
OpenCL-based FPGA Accelerator for Semi-Global
Approximate String Matching Using Diagonal

Bit-Vectors
David Castells-Rufas∗, Santiago Marco-Sola∗†, Quim Aguado-Puig∗, Antonio Espinosa-Morales∗,

Juan Carlos Moure∗, Lluc Alvarez†, Miquel Moretó†
∗Departament d’Arquitectura de Computadors i Sistemes Operatius

Universitat Autònoma de Barcelona (UAB)
Bellaterra, Spain

†Barcelona Supercomputing Center (BSC)
Barcelona, Spain

Abstract—An FPGA accelerator for the computation of the
semi-global Levenshtein distance between a pattern and a ref-
erence text is presented. The accelerator provides an important
benefit to reduce the execution time of read-mappers used in
short-read genomic sequencing. Previous attempts to solve the
same problem in FPGA use the Myers algorithm following a
column approach to compute the dynamic programming table.
We use an approach based on diagonals that allows for some
resource savings while maintaining a very high throughput of
1 alignment per clock cycle. The design is implemented in
OpenCL and tested on two FPGA accelerators. The maximum
performance obtained is 91.5 MPairs/s for 100× 120 sequences
and 47 MPairs/s for 300 × 360 sequences, the highest ever
reported for this problem.

Index Terms—FPGA, Pre-alignment Filter, Bit-Parallel Align-
ment, Levenshtein Distance, Genomics, Sequencing

I. INTRODUCTION

The problem of finding substrings in a text that are similar to
a given pattern has many interesting and practical applications
in several domains, such as linguistics, information retrieval,
and genomics. The methods to compute a similarity or dis-
similarity value depend on specific aspects of the application
domain. In genomics, it is generally assumed that gap-affine
Smith & Waterman (SW) alignment [1] gives the best sim-
ilarity value. However, less computational-intensive methods
can provide coarse-grain bounds that allow skipping the time-
consuming fine-grain computation.

Seed-and-Extend (SE) genomic mappers combine exact
search in the seed phase with sequence alignment in the ex-
tension phase to keep the complexity under control [2]. Some
mappers incorporate the idea of using less computational-
intensive alternatives to SW and use pre-alignment filters
to discard alignment candidates, hence, moving from the
SE approach to the Seed-Filter-and-Extend (SFE) approach.
Among other algorithms, the filtering phase might use Bit-
Parallel Myers (BPM) [3], which has been optimized for CPUs
[4], [5], GPUs [6], and FPGAs [7], [8]. However, the SFE
approach introduce some constraints that allow optimizations
to be applied that are not considered when using the BPM
technique.

In this work, we propose a novel pre-alignment filtering al-
gorithm and its FPGA implementation in order to be integrate
it into genomic pipelines of data-centers equipped with FPGA
co-processors with OpenCL support. Our approach exploits
some of the Myers observations and other optimization oppor-
tunities exposed by the SFE application. This novel approach
brings FPGA resource savings that can be devoted to address
larger sequences or other hardware functions.

The paper is organized as follows. In section II we review
the Myers algorithm in detail. In section III we propose
our pre-alignment algorithm. In section IV we describe our
implementations for different FPGA accelerators. In section
V we present the results. Finally, we conclude in section VI.

II. THE MYERS BIT-VECTOR ALGORITHM

The bit-vector Myers algorithm, or BPM [3], for computing
the semi-global Levenshtein distance [9] has been extensively
studied and implemented within many tools. Due to its ex-
posed bit-level parallelism, it can easily exploit vector units
and SIMD instructions of modern computing platforms [4]–
[6]. Given P and T , two strings of lengths m and n (m < n),
the semi-global distance between P and T is a modification of
global alignment that allows penalty-free gaps at the beginning
and/or at the end of T . To some extent, it is equivalent to
finding which substring of T returns the minimum Levenshtein
distance (dLev) when aligned against P . To compute the semi-
global Levenshtein distance, many algorithms use a dynamic
programming table (D) and the same rules used to compute
the global alignment. However, in the case of semi-global
alignment, the first row of D must be initialized with zeros.
To find the best alignment, the minimum value from the last
row must be selected (equation 1).

dSG(P, T) = min
∀T ′⊂T

dLev(P, T ′) = min
∀j∈[1,n]

Dm,j (1)

In [3], Myers’ analysis begins with the observation that
any cell from the m × n dynamic programming table D can
only differ by +1,0,-1 with the preceding cell in the horizontal

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

or vertical axis. Along the diagonals, the values of the cells
are monotonically increasing (i.e., +0 or +1). From these
observations, the original D table can be expressed as three
alternative increment tables: ∆v, ∆h, and ∆d, which can be
build from the original D table by using the equations 2, 3,
and 4 respectively.

∆vi,j |i > 0 = Di,j −Di−1,j (2)

∆hi,j |i > 0 = Di,j −Di,j−1 (3)

∆di,j |i > 0, j > 0 = Di,j −Di−1,j−1 (4)

The original D table can be easily reconstructed from any
of the three increment tables, but in Myers’ case he use the
horizontal table. Equation 5 showns how the value of any
cell Di,j can be computed by taking the value of the first
(pre-computed) cell of the row and aggregating all horizontal
increments of the same row until the position i, j is reached.

Di,j = i +

j∑
k=1

∆hi,k (5)

The great advantage of the Myers’ algorithm is that it finds
an alternative way to build the increment tables (∆v, ∆h, and
∆d) by using simple boolean expressions without computing
D. To do it, he first separates positive and negative increments
(equations 6, 7, and 8).

∆vi,j |i > 0 = V Pi,j − V Ni,j (6)

∆hi,j |j > 0 = HPi,j −HNi,j (7)

∆di,j |i > 0, j > 0 = 1−D0i,j (8)

Then, Myers analyzes all the possible combinations to
obtain simple boolean expressions to describe the increment
equations 9,10,11, 12, and 13.

HNi,j = V Pi,j−1 ∧D0i,j (9)

V Ni,j = HPi−1,j ∧D0i,j (10)

HPi,j = V Ni,j−1 ∨ ¬(V Pi,j−1 ∨D0i,j) (11)

V Pi,j = HNi−1,j ∨ ¬(HPi−1,j ∨D0i,j) (12)

D0i,j = ¬(P [i]⊕ T [i]) ∨ V Ni,j−1 ∨HNi−1,j (13)

Finally, the Myers’ algorithm (figure 6 in [3]) follows a
column approach to compute the bit-vectors for the whole
table but only computing the distance values for the cells of the
last row. It exploits the architecture word size (typically 32 or
64 bits) to compute the bit-vectors of a column simultaneously.

G A C G A C C A G G C A A C T T A G C A C T G A T G A A C A G T T A C C A G C G A T G C

0 0

T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1

T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 1 2 2 2 2 1 1 2 1 1 2 2 2 2 2 1 0 1 2 2 2 2 2 2 2 1 1 2

T 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 1 2 3 3 3 2 2 2 2 2 2 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 2 2

T 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 2 2 2 3 4 4 3 3 3 2 3 3 3 4 4 4 3 2 2 2 3 4 4 4 4 4 3 3 3

A 5 5 4 5 5 4 5 5 4 5 5 5 4 4 5 4 3 2 3 3 3 4 4 4 3 3 3 3 3 4 4 5 4 3 2 3 3 3 4 5 5 4 4 4 4

C 6 6 5 4 5 5 4 5 5 5 6 5 5 5 4 5 4 3 3 3 4 3 4 5 4 4 4 4 4 3 4 5 5 4 3 2 3 4 4 4 5 5 5 5 4

T 7 7 6 5 5 6 5 5 6 6 6 6 6 6 5 4 5 4 4 4 4 4 3 4 5 4 5 5 5 4 4 5 5 5 4 3 3 4 5 5 5 6 5 6 5

T 8 8 7 6 6 6 6 6 6 7 7 7 7 7 6 5 4 5 5 5 5 5 4 4 5 5 5 6 6 5 5 5 5 5 5 4 4 4 5 6 6 6 6 6 6

A 9 9 8 7 7 6 7 7 6 7 8 8 7 7 7 6 5 4 5 6 5 6 5 5 4 5 6 5 6 6 5 6 6 6 5 5 5 4 5 6 7 6 7 7 7

G 10 9 9 8 7 7 7 8 7 6 7 8 8 8 8 7 6 5 4 5 6 6 6 5 5 5 5 6 6 7 6 5 6 7 6 6 6 5 4 5 6 7 7 7 8

C 11 10 10 9 8 8 7 7 8 7 7 7 8 9 8 8 7 6 5 4 5 6 7 6 6 6 6 6 7 6 7 6 6 7 7 6 6 6 5 4 5 6 7 8 7

A 12 11 10 10 9 8 8 8 7 8 8 8 7 8 9 9 8 7 6 5 4 5 6 7 6 7 7 6 6 7 6 7 7 7 7 7 7 6 6 5 5 5 6 7 8

C 13 12 11 10 10 9 8 8 8 8 9 8 8 8 8 9 9 8 7 6 5 4 5 6 7 7 8 7 7 6 7 7 8 8 8 7 7 7 7 6 6 6 6 7 7

T 14 13 12 11 11 10 9 9 9 9 9 9 9 9 9 8 9 9 8 7 6 5 4 5 6 7 8 8 8 7 7 8 7 8 9 8 8 8 8 7 7 7 6 7 8

G 15 14 13 12 11 11 10 10 10 9 9 10 10 10 10 9 9 10 9 8 7 6 5 4 5 6 7 8 9 8 8 7 8 8 9 9 9 9 8 8 7 8 7 6 7

A 16 15 14 13 12 11 11 11 10 10 10 10 10 10 11 10 10 9 10 9 8 7 6 5 4 5 6 7 8 9 8 8 8 9 8 9 10 9 9 9 8 7 8 7 7

T 17 16 15 14 13 12 12 12 11 11 11 11 11 11 11 11 10 10 10 10 9 8 7 6 5 4 5 6 7 8 9 9 8 8 9 9 10 10 10 10 9 8 7 8 8

G 18 17 16 15 14 13 13 13 12 11 11 12 12 12 12 12 11 11 10 11 10 9 8 7 6 5 4 5 6 7 8 9 9 9 9 10 10 11 10 11 10 9 8 7 8

A 19 18 17 16 15 14 14 14 13 12 12 12 12 12 13 13 12 11 11 11 11 10 9 8 7 6 5 4 5 6 7 8 9 10 9 10 11 10 11 11 11 10 9 8 8

A 20 19 18 17 16 15 15 15 14 13 13 13 12 12 13 14 13 12 12 12 11 11 10 9 8 7 6 5 4 5 6 7 8 9 10 10 11 11 11 12 12 11 10 9 9

T 21 20 19 18 17 16 16 16 15 14 14 14 13 13 13 13 14 13 13 13 12 12 11 10 9 8 7 6 5 5 6 7 7 8 9 10 11 12 12 12 13 12 11 10 10

A 22 21 20 19 18 17 17 17 16 15 15 15 14 13 14 14 14 14 14 14 13 13 12 11 10 9 8 7 6 6 5 6 7 8 8 9 10 11 12 13 13 13 12 11 11

C 23 22 21 20 19 18 17 17 17 16 16 15 15 14 13 14 15 15 15 14 14 13 13 12 11 10 9 8 7 6 6 6 7 8 9 8 9 10 11 12 13 14 13 12 11

C 24 23 22 21 20 19 18 17 18 17 17 16 16 15 14 14 15 16 16 15 15 14 14 13 12 11 10 9 8 7 7 7 7 8 9 9 8 9 10 11 12 13 14 13 12

A 25 24 23 22 21 20 19 18 17 18 18 17 16 16 15 15 15 15 16 16 15 15 15 14 13 12 11 10 9 8 7 8 8 8 8 9 9 8 9 10 11 12 13 14 13

G 26 25 24 23 22 21 20 19 18 17 18 18 17 17 16 16 16 16 15 16 16 16 16 15 14 13 12 11 10 9 8 7 8 9 9 9 10 9 8 9 10 11 12 13 14

C 27 26 25 24 23 22 21 20 19 18 18 18 18 18 17 17 17 17 16 15 16 16 17 16 15 14 13 12 11 10 9 8 8 9 10 9 9 10 9 8 9 10 11 12 13

G 28 27 26 25 24 23 22 21 20 19 18 19 19 19 18 18 18 18 17 16 16 17 17 17 16 15 14 13 12 11 10 9 9 9 10 10 10 10 10 9 8 9 10 11 12

G A C G A C C A G G C A A C T T A G C A C T G A T G A A C A G T T A C C A G C G A T G C

0 0

T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1 1

T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 0 1 2 2 2 2 1 1 2 1 1 2 2 2 2 2 1 0 1 2 2 2 2 2 2 2 1 1 2

T 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 1 1 2 3 3 3 2 2 2 2 2 2 3 3 3 3 2 1 1 2 3 3 3 3 3 3 2 2 2

T 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 3 2 2 2 3 4 4 3 3 3 2 3 3 3 4 4 4 3 2 2 2 3 4 4 4 4 4 3 3 3

A 5 5 4 5 5 4 5 5 4 5 5 5 4 4 5 4 3 2 3 3 3 4 4 4 3 3 3 3 3 4 4 5 4 3 2 3 3 3 4 5 5 4 4 4 4

C 6 6 5 4 5 5 4 5 5 5 6 5 5 5 4 5 4 3 3 3 4 3 4 5 4 4 4 4 4 3 4 5 5 4 3 2 3 4 4 4 5 5 5 5 4

T 7 7 6 5 5 6 5 5 6 6 6 6 6 6 5 4 5 4 4 4 4 4 3 4 5 4 5 5 5 4 4 5 5 5 4 3 3 4 5 5 5 6 5 6 5

T 8 8 7 6 6 6 6 6 6 7 7 7 7 7 6 5 4 5 5 5 5 5 4 4 5 5 5 6 6 5 5 5 5 5 5 4 4 4 5 6 6 6 6 6 6

A 9 9 8 7 7 6 7 7 6 7 8 8 7 7 7 6 5 4 5 6 5 6 5 5 4 5 6 5 6 6 5 6 6 6 5 5 5 4 5 6 7 6 7 7 7

G 10 9 9 8 7 7 7 8 7 6 7 8 8 8 8 7 6 5 4 5 6 6 6 5 5 5 5 6 6 7 6 5 6 7 6 6 6 5 4 5 6 7 7 7 8

C 11 10 10 9 8 8 7 7 8 7 7 7 8 9 8 8 7 6 5 4 5 6 7 6 6 6 6 6 7 6 7 6 6 7 7 6 6 6 5 4 5 6 7 8 7

A 12 11 10 10 9 8 8 8 7 8 8 8 7 8 9 9 8 7 6 5 4 5 6 7 6 7 7 6 6 7 6 7 7 7 7 7 7 6 6 5 5 5 6 7 8

C 13 12 11 10 10 9 8 8 8 8 9 8 8 8 8 9 9 8 7 6 5 4 5 6 7 7 8 7 7 6 7 7 8 8 8 7 7 7 7 6 6 6 6 7 7

T 14 13 12 11 11 10 9 9 9 9 9 9 9 9 9 8 9 9 8 7 6 5 4 5 6 7 8 8 8 7 7 8 7 8 9 8 8 8 8 7 7 7 6 7 8

G 15 14 13 12 11 11 10 10 10 9 9 10 10 10 10 9 9 10 9 8 7 6 5 4 5 6 7 8 9 8 8 7 8 8 9 9 9 9 8 8 7 8 7 6 7

A 16 15 14 13 12 11 11 11 10 10 10 10 10 10 11 10 10 9 10 9 8 7 6 5 4 5 6 7 8 9 8 8 8 9 8 9 10 9 9 9 8 7 8 7 7

T 17 16 15 14 13 12 12 12 11 11 11 11 11 11 11 11 10 10 10 10 9 8 7 6 5 4 5 6 7 8 9 9 8 8 9 9 10 10 10 10 9 8 7 8 8

G 18 17 16 15 14 13 13 13 12 11 11 12 12 12 12 12 11 11 10 11 10 9 8 7 6 5 4 5 6 7 8 9 9 9 9 10 10 11 10 11 10 9 8 7 8

A 19 18 17 16 15 14 14 14 13 12 12 12 12 12 13 13 12 11 11 11 11 10 9 8 7 6 5 4 5 6 7 8 9 10 9 10 11 10 11 11 11 10 9 8 8

A 20 19 18 17 16 15 15 15 14 13 13 13 12 12 13 14 13 12 12 12 11 11 10 9 8 7 6 5 4 5 6 7 8 9 10 10 11 11 11 12 12 11 10 9 9

T 21 20 19 18 17 16 16 16 15 14 14 14 13 13 13 13 14 13 13 13 12 12 11 10 9 8 7 6 5 5 6 7 7 8 9 10 11 12 12 12 13 12 11 10 10

A 22 21 20 19 18 17 17 17 16 15 15 15 14 13 14 14 14 14 14 14 13 13 12 11 10 9 8 7 6 6 5 6 7 8 8 9 10 11 12 13 13 13 12 11 11

C 23 22 21 20 19 18 17 17 17 16 16 15 15 14 13 14 15 15 15 14 14 13 13 12 11 10 9 8 7 6 6 6 7 8 9 8 9 10 11 12 13 14 13 12 11

C 24 23 22 21 20 19 18 17 18 17 17 16 16 15 14 14 15 16 16 15 15 14 14 13 12 11 10 9 8 7 7 7 7 8 9 9 8 9 10 11 12 13 14 13 12

A 25 24 23 22 21 20 19 18 17 18 18 17 16 16 15 15 15 15 16 16 15 15 15 14 13 12 11 10 9 8 7 8 8 8 8 9 9 8 9 10 11 12 13 14 13

G 26 25 24 23 22 21 20 19 18 17 18 18 17 17 16 16 16 16 15 16 16 16 16 15 14 13 12 11 10 9 8 7 8 9 9 9 10 9 8 9 10 11 12 13 14

C 27 26 25 24 23 22 21 20 19 18 18 18 18 18 17 17 17 17 16 15 16 16 17 16 15 14 13 12 11 10 9 8 8 9 10 9 9 10 9 8 9 10 11 12 13

G 28 27 26 25 24 23 22 21 20 19 18 19 19 19 18 18 18 18 17 16 16 17 17 17 16 15 14 13 12 11 10 9 9 9 10 10 10 10 10 9 8 9 10 11 12

Fig. 1. D matrix use by BPM Myers’s algorithm (left) compared with that
of our proposal (right). Locations where the seed matched are underlined in
yellow. The areas of the table that are extended to cover indel errors are
underlined in light-blue. The cells (from the last row) were the actual D
value is recovered are underlined in dark-blue. Cells that are not computed
are underlined in light-grey.

Since the value Dm,0 = m, the values from the last row can
be obtained by accumulating ∆hm,j . The algorithm requires
n iterations to find the minimum distance value from the last
row.

Some FPGA implementations of the Myers algorithm have
been proposed in the literature [7], [8]. In [10], Hyyrö proposes
a bit-vector algorithm to compute the semi-global distance
below a threshold k. It is based on Myers’ binary equations and
uses a banded matrix to reduce the required computation. To
the best of our knowledge, there is no FPGA implementation
based on that work. Our implementations shares some ideas
with Hyyrö’s work.

III. PROPOSAL USING THE DIAGONALS

One important aspect of SFE mappers is how the reference
string T is selected. The extension phase starts after an exact
match of a seed S of length s from the string P has been found
in a certain location in the genome G. Let lP be the location
of the seed in the pattern P , so that S = P [lP : lP + s],
and lG the location of the seed in the genome G, so that
S = G[lG : lG +s]. Since k insertion or deletion (indel) errors
are allowed, the size of T is expanded as defined by equation
14.

T = G[lG − lP − k : lG − lP + m + k] (14)

Figure 1 (left) illustrates how this strategy is used together
with Myers’ BPM algorithm. Note that the extension is crucial
to capture the best alignment (underlined in orange). In case
we would be only considering substitution errors (k = 0), the
only cells from the D matrix that we would be computing
would be the diagonal ones. When the area is expanded to
consider indel errors (underlined as light blue), this diagonal
becomes the k diagonal. In BPM, all HP , HN , V P , V N ,
and D0 are computed. and only the D values for the last row
(underlined in blue) are recovered.

Based on the foundation of Myers’ bit equations, we have
identified additional optimization opportunities:
• BPM computes the scores for every element of the last

row (Dm,j∀j ∈ [1, n]), but most of those scores are
irrelevant since we know that, if derived from the exact
match of the seed, the best alignments must be in a radius
2k from the k diagonal; that is, we only need to compute
Dm,j∀j ∈ [m− k,m + 2k].

• The use of equation 5 to compute Dm,j requires to use
adders that can represent the worst case value, which
is m. Hence, dlog2(m)e bits adders are required. But
if we are only interested in determining if the score of
the interesting cells is not greater than k we could use
adders saturating at 3k + 1, requiring adders of only
dlog2(3k + 1)e bits.

As a result of the previous observations, we propose
computing Dm,m+k using the diagonal increments ∆d and
equation 15. We compute the rest of the elements in the neigh-
bouring radius 2k from the last row using ∆h and equation
16 and finally select the minimum from them (equation 17).
We obviate the use of saturating adders in these equations to
facilitate the reading, but we use them to reduce the required
resources.

Dm,m+k =

m∑
i=1

∆di,i+k (15)

Dm,j =

{
Dm,m+k +

∑j
i=m+k+1 ∆hm,i , if j > m + k

Dm,m+k −
∑m+k

i=j+1 ∆hm,i , if j < m + k
(16)

dest(P, T) = min
∀j∈[m−k,m+2k]

Dm,j (17)

Using the diagonal approach to compute Dm,m+k allows
to prune out cells that do not contribute to the final solution.
We cut the data dependency between cells by introducing hard-
coded positive increments in the cells that are far enough from
the main diagonal.

The amount of saved resources depend on the value k, but
for low values of k they might be quite significant. The number
of avoided cells are m×n−(m×(4k+1))+k2. Figure 1 (right)
depicts the elements of table computed with this approach. The
cells avoided are underlined in light-grey.

IV. IMPLEMENTATION

Besides the benefits associated with the use of High-Level
Synthesis (HLS), a great advantage of OpenCL is the easy
migration of the code to different FPGA-based accelerator
devices as it is not required to invest time in the development
of the infrastructure to communicate with the host CPU.
Genomic datacenters could use their own FPGAs or could
use computing resources from public heterogeneous Cloud
providers. OpenCL multi-platform support enables easy mi-
gration of workloads among different platforms, while its HLS
infrastructure allows an easy adaptation to different parameters
of the workloads, such as different read-lengths or error rates.

Most FPGA accelerators use on-board DDR memory to
share data between the host CPU and the accelerator. Memory
transfers between them must go through the PCIe bus. Another
kind of accelerators promote the direct access to main host
memory through a cache coherent interface. This is the case of
the Intel HARPv2 system and the devices using the Coherent
Accelerator Processor Interface (CAPI) proposed by IBM [11].

We implement our design as a single workitem OpenCL
kernel to promote the creation of a long pipeline that is able

to process a batch of sequence pairs in a loop with an initiation
interval of 1 and a single clock throughput. This throughput
could be achieved if, for each input pair, we are able to
fetch both sequences and store a previously computed distance
result at the same time. In practice, this is not feasible as we
have a limited input bandwidth, and we have to multiplex
the communication channel to store results. For each input
sequence pair, we use 2(m + n) bits, as we encode each
base in 2 bits. The computed distance output value requires
dlog2(k + 1)e bits. Therefore, the amount of output data is
much lower than the input data to be processed. To favor
long bursts in accessing input data, we postpone the writing
of output results by buffering them into an FPGA on-chip
memory.

The input data bandwidth is limited by the minimum
between bus bandwidth and memory bandwidth. Since bus
bandwidth is always less than memory bandwidth, and no
data reuse occurs, the system does not benefit from having
an exclusive device memory. The organization of sequence
pairs in memory has an impact on the filter throughput. We
use three different memory layouts depending on the length
of the sequences. In the first case, both sequences are packed
in a single 512 bits word. In the second case, each sequence
is stored in a different 512 bits word. In the third case, each
sequence is stored in different 1024 bit words. Depending on
the layout, data fetch can take either 1, 2, or 4 clock cycles.

Hardware implementations of dynamic programming al-
gorithms (like [12]) tend to compute the cells of the anti-
diagonals in parallel. If the allocated processing elements
(PEs) are created to address the longest anti-diagonal, the
matrix computation takes several cycles and the PEs are be
reused. Another alternative is to create a PE for each cell of
the matrix and compute the anti-diagonals in pipeline. Unlike
classic HDL designs we do not create a specific PE for cell
computation. We can still interpret that there is a kind of virtual
PE diluted in the OpenCL source code for each matrix cell.

Arbitrary precision integer OpenCL types are very con-
venient when dealing with large bit-vectors. However, their
support is not consistent over different manufacturers [13]. To
overcome this limitation we create our own library of arbitrary
precision integers by using metaprogramming. Instead of using
a C pre-processor based metaprogramming approach we use
a syntax similar to Java Server Pages [14] to annotate the
parts of the OpenCL source code that must be modified before
compilation.

We use an iterative generation algorithm (Algorithm 1) to
build the elements of the matrix, pruning out the computation
of all cells farther than k from the main diagonal. The direct
implementation of the algorithm in OpenCL could possibly
lead the compiler to detect the data dependency between the
iterations of the loops iterations preventing the unrolling of the
for loops (in lines 1 and 2). In our case, we explicitly unroll the
loops by using metaprogramming to force a pipelined design.
After bit-vectors are computed, the algorithm requires a final
phase to aggregate the diagonal cells and the required values
from the last row to obtain their minimum value. These loops

Algorithm 1 Banded Bit-Vector Algorithm with error thresh-
old
Input: The pattern text P of length m, the reference text T

of length n, and the maximum edit distance k
Output: The minimum distance d of all possible substrings

of T with P being ≤ k, or k + 1 otherwise

1: for x← 1 to n + 1 do . Compute bit-vectors
2: for y ← 1 to m + 1 do
3: if x = 1 then
4: V Py,x ← 1
5: V Ny,x ← 0
6: else if y = 1 then
7: HPy,x ← 0
8: HNy,x ← 0
9: else if |x− k − y| <= k then . in-band

10: D0i,j ← ¬(P [i]⊕T [i])∨V Ni,j−1 ∨HNi−1,j
11: V Pi,j ← HNi−1,j ∨ ¬(HPi−1,j ∨D0i,j)
12: V Ni,j ← HPi−1,j ∧D0i,j
13: HPi,j ← V Ni,j−1 ∨ ¬(V Pi,j−1 ∨D0i,j)
14: HNi,j ← V Pi,j−1 ∧D0i,j
15: else if |x− k − y| = k + 1 then . band edge
16: if x < y then
17: V Py,x ← 1
18: V Ny,x ← 0
19: else
20: HPy,x ← 1
21: HNy,x ← 0
22: end if
23: end if
24: end for
25: end for
26: Dm,m+k = min(3k + 1,

∑m
i=1 ¬D0i,i+k) . last row

27: for i← m + k + 1 to m + 2k do
28: Dm,i ← min(3k + 1, Dm,i−1 + HPm,i −HNm,i)
29: end for
30: for i← m + k − 1 downto m− k do
31: Dm,i ← min(3k+1, Dm,i+1−HPm,i+1+HNm,i+1)
32: end for
33: d← min∀i∈[m−k,m+2k] Dm,i

are also unrolled by our metaprogramming tool.
Another benefit from the OpenCL methodology, is that,

since Hardware is defined with C, the OpenCL framework
can easily emulate the circuit in software. We use emulation
on every circuit to do functional verification before synthesis
and execution on the final device.

The source code of our implementation is available at
https://github.com/davidcastells/bpc .

V. RESULTS

We synthesize several systems addressing a number of
short-read lengths (m = {100, 200, 300}) and error rates
(erate = {3%, 5%, 10%}) which are representative from
the typical workloads found in short-read sequencing. The

implementations are synthesizedd for the Intel accelerator
platforms D5005 and HARPv2 (from Intel). Table I shows
the maximum clock frequency (fmax) and the total consumed
resources, including logic elements (LEs) and Flip-Flops (FFs)
for all synthesized designs. The results show how kernel
clock frequency is not directly related to the complexity of
the design, given by the m × n product. In fact, OpenCL
hides the complexity to implement a deep-pipeline to minimize
the effects o longer combinational paths. All the designs are
successfully implemented with an interval initiation factor of
1.

TABLE I
SYNTHESIS RESULTS FOR D5005 AND HARPV2

D5005 HARPv2
k m× n LEs FFs fmax LEs FFs fmax

3 100× 106
436 k
(15%)

359 k
(9%) 325 291 k

(25%)
167 k
(9%) 289

5 100× 110
466 k
(16%)

397 k
(10%) 323 297 k

(25%)
171 k
(10%) 291

10 100× 120
514 k
(18%)

453 k
(12%) 307 323 k

(28%)
199 k
(11%) 268

6 200× 212
494 k
(17%)

414 k
(11%) 319 321 k

(27%)
189 k
(11%) 285

10 200× 220
568 k
(20%)

503 k
(13%) 298 358 k

(31%)
224 k
(13%) 277

20 200× 240
609 k
(22%)

509 k
(13%) 318 447 k

(38%)
298 k
(17%) 278

9 300× 318
787 k
(28%)

792 k
(21%) 302 399 k

(34%)
239 k
(14%) 273

15 300× 330
646 k
(23%)

539 k
(14%) 329 562 k

(48%)
333 k
(19%) 276

30 300× 360
929 k
(33%)

846 k
(22%) 317 663 k

(57%)
433 k
(25%) 264

We use a benchmarking application that generates synthetic
data to measure the performance of the system. The results
are shown in table II. We report the throughput of the systems
in millions of sequence pairs per second (MPPS) observed
by the host application, i.e. including memory transfers. We
also provide the number of giga cells of the dynamic table
computed per second (GCUPS). This value requires some
clarification, since we actually do not compute the whole D
table, but only the bit-vectors for m× (4k + 1)− k2 elements
of the table and we only recover 3k + 1 values from the last
row. The reported GCUPS only consider the cells from the
subset of the table that we actually compute.

TABLE II
PERFORMANCE RESULTS WHEN COMPUTING 10 MPAIRS IN D5005 AND

HARPV2

D5005 HARPv2
k m× n MPPS GCUPS MPPS GCUPS
3 100× 106 47.4 61.2 91.5 118.1
5 100× 110 47.4 98.4 91.5 189.9
10 100× 120 47.4 189.6 91.5 366
6 200× 212 29.2 144.9 78.4 389.2
10 200× 220 29.2 236.5 78.4 635
20 200× 240 29.2 461.5 78.4 1238.7
9 300× 318 16.6 182.9 47 517.9
15 300× 330 16.6 300 47 849.5
30 300× 360 16.6 587.6 47 1663.8

TABLE III
COMPARISON WITH THE STATE OF THE ART

Ref. FPGA m× n MPairs/s GCUPS
Hoffmann, 2016, [15] Digilent Zybo 128× 128 0.028 0.45

Cai, 2019, [7] Kintex KCU1500 48× 48 70 161.2
Bautista, 2020, [8] Pico Comp. M505 112× 128 0.3 4.3

Ours D5005 100× 120 47.4 189.6
Ours HARPv2 100× 120 91.5 366
Ours D5005 300× 360 16.6 587.6
Ours HARPv2 300× 360 47.0 1663.8

Our banded approach to compute the Levenshtein distance
in the SFE context can compute up to 300 bp read length
in a single cycle. Althrough the performance is limited by
the memory bandwidth, according to the results, most of our
designs are above the hundred GCUPS region and, for larger
designs, above the tera cells updates per second (TCUPS)
region.

To the best of our knowledge these are the highest perfor-
mance values obtained using FPGAs reported in the literature.
There have been few attempts to address a similar problem
using FPGAs. Cai in [7], implemented an OpenCL design
based on the Myers algorithm. He observed than the Myers
loop could be unrolled for low values of n, providing a single
clock solution for the whole table. However, although the
FPGA used in his work is similar in number of resources to
HARPv2, his biggest design is 48×48, getting a performance
of 70 MPPS. Not only we are able to address much bigger
designs up to 300 × 360, but in comparison, for designs of
100 × 100 we get up to 91.5 MPPS in HARPv2. A recent
work from Bautista [8] does not provide an improvement in
terms of performance. On the other hand, he provides the
backtrace. Although this could be useful for other applications,
pre-alignment filters used in the SFE context do not require
the alignment backtrace. Table III summarize how our best
designs compare with the state of the art, both in MPPS and
GCUPS. Since the number of achieved MPPS depend on the
memory used layout to transfer the input data, we get the
maximum value (91.5 MMPS) for sequence pairs that can be
packed in a single 512 bit memory transfer.

VI. CONCLUSION

We have presented a novel bit-vector algorithm to compute
the banded Levenshtein distance in the context of SFE map-
pers. The banded approach brings resource savings that allow
to address bigger problem sizes up to 300 × 360 bases in a
single clock cycle. Up to 91.5 million semi-global alignments
per second are achieved with a single module on the HARPv2
platform for 100 × 120 sequences, which is higher than
previous results provided by [7] on 48 × 48 sequences. The
achieved performance of 47 MPPS on 300×360 (1.6 TCUPS),
the highest performance reported for this problem. We have
observed that a single module already saturates the available
bandwidth of the system, in future work we will investigate
the use of more sophisticated memory subsystems (such as
HBM2) and bus connections (such as PCIe-4, NVLink, CXL)
and their impact in the obtained performance.

ACKNOWLEDGMENT

This research was supported by the EU Regional Devel-
opment Fund under the DRAC project [001-P-001723], by
the MINECO-Spain (contract TIN2017-84553-C2-1-R), by the
MICIU-Spain (contract RTI2018-095209-B-C22) and by the
Catalan government (contracts 2017-SGR-1624, 2017-SGR-
313, 2017-SGR-1328). M.M. was partially supported by the
MINECO under RYC-2016-21104. We thank Intel for granting
us access to the DevCloud system and let us join the HARP
research program. The presented HARP-2 results were ob-
tained on resources hosted at the Paderborn Center for Parallel
Computing (PC2) in the Intel Hardware Accelerator Research
Program (HARP2).

REFERENCES

[1] T. F. Smith, M. S. Waterman, and Others, “Identification of common
molecular subsequences,” Journal of molecular biology, vol. 147, no. 1,
pp. 195–197, 1981.

[2] N. Ahmed, K. Bertels, and Z. Al-Ars, “A comparison of seed-and-extend
techniques in modern DNA read alignment algorithms,” in 2016 IEEE
International Conference on Bioinformatics and Biomedicine (BIBM).
IEEE, 2016, pp. 1421–1428.

[3] G. Myers, “A fast bit-vector algorithm for approximate string matching
based on dynamic programming,” Journal of the ACM, vol. 46, no. 3,
pp. 395–415, may 1999.

[4] M. Šošić and M. Šikić, “Edlib: a c/c++ library for fast, exact sequence
alignment using edit distance,” Bioinformatics, vol. 33, no. 9, pp. 1394–
1395, 01 2017.

[5] Y. Chan, K. Xu, H. Lan, B. Schmidt, S. Peng, and W. Liu, “Myphi: effi-
cient levenshtein distance computation on xeon phi based architectures,”
Current Bioinformatics, vol. 13, no. 5, pp. 479–486, 2018.

[6] A. Chacón, S. Marco-Sola, A. Espinosa, P. Ribeca, and J. C. Moure,
“Thread-cooperative, bit-parallel computation of levenshtein distance on
GPU,” in Proceedings of the 28th ACM international conference on
Supercomputing, 2014, pp. 103–112.

[7] L. Cai, Q. Wu, T. Tang, Z. Zhou, and Y. Xu, “A Design of FPGA
Acceleration System for Myers bit-vector based on OpenCL,” in 2019
International Conference on Intelligent Informatics and Biomedical
Sciences (ICIIBMS). IEEE, 2019, pp. 305–312.

[8] D. P. Bautista, R. C. Aguilera, F. A. Acevedo, and I. A. Badillo, “Bit-
Vector-Based Hardware Accelerator for DNA Alignment Tools,” Journal
of Circuits, Systems and Computers, p. 2150087, 2020.

[9] V. I. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” in Soviet physics doklady, vol. 10, no. 8, 1966, pp.
707–710.

[10] H. Hyyrö, “A bit-vector algorithm for computing levenshtein and dam-
erau edit distances,” Nordic J. of Computing, vol. 10, no. 1, p. 29–39,
Mar. 2003.

[11] B. Wile, “Coherent accelerator processor interface (capi) for power8
systems white paper,” IBM Systems and Technology Group, 2014.

[12] S. Lloyd and Q. O. Snell, “Hardware accelerated sequence alignment
with traceback,” International Journal of Reconfigurable Computing,
vol. 2009, 2009.

[13] L. Forget, Y. Uguen, F. de Dinechin, and D. Thomas, “A type-
safe arbitrary precision arithmetic portability layer for HLS tools,” in
Proceedings of the 10th International Symposium on Highly-Efficient
Accelerators and Reconfigurable Technologies, 2019, pp. 1–6.

[14] J. Hunt, “Java server pages,” in Java and Object Orientation: An
Introduction. Springer, 2002, pp. 361–370.

[15] J. Hoffmann, D. Zeckzer, and M. Bogdan, “Using fpgas to accelerate
myers bit-vector algorithm,” in XIV Mediterranean Conference on Med-
ical and Biological Engineering and Computing 2016. Springer, 2016,
pp. 535–541.

View publication statsView publication stats

https://www.researchgate.net/publication/355256697

	Introduction
	The Myers Bit-Vector Algorithm
	Proposal Using the Diagonals
	Implementation
	Results
	Conclusion
	References

