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Abstract—The paper addresses an improved inner current
reference calculation to be employed in the control of modu-
lar multilevel converters operating during either balanced or
unbalanced conditions. The suggested reference calculation is
derived based on the AC and DC additive and differential
voltage components applied to the upper and lower arms of
the converter. In addition, the impacts caused not only by
the AC network’s impedances but also by the MMC’s arm
impedances are also considered during the derivation of the AC
additive current reference expressions. Another issue discussed
in this article regards that singular voltage conditions, where
the positive-sequence component is equal to the negative one,
may occur not only in the AC network but also internally
(within the converter’s applied voltages). Several different inner
current reference calculation methods are compared and their
applicability during the former fault conditions is analyzed.
The paper presents a detailed formulation of the inner current
reference calculation and applies it to different unbalanced AC
grid faults where it is shown that the presented approach can be
potentially used to maintain the internal energy of the converter
balanced during normal and fault conditions.

Index Terms—Modular multilevel converter (MMC), unbal-
anced voltage conditions, internal energy balancing, reference
calculation.

I. INTRODUCTION

W ith the increasing penetration of renewable energies
in the power system, more Voltage Source Converters

(VSC) for High Voltage Direct Current (HVDC) have been
used in applications such as long transmission links and cable
lines [1]. Due to its improved efficiency, easier scalability to
high voltage levels and inherent redundancy, the modular mul-
tilevel converter (MMC) has become the preferred converter
choice for VSC-HVDC applications [2], [3]. Compared to
classic two- and three-level converters, controlling the MMC is
more complex since it has additional degrees of freedom that
can be used to improve the converter performance [4]–[7].

For a proper operation, several magnitudes of the MMC
must be regulated (i.e. the AC and DC networks currents,
circulating current, sub-module capacitor voltages). Regarding
the internal energy of the converter, different control strategies
have been proposed to regulate the total stored energy, to
balance the energies between the arms and phase-legs and
to maintain similar voltage levels within the sub-module
capacitors [8], [9]. Under balanced grid conditions, the energy
balancing is not a major issue as all the MMC’s sub-modules
remain close to their nominal voltage values. Nevertheless,
energy deviations may occur during power changes in the
network which must be compensated to maintain the proper
operation of the system [10]–[12]. On the other hand, during
unbalanced AC grid faults, the internal energy deviations are
higher due to uneven power exchanges between the converter’s
arms and phase-legs which must be quickly compensated to
avoid tripping the converter.

Relevant reference calculation approaches and control
strategies have been proposed to analyze and mitigate the
effects of unbalanced AC network voltages. In [13], the con-
trollers were derived targeting the horizontal (between phase-
legs) energy regulation of the converter during AC single-
line-to-ground fault. Still focusing on the phase-leg balancing
of the MMC, [14] improves it through AC zero-sequence
voltage injection while [15] analyzes the energy dynamic
response for different DC circulating current scenarios. By
considering not only the horizontal balancing but also the
energy transfer between the upper and lower arms, further
improvements can be achieved in the transient response of the
converter [16]. References [17]–[19] derive distinct methods
to perform the vertical energy balance of the MMC, but they
only consider the DC characteristics of the circulating current.
Authors in [20]–[22] employ both AC and DC components
of the circulating current in their control design. In [20],
the MMC’s AC circulating current reference calculation is
performed based only on the positive sequence of the AC
grid voltage, whereas [21] also uses the negative sequence
component. Still, the former proposals neglected the impact
that the equivalent impedance of the MMC causes in the
arms’ applied voltages. Such influence is considered in [22],
whereby an optimization algorithm using a linear matrix
inequality approach is proposed to calculate the circulating
current reference.

Although the previous methods are capable of controlling
the MMC under unbalanced AC network conditions, during
unbalanced scenarios whereby the positive and negative com-
ponents of either the AC grid voltages or the MMC’s internal
voltages are equal, they might result in singularities in the
current reference calculation. This problem was addressed for
two-level VSCs by [23], and possible solutions were proposed
for MMC applications during the former AC grid voltage sag
in [24].

To the best of the authors knowledge, a control strategy that
is capable of dealing with different unbalanced AC voltage
sags (in particular internal singular voltage sags and singular
AC network faults), while maintaining the upper and lower
arms energies balanced has not been proposed yet. Another
research gap considered in this paper regards the addition of
the internal impedance effects on the AC additive voltage dur-
ing the derivation of the MMC’s circulating current references.
Next, the main contributions of this paper are highlighted:
• Comparison among different AC additive current refer-

ence calculations and their potential usage during singular
voltage condition.

• The DC differential zero-sequence voltage component
U0DC
diff is employed to enhance the power balancing be-
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tween the upper and lower arms throughout the operation
of the converter (balanced or unbalanced).

• Improvements in the solutions proposed in [24] with the
addition of U0DC

diff and the MMC’s equivalent impedance.
• The degrees of freedom of the MMC are fully exploited

by the current reference calculations.
• Comprehensive additive current reference calculation able

to operate in any grid voltage condition.
The proposed reference calculation is compared with differ-

ent methods by means of time-domain simulation results for
distinct AC grid and internal singular voltage sag conditions.
In addition, the effects of U0DC

diff are also analyzed according
to the reference calculation approach employed.

II. MMC SYSTEM DESCRIPTION AND MODELLING
The model of the three-phase MMC is shown in Fig. 1.

The converter consists of three legs, one per phase, where
each leg has two stacks of Narm sub-modules (SMs), known
as the upper and lower arms. The topologies employed in the
sub-modules varies according to the application requirements,
where the half-bridge structure is widely used due to its
simplicity and lower costs [25].

+

+

+

+

Fig. 1. Complete model of the MMC converter.
For steady-state modelling purposes, the phasor notation

Xk = Xk
r + jXk

i = Xk θk will be adopted, with x(t) =

XkRe{ej(ωt+θk)} and k ∈ {a, b, c}. Therefore, the main
quantities for each phase are: the AC grid voltages Ukg ; the
upper and lower arms applied voltages Uku,l; the upper and
lower DC grid voltages UDCu,l ; the voltage between the 0
DC reference node and the neutral n of the AC three-phase
system U0n; the upper and lower arm currents Iku,l; the AC
grid current Iks ; the arm impedances Ra and La; the grid
equivalent resistance and inductance Rs and Ls; and the sub-
module capacitors CSM . To ease the understanding of the
MMC circuit and the derivation of the control strategies, the
following quantities are defined:

Udiff ,
1

2
(−Uu + U l)

Usum , Uu + U l

Isum ,
1

2
(Iu + Il)


Zarm , Ra + jωLa
Zs , Rs + jωLs

Zeq , Zs +
Za
2

(1)

with k ∈ {a, b, c} and Ukdiff , Uksum and Iksum as the differ-
ential and additive applied voltages and circulating currents
of the converter, respectively. As it will be described later,
the additive currents perform an important role to regulate the
power transfer from/to the HVDC network to/from the MMC
and to maintain the internal power of the converter balanced,
which can be achieved by exchanging power among phase-legs
and between the upper and lower arms.

III. MMC CONTROL SYSTEM

In this section, the overall control system to regulate the
MMC and the methodology to calculate the additive and
AC network current references are presented. The employed
control scheme, shown in Fig. 2, uses the design procedures
derived in [21] and can be divided into two main parts: the
AC grid current control and the circulating current control. For
the AC grid current stage, the current references are calculated
based on the active and reactive power set-points required by
the Transmission System Operator (TSO) and the magnitude of
the positive-sequence component of the AC network voltage.
Then, such references are employed into the grid side current
control loops. The energy controllers are designed in order to
maintain the internal energy balance of the converter. This is
achieved through six different control loops which regulates
the MMC’s total internal energy Et, the energy difference
between the converter’s phase-legs Ea→b and Ea→c and the
energy mismatch between the converter’s arms Eku→l. Such
energy regulators result in the power references necessary to
calculate the AC and DC inner current set-points, highlighted
in yellow in Fig. 2. These current references can be obtained
through different methods according to the quantities that are
used in the calculation (see method selection in Fig. 2 and
Sections IV and V), which are later tracked by the additive
current controllers.

Fig. 2. Overall control scheme of the MMC converter for grid-following
applications.

For the sake of completeness, the reference calculation
procedures for the AC grid currents and for the DC component
of the additive currents are briefly described next, which
more details can be found in [21]. On the other hand, a
comprehensive analysis of different methods to calculate the
current references for the AC component of the additive
current is given. In addition, such approaches are compared
regarding their applicability during faults and exploitation of
the MMC’s degrees of freedom.
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A. AC network current reference calculation

Under balanced conditions, the AC grid currents present a
symmetrical profile. However, during unbalanced AC voltage
sags, the three-phase system may have different voltage levels
for each phase (due to the presence of negative-sequence com-
ponents), which might result in unbalanced currents circulating
through the AC network. In general, the AC grid current
references are calculated by considering only the positive-
sequence of the AC grid voltages, either for balanced or
unbalanced scenarios [26].
B. Additive current reference calculation

Generally, the DC components of the additive current are
used to regulate the power transfer among the phase-legs of
the converter. Whereas the AC components are employed to
control the power exchanged between the MMC’s upper and
lower arms (vertical balancing) [16].

1) DC component of the additive current: The DC terms
of the additive current can be applied in the regulation of the
energy exchanged horizontally. In addition, notch filters must
be used in order to eliminate the line and double-line frequency
power components coming from the energy controllers [21].

2) AC component of the additive current: To calculate the
AC additive current references it is necessary to obtain a
mathematical expression relating the power difference between
the MMC’s upper and lower halves with their respective
applied voltages. At one hand, the arm’s applied voltages can
be considered to be equal to the AC network voltage (assuming
that the equivalent impedance of the converter is small). The
main advantages of such approach regards its simplicity and
straightforwardness, since it uses the measurements from the
AC system. However, this method presents a discontinuity
when the positive- and negative-sequence components of the
AC grid voltages are equal or almost equal (singular condition)
[24]. As a consequence, the additive current references satu-
rate, compromising the vertical energy balancing controller.
Another candidate solution would to employ the differential
voltages resultant from the grid side current control as the
arm’s applied voltages, but as it will be demonstrated later,
this strategy also fails if the internal voltages present singular
characteristics.

IV. COMPARISON AMONG DIFFERENT AC ADDITIVE
CURRENT REFERENCE CALCULATION STRATEGIES

In this section, different methods to calculate the AC addi-
tive current references are presented. These approaches vary
according to the voltages that are considered to be applied
into the MMC’s arms (AC grid or differential voltages).
For balanced and several unbalanced network conditions, the
distinct strategies can maintain the converter stable and pro-
vide proper current references. However, certain unbalanced
AC grid voltage sags may lead to internal singular voltage
conditions that must also be addressed during the derivation
of the additive current references to avoid discontinuities of
the system.

A. Internal singular voltage sag analysis

An internal singular voltage event is defined when the
positive-sequence component of the AC differential voltage

is equal to the negative one (U+
diff = U−diff ). In order to

derive the expression for such fault, let’s first assume that the
AC differential voltages are calculated as [11]

U+
diff = U+

g + ZeqI
+
s (2a)

U−diff = U−g + ZeqI
−
s (2b)

The scenario where U+
diff = U−diff is obtained by equating

(2a) and (2b). As a result, an expression that describes in which
condition the converter’s applied voltages present singular
behavior is given as follows

U−g = U+
g + Zeq

(
I+s − I

−
s

)
︸ ︷︷ ︸

internal factor

(3)

As mentioned in Section III-A, the AC grid controllers are
designed to inject only positive-sequence current component
into the grid, thus I−s = 0. Furthermore, it can be observed
that this type of fault not only depends on the AC grid
voltage characteristics but is also affected by the interaction
between the MMC’s equivalent impedance and the AC grid
currents. In this paper, it is considered that the internal factor
is constant, since the controllers will keep injecting the same
positive-sequence current levels into the AC grid throughout
the converter’s operation.

B. Method 0 - Initial approach Uku,l = Ukg

This methodology is the most straightforward one to calcu-
late the AC additive current references of the MMC. It assumes
that the equivalent impedance of the converter is small and by
doing so, the AC arm voltage can be considered equal to the
AC grid voltage. However, during AC grid faults where the
positive-sequence voltage component is equal to the negative
one this method fails [21]. Such condition arises because the
current reference calculation will present a discontinuity in
this operating point. As a consequence, it will try to impose
very high AC additive currents to circulate through the MMC,
which must be disconnected to avoid damaging the converter.

C. Method 1 - Method 0 considering U0DC
diff

This reference calculation applies the techniques developed
in [24] employing U0DC

diff . Next, the method’s working prin-
ciple along with the calculation and regulation of U0DC

diff are
described.

1) Working principle: This method removes one of the
degrees of freedom from the AC additive current that does
not contribute to the power exchanged within the MMC arms.
By doing so, the discontinuity is avoided but there will be
a sustained constant energy deviation between the phase-legs
of the converter throughout the fault. This approach can be
further improved by replacing the degree of freedom that was
lost with the DC differential zero-sequence voltage component
U0DC
diff .
2) Regulation of U0DC

diff : During balanced conditions, this
voltage is equal to zero as both upper and lower arms have the
same DC voltage level. Under transients, on the other hand,
U0DC
diff is different than zero and its magnitude can be applied

into the MMC’s arms to improve the energy balancing between
them. Such degree of freedom can be obtained as
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U0DC
diff =

P au→l + P bu→l + P cu→l
3I0DCsum

(4)

where P abcu→l are the power difference between the upper and
lower arms and I0DCsum 6= 0 (to avoid discontinuities). By using
this degree of freedom, the energy deviations are eliminated
and controlled power can be transmitted within the MMC’s
arms, enhancing the converter response during singular AC
grid voltage conditions (see Section VI). In Fig. 3, the control
structure employed in the regulation of U0DC

diff is depicted. As
aforementioned, the unregulated value of U0DC

diff is calculated
based on the equation shown above, and compared to its
desired magnitude (set to be equal to zero), resulting in the
error e. This error goes to a PI controller, which is designed
in order to quickly compensate any voltage disparity caused
by the zero-sequence power mismatch between the upper and
lower arms of the converter. By doing so, the sustained energy
deviations observed when other control methods are used, as
it was pointed out by [24], can be eliminated. The controller
gains employed in this paper are set to be equal to kp = 0.25
and ki = 12, whereby the gain selection was done based on
the response of U0DC

diff for different AC and internal singular
voltage sag conditions. Finally, a saturation block is added as
a safety factor in order to prevent high values of U0DC

diff which
would result in overmodulations.

Fig. 3. U0DC
diff control structure.

D. Method 2 - Arm voltages equal to the DC and AC differ-
ential voltages U+−

u,l = U+−
diff + U0DC

diff

An alternative solution to the former problems would be to
replace the AC grid voltages by the positive- and negative-
sequence components of the internal differential voltages of
the converter. Consequently, the MMC equivalent impedance
will not be neglected, having a more realistic AC voltage
level in the converter’s arms. For this strategy, however, the
differential voltage controllers should be fast enough in order
to avoid inaccuracies due to the interactions between the two
regulators [27]. Nevertheless, even if such requirements are
fulfilled, in a situation where the MMC’s internal differential
voltages are equal, U+

diff = U−diff , the discontinuity will also
occur and the vertical energy balancing of the converter will
be compromised.

E. Method 3 - Method 1 with U+−
u,l = U+−

diff + U0DC
diff

Now, the principles in Method 1 are extended by consider-
ing that the arm’s applied voltages are equal to the differential
ones. If only the AC differential terms are employed, during
fault event where U+

diff = U−diff , the continued energy
deviation would also be observed and would be compensated
with the zero sequence DC differential voltage. However, as

it will be shown in Section VI, the energy drifts will cause
the U0DC

diff controllers to saturate due to the limited voltage
application range. Consequently, the vertical energy regulators
will not be able to compensate the power transferred within
the converter’s arms, leading to the eventual disconnection of
the system.

V. METHOD 4 - PROPOSED APPROACH CONSIDERING THE
ADDITIVE AND DIFFERENTIAL VOLTAGE COMPONENTS IN

THE ARM

The previous methods present distinct strategies to calculate
the AC additive current by using different quantities as the
applied voltages in the MMCs arms. But, they share the same
characteristic where the additive voltage effects in the arm are
neglected. At one hand, it seems that such voltage cannot be
part of the AC additive current references without an iterative
control method. However, using a simple mathematical sub-
stitution, which does not require any optimization, iterative
control or violate any constraint imposed in the steady-state
analysis, it is possible to obtain an expression that can be
employed as such reference calculation for any AC grid or arm
singular voltage sag condition. To do so, let’s first consider that
the applied voltages in the six arms are

Uku,l = ∓U
k
diff +

Uksum
2

(5a)

uku,l(t) =
√
2

(
∓ U+

diff cos
(
ωt+ θ+diff + αk

)
∓ (5b)

∓ U−diff cos
(
ωt+ θ−diff − α

k
)
+
U+
sum

2
cos
(
ωt+ θ+sum + αk

)
+

+
U−sum
2

cos
(
ωt+ θ−sum − αk

))
+

(
UkDCsum

2
∓ U0DC

diff

)
where the sign ∓ indicates that the differential voltage com-
ponents for the upper arms are negative, uku = −ukdiff+

uk
sum

2 ,
while for the lower arms the differential voltages are positive,
ukl = ukdiff +

uk
sum

2 . In addition, αa = 0, αb = − 2π
3 , α

c = 2π
3

and k ∈ {a, b, c}. θ+diff and θ−diff are the phase-angles of the
positive and negative sequence components of the differential
voltages, whereas θ+sum and θ−sum are the phase-angles for the
positive- and negative-sequence additive voltages. The upper
and lower arms currents can be described as follows

Iku,l = ±
Iks
2

+ Iksum (6a)

iku,l(t) =
√
2

(
± I+s

2
cos
(
ωt+ φ+

s + αk
)
±

± I−s
2

cos
(
ωt+ φ−s − αk

)
+ I+sum cos

(
ωt+ φ+

sum + αk
)
+

+ I−sum cos
(
ωt+ φ−sum − αk

))
+ IkDCsum (6b)

P ku→l = UkuI
k
u − U

k
l I
k
l , k ∈ {a, b, c} (7)

where similarly to the arms’ applied voltages, the sign ± is
an indication that iku =

iks
2 + iksum and ikl = − i

k
s

2 + iksum. Fur-
thermore, φ+s and φ+sum are the phase-angles of the positive-
sequence additive and AC grid currents, respectively, while
φ−s and φ−sum are the phase-angles of the negative-sequence
current components. Having defined the upper and lower
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Pau→l =


U+
diff

U−diff
I+s
I−s


T



−2 cos (θ+diff − φ+sum) −2 cos (θ+diff − φ−sum) 0 0

−2 cos (θ−diff − φ+sum) −2 cos (θ−diff − φ−sum) 0 0

0 0
cos (θ+sum − φ+s )

2

cos (θ−sum − φ+s )

2

0 0
cos (θ+sum − φ−s )

2

cos (θ−sum − φ−s )

2




I+sum
I−sum
U+
sum

U−sum

− 2U0DC
diff I

aDC
sum (8a)

P bu→l =


U+
diff

U−diff
I+s
I−s


T



−2 cos (θ+diff − φ+sum) −2 cos (θ+diff − φ−sum + 2π
3
) 0 0

−2 cos (θ−diff − φ+sum − 2π
3
) −2 cos (θ−diff − φ−sum) 0 0

0 0
cos (θ+sum − φ+s )

2

cos (θ−sum − φ+s − 2π
3
)

2

0 0
cos (θ+sum − φ−s + 2π

3
)

2

cos (θ−sum − φ−s )

2




I+sum
I−sum
U+
sum

U−sum

−

(8b)

−2U0DC
diff I

bDC
sum

P cu→l =


U+
diff

U−diff
I+s
I−s


T



−2 cos (θ+diff − φ+sum) −2 cos (θ+diff − φ−sum − 2π
3
) 0 0

−2 cos (θ−diff − φ+sum + 2π
3
) −2 cos (θ−diff − φ−sum) 0 0

0 0
cos (θ+sum − φ+s )

2

cos (θ−sum − φ+s + 2π
3
)

2

0 0
cos (θ+sum − φ−s − 2π

3
)

2

cos (θ−sum − φ−s )

2




I+sum
I−sum
U+
sum

U−sum

−

(8c)

−2U0DC
diff I

cDC
sum

arms voltages and currents with the additive and differential
quantities, it is possible to describe the power difference
between the upper and lower arms as

Replacing (5b) and (6b) in (7), the power differences are
obtained in matrix form as shown in (8). It can be observed
that the left matrix consists of the AC grid currents and
differential voltages whereas the far right matrix contains the
additive voltages and currents. Furthermore, the phase-angle
differences for each power element indicates an interaction
between the additive and differential quantities. Although (7)
can express the power transfer between the upper and lower
arms of the converter, employing it in a control strategy
to calculate the AC components additive current references
might be challenging as it would require iterative calculation
methods.

A simple approach would be to neglect the additive voltages
and to consider only the differential terms in the reference
calculation. However, as discussed in Section IV, this approx-
imation fails during internal singular voltage sag conditions.
In order to overcome such issue and to increase the operating
range of the converter, the proposed reference calculation
substitute U+−

sum by an equation containing the arm impedance
and the additive current, yielding

U+
sum = −2ZarmI+sum ρ+ φ+

sum (9a)

U−sum = −2ZarmI−sum ρ+ φ−sum (9b)

where ρ is the phase-angle of the arm impedance Zarm.
Replacing the additive voltages in (8) with the new expressions
from (9), the final equations for the vertical power transfer are
obtained and expressed in (10).

Comparing (8) and (10), it can be noted that the substitution
does not change the number of terms in the new power transfer
equations; thus, the degrees of freedom of the converter are

still being fully exploited. The three vertical power quantities(
P au→l, P

b
u→l, P

c
u→l

)
are adjusted based on four parameters(

I+sum, I
−
sum, φ

+
sum, φ

−
sum

)
, since the AC grid current and

the differential voltage magnitudes are given values that are
regulated independently of the internal powers. By choosing
that the reactive component of the positive additive current is
equal to zero (sin(φ+sum) = 0), (10) can be reduced toP au→lP bu→l
P acu→l


︸ ︷︷ ︸

P

=

M11 M12 M13

M21 M22 M23

M31 M32 M33


︸ ︷︷ ︸

M

I−sum cosφ−sum
I−sum sinφ−sum
I+sum cosφ+

sum


︸ ︷︷ ︸

IAC

−2U0DC
diff

IaDCsum

IbDCsum

IcDCsum


︸ ︷︷ ︸
IDC

(11)where,

M11 = Zarm

(
−I+s cos

(
ρ− φ+

s

)
− I−s cos

(
ρ− φ−s

))
−

− 2U+
diff cos

(
θ+diff

)
− 2U−diff cos

(
θ−diff

)
M12 = Zarm

(
I+s sin

(
ρ− φ+

s

)
+ I−s sin

(
ρ− φ−s

))
−

− 2U+
diff sin

(
θ+diff

)
− 2U−diff sin

(
θ−diff

)
M13 =M11

M21 = Zarm

(
I+s cos

(
ρ− φ+

s −
2π

3

)
− I−s cos

(
ρ− φ−s

))
−

− 2U+
diff cos

(
θ+diff +

2π

3

)
− 2U−diff cos

(
θ−diff

)
M22 = Zarm

(
−I+s cos

(
ρ− φ+

s −
π

6

)
+ I−s sin

(
ρ− φ−s

))
−

− 2U+
diff cos

(
θ+diff +

π

6

)
− 2U−diff sin

(
θ−diff

)
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Pau→l =


U+
diff

U−diff
I+s
I−s


T 

−2 cos (θ+diff − φ+sum) −2 cos (θ+diff − φ−sum)

−2 cos (θ−diff − φ+sum) −2 cos (θ−diff − φ−sum)

−Zarm cos(ρ+ φ+sum − φ+s ) −Zarm cos(ρ+ φ−sum − φ+s )

−Zarm cos(ρ+ φ+sum − φ−s ) −Zarm cos(ρ+ φ−sum − φ−s )


[
I+sum
I−sum

]
− 2U0DC

diff I
aDC
sum (10a)

P bu→l =


U+
diff

U−diff
I+s
I−s


T


−2 cos (θ+diff − φ+sum) −2 cos (θ+diff − φ−sum + 2π
3
)

−2 cos (θ−diff − φ+sum − 2π
3
) −2 cos (θ−diff − φ−sum)

−Zarm cos(ρ+ φ+sum − φ+s ) −Zarm cos(ρ+ φ−sum − φ+s + 2π
3
)

−Zarm cos(ρ+ φ+sum − φ−s − 2π
3
) −Zarm cos(ρ+ φ−sum − φ−s )


[
I+sum
I−sum

]
− 2U0DC

diff I
bDC
sum (10b)

P cu→l =


U+
diff

U−diff
I+s
I−s


T


−2 cos (θ+diff − φ+sum) −2 cos (θ+diff − φ−sum − 2π
3
)

−2 cos (θ−diff − φ+sum + 2π
3
) −2 cos (θ−diff − φ−sum)

−Zarm cos(ρ+ φ+sum − φ+s ) −Zarm cos(ρ+ φ−sum − φ+s − 2π
3
)

−Zarm cos(ρ+ φ+sum − φ−s + 2π
3
) −Zarm cos(ρ+ φ−sum − φ−s )


[
I+sum
I−sum

]
− 2U0DC

diff I
cDC
sum (10c)

M23 = Zarm

(
−I+s sin

(
ρ− φ+

s

)
− I−s cos

(
ρ− φ−s +

2π

3

))
−

− 2U−diff cos

(
θ−diff −

2π

3

)
− 2U+

diff cos
(
θ+diff

)

M31 = Zarm

(
−I+s cos

(
ρ− φ+

s +
2π

3

)
− I−s cos

(
ρ− φ−s

))
−

− 2U+
diff cos

(
θ+diff −

2π

3

)
− 2U−diff cos

(
θ−diff

)

M32 = Zarm

(
I+s cos

(
ρ− φ+

s +
π

6

)
+ I−s sin

(
ρ− φ−s

))
+

+ 2U+
diff cos

(
θ+diff −

π

6

)
− 2U−diff sin

(
θ−diff

)

M33 = Zarm

(
−I+s cos

(
ρ− φ+

s

)
− I−s cos

(
ρ− φ−s −

2π

3

))
−

− 2U−diff cos

(
θ−diff +

2π

3

)
− 2U+

diff cos
(
θ+diff

)
Based on the vertical power references provided by the

energy controllers, the AC additive current references can be
obtained from (11) asI−sum cosφ−sum
I−sum sinφ−sum
I+sum cosφ+

sum

 = 2U0DC
diff

IaDCsum

IbDCsum

IcDCsum

+
1

detM[
M22M33 −M23M32 M13M32 −M12M33 M12M23 −M13M22

M23M31 −M21M33 M11M33 −M13M31 M11M23 −M13M21

M21M32 −M22M31 M12M31 −M11M32 M11M22 −M12M21

]
P au→lP bu→l
P acu→l

 (12)

The determinant of matrix M , during an internal singular
voltage sag condition and considering that the AC grid current
consists only of positive-sequence component, is equal to

detM = −3Z3
armI

+3

s

√
3 cos(ρ− φ+

s )

2
− (13)

− 3U+
diff

√
3I+

2

s Z2
arm cos(2ρ− 2φ+

s + θ+diff )−

− 6I+s
√
3U+2

diffZarm cos(2θ+diff + ρ− φ+
s )−

−6I+s cos(ρ− φ+
s )
√
3U+2

diffZarm − 6I+
2

s cos(θ+diff )
√
3U+

diffZ
2
arm

As some TSOs demand the injection of reactive currents to
provide voltage support [28], [29] or active currents for fre-
quency support [30] to the faulted phases throughout voltage
sag events, the positive-sequence component of the AC grid
current I+s will generally be different than zero. Therefore,
the suggested reference calculation will not present any dis-
continuities during internal singular voltage sag conditions, as
it can be noted from (13). Finally, the main characteristics of
the different AC additive current reference calculation methods
are summarized in Table I.

TABLE I
METHODS SUMMARY

Characteristics Method
0 1 2 3 4

MMC equivalent impedance 5 5 3 3 3
No energy drifts among phase-legs 3 5 3 5 3
Used for any voltage sag condition 5 5 5 5 3

Additive voltage effects 5 5 5 5 3
Degrees of freedom are fully exploited 5 5 5 5 3

VI. CASE STUDY

In this section, time-domain simulations are carried out in
Matlab® Simulink to analyze the performance of the different
reference calculation methods during AC grid (Section VI-A)
and internal singular (Section VI-B) voltage sag conditions.
The simulations are performed considering an accelerated
model of the MMC [31] and employing the Nearest Level
Control (NLC) technique to calculate the number of active
sub-modules in each arm [32]. In addition, the converter is
considered to be operating under balanced AC grid conditions
when the fault occurs. Both fault events last three seconds
(starting at t = 2 s and restored at t = 5 s) 1 in order to verify
if the methods are able to keep the converter operational and
to highlight the differences among them. Table II details the
system parameters for the case studies.

A. AC grid singular voltage condition

This case study is performed to illustrate the different
dynamic behaviors that the converter will present according
to the AC additive current reference calculation method used
during an AC grid singular voltage condition type C [24].
Under such fault event, the positive- and negative-sequence
AC network voltage components have the same magnitude and

1Note that for real networks, the maximum allowed time for fault-ride
through would be equal to 250 ms [33].
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TABLE II
SYSTEM PARAMETERS

Parameter Symbol Value Units
Rated power S 1000 MVA
Rated power factor cosφ 0.95 (c) -
AC-side rated voltage Ug 325 kV
HVDC link voltage UDC ±320 kV
Phase reactor impedance Zs 0.005+j 0.18 pu
Arm reactor impedance Zarm 0.01+j 0.15 pu
Converter modules per arm Nk

u,larm
433 -

Sub-module capacitance CSM 9.5 mF

phase-angle. In Fig. 4, the MMC’s internal energy transfer
is shown for each phase throughout the simulation. It can
be observed that only Method 0 leads to the disconnection
of the converter which is in agreement with the theoretical
analysis (see Section IV). Furthermore, when the fault occurs,
a short sustained drift in the energy transfer between the
arms of phase a (Eau→l) for Methods 1 and 3 is noted. This
happens because the DC differential zero-sequence voltage
U0DC
diff controller saturates while attempting to eliminate the

energy difference between the phase-legs of the converter, as
shown in Fig. 5. Otherwise, the modulation strategy might
result in negative voltage levels to be applied into the SMs,
which is not possible considering that half-bridge topologies
are employed. If full-bridge SMs are considered, negative
voltages could be imposed improving the dynamic response
of the internal energy balancing.

Fig. 4. Energy difference between the MMC arms during AC grid voltage
singular condition.

Fig. 5. U0DC
diff levels during AC grid singular voltage sag for the different

reference calculation methods.

In Fig. 6, the time-domain waveforms for the upper and
lower power mismatches obtained employing (10) are shown.
The vertical power transfer regarding U0DC

diff is depicted in
green, whereas the average AC power mismatches between the

upper and lower arms is highlighted in red and the total value
is represented as the blue continuous line. Among the fault
occurrence and clearance transients highlighted in the figure,
the DC component contribution is more evident during the
fault event for phase a. Due to the characteristics of the fault
and the AC grid current controller design, the active power
injected in the faulted phases b and c is reduced, which is
reflected inside the converter as a reduction in the DC additive
circulating current levels for those phases. As a result, even
though the DC zero-sequence voltage component is common
for all the three phases, its effect is more significant for phase
a since its DC additive current level is maintained constant
during the fault event. Finally, it can be better noted during the
fault occurrence transient for phase a that the power provided
by U0DC

diff provides a negative component which reduces the
high oscillations caused by the AC power part in the total
vertical power transfer.

Fig. 6. Vertical power transfer during AC network singular voltage sag
condition.

B. Internal singular voltage condition

The objective of this case study is to show that the proposed
AC additive current reference calculation can avoid the discon-
tinuity of the system even during internal singular voltage sags.
The AC grid voltages for this fault are calculated based on the
expression given in (3), assuming an internal factor equals to
ZeqI

+
s = 0.24 87.75o pu and U+

g = 0.5 0o pu, resulting in
the positive- and negative-sequence AC differential voltages
to be equal to U+

diff = U−diff = 0.56 25.49o. The energy
transfer profiles for each phase are shown in Fig. 7 for all the
different reference calculation methods. It can be noted that,
although Method 0 fails for AC grid singular voltage sag, it
is capable of handling the internal singular voltage condition
along with Method 4.

Regarding the DC zero-sequence differential voltage,
Method 0 does not use it whereas all the other methods
present either short or long saturation periods, as it can be
seen in Fig. 8. Method 2 is saturated for the maximum
and minimum voltage levels, but it is not able to improve
the energy regulation, leading to the system disconnection.
Methods 1 and 3 result in a sustained saturation, but they also
fail to track the desired energy references. Although U0DC

diff is
also saturated using Method 4, it is quickly recovered.

In Fig. 9, the waveforms of the MMC quantities are pre-
sented showing its dynamic behavior during the fault event
and when it is cleared. It can be noted that the arms applied



8

Fig. 7. Energy difference between the MMC arms during internal singular
voltage sag condition.

Fig. 8. U0DC
diff levels during internal singular voltage sag for the different

methods.
voltages for phase b and c become equal for this type of fault.
In addition, all the voltages applied to the converter are higher
than zero (0 ≤ Uku,l), which is obtained since the U0DC

diff is
saturated. Finally, Method 4 was the only AC additive current
reference calculation approach that avoided the converter to
be tripped for both AC grid and internal singular voltage sag
condition.

C. Other singular fault scenarios
In this section, the proposed method is compared with

the other approaches for different types of internal and AC
network singular voltage sag conditions. The simulations con-
ducted focused on the upper and lower arms’ energy mismatch
throughout the operation of the converter in order to further
validate the proposed method. In Figs. 10 to 13 the results
obtained during AC grid singular voltage sags D to G [24]
are shown, whereas Figs. 14 to 17 depict similar voltage sags,
however reflected to the applied arm voltages of the converter
characterizing U+

diff = U−diff .
The results confirm the conclusions drawn for the type

C singular voltage sags. Regarding the AC grid singular
conditions, it can be noted that Method 0 result in eventual
disconnections of the converter (faults C to F), but it is able
to marginally maintain the system operating during a type
G fault. However, this method results in undesired sustained
energy drifts during the aforementioned fault. In terms of
Methods 1 and 3, during faults E and G, specifically, sustained
energy drifts are observed for phase a, while the remaining
phases present slow dynamics. Methods 2 and 4 have faster
dynamics, quickly compensating the energy deviations.

During internal singular voltage conditions, Methods 1 to
3 are unable to regulate the converter, resulting in eventual

(a) Transition from normal operation to fault event.

(b) Fault to normal.

Fig. 9. MMC waveforms during fault transients when Method 4 is employed.
a) Fault is applied to the system and, b) Fault event is cleared.

protection trips (between 1 to 1.5 s after the fault’s occurrence
for Methods 1 and 3 and within 100 ms for Method 2). On
the other hand, Methods 0 and 4 are capable of managing
the energy drifts caused by these faults. Finally, it should be
mentioned that for all types of fault conditions presented, the
proposed Method 4 was the only approach able to compensate
the occurrences allowing the converter to safely reach steady-
state conditions.

Fig. 10. Energy mismatches for AC network voltage singular type D.

D. Internal parameters deviations

In this case study, the performance of the proposed method
4 is analyzed considering parameters deviations in the arm
impedances of the MMC during an internal singular voltage
sag condition type D (see Section IV-A and [24]). For the
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Fig. 11. Energy mismatches for AC network voltage singular type E.

Fig. 12. Energy mismatches for AC network voltage singular type F.

Fig. 13. Energy mismatches for AC network voltage singular type G.

different internal parameter set-ups simulated, it is considered
that both reference calculations and design of the controller
gains are done based on the parameters given in Table II. The
effects of the arm impedance deviations are analyzed into two
different set-ups. In the first one, unbalanced errors within
±5% are considered, where in the second case the asymmetry
can achieve errors up to ±10%. The arm impedance values

Fig. 14. Energy mismatches for internal voltage singular type D.

Fig. 15. Energy mismatches for internal voltage singular type E.

Fig. 16. Energy mismatches for internal voltage singular type F.

for the different asymmetric cases are highlighted in Table
III. Finally, the analysis is performed through time-domain
simulations of the main quantities of the converter, as well as,
its internal energy.

In Figs. 18 and 19, the waveforms for the ±5% deviations
are depicted. It can be noted that the arm impedance errors
do not interfere with the proposed method, since it is still
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Fig. 17. Energy mismatches for internal voltage singular type G.

capable of maintaining the proper operation of the system even
during the fault. Now, the errors are increased to ±10% and
the results are shown in Figs. 20 and 21. It can be observed
that although the arm impedances present high asymmetric
values, leading 100Hz oscillations in the power in the AC-
side of the converter, such asymmetry does not affect the DC-
side. If the reference calculations and the controllers are not
properly designed, under such impedance condition, undesired
50Hz oscillations would appear in the DC-side current. Finally,
comparing the energy plots during both unbalance scenarios,
it is clear that the most severe case presents higher energy
deviation among the phase-legs of the converter, but such
deviation can be compensated during the steady-state and does
not affect the overall performance of the MMC.

TABLE III
ARM IMPEDANCE VALUES FOR CASE STUDY D

Deviation of ±5% Deviation of ±10%
Zau = Zarm − 0.05Zarm Zau = Zarm − 0.015Zarm
Zbu = Zarm − 0.01Zarm Zbu = Zarm − 0.1Zarm
Zcu = Zarm + 0.02Zarm Zcu = Zarm + 0.13Zarm
Zal = Zarm + 0.03Zarm Zal = Zarm + 0.05Zarm
Zbl = Zarm + 0.015Zarm Zbl = Zarm + 0.1Zarm
Zcl = Zarm + 0.025Zarm Zcl = Zarm − 0.08Zarm

where Zku,l is the upper and lower arms impedances, with
k ∈ {a, b, c}.
E. Distinctions among the reference calculation methods

In this section, the main differences among the presented
methods and the requirements for their implementation in a
real system are discussed. The fundamental disparities among
Methods 0 to 4 regard the consideration of the arms’ and
AC network’s impedances effects and the usage of U0DC

diff .
Method 0 neglects both impedances and it is the only one
that does not consider U0DC

diff in its vertical power equations.
For Method 1, complex mathematical techniques to remove
the degrees of freedom that do not contribute in the power
transfer are required but still it does not acknowledge the
impedances effects. Methods 2 and 3 extended the techniques
applied in Methods 0 and 1, respectively, by considering the
impedance impacts in the differential voltages. In Method 4,
the impedances contributions are respected not only for the
differential voltages but also for the additive ones.

(a) Transition from normal operation to fault event.

(b) Fault to normal.

Fig. 18. MMC waveforms during fault an interior singular voltage sag type
D considering unbalanced arm impedances conditions within ±5% error . a)
Fault is applied to the system and, b) Fault event is cleared.

Fig. 19. Energy mismatches considering arm impedance unbalances within
±5%.

From an implementational perspective, the previous meth-
ods present contrasting degrees of complexity. Regarding hard-
ware requirements (e.g. sensors for measurements), all meth-
ods share similar control structures and would require similar
measurements. For the methods regulating the DC differential
zero-sequence voltage, no extra sensors are needed, since
such quantity is calculated based on existing measurements.
Considering the computational aspect, the implementation of
Method 0 is the easiest one among the presented approaches
as the most complex mathematical operation required is the
inversion of a 3x3 matrix. Method 2 presents a slightly higher
complexity level compared to Method 0 due to two main
factors; 1- the usage of the differential quantities and the
DC additive currents (the magnitude and phase-angle of the
differential voltages, as well as, the DC current magnitudes
can be obtained through basic operations and digital filters
performed internally by the micro-controller), 2- the regulation
of U0DC

diff . Methods 1 and 3, although use different voltages
in the calculations (AC grid and the AC differential voltages,
respectively), they both require to compute the Moore-Penrose
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(a) Transition from normal operation to fault event.

(b) Fault to normal.

Fig. 20. MMC waveforms during fault an interior singular voltage sag type
D considering unbalanced arm impedances conditions within ±10% error .
a) Fault is applied to the system and, b) Fault event is cleared.

Fig. 21. Energy mismatches considering arm impedance unbalances within
±10%.

pseudoinverse in order to obtain their current references. Such
complex mathematical operation is not required by Method 4.
In this Method, the same procedures employed in Method 2
to obtain the differential voltages and DC additive currents are
used only requiring an extra operation in the micro-processor
to obtain the magnitudes and phase-angles of the AC additive
currents. By having these values, the last operation required
by the proposed Method 4 would be to solve equation (12).

In Table IV, the different measurements and the mathemat-
ical operations required by each method are highlighted. In
summary, Method 0 is the most straight-forward and simplest
to implement among all. Method 2 and 4 does not significantly
increase the computational burden, whereas Methods 1 and 3
are the ones which require the highest computational burden,
due to the Moore-Penrose pseudoinverse calculation. Finally,
only Method 4 was capable of handling all the different fault
case scenarios analyzed.

TABLE IV
DISTINCTION AMONG METHODS

Additional operation and control Method
0 1 2 3 4

Control of U0DC
diff 5 3 3 3 3

Magnitude and phase-angle
of u+−

diff
5 5 3 3 3

Calculation of the Moore-Penrose
pseudo matrix 5 3 5 3 5

Extra matrix to remove
the AC additive current component 5 3 5 3 5

Arm impedance value 5 5 5 5 3

Magnitude and phase-angle of u+−
g 3 3 5 5 5

Inversion and solution
of 3x3 matrix 3 3 3 3 3

VII. CONCLUSIONS

An improved inner current reference calculation method for
MMCs operating under normal and unbalanced network con-
ditions has been presented. Particularly, the MMC operation
during AC grid or internal singular voltage sag conditions.
Such fault events are quite challenging to handle as they might
lead to the eventual disconnection of the system by trying to
impose high inner current references. The reference calculation
has been formulated on the abc additive and differential
reference frames and it enables to calculate the arms’ energy
transfer considering all the degrees of freedom of the MMC;
thus, the effects of the MMC’s and AC side impedances are
regarded. This is achieved through a mathematical substitution
which does not require any iterative calculation method or
optimization, whereby the AC additive voltage is replaced by
the voltage drop in arms’ impedance caused by the additive
currents. Simulation results validate that the proposed refer-
ence calculation technique is able to provide the adequate
converter references and to maintain the converter operating
during both AC grid and internal singular voltage conditions.
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