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Abstract: There are significant tin reserves in the dumps and tailings from Llallagua. Currently,
this waste is being processed using gravity concentration or a combination of gravity concentration
with a final stage of froth flotation. A process mineralogy study of the tailings and their products
after processing in Llallagua was carried out to determine the failings of the processing system
in order to contribute to designing an improved new processing scheme. The mineralogy of the
feed tailings, concentrate, and final tailings was determined by X-ray diffraction, scanning electron
microscopy, and mineral liberation analysis. The tailings were composed of quartz, tourmaline,
illite, K-feldspar, plagioclase, cassiterite, rutile, zircon, and monazite. The concentrate essentially
contains cassiterite (57.4 wt.%), tourmaline, quartz, hematite, rutile and rare earth minerals, mainly
monazite and minor amounts of xenotime and florencite. The concentrate contained 52–60 wt.%
of SnO2 and 0.9–1.3 wt.% REE. The final tailings contained 0.23–0.37 wt.% SnO2 and 0.02 wt.% of
Rare Earth Elements (REE). Only 57.6 wt.% of cassiterite from the concentrate was liberated. The
non-liberated cassiterite was mainly associated with quartz, tourmaline, and rutile. The average grain
size of monazite was 45 µm and 57.5 wt.% of this was liberated. In other cases, it occurs in mixed
particles associated with tourmaline, quartz, cassiterite, and muscovite. To improve the sustainability
of this mining activity, the concentrate grade and the metal recovery must be improved. Reducing
the particle size reduction of the processed tailings would increase the beneficiation process rates. In
addition, the recovery of the REE present in the concentrate as a by-product should be investigated.

Keywords: process mineralogy; tailings; cassiterite; REE; mineral liberation; quantitative mineralogy

1. Introduction

At present, much attention is being paid to the inefficiency of mining activities, which
produces large amounts of environmental pollution. Approximately 5 to 7 billion tons
of mine tailings are generated each year [1]. Their environmental impact is considerable
since, in addition to occupying large areas, they can emit potentially toxic elements [2].
For this reason, mining should be carried out in a more sustainable way. Although there
are different concepts of what is considered to be sustainable mining [3], it is generally
described as mining that minimizes environmental impacts, operates with a social license,
produces economic gains, and focuses on safety and resource efficiency [4]. Therefore,
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sustainable mining must optimize resources in addition to preventing environmental
pollution [5,6].

The mining activities related to the Siglo XX mine, located in Llallagua (Bolivia), are a
clear example of a low sustainable mining. As a result of the mining operations, the tin
reserves from Llallagua are found both in an ore deposit and in the waste produced from
the extraction and processing of the primary ores.

The Llallagua tin deposit began to be exploited on a large scale at the beginning of the
20th century with the extraction of high-grade tin ores. This mine, also called La Salvadora,
was considered the richest tin mine in the world in the last century. There are no contempo-
rary estimates, but the Llallagua tin production reached more than 500,000 tons between
the beginning of the 20th century and 1930s [7], and low-grade resources of approximately
1,000,000 t of tin [7,8] have been reported. Initially, certain veins contained more than
25% cassiterite, but currently, veins contain less SnO2 [9]. Additionally, 20.7 million tons of
dumps and tailings were produced as a result of the Llallagua mine, with an average of
0.3% SnO2 [10]. According to Villalpando [11], 300,000 t of tin reserves remain in placers,
dumps, and tailings in Bolivia.

The residues from Llallagua are reprocessed, and even the newly generated tailings
are tin-rich, i.e., of economic interest. This makes this mining area a clear example of
an unsustainable operation. A great deal of energy is expended to mine the tin ores
with a consequent low recovery rate, generating tailings that can be reprocessed. The
environmental costs of generating and handling such large quantities of materials, which
are rich in potentially toxic elements, are great. In addition to causing economic losses,
low efficiency processes have an impact on environmental pollution, since a low recovery
rate indicates that metals remain in the final tailings and, consequently, end up in the
environment. The pollution created by the Llallagua waste is significant and, for example,
the Catavi river receives As [12].

Currently, the Llallagua mining activities represent an important contribution to the
Bolivian economy. The mine is mainly operated through mining cooperatives, the most
important being the Multiactiva Catavi Ltd. Cooperative (Llallagua, Bolivia), which has
been operating since 1986. Approximately 38% of the population in the area is exclusively
dedicated to mining activities.

The aim of this work was to provide an example of unsustainable mining activities and
show how processing mineralogy can contribute to identifying weaknesses in processing
systems and help to improve them. To this end, process mineralogy was carried out using
tailings from the Catavi plant of the Llallagua mine. The study could be used to revise and
modify the current system of operation, making it more efficient, improving the recovery
rates, and making it more environmentally friendly.

Another important motivation to conduct an exhaustive characterization of processing
materials in the Llallagua mine is that they contain abundant rare earth-rich minerals,
mainly monazite [13–16]. Rare earth elements (REE) are considered to be essential raw
materials, especially in key fields, such as the development of clean technologies [17] Zhou.
The extreme dependence on China, which is the main provider of these elements, makes
them critical for many countries [18,19]. Thus, it is necessary to extract them from different
sources, such as tailings [20], where they can be found in relative abundance and recovered
as a by-product from certain mining processes [21].

2. Materials and Methods
2.1. Materials

The investigated tailings are the result of the processing of the run-off-mine materials
from the Llallagua ore deposit, in the department of Potosí, Bolivia. This deposit belongs to
a major tin district located in the Central Andean tin belt (Figure 1a). The exploited deposit
is of the porphyry type and it occurs in association with the quartz-diritic to rhyodacitic
La Salvadora stock of Lower Miocene age, intruded in Silurian sedimentary rocks [22,23].
Most parts of this stock are composed of hydrothermal breccia [24] and the mineraliza-
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tion is cassiterite, which occurs in veins and is disseminated in the stock [22,24,25]. The
mineralization occurred in two stages: in the first stage, cassiterite pyrrhotite, tourmaline,
bismuthinite, fluorapatite, and monazite were formed; in the second, late sulfides were
superimposed to the early formed mineralization [22,26].
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Figure 1. (a) Location of Llallagua in the Central Andean tin belt. Data from [27]; (b) View of
Llallagua city and the mining wastes: A, dumps; B, sand tailings; and C, fine tailings.

Monazite can be very abundant as it is associated with the mineralization of cassiterite
veins [15]. The stock is highly altered and almost all of the original feldspars have been
transformed. Alteration includes sericitization and tourmalinization [22].

The dumps and tailings produced as a consequence of the exploitation of the Llallagua
deposit cover a vast area close to the city (Figure 1b), with an estimation of about 18 Mt of
tailings and 1.2 of dumps [10].

The investigated tailings are processed in the C-4 treatment plant located in Catavi,
close to Llallagua. The supply of this plant corresponds to three types of materials: (1) those
that come directly from the La Salvadora mine. (2) large dumps formed by the removal of
waste material in order to reach the mineralized zone; and (3) tailings constituted by sands
and fine materials resulted from previous processing of the ores. The plant processes about
250 t/day, obtaining about 1 t of concentrate with 51–57% SnO2 [10].

At the plant (Figures 2 and 3), the tailing sands are initially introduced into ball mills
for size reduction. Then, they are transported to a hydraulic classifier. From here, the
+250 µm material is returned to the ball mill and the −250 m material is fed through
several shaking tables, separating the high-density minerals from the lighter minerals that
constitute the new tailings. Finally, the first concentrate follows two different routes: If it is
rich in sulfides, it is subjected to flotation, where these minerals are removed and a final
concentrate is obtained. In other cases, to increase the grade of the concentrate, it passes
from the shaking tables to a hydrocyclone; from there, it is further ground in a ball mill and
finally passed through another shaking table to obtain the final concentrate.
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Figure 2. Simplified flux diagram followed by the samples used in this study in the Catavi processing
plant.

The residual solid material is sent to waste piles located in the vicinity of the plant,
while the liquid is removed using a gutter that empties directly into the river.

The samples used in this study were as follows: the sandy tailings that constitute
the feed material of the processing plant; concentrate 1, which had been subjected to
flotation; concentrate 2, which had not been floated; an intermediate concentrate; and the
final tailings.
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Figure 3. View of the Catavi processing plant: (a) feed tailings; (b) ball mill for the comminution;
(c), view of one of the three floors with the material being processed in the shaking tables; (d), detail
of the gravity separation in a shaking table.

2.2. Methods

The chemical composition of major elements and traces was determined. Major
elements were analyzed by X-ray fluorescence (XRF) using a sequential X-Ray PW2400
spectrophotometer (Philips, Amsterdam, The Netherlands) located at the Centres Científics
i Tecnològics de la Universitat de Barcelona. Traces and Sn were determined at the ALS
Laboratories. Minor elements were measured using ICP-MS from the acid digestion of
fused glass beads. Sn was determined by XRF. Fusion was obtained using lithium or
sodium borate.

The particle size distribution of the tailings and concentrate was determined using a
LS 13 320 Particle Size Analyzer (Beckman Coulter, Brea, CA, USA). Before being measured,
the samples were treated with sodium pyrophosphate and mechanically agitated for 24 h
in order to achieve complete disaggregation.

Mineralogical characterization was carried out by X-ray powder diffraction (XRD),
optical and scanning electron microscopy. The XRD spectra were measured from powdered
samples in a Bragg–Brentano PANAnalytical X’Pert Diffractometer (graphite monochro-
mator, automatic gap, Cu Kα radiation at λ = 1.54061 Å, powered at 45 kV–40 mA, and a
scanning range of 4–100◦ with a 0.017◦2θ step scan and a measuring time of 50 s). Iden-
tification and Rietveld semiquantitative evaluation of phases were conducted with the
PANanalytical X’Pert HighScore software (PANalytical, Almelo, The Netherlands).

Scanning electron microscopy with energy-dispersive spectral analysis (SEM–EDS) was
performed with a Hitachi TM-1000 tabletop electron microscope (EDX, High-Technologies
Corporation, Tokyo, Japan).

Automated mineral liberation analysis (MLA) was used to study the particle liberation
characteristics. Samples were prepared in thick sections and, to avoid the segregation
of particles according to their densities [28], the round thick sections were cut into two
vertical slices. Analyses were carried out at the University of Tasmania using a FEI MLA650
(FEI, Hillsboro, OR, USA) environmental scanning electron microscope equipped with
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a Bruker Quantax Esprit 1.9 EDS system with two XFlash 5030 SDD detectors (Bruker,
Berlin, Germany). MLA measurements were performed at 20 kV with a 1.5-micron pixel
resolution using the XBSE method, which collects a range of BSE images at a specified
resolution, segments the images into different mineral grains based on BSE contrast and
textural features, and collects a single ED spectrum in the center of each identified mineral
grain. A Mineral Liberation Analysis (MLA) software package v3.1 was used.

3. Results
3.1. Chemical Composition

The chemical composition of major components of dumps and tailings was previously
reported [29]. A comparison of the chemistry of the feed tailings, concentrates, and final
tailings from the Catavi plant is presented in Table 1. The contents of major elements were
similar in the feed and final tailings, i.e., highly rich in SiO2 and Al2O3, with the most
abundant oxide from the concentrate being SnO2. Fe, Ti, and P2O5 also were increased in
the concentrated fraction.

Table 1. Chemical composition, in wt.%, of the tailings and processing products from the C-4
processing plant.

Material SiO2 Al2O3 Fe2O3 TiO2 MnO CaO K2O MgO Na2O P2O5 SnO2 LOI *

Feed 77.75 11.19 2.58 0.44 0.01 0.07 1.43 1.09 0.37 0.19 0.40 1.79
Concentrate 11.42 4.64 5.55 3.52 0.03 0.00 0.22 0.61 0.24 0.72 52.43 3.03
Final tailings 79.20 10.52 2.42 0.43 0.01 0.07 1.20 1.09 0.38 0.15 0.29 1.78

* LOI: loss on ignition.

The Sn content of the feed tailings varied between 0.40 and 1.7 wt.% [30]. After
the concentration process using the shaking tables, the concentrate displayed 41.3% and
59.0 wt.% SnO2. The final tailings still contained relatively high amounts of Sn, between
0.23 and 0.37 wt.% SnO2. These contents are still of economic interest. The average grade
for greisen-type tin deposits is 0.3% Sn [31].

The concentrate contained significant amounts of W, i.e., from 4990 to 6700 ppm, with
70 ppm remaining in the final tailings. The Pb content was 1560 ppm and Zn and Ag
occurred in small amounts, i.e., 90 and 38 ppm, respectively.

There were also minor amounts of radioactive elements present, i.e., U in a range from
32 to 41 ppm and Th in a range from 66 and 80 ppm. Both contents were low in the final
tailings, i.e., 3 and 6 ppm, respectively.

Indium occurs in relatively high concentrations in certain deposits of the Central
Andean tin belt [32,33]. However, in Llallagua, the contents obtained were negligible,
reaching only 0.03 ppm in the concentrate. Moreover, Nb and Ta were found in significant
amounts in certain tin deposits, since they can replace Sn in the cassiterite structure [34].
However, in the case of the materials from Llallagua, the contents were low, i.e., 17 ppm
and 12 ppm, respectively.

Other elements that are currently of great interest are germanium and gallium. In
the materials from Llallagua, both were higher in the concentrate than in the final tailings.
The concentrate had up to 9 ppm Ge and between 49 and 63 ppm Ga. The latter can be of
interest as a by-product as this represents double the average content of Ga in the crust
(10–20 ppm) and is similar to the amount found in bauxite ores, from where it is extracted
as a by-product [35].

The concentrate contained a significant REE content, ranging between 8800 and more
than 12,000 ppm of total REE (Table 2). The most abundant elements were cerium, lan-
thanum, and neodymium (Figure 4). On the other hand, the total rare earths were only
170 ppm in the final tailings. This indicates that most have been removed to the concentrate,
leaving about 2% in the light fraction. An intermediate concentrate was also analyzed and,
as expected, it contained fewer rare earths than the final concentrate, which indicates that,
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at this stage, concentration had not been totally achieved. As expected, the intermediate
concentrate had a lower rare earth content than the final concentrate.

Table 2. REE elements in the tailings and processing products from the C-4 plant, in ppm.

Element Final Tailings Intermediate
Concentrate

Final
Concentrate 1

Final
Concentrate 2

ppm LG-2 LG-4 LG-35 LG-41

Ce 74.5 3370 5670 4140
Dy 3.51 56.3 123 83.9
Er 1.72 19.1 47.6 30.1
Eu 1.09 31.5 56 40.3
Gd 3.86 109.5 210 144.5
Ho 0.63 8.5 18.9 13.05
La 37.2 1640 2860 2160
Lu 0.34 1.4 4.16 2.93
Pr 8.86 358 667 431
Nd 40.3 1250 2210 1520
Sm 5.48 185.5 366 251
Tb 0.6 13.3 23.3 16.85
Tm 0.25 2.1 5.81 3.75
Yb 1.74 11.3 32.7 21.8

Σ RRE 170.5 7056.5 12,294.5 8859.18
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3.2. Mineralogy
3.2.1. Major Minerals: XRD

The feed tailings were mainly composed of quartz and tourmaline of the dravite and
schorl types, with minor amounts of micas. The micas were mainly sericite and illite.
Muscovite, biotite, and highly altered feldspars were observed under the microscope, but
they went undetected in the majority of XRD diffractograms. In the feed tailings, cassiterite
was the most important metal oxide, although it was not abundant. In the final tailings,
it was not present in sufficient amounts to be determined by XRD. After processing the
material with shaking tables, the minerals of the feed tailings were grouped according to
their densities, i.e., into a heavy fraction, or concentrate, and a light fraction, or final tailings
(Figure 5).
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Quartz was much more abundant in the final tailings. Tourmaline was also more
abundant in the tailings, but with a less significant difference. The average density of
tourmaline is 3.10 g/cm3, whereas that of quartz is 2.6 g/cm3. The floatability rates
indicate that it is more difficult using gravity methods to separate tourmaline into the light
fraction. Cassiterite was the predominant mineral in the concentrate. The semiquantitative
determination using the Rietveld method provided a cassiterite content of 41–46 wt.%.
A low intensity monazite peak can be observed in the concentrate diagram. The rutile
and zircon contents were higher in the concentrates, although they can vary considerably
according to the route followed during the processing, being up to 9 wt.% rutile and 9 wt.%
zircon if the feed tailings were not floated (concentrate 1).

Most of the feed material remained in the final tailings; therefore, they demonstrated
a mineralogical composition similar to that of the feed, with lower amounts of heavy
minerals, such as cassiterite, rutile, zircon, and monazite.

3.2.2. Modal Mineralogy of the Concentrate

The mineralogy of the concentrate was also determined by MLA, which provided
the modal estimation (Table 3). Cassiterite is the most abundant mineral in the con-
centrate, with 57.41 wt.%. This quantification is in accordance with the results of the
chemical analyses; however, it is a contrast with the results obtained from XRD, in
which the cassiterite contents were underestimated, probably because there is a super-
position of the most intense peak reflections of cassiterite (at dhkl = 3.353 Å) and quartz
(at dhkl = 3.345 Å). Zircon and rutile were also enriched in the concentrate. The MLA of
concentrate 2 reported 0.69 wt.% of zircon. This is in accordance with the chemical compo-
sition results, i.e., 0.41 wt.% of Zr and 99 ppm of Hf, which corresponds to approximately
0.82 wt.% of zircon. In addition to Zr and Hf, this mineral probably contained a significant
part of the U and Th determined in the chemical analysis of the concentrate. This mineral
was frequently observed in the SEM as euhedral crystals with a homogeneous appearance
or a slight zonation. The SEM observation and MLA map shows that in the concentrate,
cassiterite only represented half of the components and most cassiterite particles were not
completely liberated and contained some proportion of other minerals (Figure 6).
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Table 3. Modal mineralogy provided by the MLA of concentrate 2 from Catavi.

Mineral Formula wt %

Cassiterite SnO2 57.41
Quartz SiO2 7.13

Plagioclase (Na,Ca)(Si,Al)4O8 0.02
Tourmaline Na(Mg,Fe)3Al6(BO3)3Si6O18(OH)4 11.22
Muscovite KAl3Si3O10(OH)2 1.41

Biotite KMg2.5Fe2+
0.5AlSi3O10(OH)1.75F0.25 0.32

Chlorite (Mg,Fe)3(Si,Al)4O10(OH)2(Mg,Fe)3(OH)6 0.09
Kaolinite Al2Si2O5(OH)4 0.23

Rutile TiO2 4.60
Ilmenite Fe2+TiO3 0.04
Fe oxides Fe2O3 10.44
Pyrrhotite FeS 1.28

Pyrite FeS2 0.37
Arsenopyrite FeAsS 0.05

Stannite SnS 0.01
Galena PbS 0.01

Crandallite CaAl3(PO4)2(OH)5H2O 0.10
Florencite CeAl3(PO4)2(OH)6 0.16

Plumbogummite PbAl3(PO4)2(OH)5(H2O) 0.26
Fe-Pb Phosphate (Pb,Fe)3(PO4)2 0.33

Scorodite FeAsO4·2(H2O) 0.15
Jarosite KFe3(SO4)2(OH)6 1.30
Barite Ba(SO4) 0.14

Xenotime Y(PO4) 0.04
Monazite (La,Ce,Nd,Th)(PO4) 1.62

Zircon ZrSiO4 0.69
Wolframite (Fe,Mn)(WO4) 0.47

Total 100.00
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Iron oxides and hydroxides represented 10.44 wt.% and rutile 4.6 wt.%. Sulfides were
not abundant, and pyrite pyrrhotite, arsenopyrite, galena, sphalerite and stannite occurred
in minor amounts.
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The REE-bearing phosphates were monazite and florencite. Monazite normally ap-
pears in idiomorphic crystals, with sizes of less than 100 µm, liberated or associated with
tourmaline or quartz. Florencite was occasionally reported from Llallagua [15,26]. This
is a crandallite-group REE-bearing phosphate that usually forms from the alteration of
monazite [36]. Crandallite and plumbogummite were also determined by the MLA.

Sulfates, such as barite and jarosite, were also present in low amounts. Their presence
has been confirmed by SEM observations.

3.3. Particle Size Distribution

The particle size distribution (PSD) data are used to predict the liberation size of ores
and to determine the grinding parameters required to obtain an efficient recovery [37]. The
PSD of the feed, concentrate, and final tailings was determined by laser analysis and the
PSD of concentrate was additionally obtained by MLA. Both methods produced similar
distribution curves. This indicates that the sample analyzed by MLA was representative
of the different particle sizes. The MLA was expected to give a low particles size due to
the stereological error associated with this technique [38,39]. However, in the C-4 plant
concentrate, this lower size was not observed.

The particle size distribution shows that, in the feed and products of the Catavi plant,
the number of finer particles was low (Figure 7a), i.e., only 5% of the population was less
than 100 µm in the feed sands. After milling, the size reduction ratio in this finer phase was
negligible. The feed tailings were the coarsest material and they were comminuted in the
tumbling mills and the gravity separation produced a finer concentrate and coarser final
tailings. This is because quartz, which is the main component of the tailings, is harder than
cassiterite, which is the main product of the concentrate, with a Bond ball work index of
14–15 kWh/t in quartz compared to 10–12 kWh/t in cassiterite [40]. On the other hand,
this could also be because cassiterite grains are originally smaller than quartz grains. In the
concentrate, the grain size determined by MLA shows that the size of quartz was larger
than that of cassiterite, monazite, and tourmaline (Figure 7b). Quartz grains reached up to
425 µm in diameter, accounting for 80 wt.% of the total of −145 µm. The cassiterite grain
size was −343 µm, and 80 wt.% of the total was −124 µm. Monazite grains were −203 µm
in size, with 80 wt.% less than 106 µm.
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3.4. Mineral Liberation

The liberation characteristics of the concentrate were determined from the data pro-
vided by the MLA. The degree of liberation and the association among minerals could be
established. These characteristics were determined in the minerals that constitute or may
constitute ores, that is, cassiterite and minerals that contain rare earths, which in this case,
were monazite, xenotime, and florencite.
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The total number of particles analyzed in the MLA of the concentrate was 49,386 and
85,378 grains. Of these, there were 24,794 grains of cassiterite, 1190 of monazite, 88 of
xenotime and 779 of florencite. The liberation characteristics of cassiterite and monazite in
the concentrate of the Catavi plant are summarized in Table 4.

Table 4. Characteristics of ore-bearing particles from concentrate 2 of the C-4 plant.

Cassiterite Monazite

Total ore (wt %) 57.41 1.62
Number of particles 24,794 1190
Particles contain% 50.20 2.41

Number of liberated particles 19,708 586
Mass liberated respect the total ore % 65.74 63.83

Mass liberated respect the total concentrate % 37.74 1.03

3.4.1. Cassiterite

Cassiterite represented 57.41 wt.% of the total mass of the concentrate and 50.2% of
the concentrated particles contained cassiterite. More than half of the cassiterite in the
concentrate was liberated, i.e., 65.74 wt.% of the total cassiterite ore, which represents
37.74 wt.% of the total mass of the concentrate. Moreover, 24.28 wt.% of the non-liberated
cassiterite grains occurred in binary particles and 9.99 wt.% occurred in ternary particles.
As regards being associated with other minerals as binary and ternary particles, cassiterite
was mainly in contact with quartz, tourmaline, rutile, and muscovite. This was already
demonstrated in the SEM observations (Figures 8 and 9). In addition, the MLA allowed us
to quantify these observations and determine the minor associations (Table 3).
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Figure 8. Images of the mineral association of binary particles of cassiterite in the concentrate from
Catavi: (a,b) with quartz, (c,d) with tourmaline, (e) with muscovite, and (f) with rutile. Qz: quartz;
Cst: cassiterite; Tur: tourmaline; Ms: muscovite; Rt: rutile.

3.4.2. Monazite

Monazite represented 1.62 wt.% of the total concentrate. In addition, 2.41% of the con-
centrated particles contained monazite and 63.83 wt.% of the total monazite was liberated,
which represented 1.03 wt.% of the concentrate. The non-liberated monazite was mainly
associated with cassiterite, tourmaline, and quartz, followed by rutile and zircon (Figure 9).
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Figure 9. Mineral association of the non-liberated ore: Cst-B cassiterite in binary particles, Cst-T cassi-
terite in ternary particles, Mnz-B monazite in binary particles and Mnz-T monazite in ternary particles.

4. Discussion

The grinding process moderately reduced the size of the sands that constituted the
feed tailings, which exhibited an average particle size of 540 µm. On the other hand, the
average size of the cassiterite and monazite grains was 66 µm. Therefore, after grinding,
one part of the ore remained unliberated. The analysis of cassiterite liberation by grade
ranges is shown in Figure 10. A significant amount of cassiterite was found in mixed
particles, with 65.73% of it being liberated.
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Figure 10. Distribution of cassiterite in the concentrated materials: (a) according to particle size and
cassiterite grade classes; (b) according to the grade.

The distribution of the concentrate into the different particle sizes shows that the
concentrate contained a low number of particles of less than 40 µm. Moreover, it shows



Minerals 2022, 12, 214 13 of 16

that most particles of this class can be considered liberated cassiterite. Particles larger than
+80 µm were mainly mixed. The most abundant content of cassiterite-free particles in the
concentrate was in the size classes of +60 to +180 µm. This could be indicative of a loss of
ore in the finest fractions during processing. This behavior was also reported in other cases,
with the lack of fine cassiterite particles in the concentrate being attributed to an aqua flow
phenomenon [40,41].

In the case of monazite, the distribution of the concentrate into the different particle
sizes shows that there are few particles of liberated monazite less than 40 µm in size,
with the most abundant content of liberated monazite particles occurring in the size class
between 60 and 80 µm. The lower content of high-grade liberated monazite particles in the
finer class size could be due to the fact that they are associated with cassiterite (Figure 11).
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cassiterite grade classes; (b) according to the grade. The zero grade particles are not shown.

Therefore, particle size reduction should be necessary to increase the liberation and,
consequently, the recovery of cassiterite and increase its grade in the concentrate. A high
amount of energy is consumed during the comminution process, which means that when a
significant size reduction is required, a large expense is also required [42]. An alternative
could be the use of high-pressure grinding rolls (HPGR) before milling in the ball mill.
This may represent an economical solution since HPGR produce a high number of micro-
fractures in the material, which facilitates the increase in the liberation with a moderate
size reduction [43]. Additionally, the grinding media charge and the increase in residence
times should also be considered [44].

The REE content in the concentrate from Llallagua feed tailings (between 8859 and
12,294 ppm) is sufficient to be considered a suitable by-product of Sn production. The higher
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amount corresponds to samples that were not floated. In this case, the floated concentrate
was also depleted in rutile and zircon as compared to the non-floated sample. Then, the
flotation part of REE was floated with sulfide minerals, rutile, and zircon. The flotation of
monazite-rich samples should be taken into account in the flow diagram, considering the
inclusion of the flotation process or changing the depressants used, according to existing
studies [45].

In other cases, lower REE concentrations in tailings were considered of interest, as was
the case of the Kiirunavaara iron deposit [46] and in a copper flotation plant of Australia [47].
Other tin mining activities consider REE of interest for recovery as a by-product [48,49],
such as thorium-rich monazite from Malaysia [50]. In contrast to this example, monazite
from Llallagua has the advantage of being Th-poor [14–16].

5. Conclusions

The reprocessing of the sandy tailings from the Catavi plant produced final tailings
with about 0.29 wt.% SnO2, which is rich enough to be of economic interest. To make
the mining activity of Llallagua more sustainable, Sn losses must be reduced. To this
end, recovery needs to be improved. The average liberation size of cassiterite was 66µm,
whereas that of the feed tailings was 540 µm. Finer particle size of the processed tailings
is necessary to increase the liberation and recovery of Sn, and the cassiterite grade of the
concentrate. It is evident that the efficiency of the mill is very low, and the comminution
process should be improved. To this end, the control of the grinding media charge and
the residence times should be studied. Using different combinations of equipment also
demonstrated that other techniques may increase the reduction ratios.

In addition, there was a significant amount of REE in the concentrate, i.e., between
8859 and 12,294 ppm of total REE, which is of economic interest as a by-product. REE
occurred mainly as monazite, and florencite, with minor amounts of xenotime. The density
of these phosphate minerals is moderate, making their separation from the concentrate
by gravitational separation methods difficult. Therefore, future studies should attempt to
identify an optimal method to recover this ore should be recovered during the metallurgic
process.
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