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Abstract— This paper proposes an adaptive observer for a
class of nonlinear system with linear parametrization. The
main novelty of the technique is that the regressor vector is
considered to be unknown. Instead, a library of candidate non-
linear functions is implemented, which transforms the original
parameter vector into a new one that is characterized by being
sparse. In such problem, it is shown that standard adaptive
observers cannot recover the original vector due to a lack of
persistence of excitation. Instead, a parameter-adaptation with
an implicit l1 regularization is implemented. It is shown that this
new observer can recover the parameter vector under standard
assumptions of sparse signal recovery. The results are validated
in a numerical simulation.

I. INTRODUCTION

During observer design, it is reasonable to expect significant
discrepancy between the mathematical model and the real
system. For this reason, observers should be robustified in
front of model uncertainty. A common approach to achieve
such robustness is based on modelling the uncertainty as
a linear combination of a known regressor function, φ,
and a vector of constant unknown parameters, θ. Then,
combine the observer with a recursive identification algorithm
that estimates the parameters, θ, and decouples the state-
estimation from the uncertainty [1][2]. This approach allows
to exactly cancel the effect of the uncertainty, which can
potentially out-perform standard robust observers, that are
limited by a well-known trade-off between bandwidth and
noise rejection [3].

Nevertheless, the state-estimation and parameter-estimation
decoupling is a fragile operation that can fail whenever the
regressor vector, φ, is not exactly known ([4] Section 3.3.5).
Moreover, as the uncertainty is related with the unmodelled
parts of the system, it is common that the functions that
compose φ are unknown. This fact explains the fragility
that is usual in adaptive observer techniques when they
are implemented in practice. This fragility motivates the
modification of the parameter-adaptation in order to increase
its robustness, e.g. through the σ-modification or parameter
projection [5]. However, these modifications aggravates the
accuracy of the estimation.

In such context, it is more reasonable to expect that
the regressor vector, φ is not known, but there is some
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prior information on the type of functions that compose, φ.
Therefore, it is possible to design a library of non-linear
function candidates, Θ, to model the uncertainty. Then,
ideally, the adaptive observer selects the best combination of
functions that explains the uncertainty.

The main conflict in such approach is that, in general,
most functions from the library will not be present in the real
system. Therefore, the library is over-complete, which makes
the parameter-estimation an ill-posed inverse problem, i.e.
there are an infinite number of solutions that can explain the
uncertainty in the observed system’s trajectory. Consequently,
the adaptive algorithm will not converge to the true parameter
vector.

The key observation is that for many systems, the regressor
vector, φ, consists on only a few terms. Therefore, only
a sparse selection of non-linear functions will be active
in the designed library, Θ. The presence of an ill-posed
inverse problem and these hints of sparsity motivates the
implementation of a l1 regularization [6], as it is commonly
used in least absolute shrinkage and selection operator
(LASSO) regression. However, even though this type of
optimization has been deeply studied in the context of system
identification [7], regularization in general cannot be directly
implemented in adaptive control. The robustness and stability
of adaptive observers is commonly proved by constructing
a Lyapunov function and designing a parameter-adaptation
dynamics that cancels the factors that depend on the unknown
parameters, θ. The addition of a l1 penalization term on
the parameter-adaptation prevents this cancellation and may
destabilize the observer’s dynamics [8].

For this reason, this work proposes exploiting recent results
in natural gradient-based adaptive control [9], which has been
shown to provide state and parameter-estimation decoupling
with an implicit regularization in the parameter-estimation.
The adaptive algorithm will be designed to promote sparsity
on the parameter solution and it will be shown that the true
parameter can be recovered under some assumptions that are
common in the sparse signal recovery field [6].

The remaining of this paper is as follows. In Section II, the
library-based adaptive observation problem will be formally
formulated. Section III, shows that standard parameter-
adaptation algorithms are insufficient for the considered
problem. Section IV presents an unbiased adaptive observer
that promotes sparsity in the parameter-estimation. Section V
establishes some structural conditions on the library for the
adaptive algorithm to recover the true regressor vector. The
algorithm is validated in a numerical simulation in Section
VI. Finally, some conclusions are drawn in Section VII.



II. PROBLEM FORMULATION

This work considers a MIMO nonlinear system of the form

ẋ = f(x,u) + Bφ(x,u)θ (1)
y = Cx + v

where x ∈ Rn are the states, y ∈ Rm is the measured output
and θ ∈ Rp is a vector of unknown constant parameters.
The matrices B ∈ Rn×s and C ∈ Rm×n are assumed to be
known. The functions f ∈ Rn×1 and φ ∈ Rs×p are assumed
to be Lipschitz. The factor v ∈ Rm depicts high-frequency
sensor noise, which is assumed to be upper-bounded by a
positive constant v2 as ‖v‖2 ≤ v2.

The objective here is to design an observer algorithm that
achieves an estimation of the states, x̂, and the unknown
parameters, θ̂, such that as t → ∞, the estimation errors
satisfy, ‖x− x̂‖2 → ε1 and ‖θ− θ̂‖2 → ε2, where ε1 and ε2
are small positive constants.

The system is assumed to satisfy the following observer
matching condition

Assumption 2.1: All the unknown parameters appear in
the first derivative of the output, i.e.

rank(CB) = rank(B). (2)
The main difference with respect to common adaptive

observer problems appears by considering the following
scenario. It is considered that the regressor vector φ ∈ Rs×p
is unknown. Instead, it is assumed that the designer constructs
a matrix, Θ(x,u) ∈ Rs×q with q > p, of candidate linearly
independent non-linear functions.

The function Θ is assumed to be Lipschitz and satisfy the
following assumption

Assumption 2.2: Define φw(x,u) ∈ Rs×1 for w = 1, ..., q,
as the column vector functions that compose Θ. Each column
vector of the regressor, φ(x,u), can be computed as a scaled
vector cφw(x,u) for some w, where c ∈ R.

Assumption 2.2 allows to rewrite system (1) in the
following equivalent form

ẋ = f(x,u) + BΘ(x,u)θs (3)
y = Cx + v

where θs ∈ Rq is a vector of unknown parameters, in which
p elements are equal to the elements in the original parameter
vector, θ, and q − p elements are zero.

The matrix Θ is going to be referred as a library of
candidate non-linear functions. In this library, the column
vectors, φw(x,u), are defined as inactive if they do not
compose the original regressor vector φ, otherwise, are
defined as active. The elements of the parameter vector, θs,
associated with inactive functions will be zero, otherwise,
will be non-zero. The objective of the adaptation dynamics is
to determine the active vectors and accurately estimating the
unknown parameter vector θs. By considering the equivalent
system (3), the original problem has been transformed into the
design of an observer algorithm that achieves an estimation
of the states, x̂, and the unknown parameters, θ̂s, such that
as t → ∞, the estimation errors satisfy, ‖x − x̂‖2 → ε1

and ‖θs − θ̂s‖2 → ε2, where ε1 and ε2 are small positive
constants.

As it will be presented in the next section, standard adaptive
observer techniques allow to solve the state-estimation
objective. However, it will be shown that said results
cannot achieve the parameter-estimation objective, as the
overparametrization, in general, prevents the satisfaction of
the necessary persistence of excitation condition.

III. STANDARD ADAPTIVE OBSERVER PERFORMANCE

In order to ease the read, this section and the following will
consider the noiseless case, i.e. when v = 0. This assumption
does not modify the results obtained in the following sections.

Assume that there is an observer that achieves a state-
estimation for the case where the parameters, θs, are known.
Specifically, let the observer dynamics be depicted by

˙̂x = g(x̂,u, y) + BΘ(x̂,u)θs. (4)

where g(x̂,u, y) ∈ Rn×1 is a vector function that is designed
to make the state-estimation error, ex , x−x̂, converge to zero.
Specifically, the vector function g(x̂,u, y) is defined such that

there is a differentiable Lyapunov function Vx(ex) =
1

2
eᵀxPex,

with P = Pᵀ > 0 that satisfies

α1(ex) ≤ Vx(ex) ≤ α2(ex)
∂Vx
∂ex

ėx ≤ −kα3(ex) (5)

where αi for i = 1, .., 3 are positive definite functions and
k is a positive constant.

As an example, such observer could be found following
the insights presented in [10].

Now, consider the case where the parameters are not exactly
known, and only an estimation, θ̂s, is given. In such case,
the state-estimation error does not converge to zero, and the
derivative of the Lyapunov function (5) is upper-bounded as

∂Vx
∂ex

ėx ≤ −kα3(ex) + eᵀxPBΘ(x̂,u)eθs , (6)

where eθs , θs − θ̂s.
The structure of the second term in the right side of (6),

motivates the design of the following gradient descent-like
parameter-estimation [2]

˙̂
θs = Θᵀ(x̂,u)M(y− Cx̂) (7)

where M is designed to fulfil

BᵀP = MC. (8)

Remark 3.1: Equation (8) can always be solved if the
matching condition (2) is satisfied. In the case of unmatched
parameters, condition (2) can be relaxed by the use of high-
gain observers [11].

The motivation behind parameter-adaptation (7) is that it
cancels the effect of the unknown parameters in the derivative
of the following composite Lyapunov function

Vx,θs(ex, eθs) = Vx(ex) + eᵀθseθs . (9)



Specifically, taking into account (7) and (8), the function
Vx,θs(ex, eθs) is upper-bounded by

V̇x,θs ≤ −kα3(ex) + eᵀxPBΘ(x̂,u)eθs − eᵀθsΘ
ᵀ(x̂,u)MCex

= −kα3(ex). (10)

The bound (10) proves two facts. First, the state-estimation
error, ex, converges to zero independently of the parameter-
estimation error eθs . This result can be understood as a
sort of separation principle between the state-estimation and
the parameter-estimation. Second, the parameter-estimation
error converges to zero if the system satisfies the persistence
of excitation condition [12]. The proof of these results is
included in Appendix I.

This work expands on the parameter-estimation result. In
practice, the parameter-adaptation dynamics (7) converges
to a set of possible solutions depending on the dimension
of the time-varying null-space of BΘ(x,u), i.e. if the null-
space’s dimension is greater than zero, the problem can be
solved by an infinite number of parameter vectors. The major
conflict that arises in the considered problem is that, as
dim(θs) > dim(θ), even if the null-space dimension of the
original regressor vector, Bφ(x,u), is zero, no conclusion
can be drawn for the null-space of BΘ(x,u). Moreover, in
general, no trajectory of the original system (1) can ensure
that the null-space of BΘ(x,u) is zero-dimensional, not even
if the original system (1) is persistently excited.

This result shows that, in most cases, the considered
overparametrized problem presents an infinite amount of
solutions and standard parameter-adaptation schemes will
converge to some solution that cannot be ensured to be
the one appearing in the original system. The aim of the
following sections is to present an alternative parameter-
adaptation dynamics that, under some assumptions on the
library, Θ(x,u), can always ensure the convergence of the
parameter-estimation error if the original regressor, Bφ(x,u),
is persistently exciting.

IV. SPARSITY-PROMOTING ADAPTIVE OBSERVER

Let s be a signal generated as

s , Bφ(x,u)θ. (11)

As the state and parameter-estimations are decoupled, the
adaptation dynamics are actively solving the inverse problem

s = BΘ(x,u)θ̂s. (12)

In general, as the regressor vector BΘ(x,u) is not persis-
tently excited, the problem (12) is ill-posed. In such situation,
the common approach is to introduce a regularization term
[13]. The key observation is that the parameter vector, θs,
will have many null values, making it sparse in the considered
space of non-linear function candidates. Consequently, a
natural approach is to introduce a regularization term that
promotes sparsity in the solution and can be shown to
converge to the true parameter vector through sparse signal
recovery theory [14]. Specifically, this work considers the
l1 regularization term, ‖θ̂s‖1, which penalizes non-sparse
parameter vectors.

It should be remarked that, because the adaptive observer
technique is based on a decoupling between state and
parameter-estimation (the cancellation in equation (10)),
the regularization term cannot be directly introduced as a
penalty term within a minimization criterion. An alternative
strategy is based on including a regularization term in the
parameter-adaptation (7), that regularizes the inverse problem,
and a secondary regularization term in the state-estimation
dynamics (4), that ensures the state/parameter decoupling
[8]. However, this approach induces significant bias in the
state and parameter-estimation. The bias can be reduced by
incorporating prior knowledge of the parameter value in the
adaptive scheme. Nonetheless, the sub-set of active non-linear
functions is unknown in the considered problem. Thus, the
prior knowledge of θs is insufficient for an adequate state and
parameter-estimation, which may lead to erroneous sub-set
selection.

Lee et al. [15] proposed a modification of classic adaptive
controllers by substituting the gradient-like adaptation by
a natural gradient, so the resulting adaptation law respects
an underlying Riemannian geometry to be specified. Based
on this result, Boffi and Slotine [9] showed that it is
possible to design an adaptive observer for output dependent
regressor vectors that preserves the state/parameter-estimation
decoupling while inducing an implicit regularization in the
parameter-estimation. The idea is to substitute the quadratic
term eᵀθseθs of the composite Lyapunov function (9) with the
Bregman divergence of a strictly convex function ψ [16],

dψ(θs||θ̂s) , ψ(θs)− ψ(θ̂s)− (θs − θ̂s)
ᵀ∇ψ(θ̂s).

Consequently, the following Lyapunov function is obtained

Vψ = Vx(ex) + dψ(θs||θ̂s). (13)

Furthermore, define the set of possible parameter solutions
for the inverse problem (12) as

Ω , {θ̂s ∈ Rq| s = BΘ(x,u)θ̂s, ∀t > ts},

where s is defined in (11) and ts is a positive value. Then,
we can stablish the following result.

Lemma 4.1: Consider the system (3) without noise, the
state observer (4) and the natural gradient-like adaptation
law

˙̂
θs =

[
∇2ψ(θ̂s)

]−1
Θᵀ(x̂,u)M(y− Cx̂). (14)

Then, the state-estimation error, ex, converges to zero; and,
consequently, converges to a sufficiently small positive value,
i.e. ‖ex‖ ≤ ε for all time t > ts.

Moreover, consider that θ̂s(ts) = min
θs∈Rq

ψ(θs). Then, the

parameter-estimation, θ̂s, converges to min
θs∈Ω

ψ(θs).

The results of Lemma 4.1 can be interpreted as follows.
First, the state-estimation converges to zero independently
of the parameter-estimation. Thus, the state-estimation is
decoupled from the parameter-estimation. This is a stronger
result than the one obtained in [8], where the presence of
the regularization term introduced a bias in the state and



parameter-estimation. Second, even though the regressor
vector, BΘ(x,u) is not persistently exciting, the parameter-
estimation converges to a value that depends on the strictly
convex function ψ.

This work proposes implementing the l1 norm as the
function ψ in order to promote sparsity in the parameter-
estimation solution. Specifically, ψ = ‖θ̂s‖1. Next section
will show that, under some structural assumptions on the
library Θ, the parameter-adaptation (14) is able to identify
the non-zero components of θs, and converge to its true value
if the original regressor is persistently exciting.

Remark 4.1: The l1 norm is not strictly convex, which
prevents Vψ to be a Lyapunov function. For this reason, ψ
is implemented as the norm ‖θ̂s‖p with p = 1 + ε, where
ε is small. This is the closest strictly convex norm to the l1
regularization.

It should be remarked that the inverse of the Hessian in
(14), may not be computable for all p norms. For this reason,

the function ψ is implemented as the squared p norm
1

2
‖θ̂‖2p,

with p close to one. The motivation behind such decision is
that the Jacobian of the squared p norm has an analytical
inverse, which allows the adaptation (14) to be implemented
through the following dynamics,

ẇ = Θᵀ(x̂,u)M(y− Cx̂) (15)

θ̂s,i = ‖w‖2−dd |wi|d−1sign(wi) for i = 1, ..., q (16)

where w , ∇ψ(θ̂s), ‖ · ‖d is the d-norm and
1

d
+

1

p
= 1.

V. PERFORMANCE OF THE l1 MINIMIZATION

The aim of this section is to study under which circum-
stances, the parameter-adaptation is capable of estimating
the non-zero components of θs and its values. In order to
generalize the results, this section will consider the case when
there is noise in the measured signal, i.e. v 6= 0.

The state-estimation converges to an ultimate bound that
depends on the sensor noise’s 2-norm upper bound, v2.
Then, as the equation ėx is Lipschitz, it is possible to see
that the 2-norm of the function BΘ(x,u)eθs is ultimately
bounded by a function γ(v2). Therefore, ∀t > ts where ts
is a sufficiently large positive value, the natural gradient-
like parameter-adaptation (15)-(16) is solving the following
optimization problem

argmin
θ̂s

‖θ̂s‖1 s.t. ‖s− BΘ(x,u)θ̂s‖2 ≤ γ(v2) ∀t > ts.

(17)
The error-constrained l1 minimization (17) has been deeply

studied in the computer science field in the context of sparse
signal recovery problems [6], where the recovery of the
original vector θ can be proved by taking some assumptions
on the library BΘ(x,u). In particular, the recovery can be
proved by studying the mutual incoherence of the library, i.e.
if the pairwise correlations among the columns of BΘ(x,u)
are small, the sparsest solution of (17) is unique [6]. Then,
if the original vector is persistently exciting, the sparsest
solution is in the span of θ.

VI. NUMERICAL SIMULATION

The statements presented in this document are exemplified
through a numerical simulation, in which the performance
of a standard adaptive observer and the proposed sparsity-
promoting observer are compared.

This section considers the autonomous Van der Pol oscil-
lator, the dynamics of which are depicted by the following
expression

ẋ = f(x) + Bφ(x)θ (18)

where x = [x1, x2]
ᵀ, θ = [−0.2, 1,−0.3]ᵀ and

f(x) =
[
x2
0

]
, B =

[
0
1

]
, φ(x) =

[
x1, x2, x

2
1x2
]
.

The system is initialized at x(0) = [1, 0]ᵀ, which pro-
duces the oscillatory dynamics that makes the vector Bφ(x)
persistently exciting.

It is assumed that the vector φ(x) is unknown. Instead,
the following library of non-linear function candidates is
considered

Θ(x) = [1, x1, x2, x1x2, x
2
1x2, x1x

2
2, x

2
1x

2
2, x

2
1, x

2
2,

sin(x1), sin(x2), cos(x1), cos(x2)

sin(x1)cos(x2), cos(x1)sin(x2)].

This library satisfies Assumption 2.2. Thus, system (18)
can be rewritten as follows

ẋ = f(x) + BΘ(x)θs

where θs = [θs,1, ..., θs,15]
ᵀ is a vector of zeros except for

θs,2 = −0.2, θs,3 = 1, θs,5 = −0.3.

Finally, it is assumed that the states are unknown, and only
the signal y = cᵀx = x1 + x2 is being measured.

The objective is to design an adaptive observer that through
the measurement of y can reconstruct the unknown state, x,
and parameters, θs. The parameter-estimation should be close
enough to the true value so it is possible to identify the active
non-linear functions of the library, Θ.

Following the insights presented in [10], it is possible to
prove that the observer dynamics

˙̂x = f(x̂) + Bφ(x̂)θ̂ + l(y − cᵀx̂) (19)

with l = [−0.314, 3.156]ᵀ, satisfy the Lyapunov condition
(5).

Consequently, taking into account the insights presented
in Section III, a natural approach to solve the concerned
estimation problem is to couple the observer dynamics (19)
with the parameter-adaptation (7) and design M = 0.4781 in
order to satisfy (8).

Such adaptive observer, with adaptation (7), provides a
relatively accurate estimation of the states. However, the
standard adaptation dynamics cannot identify the active non-
linear functions of Θ and the estimation θ̂s does not converge
to the true value. This fact can be seen in Figure 1, where it is
depicted the parameter-estimation evolution for the standard
adaptive observer in the noiseless case (v = 0). It is noticeable



Fig. 1. parameter-estimation evolution through the standard adaptive
observer. No sensor noise is considered v = 0

that there are parameters, which are not θs,2, θs,3 or θs,5,
that converge to a non-zero value. Moreover, the parameters
θs,2, θs,3 or θs,5 do not converge to its true value.

Even though, the original regressor vector Bφ(x) is
persistently excited, the considered library regressor, BΘ(x),
is not. This fact exemplifies the standard adaptive observer’s
inability to recover the active functions of Θ. Nonetheless,
the parameter vector, θs, is somewhat sparse. Thus, it is
reasonable to think that the proposed sparsity-promoting
observer should out-perform the standard adaptive observer,
even in the presence of sensor noise.

Indeed, a second simulation has been designed for the
same Van der Pol system. In this simulation the sensor is
corrupted with Gaussian noise with variance 0.01. Moreover,
the parameter-adaptation (7) is substituted by the natural
gradient-like adaptation (15)-(16) with p = 1.1. As it can be
seen, the sparsity-promoting adaptive observer achieves an
accurate estimation of the system states, even in the presence
of significant sensor noise, Figure 2.

Furthermore, in Figure 3 it is depicted the evolution of the
parameter-estimation for the natural gradient-like adaptation
(15)-(16). It can be seen that the algorithm recovers the active
nonlinear functions of Θ, as the parameters related to the
non-active functions converge to zero. Moreover, the relative
error1 between the estimation of θs,2, θs,3, θs,5 and its true
value converges below the 2%. There are some "spikes" in the
parameter-estimation evolution that increase this error. These
spikes are induced by the sudden changes in the excitation of
the library, Θ, due to the abrupt oscillations of x2 during the
state evolution, see Figure 2. These spikes could be reduced by
normalizing BΘ(x). However, in order to make the example
more clear, this normalization step has been obviated.

VII. CONCLUSIONS

This work has presented a new approach for the design
of adaptive observers for linearly parametrized systems.
Instead of relying on a single regressor vector, which may
be unknown, the observer implements a library of candidate
non-linear functions and the adaptive algorithm selects the

1The relative error [%] between x and x̂ is computed as
‖x− x̂‖
‖x‖

· 100

Fig. 2. Evolution of the system’s states and sparsity-promoting adaptive
observer estimation.

Fig. 3. parameter-estimation evolution through the sparsity-promoting
adaptive observer. The estimations present some sudden spikes due to the
excitation changes in the library Θ.

active functions that participate on the system. In general, this
new regressor vector is not persistently exciting but results in
a sparse unknown parameter vector. For this reason, this work
proposed implementing an adaptive observer that exploits
recent results in natural gradient-like adaptation [9] in order
to promote sparsity in the parameter-estimation convergence.
It has been shown that such adaptive observer converges to
an error-constrained l1 minimization, where the parameter-
estimation error can be proved to converge through well-
known sparse signal recovery theory, even in the presence of
noise. The advantages of this adaptive observer have been
validated through a numerical simulation.

APPENDIX I
PROOF OF STANDARD ADAPTIVE OBSERVER

CONVERGENCE

The derivative of the Lyapunov function candidate (9) is
negative semidefinite and ‖ex‖ → 0 can be proved by the



Barbalat’s lemma. This result shows that the state-estimation
accuracy is decoupled of the parameter-estimation.

The second part of the proof shows the condition under
which the parameter-estimation converges to the true value.
As x ∈ C1, then∫ ∞

0

ėxdt = lim
t→∞

ex(t)− ex(0) = −ex(0) <∞.

Moreover, as the functions f and φ are Lipschitz, then ėx is
uniformly continuous. Therefore, by the Barbalat’s lemma,
ėx → 0. Then, by considering the state-estimation error
dynamics, the following can be deduced

‖BΘ(x,u)eθs‖ → 0.

From the fact that (9) is non-increasing and lower bounded
by zero, it has a limit as t→∞. Therefore, θ̂s and eθs must
converge to a constant. Consequently, if the vector BΘ(x,u)
is persistently exciting [12], then, the parameter-estimation
error, ‖eθs‖, will also converge to zero.

APPENDIX II
PROOF LEMMA 4.1

First, the derivative of the Lyapunov function (13) satisfies
the following

V̇ψ ≤ −kα3(ex) + eᵀxPBΘ(x̂,u)eθs − eθs∇2ψ(θ̂s)
˙̂
θs

= kα3(ex) + eᵀxPBΘ(x̂,u)eθs − eᵀθsΘ
ᵀ(x̂,u)MCex

= −kα3(ex).

Then, according to Appendix A, ex converges to zero and
converges to a small positive value in a time ts > 0.

The second part of the proof is based on the one presented
by Boffi and Slotine in [9]. Being the main difference that
this work considers a state dependent regressor vector.

Taking into account (14) and (8), the time derivative of
the Bregman divergence is

d

dt
dψ(θs||θ̂s) = −

(
d

dt
∇ψ(θ̂)

)ᵀ

eθs = −eᵀxPBΘ(x̂,u)eθs

= −eᵀxPBΘ(x,u)eθs − eᵀxPB
[
Θ(x̂,u)−Θ(x,u)

]
eθs .

(20)

For all t > ts, the last term in (20) is close to zero and
monotonically decreasing. Consequently, can be neglected
for a sufficiently large ts. Following this line, the integration
of the expression (20) ∀t > ts can be approximated as

dψ(θs||θ̂s(ts)) = dψ(θs||θ̂s(t))−
∫ t

ts

eᵀx(τ)PBΘ(x,u)eθs(τ)dτ.

(21)
Appendix I has proved that θ̂s and eθs converge to a

constant. Thus, one can compute the limit as t→∞ of (21)
and conclude that the following holds

dψ(θs||θ̂s(ts)) = dψ(θs||θ̂s(∞))

+

∫ ∞
ts

eᵀx(τ)P(BΘ(x,u)θ̂s(τ)− s(τ))dτ.

(22)

The right hand-side of (22) has a minimum over θs at
θ̂s(∞). In parallel, the minimum of the left-hand side factor
is obtained in arg min

θs∈Ω
dψ(θs||θ̂s(ts)). Therefore,

θ̂s(∞) = min
θs∈Ω

dψ(θs||θ̂s(ts)). (23)

By considering that the parameter-estimation satisfies
θ̂s(ts) = min

θs∈Rq
ψ(θs), expression (23) reduces to

θ̂s(∞) = min
θs∈Ω

ψ(θs).
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