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Abstract—The convergence of artificial intelligence, high-
performance computing (HPC), and data science brings unique
opportunities for marked advance discoveries and that leverage
synergies across scientific domains. Recently, deep learning (DL)
models have been successfully applied to a wide spectrum of
fields, from social network analysis to climate modeling. Such
advances greatly benefit from already available HPC infras-
tructure, mainly GPU-enabled supercomputers. However, those
powerful computing systems are exposed to failures, particularly
silent data corruption (SDC) in which bit-flips occur without the
program crashing. Consequently, exploring the impact of SDCs
in DL models is vital for maintaining progress in many scientific
domains. This paper uses a distinctive methodology to inject
faults into training phases of DL models. We use checkpoint file
alteration to study the effect of having bit-flips in different places
of a model and at different moments of the training. Our strategy
is general enough to allow the analysis of any combination of DL
model and framework—so long as they produce a Hierarchical
Data Format 5 checkpoint file. The experimental results confirm
that popular DL models are often able to absorb dozens of bit-
flips with a minimal impact on accuracy convergence.

Index Terms—deep learning, resilience, checkpoint, neural
networks, high-performance computing, HDF5, fault injection

I. INTRODUCTION

The recent wave of artificial intelligence (AI) techniques
and tools has overtaken the scientific computing. Significant
advances in complex challenges have been registered, such as
identifying fake news after crunching massive text corpus to
automating extreme weather detection in climate analysis. The
impact of modern AI algorithms, particularly deep learning
(DL) models, permeates many scientific disciplines. Moreover,
the prospect of applying these models to other areas is
promising [1], [2].

Contemporary DL frameworks [3]–[5] are heavily depen-
dent on high-performance computing (HPC) hardware, par-
ticularly GPU-enabled systems. Neural networks with many
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internal layers and ensembles of those networks are com-
putationally demanding [6], [7]. To satisfy their strong need
for data crunching, many-core chips—usually in the form of
GPUs—are exploited at a convenient balance of two rates:
operations per second and operations per watt. Nevertheless,
hybrid CPU-GPU architectures in HPC systems feature several
sources of errors, particularly silent data corruption (SDC).
SDC could occur by an alpha particle hitting a circuit and
flipping a bit [8]. Sometimes, a bit-flip goes unnoticed until
the end of execution, presumably rendering an erroneous or
unexpected result. Reliability in HPC systems has become
one of the primary recognized concern in keeping large-scale
supercomputers productive [9]. Therefore, it is fundamental
to address the effect of errors in scientific workflows that
incorporate DL algorithms.

This paper provides an understanding of the impact of bit-
flips on DL models. To construct an experimental environment
in which we are able to try different DL models on different
frameworks, a distinctive methodology is followed. Instead of
creating a modified version of a framework for a particular
model, we create a checkpoint-based fault injector. Therefore,
by only altering a checkpoint file made by any DL framework
for any model, the impact of SCD can be studied. Additionally,
since we control the fault injection, we run tailor-made experi-
ments to investigate the sensitivity of DL models to alterations
made to particular bits on particular layers or examining the
robustness to a varying amount of bit-flips. Our strategy is
inclusive in that through a Hierarchical Data Format 5 (HDF5)
checkpoint file, we inject faults and study their effects.

This paper makes the following contributions:

• a failure injection strategy based on checkpoint alteration
to study the sensitivity of scientific codes to SDC (Sec-
tion IV);

• an open-source Python implementation of a parameter-
ized fault injector for HDF5 checkpoint files (Section IV);
the injector provides several control variables for studying
the effects of faults in scientific codes;

• a derived mechanism, called equivalent injection, that
allows studying the effect of the same error injection with
application independence across different frameworks
(Section IV-C);
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• a study of the sensitivity and robustness of representative
DL models and frameworks to silent data corruption
(Section V); and

• a series of research directions in which the strategy and
results presented can be extended (Section VI).

II. RELATED WORK

Fault tolerance in neural networks has been an active
research subject for many years. A substantial body of work
was developed in the 1990s [10]–[14] and at the beginning of
the next decade [15]–[17]. At that time, researchers studied
artificial neural networks (ANNs), focusing on the analysis of
the faults that affect them. Many of these studies delved into
theoretical aspects to solve problems of optimization and the
design of new neural networks. In recent years and with the
reemergence of DL, researchers have focused on the study of
fault tolerance for the new neural network models, current DL
frameworks, and improvements on existing hardware. In most
studies, researchers manipulate neural network models in some
way to generate disturbances or failures that allow them to ana-
lyze how these neural networks react to such a situation. Hong
et al. [18] explores the training and classification vulnerability
of deep neural networks (DNN) under bit errors that can be
caused by hardware failures. Their research focused on attack
trainings with single bit-flip attacks that are most realistic for
representing memory corruption problems in hardware attacks.
Liu et al. [19] investigates the impact of failure injection
attacks on DNNs by using two types of attacks: (1) a single
bias attack and (2) a gradient descent attack in which they try
to preserve the classification accuracy in input patterns distinct
to the target. Related to that study, the fault sneaking attack is
proposed in Zhao et al. [20] as a new method of fault injection
attack in DNNs. This attack method is based on the alternating
direction method of multipliers. Li et al. [21] evaluates the
resilience characteristics of a DNN system. Their research
characterizes the propagation of soft errors from hardware to
the application software of DNN systems. Fault injection is
done by modifying a DNN simulator framework called Tiny-
CNN. Many previous studies implemented attacks based on
single bit-flip injection, and some based their experimentation
on simulators. Our study presents multiple bit-flip injection
scenarios, accounting for several configurations of experiments
executed in nonsimulated environments using current DL
frameworks.

Other studies [22], [23] propose attacks on more specialized
neural networks. Rakin, He, and Fan [22] proposes a novel
DNN weight attack methodology called Bit-Flip Attack. The
idea of this methodology is to destroy the functioning of
a neural network by flipping a very small amount of the
bits, forming the weights stored in memory. Rakin, He, and
Fan [23] proposes a Targeted Bit Trojan method, which inserts
a neural trojan into a DNN through bit-flip attacks. This
method identifies vulnerable neurons so that an attacker can
generate a trigger to force the neurons to generate large output
values. These studies present specialized attack techniques that
in real execution environments would be unlikely to occur.

In our study, attacks are performed by injecting bit-flips,
accounting for real scenarios in which failures occur.

The applicability of previous studies must be considered in
light of the DL framework they were performed on. Those
studies [24]–[27] focused on developing failure injectors in
DNNs but only work specifically with a given DL framework.
Mahmoud et al. [24] created a tool called PyTorchFI, which
is a disturbance tool developed for the PyTorch framework.
This tool performs perturbations in the weights during training.
Zitao et al. [26] developed fault injector called TensorFI,
which injects faults into the data-flow graph of TensorFlow
applications. Chen et al. [25] took the TensorFI injector as a
base to extend it and implement BinFi, which is an injector that
identifies safety-critical bits in DL applications and measures
overall resilience. Hu et al. [27] focused on TensorFlow
applications and introduced a mutation testing-based tool for
DNNs that allows a set of a mutant program to be generated
by injecting failures into the original program. One special
case is the fault injection framework, called Ares [28], which
is an injector built on the Keras framework. All these studies
present fault injection tools specifically designed for one or
two DL frameworks, which restricts their use. In our study, we
develop an injector capable of altering the HDF5 checkpoint
files generated by any DL frameworks that support the HDF5
format. With this, we inject bit-flips into any DL framework
without compatibility problems.

III. BACKGROUND

A. Deep Learning Models

DL bases its operation on ANNs, which are algorithms
that specialize in identifying relationships in datasets. One of
the most notable characteristics of these ANNs is that they
can adapt to input changes to learn again without requiring
redesign or changing their output criteria. This feature helps
neural networks emulate a biological neuron system. There
are several neural network architectures with different char-
acteristics, each focused on particular applications. We use
convolutional neural networks and a residual neural network.
A convolution is the application of a filter to an input that
results in an activation that passes as a result to the next
layer [6], [29]. Conversely, residual neural networks represent
a type of network that uses shortcuts or skip connections to
move between layers, meaning that the input of a previous
layer is added directly to the output of another layer [23]. This
allows more layers to be stacked to build deeper networks,
allowing layers to be skipped by determining that they are
less relevant in training.

Two convolutional neural networks were used in this ex-
periment: AlexNet and VGG16. Additionally, one residual
neural network, ResNet50, was used. AlexNet comprises eight
layers (five convolutional and three fully connected) and was
developed in 2012 for the ImageNet LSVRC-2012 competi-
tion [6]. This neural network has 61 million parameters. Based
on AlexNet, VGG16 emerged later in 2014 and increases the
depth of the convolutional networks used. VGG was developed
by the Visual Geometry Group from the University of Oxford.
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Fig. 1: TensorFlow checkpoint mechanism overview.

The name VGG16 refers to its 16 layers (13 convolutional
layers and three fully connected layers), and it has around 138
million parameters [7]. Finally, ResNet50 is one of the variants
of the ResNet neural network and was introduced in 2015.
The value 50 refers to the number of layers in the network.
ResNet50 has more than 26 million parameters.

B. Deep Learning Frameworks

Neural networks can be implemented in a wide variety of
DL frameworks. A DL framework is a tool that allows DL
models to build and run easily and quickly without worrying
about low-level details (i.e., algorithms) through a high-level
programming interface. For this study, the following DL
frameworks were included: Chainer, PyTorch, and TensorFlow.

Chainer [3], [30] is an open-source Python framework that
was introduced in 2015. It uses a defined-by-run scheme (i.e.
Chainer stores the computing history rather than the logic
of programming). In the define phase, a computational graph
is constructed (i.e., instantiation of a neural network object
based on a model definition), and in the run phase, the model
is trained by minimizing the loss function via optimization
algorithms. To support GPUs, Chainer implements CuPy, an
open-source matrix library accelerated with CUDA, that is a
package similar to NumPy.

PyTorch [4] is a tensor DL framework based on the Torch
framework [31] and is deeply integrated with Python. PyTorch
performs executions of dynamic tensor computations with
GPU acceleration and automatic differentiation to completely
automate the difficult task of computing derivatives. Also,
PyTorch provides an array-based programming model to im-
plement the NumPy library.

TensorFlow [5], [32] was based on a system called DistBe-
lief [33] that originated as part of the Google Brain project.
The name TensorFlow is derived from multidimensional data
arrays called tensors with which computations are performed
to express them as dataflow graphs. This graph represents
the computation in an algorithm and the state in which the
algorithm operates.

C. Deep Learning Training Checkpoints

Because DL training can take hours, days, or even weeks
running, all DL frameworks implement mechanisms to save
and resume the state of a training. This mechanism is called
checkpointing. The implementation of the checkpoint mecha-
nisms is not automatic. However, DL frameworks do not in-

corporate sophisticated configuration or optimization options,
so checkpoint are easily implemented. All DL frameworks
studied use their own custom checkpoint format [34]. But,
not all DL frameworks allow data to be saved in HDF5
format [35].

Chainer uses the snapshot extension to implement check-
points. This extension allows the serialization of an object to
save it to an output file. This DL framework saves check-
points in native NPZ format (Numpy’s compressed array
format) and in HDF5 format. For serialization and deserializa-
tion processes, there are specific functions in Chainer called
save_hdf5() and load_hdf5().

Unlike Chainer, PyTorch implements checkpoint serializa-
tion only through the Pickle library [36]. Consequently, to
store a checkpoint in HDF5 format, it is necessary to use
other Python packages, such as H5PY [37]. For this study, it
was necessary to program the serialization and deserialization
processes in PyTorch to save a checkpoint in HDF5 format.
Thus, we implemented our own HDF5 checkpoint tool.1

TensorFlow uses the callback mechanism to interact with
the training process and allow the creation of checkpoints.
Function ModelCheckpoint() is the main callback used
to set parameters and manipulate the checkpoint process.
TensorFlow also allows the programmer to save checkpoints in
native format and HDF5 format. To serialize in HDF5 format,
it is only necessary to set the extension of the output file
name as .h5. Figure 1 illustrates generally the implementation
structure of the process of saving and loading a checkpoint
with TensorFlow.

IV. FAULT INJECTION

A. Hierarchical Data Format

HDF5 is a file format for high-performance input/out-
put [35]. It has become a standard for efficiently handling
large amounts of data, throughout engineering and scientific
communities due to its portable and extensible open-source
design. ”HDF” stands for Hierarchical Data Format because
the way data are organized internally resembles a file system.
An HDF5 file has a collection groups (i.e., folders), which
are sets of objects (i.e., files) or other groups. This way,
groups are attached together to build paths and organize the
data hierarchically. Objects are common data types, such
as strings, integers, floats, arrays, datasets, or even custom
data types [35]. Many scientific applications use HDF5 to
checkpoint, and in many DNNs, the checkpoint contains not
only temporal results but the whole model. Models usually
require a training phase in which values of the model are
refined until a certain threshold is achieved or a fixed number
of refinement steps are performed. After this, the trained model
can be saved to a file for later use.

B. Fault Injector Design

Contrary to the common approach of injecting a fault
during the execution of the application, soft errors are sim-
ulated by altering a previously saved checkpoint file. Thus,

1The source code is available at: https://github.com/elvinrz/Ckpt Py HDF5.
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TABLE I: Settings for the HDF5 checkpoint file corrupter.

Setting Description
hdf5 file The path of the HDF5 file to corrupt
injection probability The probability that each injection attempt is successful

injection type
Either “count” or “percentage”; the former allows an
integer number of injection attempts, the latter allows
a percentage of the file that can be corrupted

injection attempts The value for the injection type

float precision 16, 32, or 64 bit precision to use for each corruption
of a floating-point number

corruption mode

• bit mask, A pattern of bits to flip (e.g., 101101),
the first bit to apply the mask in each value
is randomly selected from [0 to float precision -
length(bit mask)], zeros are padded to both sides
of the mask to match float precision, then we XOR
the mask against the floating-point value

• bit range, [first bit, last bit] a range of corruptible
bits from 0 to float precision −1

• scaling factor, a scale factor to multiply each value

allow NaN values If false, the corrupter does not transform a value to a
NaN or INF

locations to corrupt The list of locations to corrupt; all sublocations inside
a location will be corrupted

use random locations If true, it will ignore locations to corrupt and pick a
random location every time

when the process loads the corrupted model, it continues
execution normally as if nothing happened. We develop an
HDF5 file corrupter application in Python for the experimental
evaluation.2 Some of its settings are described in Table I.

The first step of the injector’s workflow is to have the
definitive list of object’s locations to corrupt. If the setting
use random locations is false, then we use the value of loca-
tions to corrupt. Otherwise, we use all the full paths of the
objects within the HDF5 file. The second step is to calculate
the number of injections attempts. If the injection type is
“count”, then the value of injection attempts is such number,
but if it is “percentage”, then it must count the total number
of entries in the file that can be corrupted to calculate how
many of them represent the specified percentage. By entries,
we mean the numerical values of all the objects in the file; in
dataset objects, the product of their dimensions represents how
many entries that object has. After this, the main loop occurs
in which a random location is chosen from the list for each
iteration, and the injection is attempted. At that point, the value
to corrupt is obtained. If it is a simple numerical value, then it
is the object itself; if it is a dataset, then it is a random index
from its dimensions. We change the value with a probability
of injection probability in the following manner, depending
on the corruption mode. First, the binary representation of
this value is calculated by using the given precision. If the
bit mask setting is used, then it is XOR against this value
(Table I). If bit range is the selected mode, then a bit within
the range [first bit, last bit] is randomly flipped. Otherwise,
the value is simply multiplied by the scale factor. Finally, if
the resulting value is a not a number (NaN) or infinity (INF)
and the allow NaN values is false, then a new corruption
attempt is performed until a valid value is obtained.

This algorithm describes how floating-point values are mod-

2It is hosted on https://github.com/diepe28/hdf5 corrupter

ified. However, if the value to corrupt is an integer data
type, then the corruption process is different. Python has
unlimited precision integer values, meaning that the number
of bytes it takes to represent an integer value is not fixed.
For this reason, we ask Python for the binary representation
of the integer by using the built-in function bin(). After that,
one of those bits is randomly flipped with a probability of
injection probability [38].

The key advantage of this error simulation process via
checkpoint alteration is the fact that is application independent.
No matter the programming language the application is written
on or what it actually does, as long as it checkpoints using
HDF5 files, it can be corrupted using this approach. This
allows multiple corruption scenarios without needing to rerun
the application. After a checkpoint is saved, several versions of
it can be created by using different corruption configurations,
and any of them can be used to restart the application.
Moreover, the process enables error injection at specific stages
of the application’s life cycle, and at any time that a checkpoint
can be created, it is corruptible.

Another benefit comes from being able to understand how
the HDF5 checkpoint file is structured. As mentioned previ-
ously, in many applications, what is saved to these files is the
model that allows the calculations to take place. Therefore, it
is viable to identify the objects that correspond to each part
of the model, and thus corruption can be targeted to specific
sections. In the case of neural networks, for example, it is
possible to corrupt the objects that represent a certain layer of
the network. This error-simulation process can be extrapolated
to other scientific applications, not only DL models.

C. Equivalent Injection

When comparing DL frameworks that run the same model,
it is valuable to have an equivalent error injection (i.e.,
inject the same bit-flips on the same place of a particular
model running on several frameworks). To do this, another
feature was implemented in the fault-injector to save/load the
sequence of bit-flips. We save, in a .json file, the specific bits
that are changed for each value of a given location within the
HDF5 file in a .json file. Using this feature in conjunction
with locations to corrupt allows the user to have a file with
the sequence of bits that are flipped in a specific part of frame-
work A, such as the first layer. However, that same specific
place on framework B can have a different HDF5 path. For
example, the paths “chpt ch vgg e 5.h5/predictor/conv1 1”
and “chpt tf vgg e 5.h5/model weights/ block1 conv1” rep-
resent the first convolutional layer of model VGG using
frameworks Chainer and Tensorflow, respectively. Once the
sequence of bit-flips injected in a particular location for
framework A is saved to a file, the same sequence is replicated
for framework B at its equivalent location by changing the
location string in the .json and loading it using the HDF5
checkpoint file that is produced by running framework B. This
enables an accurate comparison between the frameworks.

We mean equivalent and not equal because each framework
saves the weights of the network differently, and that is
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TABLE II: Computer program versions

Computer tool Version
Linux distribution Red Hat Enterprise Linux (RHEL)
Linux kernel 4.14.0-115.21.2.el7a.ppc64le
Python 3.7.0
H5PY(HDF5 library) 1.10.4
PyTorch library 1.5.0
TensorFlow library 2.2.0
Chainer library 7.7.0
Horovod library 0.22.0

TABLE III: Experimental configurations and concepts

Concepts or
configurations Description

DL Frameworks
Chainer, PyTorch, and TensorFlow. They are used
according to the type of experiment. In some
cases, all 3 DL frameworks are used

Neural network
models

ResNet50, VGG16, and Alexnet. They are used
according to the type of experiment. In some
cases, neural network types are used

Dataset Cifar10. This dataset is used in all experiments

Restart epoch In all experiments that require resuming training,
a checkpoint from epoch 20 was used

Bit-flips Column header. Indicates the number of bit-flips
that are injected into the neural network

DL training Column header. Indicates the number of trainings
that were run in a given experiment

beyond our control. Therefore, saving the dataset and the
index for each bit-flip is not very useful because it cannot
be mapped to a different framework. Replicating a sequence
from one framework to another ensures that the all bit-flips
(same amount and order) occur in values that are part of
the same location in the model, no matter which framework
(e.g., the first convolutional layer of the VGG model using the
frameworks Chainer and Tensorflow).

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

1) Machine and experiment configuration: All experiments
in this paper used the Oak Ridge Leadership Computing
Facility’s Summit supercomputer at Oak Ridge National Lab-
oratory. With a peak performance of 200 PFlops and power
consumption slightly over 10 MW, Summit is listed as the
second fastest supercomputer in the world, according to the
latest TOP500 list of November 2020. The system contains
4,608 nodes, each comprising two IBM POWER9 CPUs and
six NVIDIA Tesla V100 GPUs. Table II lists all versions of
software used in the experiments. This section details the most
relevant concepts and configurations regarding the experiments
performed in Table III.

2) Bit-flip injection process in deep neural networks:
We carry out bit-flip injections in neural network models by
altering checkpoint files in HDF5. The checkpoint contains all
the information of the weights and the structure of the neural
network (i.e., layers); therefore, altering the bits that comprise
the weights stored in the checkpoint files alters the weights of
the neural network. With this, we generate a checkpoint of any
DL framework and any neural network model during training
to perform the injection process and later loaded the altered
checkpoint file to resume execution of the training phase of a
neural network model with errors.

3) Deterministic behavior of Deep Neural Networks: De-
terministic training is a vital part of the experimental setup
to measure differences between error-free training executions
vs. training executions with errors. Neural network models
used in DL are characterized by the randomness of their
execution and results. However, the randomness of the DL
models raises reasonable doubts about the reliability of the
results. Additionally, it restricts the reproducibility of results
and their evaluation [39]–[41]. Thus, to achieve a correct
evaluation in the experimentation, we manipulate the DL
frameworks to obtain deterministic results in the distributed
DL training. Instructions that disable randomness in each
of the DL frameworks are discussed here. Randomness is
caused by factors related to the parallelism of distributed
processes, libraries that are implemented, and the random
nature of DL algorithms. Each framework provides different
types of options to enable or disable randomness, so each DL
framework must be modified according to its characteristics.
Furthermore, to obtain deterministic behaviors in multiple
executions, the same execution conditions must be maintained
in the hardware (e.g., number of GPUs) and software (e.g.,
DL frameworks versions, DL hyperparameters).

Code 1: Instructions to set up deterministic behavior for the
different DL frameworks

1#Shared instructions between DL frameworks
2random.seed(SEED)
3numpy.random.seed(SEED)
4#PyTorch instructions
5torch.manual_seed(SEED)
6torch.cuda.manual_seed(SEED)
7torch.backends.cudnn.deterministic = True
8os.environ[’HOROVOD_FUSION_THRESHOLD’] = ’0’
9#Chainer instructions
10cupy.random.seed(SEED)
11chainer.global_config.cudnn_deterministic = True
12#TensorFlow instructions
13tensorflow.random.set_seed(SEED)
14os.environ[’TF_DETERMINISTIC_OPS’] = ’1’

Code 1 shows the instructions used in each of the DL
frameworks to achieve deterministic executions. All frame-
works share the first two instructions (lines 2–3). These two
instructions initialize the seed of the random number gener-
ators. Therefore, libraries that use random numbers always
generate the same initialization sequences. PyTorch mainly
alters the behavior of the GPU-related libraries (lines 5–
8). The torch.manual_seed(SEED) instruction controls
the generation of random numbers within the framework, so
initializing it forces all processes to follow deterministic pat-
terns. With the instructions (lines 6–7), we make sure that the
operations related to the GPU are deterministic. On the other
hand, when Horovod is implemented for distributed training, it
generates nondeterminism. Therefore, it is necessary to set the
environment variable HOROVOD_FUSION_THRESHOLD to 0
to reduce the threshold of tensors that are combined when they
are ready to be reduced. Chainer uses the CuPy library to speed
up array-related operations with NVIDIA CUDA, so it must be
initialized (line 10). It is also recommended to enable the deter-
minism of the cuDNN library (line 11). To perform distributed
training in Chainer, we use the ChainerMN library, which
does not add additional nondeterminism. With TensorFlow, it
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TABLE IV: Incidence of NaN and extreme values (N-EV).

Chainer PyTorch TensorFlow
ResNet50 VGG16 AlexNet ResNet50 VGG16 AlexNet ResNet50 VGG16 AlexNet

Bit-flips Trainings N-EV % N-EV % N-EV % N-EV % N-EV % N-EV % N-EV % N-EV % N-EV %
1 250 1 0.4 0 0 0 0 1 0.4 1 0.4 0 0 1 0.4 0 0 1 0.4
10 250 18 7.2 7 2.8 15 6 22 8.8 17 6.8 12 4.8 17 6.8 7 2.8 7 2.8
100 250 122 48.8 32 12.8 96 38.4 142 56.8 163 65.2 119 47.6 167 66.8 83 33.2 106 42.4
1000 250 249 99.6 188 75.2 241 96.4 249 99.6 248 99.2 249 99.6 246 98.4 227 90.8 234 93.6

Fig. 2: Range of bits configured to perform bit-flips.

is only necessary to establish its own randomness generator
(line 13). In environments that use GPU, it might be necessary
to force the use of deterministic GPU algorithms through the
environment variable TF_CUDNN_DETERMINISTIC. How-
ever, in this case, it was not necessary. Despite the fact
that the TensorFlow implementation also uses Horovod, the
HOROVOD_FUSION_THRESHOLD function does not influ-
ence the determinism of the executions. Finally, with Tensor-
Flow, to obtain determinism, it is not necessary to modify the
state of GPU-related libraries.

B. Not-a-Number (NaN) and Extreme Values

Weights of a DNN model are represented with floating-point
values following the Institute of Electrical and Electronics
Engineers (IEEE)-754 standard. This format is structured in
three parts—sign, exponent, and mantissa—to represent expo-
nential notation. However, one of the first considerations when
modifying the bits of a floating-point value is the extreme vul-
nerability of these values both in single and double precision.
Floating-point values can change to NaN values or extremely
large values with a few bit changes of the exponent [42].
Sometimes changing a single bit in the float value could
dramatically change the original value. For example, the num-
ber 0.25 represented in 64 bit IEEE-754 format has a binary
exponent of 01111111101. Performing a bit-flip on the most
significant bit (i.e., flipping from 0 to 1) of the exponent would
generate the new number 4.49423283715579e+307, which is
an integer of 307 digits. We use the term extreme values to
refer to integers or floats whose value is so large that it causes
a neural network to collapse when computing with the value.

1) Bits that collapse a neural network: To determine which
bits in the weights of a network can be flipped to collapse it,
the fault injector was configured by changing the range of bits
on which it could operate. In this way, the bits of the exponent
that were considered harmful were excluded. Figure 2 shows
how a 64 bit float value is composed in binary. The mantissa
is structured from bit 0 (least significant) to bit 51 (most
significant). The exponent is structured by 11 bits with bit
62 being the most significant. Bit 63 is used for the sign. For

lower precision floating-point values, a 5 bit of exponent and
a 10 bit mantissa are used in 16 bit floating-point values, and
an 8 bit exponent and a 23 bit mantissa are used in 32 bit
floating-point values. Also, this figure shows the configured
ranges in the fault injector. Blue means it is not flipped, and
gray means it can be flipped. For example, setting first bit to
2 and last bit to 63 tells the injector that the injection range
starts at the second bit of the exponent (61 bit) and extends to
the first bit of the mantissa (0 bit). Only bits of the exponent
are excluded because they are the most significant bits and
can generate the greatest numerical variations. A total of 170
training runs are performed per bit range. In each training, a
checkpoint is loaded into which 1,000 random bit-flips were
injected within the established ranges. The results show that
the training collapses only when the injection range accounts
for the most significant bit of the exponent (i.e., a probability
of 1 in 64).

2) Looking for NaN and extreme values: To determine the
probability of generating a NaN or an extreme value (N-
EV) that collapses a neural network, we carried out another
series of experiments with the three DL frameworks and the
three neural network models. The bit range used includes all
the bits of the floating-point number. The results are shown
in Table IV. The table shows the number of trainings that
collapsed when computing some N-EV and the percentage
that they represent.

In each experiment, 250 trainings were executed and were
injected between 1–1,000 bits-flips. One bit-flip is injected
per weight of the network so that when injecting 1,000 bit-
flips, 1,000 weights of the network are modified. The first
row of the table shows that for each neural network model
(three models per DL framework), 250 trainings are performed
in which a bit-flip is injected into the neural network. As a
result, the impact of a bit-flip is minimal, representing less
than 0.5% of N-EV in all cases. By increasing the number of
bit-flips, the percentage of undesirable values increases almost
proportionally, reaching almost 100% of N-EV with 1,000 bit-
flips in all frameworks. To determine whether this behavior is
a generalizable constant, all neural network models and all DL
frameworks are taken into account. In all cases, an ascending
pattern is found between bit-flips and the N-EV rate. However,
trainings that use VGG16 are less affected than those that use
Chainer and TensorFlow. We believe that VGG’s structure (i.e.,
large size, no skip connections) makes it less susceptible to
the computation of a larger range of extreme values. For this
reason, some trainings might not crash.

Based on our experimentation and the analyses performed
elsewhere [18], [22], flipping certain bits generates extremely
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(a) Chainer with ResNet50. (b) PyTorch with VGG16. (c) TensorFlow with AlexNet.

Fig. 3: Sensitivity to different bit-flip rates. The green line represents a full 100 epoch training without bit-flips injected.

TABLE V: Model sensitivity to 1 bit-flip. RWC stands for the
number of trainings that restarted with no change in accuracy.

Chainer PyTorch TensorFlow
Model Trainings RWC % RWC % RWC %
ResNet50 250 196 78.4 186 74.4 199 79.6
VGG16 250 134 53.6 194 77.6 240 96
AlexNet 250 226 90.4 115 46 247 98.8

large values. These values cause the total collapse of the
network and thus the total collapse of any DL training.
Furthermore, the experiments show that the extremely small
values that could be generated in the weights of the network
are not catastrophic.

C. Bit-Flip Impact

In the next experiments, we omit the most significant bit of
the exponent to ensure that the training was executed without
collapsing the neural network.

1) Sensitivity to a bit-flip: As long as the same hardware
and software parameters were kept, deterministic trainings
allows the same results to be obtained in each of the training
executions. With this, we determine the sensitivity of the neu-
ral network models to the minimum change that is generated
as a result of possible errors. Table V shows an experiment in
which the sensitivity of the models was measured to 1 bit-flip.
Sensitivity was calculated, accounting changes in accuracy.
The experiment was performed with the three DL frameworks
and with the three neural network models. Additionally, 250
trainings were performed per combination between a DL
framework and a neural network model. The table shows the
number of trainings that restarted with no change in accuracy
(RWC) and its corresponding percentage. In the table, 77.7%
of the results correspond to percentages of no change in
accuracy higher than 70%. Only in two cases are percent-
ages of 53.6% and 46% reported with Chainer-VGG16 and
PyTorch-AlexNet, respectively. However, although these two
percentages are low, they only correspond to minor changes
in accuracy without degradation. Also, the DL framework
with the least affectation is TensorFlow with percentages
higher than 95% with VGG16 and AlexNet. Based on this
experiment, we affirm that neural network models are very
resilient with the ability to absorb a bit-flip.Additionally, if the
bit-flip is not absorbed, the impact is shown to be minimal.

Fig. 4: Fault injection in different layers of AlexNet.

2) Sensitivity to different bit-flip rates: There is a high
resilience capacity in the presence of a bit-flip. We develop
other experiments in which a greater number of bit-flips was
injected. The results are shown in Figures 3 and 4. In both
figures, the lines represent the average accuracy of 10 trainings
restarting from epoch 20. Figure 3 shows the behavior of the
three DL frameworks with different neural network models
and different amounts of injected bit-flips. Figures 3a, 3b, and
3c show that regardless of the number of bit-flips injected, the
training shows no degradation in accuracy. Figure 3b shows a
slight improvement in accuracy, but it is the result of not saving
other types of optimization information at the checkpoint and
not an improvement due to bit-flips. Figure 4 shows Chainer
trainings with AlexNet but with bit-flips injected into the first
layer, a middle layer, and the last layer. In the same way,
there is little degradation of the accuracy when injecting in
the intermediate and final layer. However, a training is affected
by inserting the 1,000 bit-flips in the first layer. Although the
training of the first layer degrades when restarting in the course
of the epochs, the accuracy recovers and reaches almost the
same percentage as the training without errors. After these
experiments, we conclude that neural network models are
highly resilient in the presence of errors.

3) Sensitivity to multi-bit masks: Finally, we run an ex-
periment that injected multi-bits based on predetermined se-
quences. These multi-bit sequences are taken from Bautista-
Gomez et al. [43] that studied the presence of multi-bit
errors in memory systems. The experiment used the injector
functionality called bit mask, which allows a multi-bit mask
to be added instead of a single bit-flip. Table VI shows the
results of this experiment in which ResNet50 and five multi-
bit masks were used. The average initial accuracy (AvgI-
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TABLE VI: Multi-bit mask applied to DL framework training.

Chainer PyTorch TensorFlow
Bits Mask AvgI-Acc N-EV AvgI-Acc N-EV AvgI-Acc N-EV
0 00000000 57.6 30.01 39.2
3 10001010 57.3 1 29.9 1 36.8 0
4 01101010 57.1 3 29.9 0 36.6 0
4 10110010 57.4 0 29.1 1 36.7 1
5 11110001 53 0 27.2 0 36.5 3
6 11101101 57.4 1 29.9 2 36.8 3

Acc) and the number of N-EVs detected are reported. In this
case, N-EVs can be generated because the multi-bit masks are
applied randomly in any position within the bits that structure
the weight. The row with 0 bit-flips represents the error-
free accuracy. Additionally, each multi-bit mask is applied
to 10 weights of the neural network, and each training is
performed 10 times. In most results, the accuracy is not
degraded because the multi-bit mask is applied in the mantissa
or in lower priority bits within the exponent. In cases in
which the multi-bit mask was applied in higher priority bits
within the exponent, N-EVs were produced, as is the case
with the multi-bit mask that contains 6 bits. This multi-bit
mask generated an N-EV in all three DL frameworks. The
AvgI-Acc is not altered because these trainings were exclude
to calculate the average. Finally, an interesting case is the 5
bit multi-bit mask since it is the only one that generates an
accuracy degradation in both Chainer and PyTorch. This is
the result of the 4 bits activated within the mask that make
the weight value change so that they generate large values
that degrade the accuracy without generating N-EV. Although
according to the literature, multi-bit errors are unlikely, it is
a case that must be account for to create more robust error
detection and correction systems [44]–[46].

D. Floating-Point Precision

Neural network models are becoming larger and more
complex, demanding a higher level of computation with more
power consumption in many cases due to the precision of
the floating-point values [47]. This has resulted in many
developers implementing precision less than 64 bit or support-
ing mixed precision to represent floating-point values. Many
DL models can tolerate lower arithmetic precision without
degrading their accuracy. This work experimented with bit-
flip injections at different floating-point precisions.

1) Incidence of NaN and extreme values: The first exper-
iment shown in Table VII is related to the incidence of N-
EV values at different floating-point precisions. The results
show the percentage of N-EV in 32 bit and 16 bit precision.
Additionally, the trainings are run with Chainer by using all
three neural network models. The 64 bit models were ignored
because they are contained in Table IV. The percentages
maintained a proportion in regards to the number of bit-flips
performed(i.e., the higher the bit-flip rate, the higher the N-EV
rate). This showed that the incidence of N-EV is not strictly
linked to floating-point precision. On the other hand, there was
a slight reduction in the percentage of N-EV when reaching
1,000 bit-flips in ResNet and AlexNet trainings in 16 bit and

TABLE VII: Incidence of NaN and extreme values in 16 bit
and 32 bit precision.

16 bits 32 bits
Bit-flips DL Train ResNet(%) VGG(%) AlexNet(%) ResNet(%) VGG(%) AlexNet(%)
1 250 0.4 0 0.4 1.2 2.4 2.8
10 250 10.4 11.6 7.2 15.6 17.2 13.2
100 250 59.2 69.2 60 76.8 72.4 68
1,000 250 96 77.2 86 98 78 91.6

TABLE VIII: Prediction under different floating-point preci-
sions and different bit-flip rates.

16 bits 32 bits 64 bits
Bit-flips ResNet VGG AlexNet ResNet VGG AlexNet ResNet VGG AlexNet
0 75.6 84.5 83.1 75.6 84.5 83.1 75.6 84.5 83.1
1 75.75 84.16 84.5 76.1 82.95 83.5 74.65 84.9 83
10 74.6(1) 82.8 82.65 69.1 81 81.3 75.3(2) 82.6 82.2
100 60.2(8) 77.3 73.6 44.6(4) 79.1 80.95 56.4(6) 84.8 78.6
1,000 -(10) 42.6(1) 47.24 -(10) 58 66.2 -(10) 72.8 70.2

32 bit models compared with a 64 bit model. This reduction
is the result of the generation of values that are not so large
that the neural network collapses, such as those obtained in
64 bit models. In the case of VGG, although in 16 bit and
32 bit models do not present a reduction in the percentage
of N-EV with respect to precision in 64 bit model, it is less
susceptible to N-EV in most cases. VGG reaches with 1,000
bit-flips percentages of 77.2, 78, and 75.2% with precisions of
16 bit, 32 bit, and 64 bit models, respectively. This reduction
could be associated with the large size of the neural network
(138 million parameters) that manages to alleviate the effect of
large values through its layers, resulting in a greater tolerance
to degradation.

2) Prediction under different bit-flip rates: We explore the
reliability of the prediction under different precisions. The pre-
dictions were made with Chainer and accounted for the three
neural network models. The results are shown in Table VIII.
A trained checkpoint was used up to epoch 100, which was
injected with bit-flips at different rates and by using different
floating-point precisions. Each result expresses the average
percentage of 10 predictions (each prediction processed 1,000
different images), and the values in parentheses represent
the amount of N-EV that are detected. The detected N-EVs
produce incorrect prediction calculations. Row 1 with 0 bit-
flips represents the average error-free prediction percentage.
Unlike training, the prediction is affected by bit-flips. The
impact is small at low rates of bit-flips but increases at high
rates, going from prediction percentages greater than 80%
without errors to less than 50% with 1,000 bit-flips in the cases
of VGG and AlexNet in 16 bit precision. The neural network
model most affected is ResNet because it is the only one that
generates N-EV in all precisions from 100 bit-flips, and there
is no prediction with 1,000 bit-flips generating N-EV in each
of the 10 predictions. These results are related to the incidence
of N-EV in ResNet that are present in Table IV in which
ResNet with a rate of 100 bit-flips has the highest percentage
in almost all cases. The VGG and AlexNet neuronal models
are less susceptible to N-EVs under these conditions. Finally,
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(a) PyTorch. (b) TensorFlow.

Fig. 5: Equivalent injection in PyTorch and TensorFlow.

at 64 bit precision, VGG and AlexNet are not very sensitive
to bit-flips with a degradation of no less than 70% with 1,000
bit-flips. Consequently, with lower precision, the degradation
of the prediction percentage is greater. With the results of this
experiment, we conclude that the bit-flips can directly affect
the results of the predictions, depending on the precision of
the floating-point values.

E. Soft-Error Reproducibility Across Frameworks

We contrast different frameworks using equivalent injection
(Section IV-C). The injector saves a log with three types of
information: (1) the number of weights that are modified with
the bit-flips, (2) the position of the bit that is flipped, and
(3) the layer in which the weight is located. The experiment
is divided into three sub-experiments. In each sub-experiment,
a different layer of the neural network was injected, and the
generated log file was later loaded into other DL frameworks.
The log file is generated with Chainer and AlexNet. Figure 4
shows the accuracy of these trainings with 1,000 bit-flips.

The log files generated with Chainer are loaded by the
injector, which subsequently performs the injections.With this,
it is possible to perform an injection referred to as equivalent
in PyTorch and TensorFlow trainings. The exact same values
cannot be modified in the two DL frameworks that loaded the
log because they save the weights in different configurations.
Figure 5 shows the results of the equivalent injection in
PyTorch and TensorFlow. The bit-flips are injected into the
three different layers of the AlexNet neural network model.
Figures 5a and 5b show that there is no degradation in accuracy
in the training after the injector loaded the log and injected the
bit-flips. The bit-flips are clearly absorbed by the computation
of the neural networks within the trainings.

By analyzing the behavior of the DL frameworks for this
specific experiment we determine that the least robust DL
framework is Chainer (Figure 4). It was clearly was observed
that the training that injects in the first layer shows the greatest
degradation in the accuracy. Despite the fact that both PyTorch
and TensorFlow were injected for the same number of bit-flips
in the same layers and in the same bit positions, the accuracy
degradation is minimal. Possibly increasing the bit-flip rate or
using another technique, such as the scaling factor (Section
VI), can generate notable differences between frameworks.

(a) First layer. (b) Middle layer. (c) Last layer

Fig. 6: Propagation of errors in a neural network.

F. Soft Error Propagation

In DL training, each time an epoch is executed, the training
dataset is processed, and the weights of the neural networks
are adjusted based on the calculated error until predictions
with sufficient accuracy are obtained. This weight update is
performed in each of the layers of the network. We implement
an experiment with TensorFlow using AlexNet to understand
how errors are propagated. This neural network was selected
because it has the fewest number of layers of the three neural
networks being studied. This allows us to explore fewer layers
to analyze error propagation. The propagation of errors was
analyzed by injecting into the first, intermediate, and final
layers of the neural network. The weights of an error-free
checkpoint from epoch 30 were compared with the weights of
a checkpoint from the same epoch with 1,000 injected bit-flips.
To compare the same epochs, the checkpoint was injected with
the bit-flips in epoch 20 and was trained for 10 epochs until
reaching epoch 30. The propagation was calculated based on
the difference between the value of the error-free weights and
the same weights of the checkpoint injected with the bit-flips.

AlexNet is built by eight layers, so layer 1 (convolutional)
was the first layer, layer 4 (convolutional) was the middle layer,
and layer 8 (fully connected) was the last layer. Figure 6 shows
the propagation of the errors in three boxplots according to
the layer in which errors are injected. The boxplots represent
the differences that exist in the weights when comparing
a checkpoint without alteration regarding a checkpoint with
1,000 bit-flips in a certain layer. Only weights with differences
are used.

Figure 6a represents the injection of bit-flips in the first
layer of the neural network. The boxplots reflect a greater
range of differences, which indicates that the layer suffered the
greatest value alterations. A different effect occurs in Figure 6b
in which the intermediate layer shows a significant reduction
in the range of differences. This indicates that affectation is
minimal at this layer. This could be the result of its large
size, compared with the first and last layers, which makes the
bit-flips better absorbed. Figure 6c shows the last layer with a
modest behavior among the three layers. These results suggest
that by injecting the bit-flips into the intermediate layer, the
absorption effect is generated, which reduces the effect of
errors in other layers. The injection into the final layer shows
a behavior similar to that of the intermediate layer, which is
the result of a reduced propagation effect when performing
the backpropagation stage.
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VI. DISCUSSION

1) Robustness of DL platforms: The experimental results
evidence how solid DL models and frameworks are in the
presence of SDCs. That strength comes mostly from the IEEE-
754 floating-point number format and the value range of the
weights for the models. There is practically only one critical
bit. Flipping that bit would mean certain disaster, whereas
inverting a subset of the other bits might not alter the final
result. If the detection of N-EV was implemented at either
the hardware or software level, then DL platforms would be
virtually unbreakable.

2) Trade-off in floating-point number representations: The
literature of the last decade is rich in studies of numerical
methods and systems by using low or mixed precision. The
motivation for using lower precision in codes is twofold. Not
only are low-precision codes equally accurate in some cases
but they are faster and more energy efficient. However, the
results highlight the increased sensitivity of DL models when
lower precision is used, which is an important trade-off to
consider.

3) Dramatic neural network corruption: Because DL mod-
els appear to be highly resilient to bit-flips, we decided to
explore the limits of such resiliency. Instead of injecting a bit-
flip into a value, we used a scaling factor to alter that value.
Depending on the scaling factor, the number of overturned
bits might reach half of them. The heat map in Figure 7
represents the behavior of the accuracy under different scaling
factors. The y-axis represents the number of weights affected
by the scale factor per training. The trainings were executed
with Chainer and ResNet50. Each cell depicts the average of
10 executions. The baseline accuracy is 0.576. The effect of
scaling values is dramatic. Modifying 10 values with a scaling
factor of 4,500 could cut accuracy in half.

4) Deterministic behavior of distributed training: The
source of nondeterminism is usually considered helpful in
DL trainings because it prevents undesirable effects, such
as overfitting. Nevertheless, such nondeterminism prevent us
from validating and reproducing the effects of error injection.
In this study, we realized that the features offered by DL
frameworks to generate deterministic results in training are not
always reliable. In some cases, the framework developers do
not ensure complete deterministic behaviors between versions
and/or platforms (e.g., hardware, software). We believe that
DL frameworks should provide easy-to-implement and reliable
mechanisms that allow for the reproduction of results and the
appropriate validation of the experiments.

5) Universal fault injector: The checkpoint alteration
mechanism provides a flexible platform for studying the effects
of SDC in scientific codes. It does not capture all possible
errors on a real execution because bit-flips in the code segment
are not emulated. However, we claim that bit-flips in the
data segment are much more predominant as data, particularly
for DL models, and represent an overwhelming fraction of
all transistors occupied by program execution. Checkpoint
alteration is a noninvasive strategy that can be used on any
DL model and framework that the produces a checkpoint

Fig. 7: Accuracy of a model altered with scaling factors.

file. It allows different models, frameworks, and even data
representations (e.g. floating-point precision) to be evaluated.
Additionally, it is possible to provide certain guarantees, such
as equivalent injection across DL frameworks. We argue that
checkpoint alteration is applicable to the whole spectrum of
scientific codes. Traditional iterative solvers of systems of par-
tial differential equations or particle-interaction codes are well-
suited for this technique. Moreover, irregular graph algorithms
would also fit our scheme if they produce a comprehensive
checkpoint file.

6) Application-level vs. system-level checkpoint: This study
focused on understanding the effects of bit-flips on different
DL models and frameworks through checkpoint alteration.
Checkpoint files are produced by either the frameworks or the
programmer. In either case, both represent application-level
checkpoints in which only the data required for a future restart
are saved. Therefore, temporary and auxiliary data structures
are not included in the checkpoint. Conversely, a system-level
checkpoint includes the state of all hardware, including state-
of-the-art memory hierarchy (e.g., caches, registers). Broadly
speaking, checkpoint alteration could be applied to that sce-
nario and model a wider spectrum of errors in the system.

VII. FINAL REMARKS

As DL models continue to permeate many scientific dis-
ciplines, it becomes crucial to understand how they integrate
with the remainder of the HPC ecosystem. In particular, SDC
in hardware components of supercomputers has been a major
concern for scientific codes. This paper leverages checkpoint
alteration as a mechanism to delve into the effects of SDCs
for DL models and frameworks. We create a parameterized
HDF5-based checkpoint file fault injector that alters the values
of a DL model by flipping bits according to several control
knobs. As long as an HDF5 checkpoint file is produced, the
injector works with any model and any framework without
requiring any modification. This machinery was tested with
three popular DL models and three main DL frameworks on
Summit. We find the models are extremely resilient as long
as a crucial bit in the IEEE-754 format of their values is not
inverted. The results also highlight which scenarios provoke
the most damage to model training and execution. We envision
several directions in which this research can be extended. Not
only more DL models and frameworks could be analyzed but
different checkpoint file formats could also be explored. Our
strategy could be applied to traditional iterative simulation
codes or data science algorithms.
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