, 1], the α-cut of E is an equivalence relation on X.

4.2. Similarity Relations and Hierarchical Trees

Definition 4.6. A hierarchical tree of a finite set X is a sequence of partitions
A1, A2, ..., Ak of X such that every partition refines the preceding one.

A hierarchical tree is indexed if every partition Ai has associated a non-negative
number λi and λi < λi+1 for all i = 1, 2, ..., k − 1.

Proposition 4.7. Every similarity relation E on a finite set X generates an indexed
hierarchical tree on X.

Proof. We can consider the α-cuts of E with α ∈ Im(E).

Reciprocally,

Proposition 4.8. Every indexed hierarchical tree A1, A2, ..., Ak of a finite set X with
λk = 1 generates a similarity relation E on X.

Proof. If A1, A2, ..., Ak is the set of partitions of the tree and λ1, λ2, ..., λk the corre-
sponding indexes, then it is easy to verify that the fuzzy relation E defined by

E(x, y) = max
i=1,2,...,k

{λi such that (x, y) ∈ Ai}

for all x, y ∈ X is a similarity relation.

Example 4.9. Let X = {a1, a2, a3, a4, a5} and E the similarity relation on X with
matrix









1 0.5 0.2 0.2 0.2
0.5 1 0.2 0.2 0.2
0.2 0.2 1 0.2 0.2
0.2 0.2 0.2 1 0.7
0.2 0.2 0.2 0.7 1









.

The corresponding tree is
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a1, a2, a3, a4, a5

a4, a5

a4, a5

a5a4

a3

a3

a3

a1, a2

a2

a2

a1

a1

5. Other Aspects and Applications

Fuzzy equivalence relations, fuzzifying classical equivalence relations, appear in almost
all branches of fuzzy logic. This section contains the most relevant aspects of such
relations not treated until now in this article and the most relevant places where they
are used.

5.1. Metric Aspects of Fuzzy Equivalence Relations

There are many relations between fuzzy equivalence relations and pseudometrics.

A first more or less straightforward result is that a fuzzy relation E on a universe
X is a fuzzy  L-equivalence relation if and only if m = 1 − E is a pseudodistance on
X. E separates points if and only if m is a distance. Though this result was implicitly
obtained in different previous articles, the first one that formulated it explicitly was
(Gottwald 1992). This is one of the main reasons why transitivity with respect to the
 Lukasiewicz t-norm is required in many places (Ruspini 1977).

Another important relation between fuzzy equivalence relations and pseudodis-
tances was given in (Valverde 1985).

Proposition 5.1. Let T be a continuous Archimedean t-norm T , t an additive gen-
erator of T and E a fuzzy relation on a universe X. Then E is a T -fuzzy equivalence
relation if and only if m = t ◦E is a pseudodistance of X.
E separates points if and only if m is a distance on X.

Remark. If m is a pseudodistance on X, then t[−1] ◦ m is a T -fuzzy equivalence
relation on X.

Due to these results, many properties of metric spaces can be transferred to results
on T -equivalence relations when T is continuous Archimedean. For example the Rep-
resentation Theorem was first obtained by Ovchinnikov (1984) for the product t-norm,
that is continuous Archimedean, by noticing that every T -fuzzy equivalence relation
E with respect to the product t-norm is of the form e−m with m a pseudodistance.

But the most important relation between fuzzy equivalence relations and pseudidis-
tances is that both are generalized metric spaces. The idea of generalized metric space
was developed in Trillas’ PhD. thesis as he noticed the similarities between different
structures like metric spaces, probabilistic metric spaces, Boolean premetric spaces,
the positive part of a Riesz group, and so on. The main results of generalized metric
spaces are compiled in (Trillas and Alsina 1978) and its definition is as follows.
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Definition 5.2. Let X be a set, (M, ◦,≤) an ordered semigroup with identity element
e and m a map m : X ×X →M . (X,m) is called a generalized metric space and m a
generalized metric on X if and only if for all x, y, z ∈ X

(1) m(x, x) = e
(2) m(x, y) = m(y, x)
(3) m(x, y) ◦m(y, z) ≥ m(x, z).

m separates points if and only if

(4) m(x, y) = e implies x = y.

What is interesting for this article is that if T is a t-norm, then ([0, 1], T ) is a
(totally) ordered semigroup (1 being its smallest element and 0 its greatest one) and
a set X with a T -fuzzy equivalence relation E is a generalized metric space valued on
([0, 1], T,≤T ). This encapsulates the very intuitive idea that two objects are similar,
equivalent or indistinguishable when they are close and allows us to look at T -fuzzy
equivalence relations as similarities and distances at the same time. From a more
technical point of view, it also allows us to relate diverse fuzzy equivalence relations
and generate fuzzy equivalence relations from given ones as will be done in the next
subsection.

Finally, let us recall that E is a min-fuzzy equivalence relation if and only if 1− E
is a pseudoultrametric as we have seen in Subsection 4.1.

5.2. Homomorphisms Between Fuzzy Equivalence Relations

This subsection will study the following three points.

• We will find the mappings transforming a T -fuzzy equivalence relation into an-
other such relation with respect to the same continuous Archimedean t-norm.

• It will be shown that if T and T ′ are isomorphic t-norms, then there is a bijection
between T -fuzzy equivalence relations and T ′-fuzzy equivalence relations on the
same universe as well as between their extensional fuzzy subsets.

• We will find when two fuzzy subsets µ and ν generate the same fuzzy equivalence
relation (i.e.: when Eµ = Eν). Proofs and comments of this subsection can be
found in (Jacas and Recasens 2002).

Definition 5.3. A metric transform is a sub-additive and non-decreasing map s :
[0,∞)→ [0,∞) with s(0) = 0.

Proposition 5.4. Let E be a T -fuzzy equivalence relation on a universe X with T a
continuous Archimedean t-norm with an additive generator t and s a metric transform.
Then t[−1] ◦ s ◦ t ◦ E is a T -fuzzy equivalence relation on X.

Example 5.5. The map s : [0,∞) → [0,∞) defined by s(x) = xα for all x ∈ [0,∞)
with 0 < α ≤ 1 is a metric transform.

• If E is an  L-fuzzy equivalence relation on a set X, t(x) = 1 − x an additive
generator, then

E′(x, y) = (t[−1] ◦ s ◦ t)(E(x, y)) = 1− (1− E(x, y))α

is also an  L-fuzzy equivalence relation on X.
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• Let TP be the product t-norm. If E is a TP -fuzzy equivalence relation on a set
X, then E′(x, y) = e−(− lnE(x,y))α also is a TP -fuzzy equivalence relation on X.

Let us recall the definition of isomorphism between t-norms.

Definition 5.6. Two continuous t-norms T, T ′ are isomorphic if and only if there
exists a bijective map f : [0, 1]→ [0, 1] such that f ◦ T = T ′ ◦ (f × f).

Isomorphisms f are continuous and increasing maps and we have the following
result.

• All strict continuous Archimedean t-norms are isomorphic. In particular, they
are isomorphic to the product t-norm.

• All nilpotent Archimedean t-norms are isomorphic. In particular, they are iso-
morphic to the  Lukasiewicz t-norm.

Proposition 5.7. If E is a T -fuzzy equivalence relation on a set X for a given t-norm
T and f is a continuous, increasing and bijective map f : [0, 1]→ [0, 1], then f ◦ E is
a T ′-fuzzy equivalence relation with T ′ = f ◦ T ◦ (f−1 × f−1).

The next proposition relates the families of generators (2.14) of E and f ◦ E.

Proposition 5.8. Let T be a continuous t-norm and E a T -fuzzy equivalence relation
on a set X. If (µi)i∈I is a generating family of E and f a continuous, increasing and
bijective map f : [0, 1] → [0, 1], then (f ◦ µi)i∈I is a generating family of the T ′-fuzzy
equivalence relation f ◦ E.

From this it follows directly that E and f ◦E have the same dimension and that if
(µi)i∈I is a basis of E then (f ◦ µi)i∈I is a basis of f ◦ E.

Moreover, since extensionality and generator are equivalent concepts, if HE is the
set of extensional fuzzy subsets of E, then f(HE) is the set of extensional fuzzy subsets
of f ◦E.

Finally, it is interesting to know when two fuzzy subsets µ and ν generate the
same T -fuzzy equivalence relation. The next two propositions answer the question for
continuous Archimedean t-norms and for the minimum t-norm.

Proposition 5.9. Let T be a continuous Archimedean t-norm, t a generator of T and
µ, ν fuzzy subsets of X. Eµ = Eν if and only if ∀x ∈ X one of the following conditions
holds:

a) t(µ(x)) = t(ν(x)) + k1 with k1 ≥ sup{−t(ν(x))|x ∈ X}
or

b) t(µ(x)) = −t(ν(x)) + k2 with k2 ≥ sup{t(ν(x))|x ∈ X}.
Moreover, if T is nilpotent, then k1 ≤ inf{t(0)−t(ν(x)) | x ∈ X} and k2 ≤ inf{t(0)+

t(ν(x)) | x ∈ X}.

Example 5.10.

• If  L is the  Lukasiewicz t-norm, with the previous notations

µ(x) = ν(x) + k with inf{1− ν(x)} ≥ k ≥ sup
x∈X
{−ν(x)}
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or

µ(x) = −ν(x) + k with inf
x∈X
{1 + ν(x)} ≥ k ≥ sup

x∈X
{ν(x)}.

• If T is the product t-norm, then

µ(x) =
ν(x)

k
with k ≥ sup

x∈X
{ν(x)}

or

µ(x) =
k

ν(x)
with k ≤ inf

x∈X
{ν(x)}.

Proposition 5.11. Let T be the minimum t-norm and let µ be a fuzzy subset of X
such that there exists an element xM of X with µ(xM ) ≥ µ(x) ∀x ∈ X. Let Y ⊆ X be
the set of elements x of X with µ(x) = µ(xM ) and s = sup{µ(x) such that x ∈ X−Y }.
A fuzzy subset ν of X generates the same T -fuzzy equivalence relation as µ if and only
if

∀x ∈ X − Y µ(x) = ν(x) and ν(y) = t with s ≤ t ≤ 1 ∀y ∈ Y.

5.3. Betweenness Relations

Metric betweenness relations were defined in (Menger 1928) in order to study convexity
in metric spaces. If T is a continuous Archimedean t-norm, t an additive generator of
T and E a T -fuzzy equivalence relation on a set X, then t◦E is a pseudometric. From
this it follows that if E separates points, then it generates a betweenness relation. The
nature of this betweenness relation is related to the complexity and structure of E. For
example, E is one-dimensional if and only if it generates a linear betweenness relation
on X and E is a decomposable fuzzy equivalence relation when it generates a radial
betweenness relation on X.

Definition 5.12. A (metric) betweenness relation on a set X is a ternary relation B
on X (i.e. B ⊆ X3) satisfying for all x, y, z ∈ X

(1) (x, y, z) ∈ B ⇒ x 6= y 6= z 6= x
(2) (x, y, z) ∈ B ⇒ (z, y, x) ∈ B
(3) (x, y, z) ∈ B ⇒ (y, z, x) /∈ B, (z, x, y) /∈ B
(4) (x, y, z) ∈ B and (x, z, t) ∈ B ⇒ (x, y, t) ∈ B and (y, z, t) ∈ B.

If (x, y, z) ∈ B, then y is said to be between x and z.
If given any three elements of B, one of them is between the other two, then the

betweenness relation is called linear or total.
If d is a distance defined on a set X, the relation ”y is between x and z when

d(x, y) + d(y, z) = d(x, z)” satisfies the axioms of a betweenness relation.

Proposition 5.13. Let T be a continuous Archimedean t-norm and E a T -fuzzy equiv-
alence relation separating points on a set X such that E(x, y) 6= 0 for all x, y ∈ X.
The ternary relation B on X defined by (x, y, z) ∈ B if and only if x 6= y 6= z 6= x and

T (E(x, y), E(y, z)) = E(x, z)

is a betweenness relation on X.
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Remark. Given a T -fuzzy equivalence relation E on a set X, we can define on X the
following crisp equivalence relation ∼: x ∼ y if and only E(x, y) = 1. In the quotient
set X/ ∼ the fuzzy relation E defined by E(x, y) = E(x, y) is a T -fuzzy equivalence
relation separating points.

One-dimensional fuzzy equivalence relations (i.e.: fuzzy equivalence relations Eµ
generated by a fuzzy subset µ) determine linear betweenness relations.

Proposition 5.14. Let T be a continuous Archimedean t-norm and E a T -fuzzy equiv-
alence relation on X such that for all x, y ∈ X, min{E(x, y) | x, y ∈ X} 6= 0. E is
one dimensional if and only if the betweenness relation B determined by E on X/ ∼
is linear.

Radial Betweenness Relations, defined below, characterize decomposable fuzzy
equivalence relations.

Definition 5.15. A betweenness relation B on a set X is called radial if and only if
there exists an element a ∈ X such that a is between any other two elements of X and
these are the only elements of B (i.e. (x, y, z) ∈ B if and only if y = a). The element
a is called the center of the betweenness relation.

If a distance on a set X generates a radial betweenness relation on X, then there
is a node or hub a and the distance between two points x and y of X is the distance
between x and a plus the distance between y and a.

Proposition 5.16. Let T be a continuous Archimedean t-norm, E a T -fuzzy equiva-
lence relation on a finite set X of cardinality n satisfying E(x, y) 6= 0 ∀x, y ∈ X and
B the betweenness relation generated on X/ ∼ by E. E is decomposable if and only if
B is radial or E can be extended to a T -fuzzy equivalence relation E′ on X ′ = X ∪{a}
with a /∈ X in such a way that the betweenness relation B′ generated on X ′/ ∼ by E′

is radial with center a.

This means that if E is decomposable on X, then for calculating the degree on
similarity or equivalence between two elements x and y of X we can calculate E(x, a)
and E(y, a) and then combine them with the corresponding t-norm.

5.4. Fuzzy Betweenness Relations

In real problems, the values of a T -fuzzy equivalence relation are distorted by in-
accuracy, imprecision or some noise. If for example the values of a one-dimensional
T -fuzzy equivalence relation are distorted, then the betweenness relation generated by
this relation will probably be not linear and even can be empty. This means that the
definition of betweenness relation cannot capture the possibility of a relation to be
“almost” linear or -more generally speaking- is not capable of dealing with points be-
ing “more or less” between others. Fuzzy betweenness relations were studied in (Jacas
and Recasens 1994b) in the case of strict continuous Archimedean t-norms to handle
this problem. Later on, other researches have gone further and defined new kinds of
fuzzy betweenness relations characterizing different types of fuzzy relations (see Zhang,
Pérez-Fernández and De Baets 2020).

In this subsection, following the original ideas in (Jacas and Recasens 1994b), it will
be shown that if T is strict continuous Archimedean, then fuzzy betweenness relations
can be generated by T -fuzzy equivalence relations separating points and, reciprocally,
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that every fuzzy betweenness relation generates such a T -fuzzy equivalence relation.

Definition 5.17. A fuzzy betweenness relation with respect to a given strict
Archimedean t-norm T on a set X is a fuzzy ternary relation, i.e. a map

X ×X ×X → [0, 1]

(x, y, z) → xyz

satisfying the following properties for all x, y, z, t ∈ X
(1) xxy = 1
(2) xyz = zyx
(3) (a) T (xyz, xzt) ≤ xyt

(b) T (xyz, xzt) ≤ yzt
(4) If x 6= y, then xyx < 1.

Proposition 5.18. The crisp part of a fuzzy betweenness relation in the set of triplets
of different elements of X is a classical betweenness relation on X.

Proposition 5.19. Let T be a continuous strict Archimedean t-norm and E a T -fuzzy
equivalence relation separating points on X with E(x, y) 6= 0 for all x, y ∈ X. Then
the fuzzy ternary relation on X defined by

xyz =
−→
T (E(x, z)|T (E(x, y), E(y, z)))

is a fuzzy betweenness relation.

Reciprocally,

Proposition 5.20. Let T be a continuous strict Archimedean t-norm. If xyz is a
fuzzy betweenness relation on a set X, then the fuzzy relation E on X defined by
E(x, y) = xyx is T -fuzzy equivalence relations on X.

The next example shows how a T -fuzzy equivalence relation can be replaced by a
one-dimensional one close to it.

Example 5.21. Let TP be the product t-norm and E the TP -fuzzy equivalence rela-
tion on the set X = {1, 2, 3, 4, 5} of cardinality 5 given by the following matrix









1 0.74 0.67 0.50 0.41
0.74 1 0.87 0.65 0.53
0.67 0.87 1 0.74 0.60
0.50 0.65 0.74 1 0.80
0.41 0.53 0.60 0.80 1









.

The associated fuzzy betweenness relation is given in Table 1.

The dimension of E is 3. Nevertheless, it is close to the one-dimensional T -fuzzy
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Table 1. Fuzzy betweenness relation generated by E

x y z xyz x y z xyz x y z xyz x y z xyz
1 2 3 0.96 2 3 1 0.79 3 4 1 0.55 4 5 1 0.66
1 2 4 0.96 2 3 4 0.99 3 4 2 0.55 4 5 2 0.65
1 2 5 0.96 2 3 5 0.98 3 4 5 0.99 4 5 3 0.65
1 3 2 0.79 2 4 1 0.44 3 5 1 0.37 5 1 2 0.57
1 3 4 0.99 2 4 3 0.55 3 5 2 0.37 5 1 3 0.46
1 3 5 0.98 2 4 5 0.98 3 5 4 0.65 5 1 4 0.26
1 4 2 0.44 2 5 1 0.29 4 1 2 0.57 5 2 1 0.96
1 4 3 0.55 2 5 3 0.37 4 1 3 0.45 5 2 3 0.77
1 4 5 0.98 2 5 4 0.65 4 1 5 0.26 5 2 4 0.46
1 5 2 0.29 3 1 2 0.57 4 2 1 0.96 5 3 1 0.98
1 5 3 0.37 3 1 4 0.45 4 2 3 0.76 5 3 2 0.98
1 5 4 0.66 3 1 5 0.46 4 2 5 0.43 5 3 4 0.56
2 1 3 0.57 3 2 1 0.96 4 3 1 0.99 5 4 1 0.98
2 1 4 0.57 3 2 4 0.76 4 3 2 0.99 5 4 2 0.98
2 1 5 0.57 3 2 5 0.77 4 3 5 0.56 5 4 3 0.99

equivalence relation E′ with matrix









1 0.76 0.67 0.50 0.40
0.76 1 0.88 0.68 0.53
0.67 0.88 1 0.75 0.60
0.50 0.66 0.75 1 0.80
0.40 0.53 0.60 0.80 1









whose associated fuzzy betweenness relation is shown in the Table 2.

Table 2. Fuzzy betweenness relation generated by E′.

x y z xyz x y z xyz x y z xyz x y z xyz
1 2 3 1 2 3 1 0.78 3 4 1 0.56 4 5 1 0.64
1 2 4 1 2 3 4 1 3 4 2 0.56 4 5 2 0.64
1 2 5 1 2 3 5 1 3 4 5 1 4 5 3 0.64
1 3 2 0.78 2 4 1 0.43 3 5 1 0.36 5 1 2 0.58
1 3 4 1 2 4 3 0.56 3 5 2 0.36 5 1 3 0.45
1 3 5 1 2 4 5 1 3 5 4 0.64 5 1 4 0.25
1 4 2 0.43 2 5 1 0.28 4 1 2 0.58 5 2 1 1
1 4 3 0.56 2 5 3 0.36 4 1 3 0.45 5 2 3 0.78
1 4 5 1 2 5 4 0.64 4 1 5 0.25 5 2 4 0.43
1 5 2 0.28 3 1 2 0.58 4 2 1 1 5 3 1 1
1 5 3 0.36 3 1 4 0.45 4 2 3 0.78 5 3 2 1
1 5 4 0.64 3 1 5 0.45 4 2 5 0.43 5 3 4 0.56
2 1 3 0.58 3 2 1 1 4 3 1 1 5 4 1 1
2 1 4 0.58 3 2 4 0.78 4 3 2 1 5 4 2 1
2 1 5 0.58 3 2 5 0.78 4 3 5 0.56 5 4 3 1

Another way to approximate a fuzzy equivalence relation by a one-dimensional one is
by relating it with Saaty’s preference matrices as can be found in (Jacas and Recasens
1993a).
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5.5. Fuzzy Rough Sets and Modal Logic

If ∼ is a crisp equivalence relation of X, then a crisp subset A ⊆ X can be approx-
imated from bellow by the union of all the equivalence classes of ∼ contained in A
and from above by the union of all the equivalence classes with non-empty intersec-
tion with A. These two approximations of A by “observable” sets is called a rough
set, a concept introduced by Pawlak (Pawlak 1982) (see Figure 4). In the fuzzy case,
this upper and lower approximations are obtained with the operators φE and ψE (see
Morsi and Yakout (1998); Boixader, Jacas and Recasens (2000b)).

Rough sets approximations have been interpreted as the necessity and possibility
in modal logic and φE and ψE have been used to model the fuzzy possibility and the
fuzzy necessity operators in fuzzy modal logic, where the accessibility relation between
possible worlds is given by a T -fuzzy equivalence relation E or, more general, by a
fuzzy relation (Bou et al. 2010).

A Kripke frame is a pair F = (W,R) where W is a set called the set of possible
words and R a (crisp) binary relation on W called the accessibility relation. When
vRw we say that w is accessible from v. If R is replaced by a fuzzy relation on W ,
then we have a fuzzy Kripke frame.

A fuzzy Kripke model is a 3-tuple M = (W,R, V ) where (W,R) is a fuzzy Kripke
frame and V is a map, called valuation, assigning to each element of the set V ar
of atomic formulas or variables and each world in W an element of [0, 1] (i.e., V :
V ar ×W → [0, 1]).

The valuation V can be extended to any formula ϕ and given a formula ϕ the map
Vϕ : W → [0, 1] can be defined as Vϕ(w) = V (ϕ,w).

The valuation of the necessity �ϕ of ϕ in world w is then defined by

V (�ϕ,w) = ψR(Vϕ)(w) = inf
w′∈W

−→
T

(
R(w,w′)|Vϕ(w′)

)

and the possibility ♦ϕ of ϕ in world w is

V (♦ϕ,w) = φR(Vϕ)(w) = sup
w′∈W

T (R(w,w′), Vϕ(w′)).

5.6. Fuzzy Subsets, Fuzzification, Triangular and Trapezoidal Fuzzy

Numbers

For a fuzzy equivalence relation E on a set X the map φE provides the best upper
approximation of a fuzzy set µ of X by an extensional one. If A is a crisp subset of
X, then φE(A)(x) = supy∈A{E(x, y)} and φE(A) is the best approximation of X with
an extensional fuzzy subset containing A. It is therefore a natural fuzzification of A
(Godo and Rodriguez 2008). In particular, for a singleton {x}, its fuzzification is its
fuzzy equivalence class, i.e., the fuzzy subset µx of X defined by µx(y) = E(x, y) for
all y ∈ X.

For an α ∈ [0, 1] and an element x ∈ X the fuzzy singleton µx,α is defined by

µx,α(y) =

{

α ify = x

0 otherwise.
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The fuzzification of µx,α is T (α, µx).

If the universe is the real line and E is the  L-fuzzy equivalence relation on R defined
by E(x, y) = max(1 − α|x − y|, 0) for some α > 0, then the fuzzification of a point
is a triangular number and the fuzzification of an interval is a trapezoidal number.
This gives a sound theoretical interpretation to the usual fuzzification of points and
intervals by these numbers: They are the smallest extensional fuzzy subsets containing
the point or interval assuming the existence of the fuzzy equivalence relation E (Jacas
and Recasens 1993b).

These results are related with the semantics of fuzzy sets based on similarity ex-
plained in (Dubois and Prade 1997). They present three semantics of fuzzy sets, one
of them with similarity. For a fuzzy subset µ to be defined on X we can consider a set
of prototypes A of µ. Then µ(x) is the degree of proximity of x to prototype elements
of µ or, explicitly, µ(x) = supa∈A{E(x, a)}. This can be interpreted as µ being the
fuzzification of the set A of prototypical elements.

5.7. Fuzzy Topologies, Extensionality and Continuity

The set HE of extensional fuzzy subsets of a T -fuzzy equivalence relation E on a set
X is a fuzzy topology on X and the maps φE and ψE are fuzzy closure and interior
operators of it. E by its side also generates a classical topology TE on X. We will show
the close relationship between these classical and crisp topologies (see Jacas (1993);
Jacas and Recasens (1994a); Demirci (2004)).

For a mapping f : X → Y the equivalence between being an extensional map and
continuity with respect to the fuzzy topologies generated by fuzzy equivalence relations
will also be established (Boixader and Recasens 2018b).

Let us recall the definition of fuzzy topology (Lowen 1976).

Definition 5.22. A subset τ of [0, 1]X is a fuzzy topology on X if and only if it
satisfies the following properties.

(1) If A ⊆ τ , then sup {µ | µ ∈ A} ∈ τ .
(2) If µ, µ′ ∈ τ , then min(µ, µ′) ∈ τ .
(3) For any k ∈ [0, 1], if we write µk as the constant k fuzzy subset of X (i.e.

µk(x) = k ∈ [0, 1] for all x ∈ X), then µk ∈ τ .

The elements of a fuzzy topology τ are called open fuzzy subsets. Given a strong
negation ϕ a fuzzy subset µ is called closed when ϕ ◦ µ is open. The set τϕ = {µ ∈
[0, 1]X | ϕ ◦ µ ∈ τ} of closed fuzzy subsets of a fuzzy topology is called a fuzzy co-
topology.

When there is a T -fuzzy equivalence relation E defined on a universe X, then HE

is both a fuzzy topology and a fuzzy co-topology. If T is nilpotent and ϕT is the

strong negation defined for all x ∈ [0, 1] by ϕT (x) =
−→
T (x|0), then there is this nice

relationship.

Proposition 5.23. Let T be a nilpotent t-norm and E a T -fuzzy equivalence relation
on a universe X. Then HϕT

E = HE.

In particular, if T is nilpotent, the elements of HE are open and closed (clopen).
On the other hand, a T -fuzzy equivalence relation E on a set X defines a crisp

topology on X in a natural way.
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Definition 5.24. Given a T -fuzzy equivalence relation E separating points on a set
X and a strong negation ϕ, the open ball B(x, r) of centre x ∈ X and radius r ∈ (0, 1]
is defined by

B(x, r) = {y ∈ X such that E(x, y) > ϕ(r)} .

The set of open balls is a basis of a topology denoted by TE .
In order to relate the topology TE and the fuzzy topology HE generated by a T -fuzzy

equivalence relation E, we recall the following definition (Lowen 1976).

Definition 5.25. Let T (X) and τ(X) denote the sets of topologies and fuzzy
topologies on a given set X respectively. The mappings i : τ(X) → T (X) and
ω : T (X)→ τ(X) are defined in the following way.

i(τ) =
{
µ−1(α, 1] such that α ∈ [0, 1), µ ∈ τ

}
.

ω(T ) =
{
µ ∈ [0, 1]X such that µ is lower semicontinuous

}
.

Proposition 5.26. Let T be a nilpotent t-norm, E a T -fuzzy equivalence relation on
a universe X and TE and HE the topology and the fuzzy topology generated by E. Then
i(HE) = TE and ω(TE) = HE.

Extensionality is a kind of Lipschitzian property and extensional maps have been
widely used in areas such as Approximate Reasoning (Boixader 1998), vague algebras
(Demirci 2002), logic (Hájek 1998) among others because it assures that the images
f(x) and f(y) of two elements x and y are at least as similar as x and y are. Proposition
5.30 shows the equivalence between this property and continuity with respect to the
fuzzy topologies generated by fuzzy equivalence relations.

Definition 5.27. Let E and F be T -fuzzy equivalence relations on X and Y respec-
tively. A map f : X → Y is extensional with respect to E and F ((E,F )-extensional)
if for x, x′ ∈ X, E(x, x′) ≤ F (f(x), f(x′)).

Definition 5.28. Let f : X → Y be a mapping and ν a fuzzy subset of Y . f−1(ν) is
the fuzzy subset of X defined by

f−1(ν)(x) = ν(f(x))

for all x ∈ X.

Definition 5.29. Let σ be a fuzzy topology on X and τ a fuzzy topology on Y . A
mapping f : X → Y is fuzzy-continuous with respect to σ and τ if for every ν ∈ τ ,
f−1(ν) ∈ σ.

Proposition 5.30. (Boixader and Recasens 2018b) Let E and F be T -fuzzy equiva-
lence relations on X and Y respectively. f : X → Y is fuzzy-continuous with respect
to HE and HF if and only if f is (E,F )-extensional.

5.8. Aggregation of Fuzzy Equivalence Relations

In many situations, there can be more than one fuzzy equivalence relation defined
on a universe. Let us suppose, for example that we have a set of instances defined
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by some features. We can generate a fuzzy equivalence relation from each feature.
In these cases, we may need to aggregate the obtained relations. The usual way to
do it is calculating the minimum (or infimum) of them which is a fuzzy equivalence
relation thanks to the Representation Theorem 2.14. Although this has a very clear
interpretation in fuzzy logic since the infimum is used to model the universal fuzzy
quantifier ∀, it leads many times to undesirable results in applications. The reason is
that the minimum has a drastic effect. If for example two objects of our universe are
very similar or indistinguishable for all but one fuzzy equivalence relation, but for this
particular one very different, then the result applying the minimum will give this last
measure and forget all the other ones. This can be reasonable and useful if we need
a perfect matching with respect to all our relations, but this is not the case in many
situations. When we need to take all the relations into account in a less dramatic way,
other ways have to be found.

Definition 5.31. Let t : [0, 1] → [−∞,+∞] be a monotonic map x1, x2, ..., xn ∈
[0, 1] and p1, p2, ..., pn non-negative numbers with

∑n
1=1 pi = 1. The weighted quasi-

arithmetic mean mp1,p2,...,pn
t of x1, x2, ..., xn generated by t is

mp1,p2,...,pn
t (x1, x2, ..., xn) = t−1

(
p1t(x1) + p2t(x2) + ...+ pnt(xn)

n

)

.

p1, p2, ..., pn are called the weights of mp1,p2,...,pn
t .

Example 5.32.

(1) If t(x) = x, then mt is the weighted arithmetic mean.
(2) If t(x) = log x, then mt is the weighted geometric mean.

If T is an Archimedean t-norm with additive generator t, we can consider the
weighted quasi-arithmetic mean generated by t. Then we have the following result.

Proposition 5.33. Let E1, E2, ..., En be T -fuzzy equivalence relations on X with T
an Archimedean t-norm with additive generator t. Then mp1,p2,...,pn

t (E1, E2, ..., En) is
a T -fuzzy equivalence relation.

Another way to aggregate fuzzy equivalence relations is using OWA operators.

Definition 5.34. Let p1, p2, ..., pn be numbers of the unit interval. The map s :
[0, 1]n → [0, 1] defined for all x1, x2, ..., xn ∈ [0, 1] by s(x1, x2, ..., xn) =

∑n
i=1 pix(i)

where x(i) is the ith largest of the xi is the OWA operator with weights p1, p2, ..., pn.

Proposition 5.35. Let E1, E2, ..., En be T -fuzzy equivalence relations on X with T an
Archimedean t-norm with additive generator t. Let s : Rn → R be the OWA operator
with weights (p1, p2, ..., pn) and t a generator of T . The fuzzy relation E on X defined
by

E(x, y) = t[−1]
(
s
(
t(E(1)(x, y)) + t(E(2)(x, y)) + ...+ t(E(n)(x, y))

))

is a T -fuzzy equivalence relation if and only if pi ≥ pj for i < j.

In some cases we have to aggregate a non-finite number of relations, for example if
we need to compare two fuzzy sets of the real line. Let us suppose that we have a family
of T -fuzzy equivalence relations (Ei)i∈[a,b] on a set X with the indices in the interval
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[a, b] of the real line and that for every couple (x, y) of X the map f(x,y) : [a, b] → R
defined by f(x,y)(i) = Ei(x, y) is integrable in some sense.

Definition 5.36. Let T be a continuous Archimedean t-norm, t an additive generator
of T and (Ei)i∈[a,b] a family of T -fuzzy equivalence relations on a universe X. The
aggregation of the family (Ei)i∈[a,b] with respect to T is the T -fuzzy equivalence relation
E on X defined for all x, y ∈ X by

E(x, y) = t[−1](
1

b− a

∫ b

a

t(Ei(x, y))di)

More information on the aggregation of T -fuzzy equivalence relations is available in
(Jacas and Recasens 2003; Pradera, Trillas and Castiñeira 2002; Pradera and Trillas
2002).

5.9. Approximating Proximity Relations and Extensional Fuzzy Subsets

The transitive closure of a proximity relation R provides its best upper approxima-
tion with a fuzzy equivalence relation. Its openings good lower approximations. But
between the transitive closure and the openings there are other fuzzy equivalence
relations closer to R.

Similarly, the mappings φE and ψE provide the best upper and lower approximations
of a fuzzy subset µ with extensional ones. However, in general, there is no guarantee
that there are no extensional fuzzy sub sets “in between” that approximate µ better in
the sense that it is possible that the fuzzy extensional subset that best approximates
µ is neither containing nor contained in it.

In this subsection we present three ways to obtain such intermediate good approxi-
mations for proximity relations (Garmendia and Recasens 2009) and for fuzzy subsets
(Mattioli and Recasens 2015) when the t-norm is continuous Archimedean.

5.9.1. Approximation of Proximity Relations by T -fuzzy Equivalence Relations

The next proposition expresses explicitly the T -transitivity for continuous Archi-
medean t-norms.

Proposition 5.37. Let E = (eij)i,j=1,...,n be a proximity matrix on a set X of car-
dinality n and T a continuous Archimedean t-norm with additive generator t. E is a
T -fuzzy equivalence relation if and only if for all i, j, k 1 ≤ i < j < k ≤ n

t(eij) + t(ejk) ≥ t(eik)
t(eij) + t(eik) ≥ t(ejk)
t(eik) + t(ejk) ≥ t(eij)

Given a proximity matrix R, we must then search for (one of) the closest matrices E
to R satisfying the last 3

(
n
3

)
inequalities, which is a non-linear programming problem.

This is a hard problem in general though for the  Lukasiewicz and the product t-norms
it turns out to be a quadratic programming case and well-known algorithms can be
applied (see Paragraph 5.9.1.3).

In the following two paragraphs we propose alternative methods to obtain not the
best but reasonably good approximations of proximity relations by a T -fuzzy equiva-
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lence relations.

5.9.1.1 Aggregating the Transitive Closure and a T -fuzzy Equivalence Relation
smaller than R

Since the weighted quasi-arithmetic mean of T -fuzzy equivalence relations is also a
T -fuzzy equivalence relation (Proposition 5.33), given a proximity matrix R, we can
calculate its transitive closure R and a smaller T -fuzzy equivalence relation R than R
and find the weights p, 1− p to obtain the closest average of R and R to R.

To evaluate the closeness of two fuzzy relations we can use a similarity measure of
the Euclidean distance. Here we will use the latter.

Proposition 5.38. Let R = (rij) be a proximity matrix on a finite set X of cardinality
n, T a continuous Archimedean t-norm with additive generator t, R = (ri,j) its transi-
tive closure, R = (rij) the T -fuzzy equivalence relation obtained from the columns of R

with the Representation Theorem, p ∈ [0, 1] and mp,1−p
t (R,R) the T -fuzzy equivalence

relation quasi-arithmetic mean of R and R with weights p and 1− p. Then

D(R,mp,1−p
t (R,R)) = (

∑

1≤i,j≤n

(
t−1

(
p · t (rij) + (1− p) · t

(
rij

))
− t(rij)

)2
)

1

2 .

Proposition 5.39. Let  L be the  Lukasiewicz t-norm and R a proximity on a set X
of cardinality n. The closest mp,1−p

t (R,R) to R is attained by

p =

∑

1≤i<j≤n
(
rij − rij

) (
rij − rij

)

∑

1≤i<j≤n
(
rij − rij

)2 .

Example 5.40. Let X be a set of cardinality 4 and  L the  Lukasiewicz t-norm. Below
there is a proximity relation R on X and its closest  L-fuzzy equivalence relation of the
form mp,1−p

t (R,R). The optimal p is p = 0.6388889.

R =







1 0.8 0.2 0.4
0.8 1 0.7 0.1
0.2 0.7 1 0.6
0.4 0.1 0.6 1






,m0.639,0.361

t (R,R) =







1 0.6917 0.3917 0.3639
0.6917 1 0.5917 0.2278
0.3917 0.5917 1 0.5278
0.3639 0.2278 0.5278 1







5.9.1.2 Applying a Homotecy to a T -fuzzy Equivalence Relation

In this paragraph, the fact that the power of a T -fuzzy equivalence relation in the
sense of Definition 5.41 is again a T -fuzzy equivalence relation will be exploited to
modify the entries of R or R to find an approximation of R.

Let us recall the definition of power with respect to a continuous t-norm T .

Definition 5.41. Let T be a continuous t-norm and n a natural number. We will call

the nth power x(n) of x ∈ [0, 1] with respect to T x(n) = T (

n
︷ ︸︸ ︷
x, x, ..., x). x(

1

n
) is defined

by x(
1

n
) = supz∈[0,1]{T n(z) ≤ x} and for p, q natural numbers, x(

p

q
)(x) = (x(

1

q
))(p).

Passing to the limit it is possible to define xr for all r ∈ R+.

Remark. If r ≤ s, then x(r) ≥ x(s).
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The following result allows us to calculate powers by using an additive generator t
of T .

Proposition 5.42. Let T be an Archimedean t-norm with additive generator t and
r ∈ R+. Then:

x(r) = t[−1](r · t(x))

Proposition 5.43. Let T be a continuous t-norm, E a T -fuzzy equivalence relation
on X and p > 0. Then E(p) is a T -fuzzy equivalence relation.

If we consider the Euclidean distance D between R and the power E(p) of a T -fuzzy
equivalence relation E = (eij), T a continuous Archimedean t-norm with t an additive
generator, then we can prove the following result.

Proposition 5.44.

D(R,E(p)) = (
∑

1≤i,j≤n

(
t−1 (p · t (eij))− rij

)2
)

1

2 .

Example 5.45. Considering the proximity R of Example 5.40 and the  Lukasiewicz

t-norm, D(R,R
(p)

) attains its minimum for p = 1.208633 and D(R,R(p)) for p =

0.821306. Good approximations of R are R
(1.208633)

and R(0.821306).

R
(1.21)

=







1 0.7583 0.3957 0.2748
0.7583 1 0.6374 0.1540
0.3957 0.6374 1 0.5165
0.2748 0.1540 0.5165 1






, R(0.82)=







1 0.8357 0.5893 0.5072
0.8357 1 0.7536 0.4251
0.5893 0.7536 1 0.6715
0.5072 0.4251 0.6715 1






.

5.9.1.3 Using non-linear Programming Techniques

The inequalities of Proposition 5.37 are especially simple for the  Lukasiewicz and the
product t-norm. This will allow us to find the best approximation of a given proximity
for these two t-norms with respect to the Euclidean distance.

Proposition 5.46. Let E = (eij)i,j=1,...,n be a proximity matrix on a set X of cardi-
nality n. E is a  L-fuzzy equivalence relation where  L is the  Lukasiewicz t-norm if and
only if for all i, j, k 1 ≤ i < j < k ≤ n

eij + ejk − eik ≤ 1

eij + eik − ejk ≤ 1

eik + ejk − eij ≤ 1.

Proposition 5.47. Let E = (eij)i,j=1,...,n be a proximity matrix on a set X of cardi-
nality n. E is a T -fuzzy equivalence relation where T is the product t-norm if and only
if for all i, j, k 1 ≤ i < j < k ≤ n

eij · ejk ≤ eik
eij · eik ≤ ejk
eik · ejk ≤ eij .
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Let R = (rij)i,j=1,...,n be a proximity relation on X of cardinality n. If we want to
find the best approximation of R by a T -fuzzy equivalence relation E = (eij)i,j=1,...,n

with respect to the Euclidean distance D we must minimize D2(R,E) =
∑

i<j(eij−rij)
where the eij i, j = 1, ..., n are subject to the conditions of Proposition 5.37.

Proposition 5.48. Let R = (rij)i,j=1,...,n be a proximity relation on X of cardinality
n. The closest T -fuzzy equivalence relation to R with respect to the Euclidean distance
D when T is the  Lukasiewicz (product) t-norm is the solution of minimizing

D2(R,E) =
∑

i<j

(eij − rij)2

where eij i, j = 1, ..., n are subject to the linear inequalities of Proposition 5.46 (5.47).

This is a standard quadratic linear problem and there are some algorithms to solve
it (Bazaraa, Sherali and Shetty 1993).

Example 5.49. Consider the matrix R of Example 5.40. The closest  L-fuzzy equiva-
lence relation E = (eij)i,j=1,...,4 must minimize

D2(R,E) = (eij−0.8)2+(eij−0.2)2+(eij−0.4)2+(eij−0.7)2+(eij−0.1)2+(eij−0.6)2

subject to the conditions of Proposition 5.46.
The matrix E is

E =







1 0.65 0.225 0.4
0.65 1 0.575 0.225
0.225 0.575 1 0.575
0.4 0.225 0.575 1






.

5.9.2. Approximating Fuzzy Subsets by Extensional Ones

In this subsection similar methods to the ones of the last subsection will be used to
find good approximations of a fuzzy subset by an extensional one.

5.9.2.1 Approximation using Weighted Means

We want to approximate µ by mp,1−p
t (φE(µ), ψE(µ)).

Proposition 5.50. Let T be a continuous Archimedean t-norm, t an additive gen-
erator of T , E a T -fuzzy equivalence relation on a set X and µ, ν extensional fuzzy
subsets of X with respect to E. Then:

mp,1−p
t (µ, ν) ∈ HE .

Corollary 5.51. Let T be a continuous Archimedean t-norm, t an additive generator
of T , E a T -fuzzy equivalence relation on a set X and µ a fuzzy subset of X. Then:

mp,1−p
t (φE(µ), ψE(µ)) ∈ HE .

We search for the value of p that minimizes the Euclidean distance D between µ
and mp,1−p

t (φE(µ), ψE(µ)).

38



For the  Lukasiewicz t-norm the result below provides an explicit formula to find
this optimal weight p.

Proposition 5.52. Let µ be a fuzzy subset of a finite set X = {x1, ..., xn} and T = L

the  Lukasiewicz t-norm. Then D(µ,mp,1−p
t (φE(µ), ψE(µ))) is minimized when:

r =

∑
µ(xi)φE(µ)(xi)−

∑
µ(xi)ψE(µ)(xi)−

∑
φE(µ)(xi)ψE(µ)(xi) +

∑
(ψE(µ)(xi))

2

∑
(φE(µ)(xi))2 +

∑
(ψE(µ)(xi))2 − 2

∑
φE(µ)(xi)ψ(µ)(xi)

5.9.2.2 Approximation using Powers

We will provide another method based on approximating µ by an adequate power
ψE(µ)(p).

Proposition 5.53. Let E be an fuzzy equivalence relation on a set X, µ an extensional
fuzzy subset of E and p ≤ 1. Then µ(p) ∈ HE.

Corollary 5.54. ψE(µ)(p) is extensional for p ≤ 1.

We can find a good approximation of a fuzzy subset µ by an extensional one by
adjusting the power p of ψE(µ)(p) in order to minimize the Euclidean distance D
between µ and ψE(µ)(p).

For the  Lukasiewicz t-norm we have the following result.

Proposition 5.55. Let µ be a fuzzy subset of a finite set X = {x1, ..., xn} and T = L
the  Lukasiewicz t-norm. Then D(µ,ψE(µ)(p)) is minimized when

p =

∑
µ(xi) +

∑
ψE(µ)(xi)−

∑
µ(xi) · ψE(µ)(xi)− n

2
∑
ψE(µ)(xi)−

∑
ψ2
E(µ)(xi)− n

.

Given the duality between upper and lower approximations, φE and ψE , it would be
expectable to find an analogous method to find an approximation based on powers of
φE(µ). But this is not possible. φE(µ) is an upper approximation of µ, thus better ap-
proximations φE(µ)(p) would be found for values r > 1. However, if ν is an extensional
fuzzy subset, for values of p greater than 1, ν(p) is not extensional in general.

5.9.2.3 Approximation using Quadratic Programming

In this paragraph the aim will be to look for the extensional fuzzy subset that better
approximates a given subset µ restricting the search to the region of extensional fuzzy
subsets. For the  Lukasiewicz and product t-norms this region is bounded by a system
of linear inequalities and the problem turns out to be of Quadratic Programming.

Let µ be a fuzzy subset and σ an extensional fuzzy subset with respect to a T -fuzzy
equivalence relation E on a set X = {x1, x2, ..., xn}. The objective function to be
minimized is D2(µ, σ) =

∑n
i=1(µ(xi)− σ(xi))

2.
The region of the space in which the solution has to be found is bounded by the con-

ditions that ensure the extensionality of σ. Assuming T to be continuous Archimedean
with an additive generator t, σ is extensional if and only if it verifies

t(E(xi, xj) + t(σ(xj)) ≥ t(σ(xi)) ∀i, j = 1, ..., n.
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If  L is the  Lukasiewicz t-norm, then these inequalities become

σ(xi)− σ(xj) ≥ E(xi, xj)− 1 ∀i, j = 1, ..., n.

Analogously, if TP is the product t-norm, these conditions are

σ(xi) ≥ E(xi, xj) · σ(xj) ∀i, j = 1, ..., n.

In both cases this is a linear system of n unknowns and
(
n
2

)
inequalities (excluding

the trivial cases i = j).

The best approximation of µ by an extensional fuzzy subset (i.e. the one minimizing
F ) is then the solution of a Quadratic Programming problem.

5.9.2.4 Example

Considering the  L-fuzzy equivalence relation

E =









1 0.8 0.7 0.3 0.2
0.8 1 0.7 0.3 0.2
0.7 0.7 1 0.3 0.2
0.3 0.3 0.3 1 0.2
0.2 0.2 0.2 0.2 1









on X = {x1, x2, ..., x5} and the fuzzy subset µ(x) = (0.9, 0.5, 0.1, 0.8, 0.3), φE(µ) =
(0.9, 0.7, 0.6, 0.8, 0.3) and ψE(µ) = (0.4, 0.4, 0.1, 0.8, 0.3).

• The best p in mp,1−p
t (φE(µ), ψE(µ)) is p = 0.116463. Hence

(0.637288, 0.542373, 0.337288, 0.8, 0.3)

is a good approximation of µ by an extensional fuzzy subset.

• The best p in ψ
(p)
E (µ) is p = 0.825243. Hence

ψ
(0.825243)
E (µ) = (0.504854, 0.504854, 0.257282, 0.834951, 0.422330)

is a good approximation of µ.
• The third method, based on solving a quadratic programming problem, gives

the approximation (0.65, 0.5, 0.35, 0.8, 0.3).

5.10. Observational Entropy. Fuzzy Observational Decision Trees

Shannon’s measure of entropy on a finite set X is defined by

H(X) = −
∑

x∈X
p(x) log2 p(x)

This measure was thought within the frame of communication theory, specifically
for facing issues concerning channel reliability and reduction of transmission cost, but
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ignoring the semantic content of the messages involved. Let us suppose the existence of
a T -fuzzy equivalence relation on X. Then the occurrence of two different events, but
indistinguishable by the fuzzy equivalence relation defined, will count as the occurrence
of the same event when measuring the “observational” entropy defined as follows
(Yager 1992; Hernández and Recasens 2002).

Definition 5.56. Let E a T -fuzzy equivalence relation on a finite set X. The obser-
vation degree of xj ∈ X is defined by:

π(xj) =
∑

x∈X
p(x)E(x, xj).

This definition has a clear interpretation: the possibility of observing xj is given
by the probability that xj really happens plus the probability of occurrence of some
element “very similar” to xj , weighted by the similarity degree.

Definition 5.57. The quantity of information received by observing xj is defined by:

C(xj) = − log2 π(xj).

Definition 5.58. Given a T-fuzzy equivalence relation E on X, and P a probability
distribution on X, the observational entropy (HO) of the pair (E,P ) is defined by:

HO(E,P ) =
∑

x∈X
p(x)C(x).

This measure has been applied to the generation of fuzzy decision trees when there
is a fuzzy equivalence relation defined on the universe of discourse (Hernández and
Recasens 2002).

5.11. Fuzzy Maps

Fuzzy maps (Demirci 1999) fuzzify the concept of map between two universes. They
have been used in different fields like vague algebras (Demirci 2002) and have been
proved useful in order to understand fuzzy reasoning, especially reasoning based on
fuzzy rules (Klawonn 2000).

Definition 5.59. Let T be a t-norm and E and F two T -fuzzy equivalence relations
on two universes X and Y respectively. A fuzzy subset R : X ×Y → [0, 1] of X ×Y is
a fuzzy map on X × Y (or from X to Y ) if and only if for all x, x′ ∈ X and y, y′ ∈ Y

(1) T (E(x, x′), F (y, y′), R(x, y)) ≤ R(x′, y′)
(2) T (R(x, y), R(x, y′)) ≤ F (y, y′).

Definition 5.60. A fuzzy map R on X×Y is perfect if and only for any x ∈ X there
exists a unique yx ∈ Y with R(x, yx) = 1.

Let us recall the definition of extensional map (see subsection 5.7).

Definition 5.61. Let E, F be two T -fuzzy equivalence relations on X and Y re-
spectively. A map f : X → Y is extensional with respect to E and F if and only
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if

E(x, y) ≤ F (f(x), f(y)).

There is an important relationship between extensional maps and perfect fuzzy
maps.

Proposition 5.62. Let T be a t-norm and E and F two T -fuzzy equivalence relations
on X and Y respectively.

• If R is a fuzzy map from X to Y , then fR : X → Y defined for all x ∈ X by
fR(x) = yx is a (crisp) extensional map fR : X → Y .

• An extensional map f : X → Y defines a perfect fuzzy map Rf on X × Y by
Rf (x, y) = F (f(x), y) for all (x, y) ∈ X × Y .

5.12. Fuzzy Equivalence Relations and Approximate Reasoning

Fuzzy maps have been used in (Klawonn 2000) to interpret Mamdani’s controllers and
for approximate reasoning.

In a Mamdani’s controller we start with a family of fuzzy rules of the form

Ri : If x is Ai, then y is Bi i = 1, 2, ..., n

where the linguistic terms Ai and Bi are modelled by the fuzzy subsets µAi
of X and

νBi
of Y .

Depending on the way the entailment is modelled, a fuzzy relation ρL or ρU is
generated by

ρU (x, y) = inf
i=1,2,...,n

{−→T (µi(x)|νi(y))}
or

ρL(x, y) = sup
i=1,2,...,n

{T (µi(x), νi(y))}.

In a control problem we want to find a map f : X → Y . It is a common case to
know only some values of f and from them we want to recover the whole map f .

Let D = {x1, x2, ..., xn} be the elements of X for which we know their images f(xi)
and assume that there are two fuzzy equivalence relations E and F defined on X and
Y respectively. Then we can consider the columns φE({xi}) of E of the elements of D
and the columns φF ({f(xi)}) of F of the elements f(xi). These are the less specific
extensional fuzzy subsets containing these elements.

Assuming that f is an extensional map with respect to E and F , two fuzzy maps
RfD and Rf from X to Y can be defined.

Definition 5.63. With the previous notations, the following two fuzzy maps RfD and
Rf are defined for all x ∈ X and y ∈ Y by

RfD(x, y) = sup
i=1,2,...,n

{T (E(x, xi), F (y, f(xi)))}

Rf (x, y) = F (y, f(x)).

The following result gives upper and lower bounds to f .
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Proposition 5.64. Let E and F be two T -fuzzy equivalence relations on X and Y
respectively and f : X → Y an (unknown) extensional map with respect to E and F .
Let D = {x1, x2, ..., xn} be some elements of X and let fD denote the restriction of f
to D (which is known). Let µi = φE(xi) and νi = φF (f(xi)), i = 1, 2, ..., n. Then

ρL = RfD ≤ Rf ≤ ρU .

This approach for recovering a map has also been used in the study of fuzzy trans-
forms (Perfilieva 2006).

5.13. Vague Algebras

Demirci has introduced the concept of vague algebra that basically consists of opera-
tions compatible with given fuzzy equivalence relations (Demirci 2002).

As an example, let us see how a vague group is defined.

Definition 5.65. Let EX and EX×X be T -fuzzy equivalence relations on X andX×X
respectively. A vague binary operation on X is a perfect fuzzy map ◦̃ from X ×X to
X.

◦̃(x, y, z) means the degree in which z is the result of operating x with y.

Definition 5.66. A vague group (X, ◦̃) is a set X with a T -fuzzy equivalence relation
EX and a vague binary operation ◦̃ satisfying

(1) (T ((◦̃(b, c, d), ◦̃(a, d,m), ◦̃(a, b, q), ◦̃(q, c, w))) ≤ EX(m,w)) ∀a, b, c, d,m, q, w ∈
X, (Associativity).

(2) There exists a (two sided) identity element e ∈ X such that ◦̃(e, a, a) =
◦̃(a, e, a) = 1 for each a ∈ X.

(3) For each a ∈ X , there exists a (two-sided) inverse element a−1 ∈ X such that
◦̃(a−1, a, e) = ◦̃(a, a−1, e) = 1.

The idea of vague operation has been used in the study of fuzzy actions (Boix-
ader and Recasens 2018a) and of vague fuzzy t-norms (Boixader and Recasens 2021).
Moreover, the relationship between vague groups and fuzzy subgroups have been an-
alyzed in (Demirci and Recasens 2004) and will be presented at the end of the next
subsection.

5.14. Fuzzy Subgroups

Fuzzy subgroups were introduced in (Rosenfeld 1971) as a natural generalization of the
concept of subgroup and have been widely studied (Mordeson, Bhutani and Rosenfeld
2005).

To every fuzzy subgroup µ of a group (G, ◦) two fuzzy equivalence relations Eµ and

µE can be associated that are left and a right invariant under translations respectively.
If the fuzzy subgroup µ is normal (Definition 5.73), then the left and right fuzzy equiv-
alence relations Eµ and µE coincide and the operation of the group is compatible with
them (Demirci and Recasens 2004; Fu-Gui 2000; Mordeson, Bhutani and Rosenfeld
2005).

All the results of these subsection can be found in the previous references and in
(Formato, Gerla and Scarpati 1999).
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Definition 5.67. Let (G, ◦) be a group, e its identity element, µ a fuzzy subset of G
and T a t-norm. Then µ is a T -fuzzy subgroup (or simply a fuzzy subgroup) of G if
for all x, y ∈ G the following properties hold

a) µ(e) = 1
b) µ(x) = µ(x−1)
c) T (µ(x), µ(y)) ≤ µ(x ◦ y). (Closeness).

To every fuzzy subset µ of a group (G, ◦) a pair of fuzzy relations can be associated
that are fuzzy equivalence relations if and only if µ is a fuzzy subgroup of G.

Definition 5.68. Let ◦ be a binary operation on a set G and E a fuzzy relation on
G. E is invariant under translations with respect to ◦ if for all x, y, z ∈ G,

a) E(x, y) = E(z ◦ x, z ◦ y) (left invariant) and
b) E(x, y) = E(x ◦ z, y ◦ z) (right invariant).

Invariance under translations for a fuzzy relation is essential in many applications
as we will see in the next subsection on Fuzzy Morphology. Another example can be
found in music (and in signal theory), where the relation between sounds (notes) is
measured by the quotient of their frequencies, so that we obtain a fuzzy equivalence
relation on (R+, ·) invariant under products.

Definition 5.69. Let µ be a fuzzy subset of a group (G, ◦). The fuzzy relations Eµ
and µE on G defined for all x, y ∈ G by

Eµ(x, y) = µ(x ◦ y−1)

µE(x, y) = µ(y−1 ◦ x)

are the right and left fuzzy relations associated to µ respectively.

Proposition 5.70. Let µ be a T -fuzzy subgroup of a group (G, ◦). Then Eµ and µE
are right and left invariant fuzzy equivalence relations on G respectively.

Reciprocally, to every right (left) fuzzy equivalence relation on (G, ◦) a fuzzy sub-
group of G can be assigned.

Proposition 5.71. Let E be a right (left) invariant T -fuzzy equivalence relation on
a group (G, ◦) with identity element e. Then the column µe of E (i.e., the fuzzy subset
µe of G defined by µe(x) = E(e, x) ∀x ∈ G) is a T -fuzzy subgroup of G and E = Eµe

(E =µe
E).

Corollary 5.72. Let (G, ◦) be a group. There exist bijections between the set of fuzzy
subgroups of G, the set of right invariant fuzzy equivalence relations on G and the set
of left invariant fuzzy equivalence relations on G mapping every fuzzy subgroup µ of
G into its associated fuzzy equivalence relations Eµ and µE.

The following definition fuzzifies the concept of normal subgroup.

Definition 5.73. A fuzzy subgroup µ of a group (G, ◦) is a normal fuzzy subgroup if
µ(x ◦ y) = µ(y ◦ x) ∀x, y ∈ G.

Proposition 5.74. Let (G, ◦) be a group and µ a normal T -fuzzy subgroup of G. The
T -fuzzy equivalence relations Eµ and µE associated to µ coincide and are invariant
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under translations.

Reciprocally,

Proposition 5.75. Let (G, ◦) be a group, µ a T -fuzzy subgroup of G and Eµ and µE
its associated T -fuzzy equivalence relations. If Eµ and µE coincide, then µ is a normal
fuzzy subgroup of G.

Corollary 5.76. Let (G, ◦) be a group. There is a bijection between the set of normal
T -fuzzy subgroups of G and the set of T -fuzzy equivalence relations on G invariant
under translations mapping every normal T -fuzzy subgroup µ of G into its associated
T -fuzzy equivalence relation Eµ.

It is worth mentioning Theorems 11 and 13 of (Formato, Gerla and Scarpati 1999).
Given a set S, consider the set ΣS of permutations or bijective maps of S which is a
group under composition. Then Theorem 11 of (Formato, Gerla and Scarpati 1999)
states that if µ is a fuzzy subgroup of ΣS, then the fuzzy relation Eµ on S defined for
all x, y ∈ S by Eµ(x, y) = supg∈ΣS

{µ(g) | g(x) = y} is a fuzzy equivalence relation.
Reciprocally, Theorem 13 of (Formato, Gerla and Scarpati 1999) states that given a
fuzzy equivalence relation E on S, the fuzzy subset µ of ΣS defined for all f ∈ ΣS by
µ(f) = infx∈S E(x, f(x)) is a fuzzy subgroup. If S is a group (G, ·), then the mapping
< · >: G → ΣG sending x to < x > defined by < x > (y) = x · y is an embedding of
g in ΣG and to every fuzzy subgroup µ of G corresponds a fuzzy subgroup µ′ of ΣG

defined for all f ∈ ΣG by µ′(f) = µ(x) if f =< x > and 0 otherwise. Then for all
x, y ∈ G, Eµ(x, y) = Eµ′(x, y) = µ(x · y−1) = µ′(< x > ◦ < y >−1) and we recover
Proposition 5.70.

Let us present a couple of examples on the real line and a third one on the plane.

Example 5.77. For the  Lukasiewicz t-norm, the fuzzy set µ of (R,+) defined by all
x ∈ R by µ(x) = max(1 − |x|, 0) (a triangular fuzzy number) is a fuzzy subgroup
(normal because R is an Abelian group). Its associated fuzzy equivalence relation E
is defined for all x, y ∈ R by E(x, y) = µ(x− y) = max(1− |x− y|, 0).

Example 5.78. For the product t-norm, the fuzzy set µ of (R+, ·) defined for all
x ∈ R by

µ(x) =

{

x if x ≤ 1
1
x otherwise

is a fuzzy subgroup (normal because (R+, ·) is an Abelian group). Its associated fuzzy
equivalence relation E is defined for all x, y ∈ R+ by

Eµ(x, y) = µ(
x

y
) =

{
x
y if x ≤ y
y
x otherwise.

The following results will allow us to interpret a T -vague group as the quotient of
a group modulo a normal T -fuzzy subgroup.

Proposition 5.79. Let (G, ◦) be a group and E a T -fuzzy equivalence relation on G
invariant under translations with respect to ◦. Then (G, ◦̃) with ◦̃ : G×G×G→ [0, 1]
defined by ◦̃(x, y, z) = E(x ◦ y, z) for all x, y, z ∈ G, is a T -vague group with respect
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to E.

Corollary 5.80. Let (G, ◦) be a group with identity element e, µ a normal T -fuzzy
subgroup of (G, ◦) with µ(e) = 1 and Eµ its associated T -fuzzy equivalence relation on
G (Eµ(x, y) = µ(x ◦ y−1)). If ◦̃ : G × G × G → [0, 1] is defined for all x, y, z ∈ G by
◦̃(x, y, z) = µ(x ◦ y ◦ z−1) = Eµ(x ◦ y, z), then (G, ◦̃) is a T -vague group.

Proposition 5.81. Let (G, ◦̃) be a T -vague group with respect to E and ◦ : G×G→ G
the map satisfying z = x ◦ y if ◦̃(x, y, z) = 1. Then,

• ◦̃(x, y, z) = E(x ◦ y, z) ∀x, y, z ∈ G.
• E is invariant under translations with respect to ◦.

From these three results, given a group (G, ◦) we have bijective maps between its
T -vague groups, its T -fuzzy normal subgroups and its T -fuzzy equivalence relations
invariant under translations and a simple way to generate two of them knowing the
other one: For instance, ◦̃(x, y, z) = E(x ◦ y, z) = µ(x ◦ y ◦ z−1).

Finally we will show that T -vague groups are in fact the fuzzy generalization of
quotient groups and that if f is a homomorphism from (G, ◦) to (G, ◦̃), then the
kernel of f is precisely the normal fuzzy subgroup associated to (G, ◦̃).

Definition 5.82. Let (G, ◦̃) and (H, ⋆̃) be two T -vague groups. A map f : G→ H is
a homomorphism from G onto H if and only if

◦̃(x, y, z) ≤ ⋆̃(f(x), f(y), f(z)) ∀x, y, z ∈ G.

It is clear that a crisp group (G, ◦) is a T -vague group defining ◦(a, b, c) = 1 if a◦b = c
and 0 otherwise, and considering the crisp equality as the T -fuzzy equivalence relation.

Proposition 5.83. Let (G, ◦̃) be a T -vague group with respect to a T -fuzzy equivalence
relation E and ◦ an operation on G satisfying z = x ◦ y if ◦̃(x, y, z) = 1. Then the
identity map id : G→ G is a homomorphism from (G, ◦) onto (G, ◦̃).

Definition 5.84. Let f : G→ H be a homomorphism from (G, ◦̃) onto (H, ⋆̃) and F
the T -fuzzy equivalence relation associated to H. The kernel of f is the fuzzy subset
µ of G defined by µ(a) = F (f(a), e) ∀a ∈ G where e is the identity element of (H, ⋆̃).

Proposition 5.85. Let (G, ◦̃) be a T -vague group with respect to a T -fuzzy equivalence
relation E and ◦ an operation on G satisfying z = x ◦ y if ◦̃(x, y, z) = 1. The kernel of
the identity map id : G→ G is the normal T -fuzzy subgroup of G associated to (G, ◦̃).

5.15. Fuzzy Mathematical Morphology

One field where invariance under translations is usually assumed and needed is fuzzy
mathematical morphology (Bloch and Mâıtre 1995). In the study of objects in the
plane R2, isotropy is usually assumed and hence the same structural element is used
throughout the plane. By using a fuzzy relation invariant under translations, we can
build and model such a structural element. The most important operators in fuzzy
mathematical morphology are dilation and erosion.

Definition 5.86. Let R be a fuzzy relation invariant under translations on R2.
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• The dilation D : [0, 1]R
2 → [0, 1]R

2

is defined for all µ ∈ [0, 1]R
2

by

D(µ)(~x) = sup
~y∈R2

T (R(~y, ~x), µ(~y)).

• The erosion E : [0, 1]R
2 → [0, 1]R

2

is defined for all µ ∈ [0, 1]R
2

by

E(µ)(~x) = inf
~y∈R2

−→
T (µ(~y)|R(~y, ~x)).

If R is an fuzzy equivalence relation, then the structural element is the column of
the neutral element ~0 = (0, 0) of (R2,+), which is a fuzzy subgroup of R2.

Example 5.87. In the plane R2 we can consider the
L-fuzzy subgroup defined by µ(x, y) = min(1 − |x|, 1 − |y|) (a square pyramid
with vertex (0, 0, 1)). The associated invariant fuzzy equivalence relation Eµ is
Eµ((x, y), (x′, y′)) = µ((x, y)− (x′, y′)) = min(1− |x− x′|, 1− |y − y′|). In the context
of fuzzy mathematical morphology µ is a structural element.

5.16. Feature Selection

(Bezdek and Harris 1978) is the first paper dealing with the aggregation of T -fuzzy
equivalence relations using the weighted arithmetic mean. They study  L-fuzzy equiv-
alence relations obtained as weighted arithmetic means of crisp equivalence relations.
In (Armengol et al 2019) this study has been expanded and the so-called T -generable
fuzzy equivalence relations have been characterized. Then the results have been applied
to feature selection by introducing a new method called JADE.

It has been seen in Subsection 5.8 that the weighted quasi-arithmetic mean
mp1,p2,...,pk
t (where t is an additive generator of a continuous Archimedean t-norm

T ) of a finite family of T -fuzzy equivalence relations on a set X is also a T -fuzzy
equivalence relation on X. Next proposition generalizes this result by imposing only
that the numbers pi are non-negative.

Proposition 5.88. Let T be a continuous Archimedean t-norm, t an additive gen-
erator of T , E1, E2, ..., Ek T -fuzzy equivalence relations on a set X and p1, p2, ..., pk
non-negative real numbers. Then the fuzzy relation E on X defined for all x, y ∈ X by

E(x, y) = t[−1](p1 · t(E1(x, y)) + p2 · t(E2(x, y)) + ...+ pk · t(Ek(x, y)))

is a T -fuzzy equivalence relation on X.

E will be denoted by mp1,p2,...,pk
t (E1, E2, ..., Ek).

Next we define the concept of T -generability for a T -fuzzy equivalence relation.

Definition 5.89. Let T be a t-norm, X a set and E a T -fuzzy equivalence relation
on X. E is T -generable if there exists a finite family µ1, µ2, ..., µm of fuzzy subsets of
X such that E = T (Eµ1

, Eµ2
, ..., Eµm

).

Proposition 5.90. Let T be a continuous Archimedean t-norm, t an additive gener-
ator of T , X a finite set, µ1, µ2, ..., µm fuzzy subsets of X and p1, p2, ..., pm ∈ [0, 1].
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The T -fuzzy equivalence relation

E = mp1,p2,...,pm
t (Eµ1

, Eµ2
, ..., Eµm

)

on X is T -generable.

The crisp equivalence relations EA generated by a crisp subset A of X play a central
role for characterizing T -generable fuzzy equivalence relations.

Definition 5.91. Let T be a continuous Archimedean t-norm, t an additive generator
of T and X a finite set. The set M(X) of T -fuzzy equivalence relations on X is defined
by

M(X) = {t[−1](
∑

A⊆X
pA · t(EA)) | pA ≥ 0}.

Proposition 5.92. Let T be a continuous Archimedean t-norm, t an additive gener-
ator of T and X a finite set.

• If T is strict, then M(X) is the set of crisp equivalence relations on X.
• If T is nilpotent, then M(X) is the set of T -generable fuzzy equivalence relations

on X.

Corollary 5.93. Let T be a nilpotent t-norm and X a finite set. Then the crisp
equivalence relations on X are T -generable.

The assessment of weights to attributes in both, inductive learning methods and
clustering, is closely related with feature selection methods. Feature selection and
feature extraction methods’ goal is to detect and eliminate redundant information and
take only those features considered relevant for the task at hand. The selection of the
appropriate features greatly influences the quality of the data used by the algorithms
and, thus, the goodness of the final result. Below we present a method called JADE

for feature selection with the use of T -generable fuzzy equivalence relations.
Let X = {x1, x2, ..., xm} be a set of labeled domain objects described by a set of

attributes A = {a1, a2, . . . , an}, where the attributes ai are considered fuzzy subsets
of X; and Eai , i = 1, 2, ..., n the  L-fuzzy equivalence relations generated by ai. Each
xi ∈ X belongs to one solution class {C1, C2, . . . , Ck}, i.e., there are k classes where
an unseen domain object could be classified. On the set X we can induce two kinds of
partitions:

• The correct partition that is the one that separates the objects in X according
the the solution classes C = {C1 . . . Ck}.

• The fuzzy partitions induced by each attribute of A. Given an attribute aj ∈ A,
the objects in X can be separated according to the value that they hold in the
attribute aj .

In terms of relations, the correct partition is a crisp equivalence relation R on X,
and each partition induced by an attribute aj is the T -fuzzy equivalence relation Eaj
on the set X. R and each Eaj can be represented as matrices (R is a m ×m matrix
where each element rhl is equal to 1 if the objects xh and xl belong to the same solution
class and 0 otherwise).

The global similarity between two objects can be assessed by the weighted mean
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E =
∑n

i=1Eaipi of these T -fuzzy equivalence relations.
The goal of JADE is to assess the weights pi for which E is closest to R. The weight

pi associated to a fuzzy equivalence relation Eai will denote the importance of feature
ai in the process of classifying the examples of X.

The attributes generating fuzzy equivalence relations with higher weights help more
to the resemblance of E to R. In this way a ranking on the set of attributes is created.

The weights of the attributes give an idea of which of them are more relevant to
describe a class. Also, the weights can be used to directly classify unseen objects since
a new example y will be classified in the class of the example to which it is more
similar.

Even in the case in which all attributes are categorical – they generate crisp equiv-
alence relations – the obtained relation E from them would be fuzzy containing all
the information of these equivalence relations and weighted by adequate weights. This
would not be possible if we were trying to find a crisp relation E.

JADE has been applied to obtain a model supporting decision processes of a dairy
farm (López-Suárez et al 2018).

5.17. Semipositive-definite Fuzzy Equivalence Relations and Kernels

Positive definite and semi-definite matrices appear in many branches of Mathematics
such as in the study of quadratic forms, optimization problems and classification of
quadric (hyper)-surfaces; but what is more important in Artificial Intelligence is that
in linear algebra the matrix associated to an inner product of a vector space is positive
definite. In this case, a Euclidean distance can be defined on this space. In many AI
problems, in particular in machine learning, vision or cluster analysis, a distance on
a universe X is needed. In these cases, the use of kernels on X allows us to define a
Euclidean-like distance d on X with all its good properties (Moser 2006b; Pȩkalska
and Duin 2005).

Kernels are based on semi-definite matrices.

Definition 5.94. A symmetric n × n real matrix A is positive definite if ~utA~u > 0
for every non-zero vector ~u ∈ Rn and positive semi-definite if ~utA~u ≥ 0.

Surprisingly, the study of the transitivity of a matrix A with respect to some t-norms
has been proved a good tool for studying its semi-definiteness.

In (Moser 2006a) and (Tomás, Alsina and Rubio-Martinez 2006) it has been proved
that if a tolerance relation (i.e.: a reflexive and symmetric fuzzy relation) on a set X is
positive semi-definite, then it is transitive with respect to the continuous Archimedean
t-norm Tarccos having the function arccos as additive generator. In (Tomás, Alsina and
Rubio-Martinez 2006), it is also proved that it is also transitive with respect to the
continuous Archimedean t-norm T√1−x having the function t(x) =

√
1− x as additive

generator. The reciprocal of both assertions is not true but in (Recasens and Tomás
2020) the following two characterizations in which an additional embedding property
of metric spaces is involved can be found.

Proposition 5.95. A tolerance relation E = (xij) on a set X = {x1, x2, ..., xn} of
finite cardinality n is positive definite if and only if it is a T√1−x-fuzzy equivalence

relation and X with the distance d(xi, xj) =
√

2
√

1− xij , 1 ≤ i, j ≤ n, is isometri-
cally embeddable into Rn in such a way that the images of the points of X lie on the
hypersphere Sn−1.
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Proposition 5.96. A tolerance relation E = (xij) on a set X = {x1, x2, ..., xn}
of finite cardinality is positive definite if and only if it is a Tarccos-fuzzy equivalence
relation and X with the distance d(xi, xj) = arccos xij , 1 ≤ i, j ≤ n can be mapped
isometrically into Sn−1 with the spherical metric.

Another interesting result (Proposition 5.100) relates the positive semi-definiteness
of a symmetric matrix A with non-negative entries and positive entries on the diagonal
with its transitivity with respect to specific t-norms Tλ of the Yager’s family where
λ depends on the order of A. Due to the next lemma, we can restrict the study to
tolerance relations.

Lemma 5.97. Let A = (aij) 1 ≤ i, j ≤ n be a symmetric matrix with non-negative
entries and aii > 0 for all 1 ≤ i ≤ n and D = diag( 1√

a11
, 1√

a22
..., 1√

ann
) be the n × n

matrix with diagonal 1√
a11
, 1√

a22
..., 1√

ann
and zeros otherwise. Then A is a positive semi-

definite matrix if and only if E = D ·A ·D is a positive semi-definite tolerance relation.

Yager’s family of t-norms is defined as follows.

Definition 5.98. (Klement, Mesiar and Pap 2000) The Yager’s family of continuous
Archimedean t-norms (Tλ)λ∈(0,∞) is defined for all x, y ∈ [0, 1] by

Tλ(x, y) = max((1− (1− x)λ + (1− y)λ)
1

λ , 0).

tλ defined by tλ(x) = (1− x)λ for all x ∈ [0, 1] is an additive generator of Tλ.

Properties 5.99.

• All t-norms of Yager’s family are non-strict.
• If λ > µ, then Tλ(x, y) ≥ Tµ(x, y) for all x, y ∈ [0, 1].
• If λ = 1, then we retrieve the  Lukasiewicz t-norm  L and t1(x) = 1 − x is an

additive generator of  L.
• limλ→∞ Tλ(x, y) = min(x, y) for all x, y ∈ [0, 1].

It is a well-known and easy to prove result that if d is a distance on a set X
and 0 < k ≤ 1, then dk defined for all x, y ∈ X by dk(x, y) = (d(x, y))k is also a
distance on X. Moreover, if X is finite of cardinality n, then dk is Euclidean for small
enough k. More precise, in (Deza and Maehara 1990) they consider for every n the
supremum cn of all k > 0 such that dk is Euclidean (i.e.: (X, dk) can be isometrically
embedded into an Euclidean space) for any distance d on a set of cardinality n. In
particular, for sets of cardinality n = 2, 3, 4, 6, the corresponding cn are c2 = ∞,
c3 = 1, c4 = 1

2 , c6 = 1
2 log2

3
2 ∼ 0.2924. (The calculation of c2 and c3 is trivial, c4

follows from (Blumenthal 1936) and c6 is calculated in (Deza and Maehara 1990). As
the cardinality n of the set increases, the corresponding greatest value cn decreases.

Proposition 5.100. For a given natural number n, let cn be the greatest value satisfy-
ing that for every pseudodistance d on any finite set of cardinality n, dcn is a Euclidean
pseudodistance. Then if E : X×X → [0, 1] on a set X = {x1, x2, ..., xn} of cardinality
n is a T 1

2cn+1

-fuzzy equivalence relation, then E is positive semi-definite.

The constant cn is not known except for small values of n but in (Deza and Maehara
1990) a lower bound kn for cn is given. Namely, kn = 1

2n log2 e ∼ 0.7213
n . Therefore, we

have the following result.
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Proposition 5.101. If E : X×X → [0, 1] on a set X of cardinality n is a T n+1

log2 e

-fuzzy

equivalence relation, then it is positive semi-definite.

As an example of the relevance of Propositions 5.100 and 5.101 we will provide
alternative and trivial proofs of the following two important well-known facts.

Proposition 5.102. (Moser 2006b) Every min-fuzzy equivalence relation on a finite
set is positive semi-definite.

Proof. Since min(x, y) ≥ Tλ(x, y) for all λ ∈ (0,∞) and x, y ∈ [0, 1], every min-
fuzzy equivalence relation on a finite set is also a Tλ-fuzzy equivalence relation for all
λ ∈ (0,∞) and the result follows from Proposition 5.100.

Proposition 5.103. (Vestfrid and Timan 1983) Every pseudoultrametric on a finite
set is Euclidean.

Proof. The power of a pseudoultrametric is also a pseudoultrametric. In particular,
given a pseudoultrametric m, m2 is also a pseudoultrametric. If the set has finite
cardinality, then we can assume that m (and m2) have their values in [0, 1].

On the other hand, E is a min-fuzzy equivalence relation on a set X if and only if
1−E is a pseudoultrametric. So, there exists a min-fuzzy equivalence relation E such
that m2 = 1− E.

By Proposition 5.102, E is positive semi-definite and therefore
√

1− E = m is
Euclidean (Schoenberg (1938)).

5.18. Fuzzy Concept Lattices

In (fuzzy) concept analysis (Bělohlávek 2002) we start with a set X of objects and
a set Y of attributes that are related by a (fuzzy) relation I from X to Y . I(x, y) is
interpreted as the degree to which object x has the attribute y. It is also assumed that
there are fuzzy equivalence relations on X and Y .

All the results of these subsection are borrowed from (Bělohlávek 2002) although
in this book the fuzzy subsets and fuzzy relations are not valued on the unit interval
but, more general, on a complete residuated lattice.

Definition 5.104. Given a t-norm T , a triple (X,Y, I) where X and Y are universes
with E,F T -fuzzy equivalence relations on X and Y respectively and I a fuzzy relation
from X to Y is called a fuzzy context.

From a fuzzy context we try to find concepts where a concept will be a pair (A,B) ⊆
X × Y such that B is the set of all attributes that are shared by all objects of A and
A is the set of all objects sharing all the attributes from B. Formally, we define two
maps ↑ and ↓ relating the fuzzy subsets of X with the fuzzy subsets of Y .

Definition 5.105. Let (X,Y, I) be a fuzzy context. The maps ↑ : [0, 1]X → [0, 1]Y

and ↓ : [0, 1]Y → [0, 1]X are defined for all µ ∈ [0, 1]X and ν ∈ [0, 1]Y by

µ↑(y) = inf
x∈X
{−→T (µ(x)|I(x, y)}

ν↑(x) = inf
y∈Y
{−→T (ν(y)|I(x, y)}.
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Definition 5.106. A fuzzy concept in a fuzzy context (X,Y, I) is a pair (µ, ν) with
µ ∈ [0, 1]X and ν ∈ [0, 1]Y such that

µ↑ = ν and ν↓ = µ.

The set of all fuzzy concepts of (X,Y, I) is denoted by B(X,Y, I).

Among all theoretical properties and applications of fuzzy concept analysis we will
only focus on some aspects related to fuzzy equivalence relations. First fuzzy relations
will be generated on X and Y from the fuzzy concepts of the context.

Definition 5.107. Let (X,Y, I) be a context. EX and EY are the fuzzy equivalence
relations on X and Y respectively defined for all x1, x2 ∈ X and y1, y2 ∈ Y by

EX(x1, x2) = inf
(µ,ν)∈B(X,Y,I)

{Eµ(x1, x2)}

EY (y1, y2) = inf
(µ,ν)∈B(X,Y,I)

{Eν(y1, y2)}.

Proposition 5.108. The fuzzy equivalence class EX(x, ·) of an object x coincides
with {x}↑↓ and the fuzzy equivalence class EY (y, ·) of an attribute y coincides with
{y}↓↑.

We can consider the similarity between concepts as well. We will define two fuzzy
equivalence relations on the set of concepts of a context that will coincide.

Definition 5.109. Let (X,Y, I) be a context. On the set B(X,Y, I) of fuzzy concepts
of the fuzzy context we define the following two fuzzy equivalence relations

EExt(µ1, ν1), (µ2, ν2)) = inf
x∈X
{←→T (µ1(x), µ2(x))}

EInt(µ1, ν1), (µ2, ν2)) = inf
y∈Y
{←→T (ν1(y), ν2(y))}.

Proposition 5.110. Let (X,Y, I) be a context. Then EExt = EInt.

6. Conclusions

Fuzzy equivalence relations are basic tools in many of the subfields of fuzzy logic as
has been shown in this article, where their most relevant aspects and applications
have been displayed. This is due to the need of an equality is essential in all branches
of knowledge and because Zadeh had the intuition to provide a simple and robust
fuzzification of classical equality. With the introduction of t-norms in their definition-
something that was already suggested in Zadeh’s original article and then popularized
mainly to the effort of Trillas- they have increased in their adaptability to diverse
situations.

The richness and applicability of their structure arises from many different reasons.
On one side, they are fuzzy relations and hence the well-studied theory of fuzzy rela-
tions can be applied to them. Moreover, they have a clear metric behavior and this
fact allows us to adapt the theory of metric spaces and topology to their study. Fuzzy
biimplications (biresiduations) induce fuzzy equivalence relations and they can be an-
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alyzed from the point of view of mathematical logic. Finally, the close relationship
between min-fuzzy equivalence relations (similarity relations) and hierarchical trees
make the former useful in Taxonomy and Classification Theory.

The reader interested in deepening on the topics treated in this article or described
below can have a look at the references. The monograph (Recasens 2011a) contains
most of the known of fuzzy equivalence relations until 2011. A short monograph can
be found online (Recasens 2011b).

The following are other areas where fuzzy equivalence relations have been used but
not considered in this article.

• Many times there is a need for comparing fuzzy subsets of a given universe X
like in ordering them or measuring their similarity. Fuzzy equivalence relations
on fuzzy subsets have been introduced and related to fuzzy equivalence relations
on X using the duality principle (Recasens (2011a, chap. 3)). This is a special
case of similarity measures to compare both crisp and fuzzy subsets of a universe.
There is a huge amount of work on similarity measures that goes beyond the
scope of this survey (Li, Qin and He 2014; Yang and Li 2020).

• A number of articles on mathematical fuzzy logic with equality have been pub-
lished where, apart from the usual axioms of fuzzy logic, a binary relation ≈
satisfying the axioms of a fuzzy equivalence relation is assumed. Then a n-ary
relation A is compatible with ≈ when

⊢ (x1 ≈ y1)⊗ (x2 ≈ y2)⊗ ...⊗ (xn ≈ yn)→ A(x1, x2, ..., xn) ≈ A(y1, x2, ..., xn).

(see Bělohlávek and Vychodil (2005, chap. 3)). This generalizes extensionality of
fuzzy subsets and of fuzzy binary relations (Defintion 5.59.1).

• Going back to the Representation theorem 2.14, different families of fuzzy subsets
can generate the same T -fuzzy equivalence relation E. This gives great interest
to the theorem, since if we interpret the elements of the family as degrees of
matching between the elements of X and a set of prototypes, we can use different
features, giving different interpretations to E. Among the generating families of
a relation, the ones with minimal cardinality (called basis) are of special interest,
since they have an easy semantic interpretation and also because the information
contained in the matrix can be packed in a few fuzzy subsets. The dimension
of E is the cardinality of a basis of E. In (Jacas 1990) a couple of algorithms
to find the dimension and a basis of a similarity relation is given. A geometric
approach and an algorithm for calculating the dimension and a basis of T -fuzzy
equivalence relations with T continuous Archimedean can be found in (Jacas
and Recasens 1994a, 1995).

• Multiresolution is a general mathematical concept that allows us to study prop-
erties of a system by means of several changes of resolution. In the case of a
family of nested fuzzy equivalence relations, the granularity of the system can
be controlled by selecting the appropiate relation. In (De Soto and Recasens
2015) several such families are considered.

• Although fuzzy equivalence relations are usually valued on [0, 1], a continuous
domain, for practical purposes their values have to be truncated, rounded, re-
placed by intervals,... The preservation or loss of the transitivity of the relations
after these changes has been studied in (Boixader and Recasens 2013).

• Two fuzzy T -equivalence relations E and F on a universe X are called per-
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mutable when E ◦ F = F ◦ E where ◦ is the sup−T product of fuzzy relations.
Permutability is an interesting property related to the compatibility of fuzzy
equivalence relations with algebraic structures. It has been characterized in (Re-
casens 2012) in the following way: E and F are permutable if and only if E ◦F is
a T -fuzzy equivalence relation. Moreover, this occurs if and only if E◦F coincides
with the T -transitive closure max(E,F ) of max(E,F ).

• Fuzzy equivalence relations have been used in (Jacas and Recasens 2006) to
give semantic interpretation to well-known aggregation functions and to gen-

erate new interesting ones. Using the biresiduation
←→
T of a continuous t-norm

(which is a T -fuzzy equivalence relation on [0, 1]) it is reasonable to consider
the aggregation of x, y ∈ [0, 1] as the a ∈ [0, 1] that is as close to x as to y. If
T is continuous Archimedean and t an additive generator of T , then a is the
quasi-arithmetic mean mt(x, y). If T is an ordinal sum, then new aggregation
functions are obtained.

Acknowledgments

The author acknowledges financial support from FEDER/Ministerio de Ciencia, In-
novación y Universidades – Agencia Estatal de Investigación – Proyecto PGC2018-
095709-B-C21.

Notes on contributor

J. Recasens received the B.S. degree in mathematics from the Universitat de Barcelona,
Barcelona, Spain, in 1978, and the Ph.D. degree in sciences (mathematics) from the
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López-Suárez, M., Armengol, E., Calsamiglia, S., Castillejos, L. 2018. “Extraction of Patterns

to Support Dairy Culling Management” MDAI 2018. 131–142.
Lowen, R. 1976. “Fuzzy topological spaces and fuzzy compactness.” J. Math. Anal. Appl. 56:

623–633.
Mart́ın, J., Mayor, G. 2009. “An axiomathical approach to T-multi-indistinguishabilities”

IFSA-EUSFLAT 2009. 1723–1728.
Mattioli, G., Recasens, J. Approximating Arbitrary Fuzzy Subsets by Extensional Ones. IEEE

Transactions on Fuzzy Systems 23 (2015) 617-626.
Menger, K. 1928. “Untersuchungen über allgemeine Metrik” Math. Ann. 100: 75–113
Menger, K. 1942. “Statistical metrics” Proc. Nat. Acad. Sci 28: 535–537.
Menger, K. 1951. “Probabilistic theory of relations” Proc. Nat. Acad. Sci USA 37: 178–180.
Mordeson, J.N., Bhutani, K.R., Rosenfeld, A. 2005. Fuzzy Group Theory Studies in Fuzziness

and Soft Computing. Springer-Verlag.
Morsi, N.N., Yakout, M.M. 1998. “Axiomatics for fuzzy rough sets” Fuzzy Sets and Systems

100: 327–342.
Moser, B. 2006a. “On the T-transitivity of kernels” Fuzzy Sets and Systems 157: 1787–1796.
Moser, B. 2006b. “On Representing and Generating Kernels by Fuzzy Equivalence Relations”

Journal of Machine Learning Research 7: 2603–2620.
Ovchinnikov, S. 1984. “Representations of transitive fuzzy relations.” In Aspects of Vagueness,

edited by Skala, H.J., Termini, S., Trillas, E, 105–118. D. Reidel, Dordrecht.
Pavelka, J. 1979. “On Fuzzy Logic I” Zeitschr. f. Math. Logik und Grundlagen d. Math. 25:

45–52.
Pawlak, Z. 1982. “Rough sets” Internat. J. Comput. Inform. Sci. 11: 341–356.
Perfilieva, I. 2006. “Fuzzy transforms: Theory and applications” Fuzzy Sets and Systems 157:

993–1023.
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