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Abstract: This work presents a parametric-solver algorithm for estimating atmospheric stability
and friction velocity from floating Doppler wind lidar (FDWL) observations close to the mast of
IJmuiden in the North Sea. The focus of the study was two-fold: (i) to examine the sensitivity
of the computational algorithm to the retrieved variables and derived stability classes (the latter
through confusion-matrix theory), and (ii) to present data screening procedures for FDWLs and
fixed reference instrumentation. The performance of the stability estimation algorithm was assessed
with reference to wind speed and temperature observations from the mast. A fixed-to-mast Doppler
wind lidar (DWL) was also available, which provides a reference for wind-speed observations free
from sea-motion perturbations. When comparing FDWL- and mast-derived mean wind speeds, the
obtained determination coefficient was as high as that of the fixed-to-mast DWL against the mast
(ρ2 = 0.996) with a root mean square error (RMSE) of 0.25 m/s. From the 82-day measurement
campaign at IJmuiden (10,833 10 min records), the parametric algorithm showed that the atmosphere
was neutral (31% of the cases), stable (28%), or near-neutral stable (19%) during most of the campaign.
These figures satisfactorily agree with values estimated from the mast measurements (31%, 27%, and
19%, respectively).

Keywords: atmospheric stability; lidar; Monin-Obukhov Similarity Theory; offshore; wind energy

1. Introduction

Over the past decades, wind energy (WE) has achieved an important position in the
global energy market due to its technical improvements and relevant advantages in terms
of environmental impact [1,2]. In particular, interest has been rising in offshore WE due
to the strong homogeneous winds over the ocean [3]. Nowadays, offshore WE is one of
the core technologies of the European roadmap to becoming carbon neutral [4]. However,
offshore wind farms still have very high production and deployment costs compared to
onshore facilities [5].

In order to reach the European goal of 150 GW of installed offshore WE capacity by
2030, efforts toward commercial competitiveness are being dedicated by the WE industry
and research institutions [6]. Traditionally, the wind resource of potential wind farm areas
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has been characterized using meteorological masts planted on the seabed [7]. In some cases,
the instrumentation on the masts can be used to assess the state of the atmosphere together
with the wind resources. However, they also have very high production and deployment
costs and cannot be re-placed once installed [8].

In the past few years, Doppler wind lidars (DWLs) have been introduced as an
alternative for masts due to their flexibility and cost-effectiveness [9]. When deployed
offshore atop buoys, floating DWLs (FDWLs) have a series of advantages over metmasts:
an offshore metmast can easily cost millions of Euros and requires a long planning and
construction period. FDWLs costs are in the hundreds of thousand Euro range and are
not as demanding regarding the soil, environmental constraints, and construction time
frames [10,11]. In addition, a FDWL can easily be redeployed to other locations and thus
cover larger areas [12]. In the past few years, commercially available FDWLs have widely
been deployed around the world and the reliability of their data has been proven, either as
standalone instruments or collocated with masts to measure atmospheric-and sea-related
parameters [13].

On the other hand, FDWLs suffer the influence of wave motion, which increases
the variances of the reconstructed wind by the lidar [14–16]. However, within averaging
periods typical of atmospheric measurements, i.e., 10 or 30 min, the error due to wave
motion on the mean reconstructed wind vector are negligible (as they cancel out within
such periods), as shown by multiple validation campaigns [17–21].

FDWLs cannot generally assess the same number of atmospheric parameters as masts.
Masts can host multiple sensors to assess several different atmospheric parameters, such
as, temperature, pressure, humidity and turbulent fluxes, whereas FDWLs are generally
limited to observe wind speed and wind direction [22]. Several authors have reported
the influence of atmospheric stability on different aspects of the wind power generation,
e.g., turbine power performance, wind shear, and wakes [23–25]. Ghaisas et al. [26] com-
pared different power laws to retrieve the wind-shear coefficient in order to extrapolate
the wind speed to the turbine hub height. They concluded that when atmospheric stability
information was included when extrapolating the wind speed, the results substantially
improved, yielding to a predicted hub-height wind speed at worst biased by 5%.

Alblas et al. [27] studied two offshore wind farms, Egmond aan Zee (OWEZ) and North
Hoyle, and found that unstable conditions led to smaller wake losses, thereby yielding
higher power output than near-neutral conditions. Fatigue loads over the wind turbine
structure are often estimated by considering turbulence intensity and wind shear. However,
many studies have reported a dependency of fatigue loads on atmospheric stability, which
can be used in order to improve the load calculation accuracy [28–30].

The Obukhov length, L, a key parameter within the Monin–Obukhov similarity theory
(MOST, [31]) is nowadays employed in wind energy to predict the vertical behavior of
wind and to classify periods in different atmospheric stabilities [23,32–34]. Computation of
the Obukhov length requires the measurement of momentum and heat fluxes, which can
be directly calculated from sonic anemometers.

There are different suggestions to estimate the Obukhov length in situations in which
the experimental setup is limited. Beljaars et al. [35] proposed a method to retrieve the
Obukhov length based on MOST relationships by using the roughness length, the wind
speed at one reference height, and the difference between air and sea-level temperatures.
Their method was used, for instance, by Motta et al. [36], who studied the influence of
atmospheric stability on the power output of a potential wind farm. A similar approach,
which relies on temperature and wind measurements at different levels, was extensively
described by Holtslag et al. [37]. Basu [38] proposed an optimization method to estimate
the Obukhov length (without temperature measurements) from wind profile measurements
at three heights. The method consists of Obukhov length optimization towards MOST.
The optimization is achieved by a root finding algorithm accounting for the monotonic
behavior of the vertical wind speed ratio with respect to the Obukhov length.
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In the present work, we constructed a parametric solver algorithm along with a basic
data screening procedure that, relying on FDWL measurements only and MOST, enables
the estimation of the Obukhov length and friction velocity. Additionally, a sensitivity study
was conducted for the retrieved variables and estimated atmospheric stability classes. In
contrast to the approaches by Holtslag et al. [37] and Beljaars et al. [35], the parametric
algorithm assesses the atmospheric stability without needing temperature inputs. Comple-
mentary to the method proposed by Basu [38], the proposed algorithm can be extended to
an unlimited number of measurement heights.

The work is structured as follows: Section 2 describes the 3-month measurement
campaign carried out at IJmuiden as well as the instrumental setup. Section 3.1 intro-
duces the notation used in this work, Section 3.2 revisits MOST and atmospheric stability
classifications. Section 3.3 describes the parametric solver algorithm. Sections 3.4 and 3.5
outline the derivation of the Obukhov length and friction velocity. Section 3.6 describes the
data screening methods used to enhance measurement precision and data quality for both
FDWL and the mast. Section 4 provides a discussion of the results and, finally, Section 5
provides our concluding remarks.

2. Materials

The validation campaign of the EOLOSTM test FDWL at the IJmuiden test site (52.848 N,
3.436 E) in the North Sea was run from April to June 2015. The aim of the measurement
campaign was to validate the EOLOSTM FDWL precommercial buoy against the reference
IJmuiden mast. Figure 1 shows the instrumental set-up of the campaign, depicting the
instruments location and measurement heights.

Figure 1. Instrument set-up at the IJmuiden test site. The FDWL is in the foreground and the metmast
is in the background. Labels: S, MetekTM sonic anemometer; C, ThiesTM cup anemometer; DWL,
fixed-to-mast DWL; T, temperature sensor; P, pressure sensor; H, humidity sensor; WB, TRIAXYSTM

wave buoy.

The IJmuiden metmast was installed 85 km far from the coast of The Netherlands,
where the water depth is about 28 meters. Its top was 92 m above the Lowest Astronomical
Tide (LAT), and its structure consisted of three booms pointing 46.5◦, 166.5◦, and 286.5◦,
clockwise from cardinal north. Hereafter, all height values will be assumed as height above
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LAT. Three ThiesTM First Class Advanced cup anemometers were installed at 27 m and
58.5 m in height (one on each boom), as well as three MetekTM USA-1 sonic anemometers
at 85 m. Wind direction observations were recorded at 26.2 m, 57.7 m and 87 m by ThiesTM

First Class windvanes (one on each boom). Horizontal wind speed (HWS) and direction at
ten different measurement heights (from 90 to 315 m) were measured by a ZephIRTM300
DWL installed on a platform at 20.88 m in height (hereafter called the mast-DWL). This
lidar measured 50 Line of Sights (LoSs) at equally spaced azimuth angles (7.2◦ azimuth step
between LoSs) at a sampling rate of 50 Hz along a conical scan with elevation of 30◦ [39,40].
Two VaisalaTM HMP155D were installed at 21 and 90 m, which provided temperature and
humidity observations every 0.25 s. Air pressure measurements were recorded at 21 m
and 90 m by two VaisalaTM PTB210 every 0.25 s as well. A TRIAXYSTM wave-and-current
buoy located near the metmast provided measurements of average wave height, wave
period, current direction, and water temperature. The wave-buoy-derived observations
were stored as hourly averaged measurements. Relevant IJmuiden site instruments used
here are listed in Table 1.

Table 1. Main specifications of the instruments from the IJmuiden test site. Detailed information
about the sensors arrangement and specification can be found in [40].

Sensor Parameter Unit Sampling Rate Height (1) Orientation

3 ×Metek USA-1 Sonic
Anemometer Wind speed m/s 4 Hz 85 m

46.5◦, 166.5◦ and 286.5◦6 × Thies First Class
Advanced Anemometer Wind Speed m/s 4 Hz 27 and 58.5 m

9 × First Class Wind Vane Wind Direction deg 4 Hz 26.2, 57.7 and 87 m
2 × Vaisala PTB210 Air pressure hPa 4 Hz 21 and 90 m N (21 m) and N-E (90 m)

2 × Vaisala HMP155D Air temperature
◦C 4 Hz 21 and 90 m

N (21 m) and N-W
(90 m)

Relative humidity % 4 Hz
TRYAXIS wave buoy Water temperature ◦C 60 min sea level

2 × ZephIR 300 Wind speed m/s 1 Hz (2)

90–315 m, every 25 m
(mast-DWL) S-W

(mast-DWL and FDWL) 25, 38, 56 and 83 m
(FDWL) 200-m from the mast

Notes: (1) Measurement heights above the LAT. (2) Averaging rate of the conical scanning performed at each height.
(N, N-E, N-W and S-W) stand for North, North-East, North-West, and South-West, respectively.

The EOLOSTM lidar buoy is a pre-commercial device specially designed to host a
vertically pointed ZephIRTM300 lidar. This 3.77-m wide, 3-ton device was conceived to
flexibly and reliably assess the wind resources in order to meet wind-energy industry
requirements. It hosts multiple sensors to measure the buoy’s attitude as well as the main
atmospheric parameters. The FDWL was configured to measure the wind vector at 25, 56,
and 83 m to match the anemometers’ heights of the mast. Additionally, the FDWL recorded
measurements at a height of 38 m for calibration purposes.

3. Methods
3.1. Wind Notation Conventions

Wind measurements from the instruments above provided the three instantaneous
wind vector components (u, v, and w) corresponding to the components in the horizontal
x and y, and vertical z directions, respectively. Fluctuations u′, v′, and w′ are defined as
the difference between the actual instantaneous velocity components and their respective
mean velocities, e.g., u′ = u −U, where U is the mean value of u. Although we often
use a Cartesian coordinate system so that the x, y, and z axes point north, east, and south,
here, we align x along the wind direction. We skip usage of U to denote the mean wind
component in order to avoid confusion with the vector notation

−→
U , which is used to denote
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a specific set of HWS measurements in subsequent sections. We retain, however, usage of
the over-bar, (.), to denote mean over time (10 min) for all other variables.

3.2. Surface-Layer theory

The vertical wind gradient for a neutral, homogeneous, and stationary flow can
expressed as [41]

∂U
∂z

=
u∗
l

, (1)

where u∗ is the friction velocity and l is the mixing length [42]. In the surface layer, which
corresponds to the lowest 5–10% of the boundary layer, the magnitudes of stress and
turbulent fluxes generally vary by less than 10% with height [43]. Thus, within the surface
layer, two assumptions are commonly made: (i) the friction velocity variation with height
is negligible, and (ii) the mixing length increases with height as l(z) = κz [44], where
κ ≈ 0.4 is the von Kármán constant. The logarithmic wind profile for neutral atmospheric
conditions is the integral of Equation (1):

U(z) =
u∗
k

ln
(

z
z0

)
, (2)

where z0 is the roughness length, which is the height at which the mean wind speed
becomes zero. Over sea, the roughness length is commonly expressed using the Charnock’s
relation,

z0 = αc
u2
∗

g
, (3)

where g = 9.81 m/s2 is the gravitational acceleration and αc is the Charnock’s parameter,
αc ≈ 0.012 [45].

According to MOST, the influence of atmospheric stability over the wind speed gradi-
ent within the surface layer is expressed by the dimensionless wind shear, φm, as

∂U
∂z

= φm
u∗
κz

. (4)

The dimensionless wind shear takes different functional forms depending on the
atmospheric stability conditions. It is usually described by the experiment-based Businger–
Dyer functions ([46,47]):

φm =


1 + β z

L , for z
L > 0(stable)

1, for z
L = 0(neutral)(

1− γ z
L
)− 1

4 , for z
L < 0(unstable)

, (5)

where L is the Obukhov length, z
L is the dimensionless stability parameter, and β = 6.0

and γ = 19.3 are empirical constants [48], later validated by Holtstag et al. [33] for the
IJmuiden site.

Thus, under non-neutral conditions the diabatic wind profile can be expressed as

U(z) =
u∗
κ

[
ln
(

z
z0

)
−Ψm

( z
L

)]
, (6)

where Ψm
( z

L
)

is the stability correction function [32,43]

Ψm

( z
L

)
=


−β z

L
z
L > 0(stable)

0 z
L = 0(neutral)

2 ln( 1+x
2 ) + ln( 1+x2

2 )− 2 arctan(x) + π
2

z
L < 0(unstable)

, (7)



Remote Sens. 2022, 14, 1394 6 of 24

where x =
[
1− γz

L
]1/4. Although the Businger–Dyer functions were empirically derived

from data collected over land, their applicability has been successfully tested and validated
for the estimation of the offshore wind profile [33,49].

The Obukhov length can be used to classify atmospheric stability conditions, classified
into stable (L > 0), neutral (L → ±∞), or unstable (L < 0). With a view to Section 4 two
atmospheric stability classifications are listed in Tables 2 and 3 according to the definition
classes for L of van Wijk et al. [50] and Gryning et al. [51].

The behavior of the stability correction Ψm
( z

L
)

as a function of the Obukhov length L
is depicted in Figure 2.

Obukhov length, L [m]

m
(z

/L
) 

[m
/s

]

n nnu u vu vs s nns n

Figure 2. Stability correction function Ψm(
z
L ) as a function of Obukhov’s length for z = 25 m (thick

solid line) and z = 83 m (dashed line). The vertical grey shaded area delimits the interval from
L = −50 to L = 10 m. Vertical lines delimit Gryning et al. [51] stability classification thresholds per
Table 3. Labels: vu, very unstable; u, unstable; nnu, near-neutral unstable; n, neutral; nns, near-neutral
stable; s, stable; and vs, very stable.

Table 2. Van Wijk et al.’s stability classes based on the Obukhov length, L. Adapted from [50].

Atmospheric Stability Obukhov Length Range (m)

Very Stable—vs 0 < L ≤ 200
Stable—s 200 < L < 1000

Neutral—n |L| ≥ 1000
Unstable—u −1000 < L < −200

Very Unstable—vu −200 ≤ L < 0

Table 3. Gryning et al.’s stability classes based on the Obukhov length, L. Adapted from [51].

Atmospheric Stability Obukhov Length Range (m)

Very Stable—vs 10 ≤ L < 50
Stable—s 50 ≤ L < 200

Near-Neutral Stable—nns 200 ≤ L < 500
Neutral—n |L| ≥ 500

Near-Neutral Unstable—nnu −500 < L ≤ −200
Unstable—u −200 < L ≤ −100

Very Unstable—vu −100 < L ≤ −50
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Finally, we introduce the wind-speed ratio between HWSs at two heights, z1 and z2,
z2 > z1, is therefore,

WSR(z1, z2, L) =
U(z2)

U(z1)
=

ln
(

z2
z0

)
−Ψm

( z2
L
)

ln
(

z1
z0

)
−Ψm

( z1
L
) . (8)

The wind-speed ratio is a proxy of wind shear that will be used to analyze the depen-
dence of wind shear on the dimensionless stability, z

L , further.

3.3. Parametric Wind Model Estimation

We estimate atmospheric stability based on FDWL HWS profiles measured at a discrete
number of heights. We propose solving Equations (6) and (7) for model variables L, u∗,
and z0. The algorithm’s sensitivity to these three variables and consequent dimensionality
reduction of the problem (two-variable problem, L and u∗) is provided in Section 4.2.

The optimization problem can be formulated as

(L , u∗ , z0) = argmin
L,u∗ ,z0

||~UFDWL − ~U(z, L , u∗ , z0)||2, (9)

where the function ~U(z, L , u∗ , z0) is the parametric wind profile model formulated by
Equation (6) and piece-wise by Equation (7). Below, functions are assimilated into vectors
and treated indistinctly. A constrained nonlinear least squares (NLSQ) method is used to
solve the model parameters, L, u∗, and z0, minimizing the error norm between the model
vector, ~U(z), and the FDWL-measurement vector, ~UFDWL.

The diabatic correction function Ψm(
z
L ) (Equation (7), Figure 2) becomes ill-posed for

Obukhov lengths close to zero (L = 0) and exhibits a nearly flat behavior for large values of
the Obukhov length (|L| → ∞). Additionally, Ψm(

z
L ) is a piece-wise function. To facilitate

NLSQ convergence, we define upper and lower search bounds for each of the parameters
to be optimized as

• L ∈ [−2000,−1] ∪ [1, 2000] m,
• u∗ ∈ [0, 1.4] m/s, and
• z0 ∈ [10−5, 10−2] m.

The limiting bounds for the roughness length z0 in offshore environments follow [43,52].
The friction velocity bounds are in agreement with those found in different experimental
campaigns in the literature [53,54] and represent roughly a factor 1.5 over the range of
practical friction velocities retrieved by the sonic anemometers (Section 3.5, Equation (14)).
The search bounds for the Obukhov length, L, are, e.g., a factor two and four over the
practical neutral stability thresholds given by Van Wijk et al. [50] (Table 2) and Gryning
et al. [51] (Table 3), respectively. Larger values do not tend to substantially improve the
algorithm search performance (see Section 4.2).

Optimization starting vector. Two start points, one positive, L+ ∈ [1, 2000], and one
negative, L− ∈ [−2000,−1], are set to L+ = 500 m and L− = −500 m, respectively, as
initial guesses for the Obukhov length. This allows us to avoid the asymptotic discontinuity
of Ψm(

z
L ) at L = 0 (Figure 2). The initial guesses for the friction velocity, u∗, and roughness

length, z0, are set to 0.7 m/s and 5× 10−3 m, respectively, which are the mean values of
these variables in the above search ranges. From these two starting vectors, (L+, u∗, z0)
and (L−, u∗, z0), a positive and a negative search is started by the NLSQ algorithm and two
candidate solution vectors are obtained. The vector with the smallest error norm is chosen
as the solution.

3.4. Reference Measurements: Atmospheric Stability

Reference metmast-derived Obukhov length and friction velocity are needed in order
to assess the performance of the proposed algorithm in Section 3.3 above. In the present and
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following subsection (Section 3.5), different methods to estimate such reference parameters
are presented.

Conventionally, the Obukhov length is directly computed from turbulence fluxes
measured (from wind and temperature observations at similar heights), e.g., with a sonic
anemometer [43]. However, the sonic anemometer at 85 m available only recorded veloc-
ity observations. Alternatively, the method by Grachev and Fairall [55] to estimate the
Obukhov length, L, provides a way out when air and sea temperature observations are
available, as is the case. They found empirical dependency between the bulk-Richardson
number, Ri, and the dimensionless stability parameter. Their method has been used in
recent studies [33,56].

The bulk Richardson number is an approximation of the gradient Richardson number
in which actual local gradients in an atmospheric layer are approximately computed by
measurements at a couple (or a series of) discrete heights. The bulk Richardson number is
defined as [43]

Ri =
g∆θv∆z

θvU2
, z ∈ [zbottom, ztop], (10)

where ∆θv = θv(ztop)− θv(zbottom) is the difference between the mean virtual potential
temperature at the top layer height, ztop, and bottom layer height, zbottom and ∆z = ztop −
zbottom. Here, ztop = 21 m above LAT and zbottom = 0 m above LAT. θv is the mean potential
temperature in the layer and U is the mean wind observed at ztop (at this point we note
that U is formally defined as ∆U = U(ztop)−U(zbottom) = U(ztop) on account of the fact
that U(zbottom) = 0). In practice, U is the 10 min averaged wind observed at 27 m.

The potential temperature is estimated from the expression [43,57]

θv(z) = T(z)
[

P0

P(z)

]R/Cp

[1 + 0.61r(z)], (11)

where T (K) is the temperature, P0 = 1000 hPa is the reference pressure, P is the air pressure,
R ≈ 287 J/(K·kg) is the gas constant of air, Cp ≈ 1004 J/(K·kg) is the specific heat capacity
at a constant pressure for air, and r is the mixing ratio (unsaturated air).

In this study, we computed the mean potential temperature θv at 21 m from the mast
temperature, pressure, and humidity data at 21 m. θv at sea-level was computed from the
wave-buoy-measured 60 min mean water temperature [58], which was interpolated down
to 10 min resolution, according to wind-energy standards [11]. The pressure and relative
humidity at sea level were calculated by extrapolating the mast pressure and humidity
vertical profiles from the sensors at 21 m and 90 m (Figure 1) down to 0 m. Pressure and
relative humidity at 0 m as well as water-temperature at 10 min resolution were computed
via shape-preserving piecewise cubic interpolation [59,60].

Subsequent to the calculation of Ri, the dimensionless stability parameter ζ = z/L is
computed as

ζ =

{
10Ri Ri ≥ 0

10Ri
1−5Ri 0 < Ri < 0.2

. (12)

The constants 10 and 5 above are empirical values [55]. The latter implies a critical
stable Ri of 0.2 so the theory has a limitation when the conditions are very stable. Besides,
when using the bulk Richarson number approximation, the thicker the layer, the more likely
to smooth out large gradients in the layer and, therefore, to misestimate the occurrence of
turbulence [43].

When we derive L from Equation (12) we refer to it as LRi,

LRi(z′) =
z′

ζ
, (13)
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where z′ is a reference height ensuring the validity of the bulk Richardson model
(Equation (10)) above in the layer [zbottom, ztop]. In the standard methodology ([55]), z′

is taken as the sonic-anemometer observational height (11 m). However, in the case of
IJmuiden, temperature and particularly the wind-speed observational heights are relatively
high, 21 and 27 m, respectively. Although a rough estimation of the reference height can
simply be taken as the mean height between the air observational height and sea level [33],
in this case, z′ ≈ (ztop + zbottom)/2 = 10.5 m, accurate estimation of the reference height is
more involved.

In order to estimate the most accurate meaningful reference height, z′, the following
procedure was carried out: different estimations of LRi(z′) were retrieved from
Equation (13) by varying z′ from the layer top observational height (ztop = 21 m) to
the rough reference height (10.5 m) in steps of 0.5 m, i.e., z′ = 21, 20.5, . . . , 10.5 m. As
a result, we obtained 22 different sets of LRi(z′) values, each one corresponding to a z′.
Next, the MOST model wind-speed ratio of Equation (8) was computed for all sets of the
LRi(z′) as well as the coefficient of determination, ρ2, between the measured and modeled
wind-speed ratios. The z′ (equivalently, LRi(z′)) with the highest ρ2 yielded the sought-after
reference height. Thereby, z′ = 15.5 m was found to be the reference height ensuring the
highest ρ2 after the outlier screenings applied over LRi(z′) and the measured wind-speed
ratio (see the outlier screening and the results in Section 4.3).

3.5. Reference Measurements: Friction Velocity

The friction velocity is a form by which a shear stress may be rewritten in units of
velocity such as the velocity that relates wind shear between layers of flow, e.g., for neutral
condition u∗ = κ(U(z2)−U(z1))/ln(z2/z1) (Equation (2)). Two reference methods are
considered for comparison:

The first solves Equation (6) for u∗ given the Obukhov length LRi estimated from the
bulk Richardson number using Equation (13) and mast HWS measurements at 27 m. The
roughness length z0 is computed from Equation (3). This method can be viewed as "mast"
1D (u∗1−D ).

The second uses directly the measured turbulent fluxes [43],

u∗sonic =
(

u′w′
2
+ v′w′

2
)0.25

. (14)

For these computations, we used the sonic measurements at 85 m.

3.6. Data Screening

To begin with, FDWL, mast-sensors and mast-DWL data were averaged to a common
uniform time resolution of 10 min, which is according to WE standards [11]. Accordingly,
the wave-buoy-derived water temperature was resampled from 60 to 10 min as already
mentioned in Section 3.4.

Regarding anemometers’ data, the screening procedure relied on selection of the true
wind direction (TWD) [40]. To do this, WD and HWS measurements from all the three
anemometers at each of the three metmast measurement heights (27, 58.5 and 85 m) were
checked. Figure 3 sketches a top-view of mast depicting the positions of the wind vanes and
anemometers at each height. First, the middle WD (MWD) was computed as the median of
the WD measurements by the three anemometers. Then, the TWD was derived following
these criteria (see Figure 3a):

• If the MWD lay on the red crown, the TWD was computed as the mean WD between
vanes HxxB240 and HxxB120,

• If (. . . ) on the blue crown, (. . . ) between vanes HxxB0 and HxxB120, and
• If (. . . ) on the green crown, (. . . ) between vanes HxxB240 and HxxB0.

Finally, the true wind speed was chosen as the one retrieved from the anemometer
over which the TWD was within a confidence angle range (the wake-free range) of 90°± 30°
(Figure 3b) in relation its boom orientation.
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Concerning the lidar instruments, HWS measurements lower than 2 m/s or higher
than 100 m/s were rejected on account of the ZephIR-300 manufacturer’s specifications [22].
Regarding the FDWL, it is well-known that motion-induced effects on the retrieved wind
vector become prominent at a 1-s temporal resolution but are negligible at the 10 min level.
For the latter case, motion effects increase fluctuations on the wind speed [21,39,61]. At the
10 min level, it was shown [62,63] that the spatial variation (SV) parameter (see below) can
be used as a threshold to filter data as it represents a trade-off between key performance
indicator (KPI) improvements and data availability.

Figure 3. Top view of the mast at IJmuiden. (a) Wind vanes and anemometers on each boom (B0,
B120, and B240) at the three measurement heights, Hxx (xx = 27, 58.5 and 85 m). Angles indicate
boom orientation. (Red, green, and blue) Color-coded circular crown sectors represent the wake-free
angle ranges for each anemometer (90°± 30°, panel (b)) in relation to boom orientation. Adapted
from [40].

FDWL measurement outliers were identified by plotting the HWS differences between
the metmast and FDWL measurements as a function of different FDWL internal parameters,
namely, the backscatter, bearing (compass), points in fit out of the 50 radial velocities within
a full scan (see below), SV, precipitation, and visibility. For each internal parameter, we
considered as outliers the samples which yielded differences higher than 2 m/s in relation
to metmast reference. The same analysis was conducted with the mast-DWL, which served
as the reference lidar.

Backscatter refers to the intensity of the Doppler lidar echo. Bearing refers to the
lidar pointing direction with respect to the Earth’s magnetic North. Points in fit and
SV are parameters related to the Velocity Azimuth Display (VAD) algorithm used by
the lidar to retrieve the wind vector under the assumption of uniform wind. The SV is
an indicator of the goodness of the VAD fitting of the radial velocities within the lidar
scanning circle used to retrieve the wind vector at a given height. Therefore, the SV can be
understood as a turbulence parameter describing the variation degree of the radial wind
speeds within the scan [64]. High SV values are associated to measurements for which
the hypothesis of uniform wind during the lidar scan is no longer valid [39]. This leads to
outlier measurements, which must be removed.

Numerical analysis showed that the largest differences in HWS between the mast
anemometer and FDWL measurements were attributable to bearing and SV of the FDWL.
Therefore, we applied the following outlier rejection criteria:

(i) HWS < 2 m/s or HWS > 70 m/s,
(ii) bearing = 0◦ (FDWL compass issue, see Section 4.1), and



Remote Sens. 2022, 14, 1394 11 of 24

(iii) 95th percentile spatial-variation threshold.

4. Results and Discussion
4.1. Data Screening and Quality Assurance

Now, we discuss our results for outlier criteria (ii) and (iii) which were introduced in
Section 3.6 above. Figure 4a shows the HWS difference between the cup anemometer and
the FDWL measurements at 83 m as a function of the FWDL bearing. Similar results were
found for the two other FDWL heights, 25 and 56 m (not shown). Figure 4b shows a similar
plot but for the mast-DWL. As expected, the FWDL bearing covers the full range of motion,
whereas the mast-DWL bearing remains mostly fixed at ≈ 3◦. The largest HWS differences
occur for bearings equal to zero, which lacks physical consistency and might show an issue
in the data acquisition system.

(a) (b)

Figure 4. Lidar data screening: bearing. (a) HWS differences between the cup anemometer and the
FDWL measurements as a function of FDWL bearing at a 83 m height. (b) Same as in panel (a) but
compared to the fixed DWL on the mast. Black and grey dots indicate valid and outlier samples,
respectively (Section 3.6). Dashed red line indicates the zero-bias baseline.

Figure 5 shows the histogram of SV from the FDWL at 25 m and the HWS differences
as a function of the SV between the 27-m cup anemometers and the FDWL, respectively. In
Figure 5a, the border line between the white and grey shades delimits the 95th percentile of
the one-tailed spatial-variation distribution. This percentile corresponds to a SV threshold,
SV= 0.055 and SV≈ 0.055− 0.065 for the other measurement heights of the lidar (data
not show). For the mast-DWL, the 95th percentile corresponds to the threshold SV≈ 0.07
(data not shown). The SV thresholds used here for 10 min data were found to be more
conservative than those used in previous studies (SV≈ 0.1) [62,63], in which the FDWL
measurements were compared against metmast values for quality assurance (QA).

The appropriateness of the SV filtering criterion is re-encountered in Figure 5b, which
shows that HWS differences between the FDWL and the metmast measurements started
to deviate from the ideal 0-m/s bias (dashed red line) for SVs above approximately 0.05,
which justifies our choice for criterion (iii) in Section 3.6.

Regarding the anemometers, Figure 6 shows the HWS differences between the cup
anemometers and the lidars as a function of direction. The reduction on the scattering of
data after application of the TWD screening criterion is well noticed (black versus grey
dots). Quantitatively, after outlier rejection, peak HWS differences were below ±1 m/s at
all heights, which shows that the mast effects were effectively removed.
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SVFDWL (25 m)

co
un

t

(a) (b)

Figure 5. Lidar data screening: spatial variation. (a) SV histogram for the FDWL at a 25 m height
(refer to Figure 1). Grey shading indicates the upper tail of the 5% area corresponding to the rejected
outliers in the SV distribution (95th to-100th percentiles). (b) Same format as in Figure 4 but using SV
as the dependent variable. The dashed vertical line indicates the 95th percentile of the SV threshold.

(a) (b)

Figure 6. Anemometer data screening: WD. (a) HWS differences between the cup anemometer and
the FDWL measurements as a function of wind direction at a 87 m height. (b) Same as in panel (a) but
compared to the DWL on the mast. Vertical blue lines indicate the directions of the mast booms (46.5◦,
166.5◦, and 286.5◦, Figure 3).

The 82-day IJmuiden campaign produced a dataset with 10,833 10 min samples. After
the filtering procedure described in Section 3.6, we obtained 8263 10 min samples. Figure 7
shows that both the cup anemometers and the fixed and floating lidars measured very
closed HWSs with determination coefficients higher than ρ2 = 0.996 and slopes of the
regression lines between 0.985 and 1.010 at all measurement heights, as expected from
previous studies [17–21]. These values are within the KPIs defined by the Carbon Trust’s
Offshore Wind Accelerator (OWA) [4].



Remote Sens. 2022, 14, 1394 13 of 24

0 5 10 15 20 25 30

Umast (27 m) [m/s]

0

5

10

15

20

25

30

U
F

D
W

L (
25

 m
) 

[m
/s

]

0.985x +0.019, 2 =0.996,
 RMSE = 0.245 m/s

0 5 10 15 20 25 30

Umast (58.5 m) [m/s]

0

5

10

15

20

25

30

U
F

D
W

L (
56

 m
) 

[m
/s

]

0.998x +0.018, 2 =0.998,
 RMSE = 0.199 m/s

0 5 10 15 20 25 30

Umast (85 m) [m/s]

0

5

10

15

20

25

30

U
F

D
W

L (
83

 m
) 

[m
/s

]

1.004x -0.056, 2 =0.998,
 RMSE = 0.224 m/s

0 5 10 15 20 25 30

Umast (85 m) [m/s]

0

5

10

15

20

25

30

U
m

as
t-

D
W

L
 (

90
 m

) 
[m

/s
]

1.010x -0.180, 2 =0.997,
 RMSE = 0.257 m/s

(a) (b)

(c) (d)

Figure 7. Quality assurance. (a–c) Comparison between FDWL HWS (denoted UFDWL) and cup
anemometer HWS (Umast) at the at different heights (see labels). (d) Same as (a) but for the DWL on
the mast at 90 m. The red line indicates the regression line. ρ2 is the coefficient of determination.

4.2. Sensitivity to the Wind Model Parameters

In order to analyze the sensitivity of the parametric wind model presented in Section 3.2
with respect to Equation (9) model parameters, a sensitivity simulator was implemented
(Figure 8). The simulator inputs are the model parameters Obukhov length L, friction
velocity u∗, and roughness length z0, denoted as L0, u0

∗, and z0
0, respectively. These inputs

were perturbed by an intensity factor ±P%(±10%). Then, the perturbed inputs were
used to compute the non-neutral wind correction Ψm

( z
L
)

using Equation (7). Finally, the
perturbed wind profile, U(z) + ∆U(z), was simulated as a function of the perturbation
intensity on the input variables through Equation (6). Five different atmospheric stability
scenarios were considered: very unstable, unstable, neutral, stable, and very stable, based
on Obukhov length values denoted by L0

vu, L0
u, L0

n, L0
s , and L0

vs, respectively.
The error propagated on the model wind profile was found to be insensitive to pertur-

bations in the roughness length z0. Therefore, practical implementation of the algorithm
embeds Equation (3) into Equation (6) as

U(z) =
u∗
κ

ln

 z

αc
u2∗
g

−Ψm

( z
L

), (15)

Thus, the model dimension reduces from three (L, u∗, and z0) to two (L and u∗),
hereafter called the 2D algorithm. Likewise, slight deviations in the Charnock’s constant
(Equation (3)) have low impact on the retrieved wind model parameters (L and u∗). Further-
more, as expected from correction function Ψm(

z
L ) (Figure 2), the sensitivity of the model
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wind profile with respect to the Obukhov length was found to be proportional to 1/|L|.
Further discussion is given in Section 4.4 , in line with the statistical results encountered.

Figure 8. Sensitivity simulator block diagram. L0, u0
∗, and z0

0 denote the nominal values for L, u∗
,and z0, respectively. Subscripts vu, u, n, s, and vs stand for very unstable, unstable, neutral, stable,
and very stable atmospheric stability conditions, respectively. The non-neutral wind correction block
implements Equation (7) and the parametric wind profile model block refers to Equation (6).

4.3. Wind Shear Dependence on Dimensionless Stability

The dependence of the wind speed ratio (Equation (8)) on the dimensionless stability
computed from both the 2D Obukhov length ( z′

L̂
) and from the Ri reference ( z′

LRi
) enabled

us to quantify the performance of the 2D algorithm. The wind speed ratio was computed
between the top and bottom measurement heights of both the FDWL (83 m and 25 m)
and the mast (85 m and 27 m). As described in Section 3.4, z′ = 15.5 m was taken as the
reference height. We used 8,263 10 min clean data records (Section 3.6). Additionally, two
successive levels of outlier filtering were considered: (i) retrieved Obukhov lengths in the
interval (−50 < LRi < 10) m were rejected because these values were outside the stability
limits in Table 3, and (ii) wind speed ratios were histogram-filtered. To achieve the latter,
the dimensionless stability range was divided into 0.01-width bins and, in each bin, the
wind-speed ratios outside of the µ± 1σ (with µ being the mean and σ being the standard
deviation of the wind-speed ratio distribution in the bin) were rejected as outliers.

Figure 9a,b plots FDWL and metmast wind-speed ratios as a function of dimensionless
stability parameter z′

L̂
, respectively. Figure 9c plots metmast wind-speed ratio as function

of z′
LRi

.

The FDWL wind-speed ratio as a function of z′
L̂

(Figure 9a) yielded the best statistical in-
dicators either if all or nonoutlier samples were considered (ρ2

all = 0.965, RMSEall = 0.029;
ρ2

1σ = 0.988, RMSE1σ = 0.016, respectively). This was expected because the FDWL-derived
HWSs were used to retrieve the estimated Obukhov length L̂ using the 2D method, which,
in turn, relies on the Businger–Dyer functions. Figure 9b provides tiebreaker proof confirm-
ing the successful performance of the 2D algorithm. Thus, in Figure 9b, the mast-derived
wind speed ratios are compared to the estimated L̂ values, and the statistical indicators
found (ρ2

1σ = 0.974 and RMSE1σ = 0.023) are virtually coincident with those in Figure 9a.
Additionally, when comparing the distribution of the points along the horizontal axes in
Figure 9b,c ( z′

L̂
and z′

LRi
, respectively), figures that share identical mast data, the spread along

the z′
L̂

axis (2D algorithm) is narrower than along the z′
LRi

(Richardson reference). Again,
this confirms the superior performance of the 2D algorithm. Regarding Figure 9c, and
despite the clear dependence obtained between the wind-speed ratio and dimensionless
stability z′

LRi
, the huge number of outliers suggests that not all measured wind profiles were

acceptably modeled by the MOST model (Equation (6)).
In non-MOST situations, e.g., low-level jet and storm events, the estimates of the 2D-

algorithm may be highly biased. The residual norm between the measured and fitted wind
profiles has been used to quantitatively assess the 2D-algorithm accuracy. The residual norm
is indicative of the quality of the fitting and is defined as the norm of the error between
the parametric and the measured wind profiles. Most of the records showed residual norm
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values between 0 m/s and 2.21 m/s. Occurrences with a residual norm higher than the
residual norm 95th percentile, corresponding to a value of 0.42 m/s, were filtered out (413
records). In the vast majority of cases, the 2D-algorithm is able to converge because most of
experimental wind profiles measured by the FDWL are well predicted by MOST.
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Figure 9. (a,b) The FDWL and mast wind-speed ratios as a function of z′
L̂

, respectively. (c) The mast

wind-speed ratio plotted as a function of z′
LRi

. Black and grey dots represent valid and outlier samples,
respectively. z′ = 15.5 m. ρ is the coefficient of determination. Subscripts “all” and “1σ” represent
all samples and samples at µ± 1σ (see body text), respectively. Red line, wind-speed ratio reference
model (Equations (8) and (7)). Blue lines, stability classification thresholds from Gryning et al. [51]
(see Table 3). vu, very unstable; u, unstable; nnu, near-neutral unstable; n, neutral, nns near-neutral
stable; s, stable; and vs, very stable.

4.4. Performance Statistics: Friction Velocity and Stability

The performance of the 2D algorithm with regard to friction velocity u∗ was assessed
by comparing the velocity estimated using the 2D algorithm, û∗ with the two reference
velocities described in Section 3.5, namely, the reference u∗sonic computed by the sonic
anemometer and the mast-derived u∗1−D computed by the 1D method (Figure 10).
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Figure 10. Scatter plot of the 2D-estimated friction velocity û∗ against the two references provided
in Section 3.5: (a) sonic anemometer reference velocity u∗sonic , at 85 m; and (b) 1D method reference
velocity u∗1−D. Green line is the reference 1:1 line.
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Figure 10a shows that the points (u∗sonic , û∗) were scattered widely. This was further
corroborated by numerical analysis, which yielded a linear regression (LR) û∗ = 0.813 ·
u∗sonic + 0.113, coefficient of determination ρ2 = 0.731, and RMSE = 0.077 m/s. These
comparatively modest indicators are due to the fact that the sonic anemometer was located
at a height of 85 m, which may well be beyond the surface layer. Above the surface
layer, the proposed model is not valid, which leads to biased estimations [43]. Worse
results were attained when considering alternative values for Charnock’s parameter, αc,
which is a site-dependent parameter here assumed as αc = 0.012 based on previous
studies [33,44,65,66]

When comparing û∗ against mast-derived u∗1−D (Figure 10b), a much better agreement
is found. This is supported by a LR as good as û∗ = 0.965 · u∗1−D + 0.022, which is virtually
the ideal 1:1 line; ρ2 = 0.956; and RMSE = 0.031 m/s.

The performance of the 2D algorithm for the estimated Obukhov length, L̂, was tested
against the Richardson reference, LRi, for the whole campaign. For this task, two well-
accepted stability classification criteria in the literature were considered: (i) Van Wijk’s
(Table 2), and (ii) Gryning’s criteria (Table 3).

Van Wijk’s classification. Figure 11 compares classification results among the Obukhov
lengths estimated by the 2D algorithm, L̂, and by the Ri estimate, LRi. The type criteria are
provided in Table 2. Figure 11a,b shows similar but not identical results. For example, the
hourly evolution of the stable and neutral classes is nearly identical for both estimators.
However, this is not the case for very unstable class, which was overestimated by the 2D
algorithm to the detriment of the unstable class when compared to the Richardson reference.
Similar results can be derived from Figure 11c,d. Thus, the 2D method yielded 33% of very
unstable cases, whereas the Richardson reference yielded 25%.

(c) (d)

Figure 11. Overall campaign stability classification results (Van Wijk et al. [50] criterion).
(a,b) Stability histograms showing the relation between frequency of occurrence of each stability class
clustered by hour of the day. (c,d) Corresponding stability pie charts showing the estimated Obukhov
length, L̂ (c), and the Richardson reference, LRi (d).
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Gryning’s classification. A similar analysis was conducted for the Gryning classification
(Table 3). This criterion essentially breaks down the Van Wijk stability classes into subclasses
in order to create room for the near-neutral stable and near-neutral unstable subclasses.

Figure 12 compares the classification results yielded by the 2D algorithm, L̂, and
Ri estimate, LRi. Figure 12a,b shows similar temporal behavior for the very stable and
stable classes over the course of the day. The latter class became prominent during the
last hours of the day. In contrast, as occurred with the Van Wijk classification, the neutral
class and all the unstable classes estimated by the 2D algorithm exhibited larger variations
compared to the Richardson reference. When comparing L̂ to LRi in the pie charts, 5% (L̂
chart) vs. 3% (LRi chart) of the cases were classified as very unstable, 11% vs. 15% were
classified as unstable or near-neutral unstable. In contrast, the following classes remained
essentially the same: 31% (L̂ panel) vs. 31% (LRi panel) for the neutral case, 19% vs. 19 %
for the near-neutral stable case, 28% vs. 27% for the stable case, and 4% vs 4% for the very
stable class.

(c) (d)

Figure 12. Overall campaign stability classification results (Gryning et al. [51] criterion) using the
same format as in Figure 11.

Next, we quantified classification performance by rating the one-to-one stability class
correspondence between L̂ and LRi. This one-to-one correspondence is expressed via a
confusion matrix, in which each matrix row represents the instances in an actual reference
stability class (LRi), and each column represents the instances in an estimated stability
class (L̂). Figure 13 depict the matrix obtained when considering the Gryning classification
criterion. An ideal predictive method would have all instances along the main diagonal
of the confusion matrix. Thus, bluish cells represent instances in which the estimated
stability class matches the Richardson reference class, whereas reddish cells represent
misclassifications. In order to quantitatively assess performance of the 2D algorithm, we
define the hit rate (HR) as

HR[%] =
no. of correct estimations

no. of estimations
× 100. (16)
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Figure 13. Confusion matrix between L̂ and LRi for Gryning’s stability classes (Table 2). The summary
matrix on the right totals the HR (bluish) and miss rate (1-HR, reddish) for each stability class. vs,
very stable; s, stable; nns, near-neutral stable; n, neutral; nnu, near-neutral unstable; u, unstable; vu,
very unstable.

The miss rate is simply the complementary function 1− HR. Figure 13 depicts the
confusion matrix considering Gryning’s stability classes (Table 3). We found that the
estimated classes lay along a band formed by the main diagonal, the first diagonal below
this, and the first diagonal above the main diagonal. Thus, an overall HR of 62.59%
was obtained and the remaining 29.21% corresponded to the classes estimated by the
2D algorithm that were adjacent to the correct ones given by the Richardson reference.
The summary matrix shows a very high miss rate in unstable atmospheres with the HRs
ranging from 18.8% to 40.7%. The low HRs attained for the nnu, u, and vu classes occurred
due to the low sensitivity of the wind shear model in Equation (6) with respect to the
Obukhov length for unstable atmospheres. This is re-encountered in Figure 14a, in which
the median wind profiles and related 25th to 75th percentiles are plotted parameterized by
stability condition. For the nnu, u, and vu classes, the percentile bars overlap (dark green,
red, and magenta traces, respectively), which makes it impossible for the 2D algorithm to
discern them.
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Figure 14. Median and percentiles of the u∗-normalized wind profiles measured by the metmast
during IJmuiden campaign clustered by atmospheric stability classes. (a) Clusters by Gryning’s
classes. (b) Clusters by Van Wijk’s classes. Error bars depict the 25th to 75th percentiles at each height.
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In contrast, “s”, “nns”, and “n” classes scored HRs of 83.7%, 58.1%, and 69.3%, respec-
tively, on account of their higher sensitivity, which, in turn, led to higher discernability
among these classes. It is also worth noting the low HR (35.9%) achieved by the “vs”
class. One reason accounting for that is the comparatively short span of Obukhov lengths
included in the “vs” class (10 ≤ L < 50) in Table 3. This was a too short span for the NSLQ
solver to estimate the Obukhov length at such fine level of accuracy, which eventually led
to miss-classification between the “vs” and “s” classes. This is also evidenced in Figure 14a
by overlapping percentile bars for these classes.

Analogously to Figure 13, Figure 15 represents the confusion matrix considering the
Van Wijk stability classes (Table 2). An overall HR of 66.07% and a misclassification rate
of 33.93% were observed. The estimation performance varied widely, ranging from HRs
of 26.2% for the u class to 88.3% for the vs class. Again, the low HRs were due to the
low sensitivity of the wind shear model with respect to the Obukhov length in unstable
conditions, as evidenced in Figure 14b.

(a) (b)

Figure 15. Confusion matrix between L̂ and LRi for Van Wijk’s stability classes (Table 2) in the same
format as in Figure 13.

By comparing Figures 15 and 13 (equivalently, Figures 11 and 12) Van Wijk’s classifica-
tion criterion shows better performance than Gryning’s. Although both have similar HRs
(66.07% for Van Wijk and 62.59% for Gryning), the Van Wijk confusion matrix (Figure 15a)
scores higher HRs than Gryning’s in all but the u class, as indicated by the reddish cell in
the summary matrix. This, however, warrants some comments. For example, the good
match between the estimated and reference stability classes in the pie chart in Figure 12 for
the Gryning classification hides a population inversion between the right- and left-adjacent
classes to the main diagonal (Figure 13). This also applies to Figure 15a. Experiments also
showed that wind profiles often became indistinctly misclassified into adjacent classes, as
shown by the overlapping error bars in Figure 14. A method to mitigate this issue involves
collapsing all unstable subclasses into an aggregated class named "unstable". Specifically,
this aggregation leads to vs, s, n, and u classes in the Van Wijk classification (Figure 15b),
and to vs, s, nns, n, and u classes in Gryning’s classification (figure not shown). As a
result, a much better agreement between the estimated and reference stability classes was
achieved, as indicated by the higher HRs attained in all classes. Quantitatively, the overall
HR increased to 73.6% for the Van Wijk classification. Similar results were achieved for the
Gryning classification (figure not shown), which scored an HR of 72.6%.

It is important to mention that although we use LRi as the reference, it cannot be
considered as the ground-truth reference for one-to-one comparison with L̂, because it
was not derived exactly as proposed by Grachev et al. [55] due to the absence of turbulent
fluxes measurements in the surface layer and the different instrumental measurement
heights available. However, it is a good indicative of the method goodness in terms of
atmospheric classification. In order to validate the method against a third party, the stability
estimated by the 2D-algorithm was compared against the stability estimated by means of
virtual potential temperature gradient (dθv/dz) between 90 and 21 m. Virtual potential
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temperature was retrieved using temperature, pressure and relative humidity data from the
IJmuiden mast via Equation (11). The potential temperature gradient indicator is only able
to discern between two stability classes: unstable (dθv/dz < 0) and stable (dθv/dz > 0).
Considering these categories, HRs higher than 82% were found for the comparison between
L̂ and dθv/dz, further proving the goodness of the 2D algorithm.

5. Summary and Conclusions

In this study, we suggested an 2D algorithm that accurately estimated both the
Obukhov length and the friction velocity, hence, correctly determined atmospheric stability
from FDWL measurements at four different heights. We used the spatial variation within
the lidar scans as an important filtering parameter of the FDWL (Figure 5). The parameter
is a proxy of turbulence; high spatial variation is associated to nonuniform wind during the
scan. The latter can originate either from apparent turbulence (i.e., induced by sea motion)
or from true wind turbulence [62]. When comparing FDWL to mast-based wind speeds, we
found that the mean winds were biased less than 1.5% (LR, UFDWL = 0.985 ·Umast + 0.018)
with a determination coefficient, ρ2 = 0.996, and a RMSE as low as 0.25 m/s. Similar values
were found for the fixed DWL on the mast.

The algorithm assumes that the measured FDWL wind profiles follow MOST and
the Charnock’s relation is used to parameterize the roughness length. Over the sea, with
such low roughness, the sensitivity of the roughness on the estimated parameters can be
neglected. A parametric sensitivity study showed that unstable wind profiles exhibited
lower sensitivity than stable wind profiles to variations of the Obukhov length (Figure 14).

The 2D-estimated Obukhov length and friction velocity were compared with refer-
ence to the mast-derived Obukhov length using the Richardson number, to the sonic-
anemometer-derived friction velocity, and the 1D-model-derived friction velocity. Thus, the
2D-estimated friction velocity was largely in agreement with the sonic-anemometer-derived
and the 1D-model-derived friction velocities, with coefficients of determination of 0.72 and
0.94, respectively (Figure 10).

We also examined the performance of the algorithm by classifying atmospheric stabil-
ity in a number of classes. When comparing the relative frequencies of occurrence of each
class of the Van Wijk classification, differences occurred between 0% and 10% (Figure 11)
and between 0% and 4% for Gryning’s classification (Figure 12). Notwithstanding these
results, analysis through confusion matrices showed HRs of 65.24% for the Van Wijk and
62.63% for the Gryning classification. Higher HRs were attained for stable regimes than
for unstable ones due to the lower sensitivity of the 2D algorithm to the Obukhov length
in unstable regimes. This issue was addressed by collapsing the unstable sub-classes
into a unique aggregated class named "unstable". For the Van Wijk’s, this reclassifica-
tion improved the HR up to 72.9% and up to 72.4% for the Gryning’s. The confusion
matrix study also showed that although simple pie chart statistics (Figure 12) indicate
a very good one-to-one correspondence between the estimated stability class (through
L̂) and the Richardson reference class (through LRi), this correspondence is only appar-
ent because cross-correspondences occur frequently between classes adjacent to the main
diagonal (Figures 13 and 15). This effect became more prominent for classes falling in
an Obukhov length interval in which Businger–Dyer’s correction function had a flatter
derivative (i.e., less gradient). Other misclassifications were attributable to anomalous
profiles such as those associated with low-level jets. Moreover, the bulk Richardson number
methodology used to compute the gradient Richardson number is just a two-point approxi-
mation of the derivative of the local wind and temperature gradients in the surface layer.
Finally, the performance of the algorithm in terms of stability classification was compared
against the virtual potential temperature gradient method acting as a proxy of stability.
HRs higher than 82% were encountered, further validating the algorithm performance.

Overall, we aimed to show the potential of FDWLs for offshore wind resource assess-
ment as a standalone instrument and the ability of an algorithm to estimate atmospheric
stability from the FDWL wind speeds only. As further steps, we would like to evaluate



Remote Sens. 2022, 14, 1394 21 of 24

the algorithm’s performance against direct measurements of both momentum and heat
fluxes taken over the same range of heights. Additionally, a comparison between the
2D-algorithm and other methods based on MOST relationships is still required.
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DWL Doppler Wind lidar
FDWL Floating Doppler Wind lidar
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KPI Key Performance Indicator
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metmast Meteorological Mast
MOST Monin-Obukhov Similarity Theory
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OWEZ Offshore Wind Farm Egmond aan Zee
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