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Whole genome sequencing delineates regulatory, copy number,
and cryptic splice variants in early onset cardiomyopathy
Robert Lesurf 1,28, Abdelrahman Said 1,28, Oyediran Akinrinade 1,2, Jeroen Breckpot 3, Kathleen Delfosse 1, Ting Liu 1,
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Anastasia Miron1, Qian Yang1, Guoliang Meng8, Michelle Chan Seng Yue9, Wilson W. L. Sung 10, Bhooma Thiruvahindrapuram 10,
Jane Lougheed 11, Erwin Oechslin 12, Tapas Mondal 13, Lynn Bergin 14, John Smythe15, Shashank Jayappa 16, Vinay J. Rao 16,
Jayaprakash Shenthar 17, Perundurai S. Dhandapany16, Christopher Semsarian 18,19, Robert G. Weintraub20,21,
Richard D. Bagnall 19, Jodie Ingles18,22, Genomics England Research Consortium*, Marta Melé 6, Philipp G. Maass 1,4,
James Ellis 4,8, Stephen W. Scherer 1,4,10,23 and Seema Mital 1,24,25✉

Cardiomyopathy (CMP) is a heritable disorder. Over 50% of cases are gene-elusive on clinical gene panel testing. The contribution
of variants in non-coding DNA elements that result in cryptic splicing and regulate gene expression has not been explored. We
analyzed whole-genome sequencing (WGS) data in a discovery cohort of 209 pediatric CMP patients and 1953 independent
replication genomes and exomes. We searched for protein-coding variants, and non-coding variants predicted to affect the
function or expression of genes. Thirty-nine percent of cases harbored pathogenic coding variants in known CMP genes, and 5%
harbored high-risk loss-of-function (LoF) variants in additional candidate CMP genes. Fifteen percent harbored high-risk regulatory
variants in promoters and enhancers of CMP genes (odds ratio 2.25, p= 6.70 × 10−7 versus controls). Genes involved in α-
dystroglycan glycosylation (FKTN, DTNA) and desmosomal signaling (DSC2, DSG2) were most highly enriched for regulatory variants
(odds ratio 6.7–58.1). Functional effects were confirmed in patient myocardium and reporter assays in human cardiomyocytes, and
in zebrafish CRISPR knockouts. We provide strong evidence for the genomic contribution of functionally active variants in new
genes and in regulatory elements of known CMP genes to early onset CMP.
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INTRODUCTION
Cardiomyopathy (CMP) is a primarily genetic disease with a
prevalence of 1:500 to 1:2500 in the general population and an
estimated 20 million people worldwide living with the disease1.
Several thousand new cases are diagnosed annually in North
America2. A third are inherited, the remainder is sporadic, with
most cases being autosomal dominant caused by rare variants in
genes that impact muscle structure and function3. There are five
phenotypes—hypertrophic (HCM), dilated (DCM), restrictive
(RCM), left ventricular non-compaction (LVNC), and arrhythmo-
genic (ACM) cardiomyopathy. There is considerable genetic
overlap between different CMP subtypes. Cardiomyopathy has a
high penetrance and is the leading cause of heart failure and
sudden cardiac death in childhood4,5. The genetic basis of early
onset CMP has not been comprehensively evaluated.

While sarcomere genes like MYH7 and MYBPC3 explain over
50% of HCM, other CMPs are polygenic. Despite the inclusion of
over 100 putative CMP disease genes in clinical testing panels, a
majority of cases remain gene-elusive6,7. Standard panels only
capture small sequence-level variants within the coding regions of
known CMP genes and miss hard-to-sequence regions, most
intronic splicing events, structural variation, and new candidate
CMP genes. Further, these panels do not evaluate the non-coding
genome that harbors DNA regulatory sequences including core
and proximal promoters and enhancers, as well as distal
regulatory elements8. Variants in these regulatory elements can
disrupt the transcriptional activation process through alterations
in chromatin structure, non-coding RNA, transcript stability, and
DNA sequence alteration of transcription factor binding sites
(TFBS).
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Whole-genome sequencing (WGS) studies are beginning to
identify novel genetic variants in pediatric and familial disor-
ders9,10. In autism spectrum disorder, WGS identified putative non-
coding regions as hotspots for de novo germline variants11, new
candidate risk genes12, and novel variant types13. Recently, WGS
identified a higher burden of de novo variants in the enhancers of
disease-associated genes in congenital heart disease patients
compared with controls14. These studies did not validate the
variant impact on endogenous gene expression in patient
myocardium, and only 5 of the 31 enhancers identified in
congenital heart disease were associated with altered transcrip-
tion levels of the target genes.
Here, we used WGS to characterize all classes of genetic

variation in a well-phenotyped discovery cohort of childhood-
onset CMP. WGS identified copy number variants (CNVs), cryptic
splicing variants, high-risk regulatory variants associated with
known CMP genes, and loss-of-function (LoF) variants in additional
candidate genes that would not have been detected on clinical
genetic testing. The function of the most important variants was
confirmed by measuring endogenous gene expression in patient
myocardium, human cardiomyocyte (CM)-based reporter assays,
and CRISPR gene editing of zebrafish embryos. This precision
variant discovery framework for WGS coupled with comprehen-
sive functional genomics provides an important paradigm for WGS
application in CMP.

RESULTS
Our overall analysis found that in 209 unrelated probands in the
discovery cohort, 77 (37%) cases harbored pathogenic (including
likely pathogenic) protein-coding single nucleotide variants (SNVs)
and indels, 5 cases (2%) harbored CNVs in known CMP genes, and
10 (5%) cases harbored high-risk LoF variants in additional
candidate genes. An additional 15% of cases harbored high-risk
variants in regulatory elements of CMP genes. Of these, only 48
variants (31% cases) were known on prior clinical genetic testing.
Variant distribution by CMP subtype, by the patient, and by gene
category is shown in Fig. 1.

Protein-coding SNVs, indels, CNVs, and cryptic splice site
variants in known CMP genes
The majority (66%) of pathogenic protein-coding variants were in
sarcomere genes, a significant enrichment compared to other
gene categories (p= 3.99 × 10−29) (Supplementary Tables 1 and
2). HCM cases had a higher yield of pathogenic variants compared
to other phenotypes [odds ratio (OR)= 2.8, 95% confidence
intervals (CI): 1.5–5.2, p= 7.07 × 10−4]. Except for one variant in a
secondary CMP gene (LAMP2), and three variants in Tier 2 genes
(CTNNA3×2 and RYR2), the remainder were in Tier 1 primary CMP
genes. Only three cases harbored homozygous variants. Five cases
harbored pathogenic CNVs, none of which were detected on
clinical testing. Of note, two pathogenic, heterozygous, intronic
cryptic splice variants were identified—FLNC:c.7562–2_7581dup
and MYBPC3:c.1224–52G > A, which was recently reported in
South Asian HCM cases15. In addition, two pathogenic, hetero-
zygous, protein-coding variants (MYBPC3:p.G148R and VCL:p.
K983fs) were predicted to create new cryptic splice sites, which
may represent alternative mechanisms for the functional disrup-
tion of these genes. MYBPC3:p.G148R was also identified in three
HCM cases in the replication cohorts. Overall, WGS detected
pathogenic protein-coding variants in an additional 8% of cases
not detected on clinical gene panel testing.
A unique feature of our biobank is access to myocardial samples

from patients undergoing cardiac surgery or transplantation. LV
myocardial mRNA expression was below the 25th percentile in
patients harboring LoF SNVs/indels (DSC2, FLNC, MYBPC3) or single
deletion CNVs impacting the promoter and first exons of JPH2 and

NEXN, and exon 11 of CTNNA3 compared to controls (Fig. 2d–f).
The observed impact of coding variants on endogenous gene
expression in the target organ supports the use of patient
myocardium to validate variant pathogenicity.

Protein-coding LoF variants in new candidate CMP genes
WGS provided an opportunity to explore new biologically-relevant
genes that are not routinely captured on CMP gene panels. We
identified rare LoF variants in 10 candidate genes in CMP patients
who were previously gene-elusive (5% of the cohort) (Supple-
mentary Table 3). This included a patient with DCM born of
consanguineous parents who was homozygous for an LoF variant
in NRAP as displayed in Fig. 2g. Homozygous or bi-allelic variants
in NRAP have been reported as disease-causing in patients with
DCM in several studies16,17. The patient in our study cohort was
diagnosed with severe DCM that progressed to LV RCM
physiology requiring cardiac transplantation by 7.7 years of age.
Using LV myocardium from this patient, we confirmed that NRAP
mRNA and protein expression were significantly downregulated
compared to controls (Fig. 2h). Several patients in the replication
cohorts harbored heterozygous NRAP variants but not homo-
zygous or bi-allelic variants.
We identified two patients in our study cohort who were

heterozygous for LoF variants in FHOD3, one with DCM and one
with HCM. Six patients in our replication cohorts also harbored
heterozygous LoF FHOD3 variants. The heterozygous FHOD3:p.
T502fs variant observed in our patient with DCM was also found in
a 100,000 Genomes Project patient with DCM, and three different
heterozygous splice variants in FHOD3 were observed at the same
site in patients in the replication cohorts, all with HCM: c.1646+
1G > C in an Australian patient18, c.1646+ 1G > T in a 100,000
Genomes Project patient, and c.1646+ 1G > A in three 100,000
Genomes Project patients, suggesting a variant hotspot (Supple-
mentary Fig. 1a; Supplementary Table 3).
Of other genes harboring LoF variants in our discovery cohort,

rare LoF variants in PDE4DIP (n= 5), PTGDS (n= 1), SMURF1 (n= 1),
and TRPM4 (n= 4) were also seen in our replication cohorts.
Variants in these other candidate genes did not show obvious
variant hotspots. Details of all LoF variants in these candidate
genes in the discovery and replication cohorts are provided in
Supplementary Table 3.
For rapid surveillance of gene function in vivo, we induced

directed CRISPR–Cas9 knockout of the two most promising
candidate genes, nrap and fhod3, in zebrafish embryos (Supple-
mentary Fig. 1). 22% nrap mutants and 26% fhod3ab mutant
embryos showed an abnormal cardiac phenotype compared to
0% of Cas9 only control, including atrial enlargement and reduced
ventricular end-diastolic dimensions suggestive of an RCM CMP
phenotype (p < 0.01 vs. controls). The embryos were not followed
postnatally to determine if the phenotype evolved further. The
patient with homozygous NRAP LoF variants in our discovery
cohort did show a RCM physiology in the context of DCM, while
patients with FHOD3 variants primarily displayed either HCM or
DCM consistent with published reports19–22. Together with
previously published studies16–23, these findings provide strong
support for a role for LoF variants in NRAP and FHOD3 in causing
CMP. Overall, we identified pathogenic or high-risk coding SNVs,
indels, and CNVs in known and candidate CMP genes in 44% of
cases in our discovery cohort.

Regulatory variants associated with CMP genes
Using our previously defined criteria for regulatory variant
prioritization, we identified high-risk regulatory variants associated
with CMP genes in an additional 15% cases in the overall cohort or
23% of gene-elusive cases. These included 31 prioritized
regulatory SNVs in 16 genes (Supplementary Table 4) and a
high-risk CNV in a regulatory element of TGFB3 (Supplementary
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Fig. 1 Yield of protein-coding and regulatory variants in 209 unrelated childhood CMP cases. a Flow-chart showing the selection process
and yield of protein-coding and regulatory variants in the overall cohort and in the gene-elusive subset. Totally, 39% of all cases harbored at
least one pathogenic protein-coding variant in a CMP gene; among the remaining 128 gene elusive cases, 15% harbored at least one
prioritized high-risk regulatory variant in a CMP gene; and an additional 5% harbored an LoF variant in a new candidate CMP gene. b Pie
diagram showing the distribution of protein-coding and regulatory variants in CMP genes and LoF variants in new CMP genes across the
cohort (n= 209). WGS identified putatively pathogenic protein-coding SNVs/indels/CNVs in CMP genes in 39% of cases, high-risk variants in
regulatory elements of CMP genes in an additional 15% of cases, and loss of function (LoF) variants in candidate genes in an additional 5% of
cases. c Variant distribution by CMP subtypes: HCM cases had a higher yield of pathogenic protein-coding variants compared to other CMP
subtypes (odds ratio 2.8, CI: 1.5–5.2, p= 7.07 × 10−4). d Variant burden by the patient: 9 cases (4.3%) had multiple protein-coding variants in
known CMP genes, 2 cases (1.0%) had multiple prioritized regulatory variants, and 21 cases (10.0%) had both protein-coding and regulatory
variants in CMP genes. Regulatory variants in all cases were further prioritized if they were active in human LV, were rare in control
subpopulations (Popmax AF < 0.1%), and were associated with genes enriched in cases versus controls with OR ≥ 1.3. e Variant distribution by
functional gene categories: of all the pathogenic protein-coding variants, 66% was in sarcomere genes which represented a significant
enrichment compared to other gene categories (binomial p= 3.99 × 10−29). Conversely, none of the high-risk regulatory variants were in
sarcomere genes. Tier 1 gene and primary CMP gene classifications are denoted by plus symbols. CMP cardiomyopathy, SNV single nucleotide
variant, CNV copy number variant, gnomAD Genome Aggregation Database, ACMG American College of Medical Genetics; Association for
Molecular Pathology (AMP), TFBS transcription factor binding site, P/LP pathogenic or likely pathogenic, LoF loss of function, HCM
hypertrophic cardiomyopathy, DCM dilated cardiomyopathy.
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Table 2). The majority of genes (12 of 16) enriched for high-risk
regulatory variants were primary CMP genes. Case–control burden
analysis using the ICGC control cohort confirmed an enrichment of
regulatory variants in cases compared to controls (OR= 2.25, 95%
CI: 1.65–3.07, p= 6.70 × 10−7) (Fig. 3). The top four enriched genes

were in two pathways: (i) α-dystroglycan glycosylation i.e., FKTN
(OR= 58.1, CI: 3.1–1083) and DTNA (OR= 6.7, CI: 3.0–14.8), or (ii)
desmosomal i.e., DSC2 (OR= 32.0, CI: 1.5–668) and DSG2 (OR=
10.6, CI: 1.4–81). None of the variants were de novo amongst
probands with complete trio data. Due to the enrichment of
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regulatory variants in FKTN and DTNA, we expanded our search to
additional dystroglycanopathy genes (LARGE1, POMT1, POMT2)
and identified two regulatory variants of interest in LARGE1 in
gene-elusive cases (Supplementary Table 4). One of the 31
prioritized variants was seen in two unrelated probands (Supple-
mentary Table 4).
In an independent replication cohort of 1266 CMP probands

from the 100,000 Genomes Project, we found a positive
correlation between the discovery and replication cohorts for
genes enriched for high-risk regulatory variants (Spearman ρ2=
0.555, p= 9.36 × 10−4) with the top four genes being the same in
both cohorts with ORs ranging from 1.6 to 13.7 (Fig. 3c).
Pathogenic protein-coding variants were enriched in genes

related to muscle contraction, including binding of actin, troponin
C, calmodulin, and protein kinase (Supplementary Fig. 2). In
contrast, prioritized regulatory variants were enriched primarily in
pathways related to cell adhesion that included genes involved in
α-dystroglycan binding and desmosomal signaling. Unlike protein-
coding variants, none of the prioritized high-risk regulatory
variants were in sarcomere genes. Of note, 32 (15.3%) cases
harbored multiple coding and/or regulatory variants in known
CMP genes which included 4.3% with multiple protein-coding
variants, 1.0% with multiple regulatory variants, and 10.0% with a
combination of both variant types (Fig. 1d). Seven genes (DSC2,
DSG2, JPH2, LAMP2, NEXN, PRKAG2, VCL) harbored high-risk
variants in both coding and regulatory regions. Multiple variants
were more common in HCM cases compared with other CMP
subtypes (OR= 2.67, CI: 1.25–5.70, p= 0.013).

Functional assessment of regulatory variants: association with
myocardial gene expression
We selected regulatory variants in seven genes (BRAF, DSP, DTNA,
FKTN, LARGE1, PRKAG2, TGFB3) for functional analyses based on
the availability of LV myocardium from variant-positive patients.
Supplementary Fig. 3 shows high-risk regulatory variants in these
eight genes in our discovery cohort and the 100,000 Genomes
Project cohort, overlaid on the background of the frequency
distribution in the gnomAD reference population24. Most regula-
tory loci were highly constrained in gnomAD. Supplementary Fig.
4 shows the single nucleotide change in the variant of interest in
our discovery cohort compared to wild-type sequence and the
predicted effect on TF binding motifs.
Myocardial gene expression changes provide critical evidence

for the effect of regulatory variants on endogenous gene
transcription. When compared to controls, myocardial mRNA
and/or protein expression was downregulated in target genes
among patients harboring a BRAF, FKTN, or LARGE1 promoter
variant (Fig. 4). Conversely, target gene expression was upregu-
lated in patients harboring a DSP promoter variant, PRKAG2
enhancer variant, or TGFB3 enhancer variant. These findings
derived directly from the myocardium of patients harboring

variants of interest confirmed that SNVs within key regulatory
elements had an impact on functional gene products and provide
important supporting evidence for a variant effect.

Functional assessment of regulatory variants: Effect on gene
transcription using reporter assays
Luciferase reporter assay. Cloned promoter variants of BRAF,
DTNA, FKTN, and LARGE1 reduced luciferase activity compared to
reference sequences, while a promoter variant of DSP, a second
promoter variant of LARGE1, and an enhancer variant of TGFB3
significantly increased luciferase activity in human iPSC-derived
CMs (Fig. 5a). This suggests a direct regulatory effect of these SNPs
on target gene transcription. Massively parallel reporter assay
(MPRA): To assess the functional effect of additional regulatory
variants in prioritized genes on transcriptional activity, we used a
high throughput MPRA in human iPSC-CMs (Supplementary Fig.
5b–e, Supplementary Table 5)25. Of the 46 variants examined, 25
variants (54%) showed significant transcriptional differences
between the two alleles (FDR < 0.05) with log2-fold change
ranging from −2.72 to +2.23. This represented 23 additional
variants with high regulatory activity besides the ones validated in
the previous myocardial and luciferase reporter assays. The BRAF
variant chr7:140624223:G:A had significant but opposite effects on
gene expression in the MPRA and luciferase assays, i.e., increased
promoter activity on MPRA, but reduced activity on luciferase
reporter assay. The MPRA uses short oligonucleotides that provide
a high-throughput assay to screen variants for regulatory activity.
For quantification and directionality of change in gene expression,
luciferase assay findings are considered confirmatory. Overall, of
49 regulatory variants that underwent functional evaluation
through a combination of tissue studies, luciferase and/or MPRA
reporter assays, 32 (65%) were confirmed to have regulatory
activity. Therefore, our findings revealed a significant contribution
of regulatory SNVs and CNVs in CMP genes (15% cases), and a
small but notable contribution of LoF protein-coding variants in
new candidate CMP genes (5% cases) in gene-elusive patients
with CMP.
In summary, WGS not only confirmed causal variants previously

identified on clinical genetic testing, but detected additional
protein-coding variants, cryptic splice site variants and CNVs in
CMP genes in another 8% of cases that would not have been
found using conventional genetic testing. In the remaining cohort,
WGS identified 15% of patients with rare, functionally active high-
risk regulatory variants in known CMP genes and 5% patients with
high-risk LoF variants in additional candidate CMP genes.

DISCUSSION
WGS yields a large number of germline protein-coding and
regulatory variants. An understanding of their contribution to
human disease has been hampered by a lack of systematic

Fig. 2 Effect of loss of function and copy number deletions in CMP genes on myocardial gene expression. The figure shows LV myocardial
gene expression using RNA sequencing in the patient harboring a loss of function or copy number deletion (red dot) compared to other cases
without the variant (gray dots) (n= 35 cases). a–c Three pathogenic loss of function variants predicted to result in nonsense-mediated decay
of mRNA. Scaled RPKM expression of target mRNA of variants in DSC2 (stopgain), FLNC (splice acceptor), MYBPC3 (frameshift deletion) are
below the 25th percentile compared to the remaining cohort; d–f The left panels show the genomic location of three single CNV deletions in
CTNNA3, JPH2, NEXN genes. The right panels show scaled RPKM expression of target mRNA below the 25th percentile compared to the
remaining cohort. g Location of loss of function variant in NRAP (ENST00000359988) in the discovery cohort (orange dot). gnomAD
background density maps of frameshift, splice site, and premature stop variants are shown. h Myocardial NRAP expression: RNA-seq analysis
demonstrated low NRAP mRNA expression (<75th percentile) in the LV myocardium of a DCM patient harboring a homozygous frameshift
variant (chr10:115401188_T/TAGCG) (red dot) compared to 34 CMP patients without the variant (black dots). The boxplot shows median
expression for the cohort, 25th and 75th percentiles, and lower and upper limit values. qRT-PCR confirmed the reduction of NRAP mRNA
expression in patients with the variant compared to 2 CMP patients without the variant i.e., WT (*p < 0.05 vs. WT). Western blot confirmed
downregulation of NRAP protein expression in the patient with the variant compared to three CMP patients without the variant on
representative Western blot images (*p < 0.05 vs. WT). RPKM reads per kilobase of transcript, per Million mapped reads, gnomAD Genome
Aggregation Database, WT wild-type, mut mutant, 2ΔΔCt the relative fold change in mRNA abundance between samples as a function of
polymerase chain reaction thresholds.
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Fig. 3 Regulatory variant burden in cases (n= 209) and controls (n= 1326). a There was a significant enrichment of high-risk regulatory
variants in CMP genes in the cases (orange) compared to controls (blue) (OR 2.25, 95% CI: 1.65–3.07, p= 6.70 × 10−7). b Burden of regulatory
variants genes in cases in the discovery and 100,000 Genomes Project cohorts versus controls. Top 4 genes enriched for regulatory variants
compared to controls included FKTN (OR= 58.1, CI: 3.1–1083), DTNA (OR= 6.7, CI: 3.0–14.8), DSC2 (OR= 32.0, CI: 1.5–668) and DSG2 (OR= 10.6,
CI: 1.4–81). Tier 1 gene and primary CMP gene classifications are denoted by plus symbols. c Replication cohort (n= 1266): scatter plot showed
a positive correlation between genes enriched for high-risk regulatory variants in the CMP discovery cohort vs the 100,000 Genomes Project
replication cohort (Spearman ρ2 0.555, p= 0.000936) with the top genes being similar in both CMP cohorts (FKTN, DTNA, DSC2, DSG2).
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bioinformatics and functional approaches tailored to the disease
under study. Through WGS, we identified deleterious protein-
coding variants in 39% of our CMP cohort, of which 8% were
patients who would have been deemed gene-elusive on clinical
testing. This increase in diagnostic yield for protein-coding
variants with WGS is related to the ability of WGS to detect CNVs,
deep intronic cryptic splice site variants, and variants in CMP
genes not routinely captured by commercial panels (e.g., FLNC)26.
Additionally, 5% patients harbored deleterious variants in new

candidate genes and another 15% harbored high-risk regulatory
variants not previously reported in CMP. An important subset of
these variants had an effect on exogenous and endogenous gene
expression in tissue studies and reporter assays thereby providing
strong evidence for their regulatory activity. These validated
variants accounted for almost half the number of gene-elusive
CMP cases in our cohort.
We applied rigor to our CMP gene selection to avoid including

genes with an uncertain association with CMP. We included 84
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genes with a reported clinical association with CMP that are
offered on clinical gene panels of which 20 genes harbored
pathogenic coding variants, the majority of which were primary
CMP genes. Only one patient harbored a heterozygous frameshift
variant in LAMP2, a secondary CMP gene associated with Danon
disease. This patient did not have extra-cardiac findings of Danon
disease at the time of the last follow-up at age 15 years. While this
may reflect incomplete penetrance of extra-cardiac findings,
studies have reported that extra-cardiac manifestations can be
absent or delayed in those with secondary CMP, including those
with Danon disease27. This reflects our rationale for including
secondary CMP genes and also Tier 2 genes in our study since
variants in these genes can contribute to the cardiac
phenotype 28,29.
An important finding was the identification of CNVs and cryptic

splice site variants using WGS. Specifically, we observed both
intronic and protein-coding variants predicted to create patho-
genic cryptic splice sites in CMP genes. Since clinical laboratories
do not routinely test for such variants, it is difficult for them to rely
on prior knowledge regarding their pathogenicity. WGS is not only
highly sensitive in the detection of such variants but we were also
able to confirm changes in myocardial gene expression in patients
harboring these variants as further support for their functional
effects. These variants represent alternative mechanisms for the
functional disruption of genes, and further expand the genetic
basis of our CMP cases.
Our study also provided evidence for the contribution of

variants in emerging candidate genes that are not yet routinely
captured on gene panels10,16–23. NRAP, FHOD3, and PDE4DIP are
important in the maintenance of the cardiac sarcomere and actin
cytoskeleton, and have been associated with CMP in mouse
studies and small case series10,16–23. LoF variants in these genes
were found in DCM and HCM patients in the discovery and
replication cohorts, including a patient with a rare homozygous
frameshift variant in NRAP born of consanguineous parents,
consistent with the association of bi-allelic LoF NRAP variants in
DCM16. While most pathogenic FHOD3 variants reported thus far
have been missense variants, we identified several LoF variants
that were clustered within the same exon as other previously
reported pathogenic variants, including a frameshift variant in our
discovery cohort that was also seen in an independent replication
cohort. Our findings support a role for LoF variants in FHOD3 in

CMP and are consistent with the relatively low number of FHOD3
LoF variants observed in controls [gnomAD LoF o/e 0.246
(0.166–0.374)]. Zebrafish models with CRISPR-Cas9 knockouts of
FHOD3 and NRAP orthologs further validated that the loss of these
genes has a functional effect on the heart. While the zebrafish
phenotypes suggested a RCM CMP, the embryos were not
followed postnatally to determine if the phenotype evolved to
the DCM or HCM phenotype. Also, genetic and phenotypic
heterogeneity in CMP is quite common which could also account
for variable CMP phenotypes between model organisms and
humans, as well as between patients with the same gene
defects 30.
An exciting finding was the enrichment of high-impact

regulatory SNVs and CNVs in cases compared to controls, with
15% cases harboring high-risk regulatory variants. With 65% of all
tested regulatory variants validated as being functionally active, it
supports our bioinformatics approach to regulatory variant
interpretation in CMP. The yield of high-risk regulatory variants
was lower in HCM in which protein-coding variants in sarcomere
genes already account for a majority of the cases. Sarcomere
genes that are more tolerant to haplo-insufficiency were less
impacted by regulatory variants. Regulatory variants were
enriched mostly in pathways related to α-dystroglycan binding
and desmosomal signaling. Although coding variants in these
pathways usually cause multi-system involvement, these patients
did not manifest systemic features. It is possible that the effect of
the observed regulatory variants is restricted to the heart since we
only selected variants known to be active in the human LV.
Of the genes enriched for regulatory variants, DTNA, FKTN, and

LARGE1 are essential for α-dystroglycan function through post-
translational glycosylation. Dystroglycan is a central component of
the dystrophin-glycoprotein complex, where it plays a role in
myocyte, sarcolemma, and sarcomere stability31. Disruption of
glycosylation has been associated with severe cardiac dysfunction
in FKTN or LARGE1-deficient mice and with DCM (with mild to no
skeletal muscle involvement)32–35. Although FKTN is associated
with dystroglycanopathy usually in the context of homozygous or
compound heterozygous variants32–34, the enrichment of hetero-
zygous regulatory variants in our cohort may suggest a
contributory role for this gene in CMP. We also found an
enrichment of regulatory variants disrupting the expression of
desmosomal genes (DSG2, DSC2, JUP, DSP) in which both missense

Fig. 4 Target gene and protein expression in the LV myocardium of patients harboring regulatory variants. RNA Seq, qRT-PCR, Western
blot, and immunohistochemistry were performed in available LV myocardium from CMP patients (n= 35) to detect mRNA and protein
expression of target genes in patients harboring regulatory variants in BRAF, DSP, FKTN, LARGE1, PRKAG2, or TGFB3. For RNA sequencing data,
the target scaled RPKM gene expression was compared between the patient harboring the variant (red dot) and the remainder of the cohort
(black dots) using boxplots showing median expression for the cohort, 25th and 75th percentiles, and maximum and minimum values (n=
35). For qRT-PCR, Western blot, and immunohistochemistry, target gene or protein expression in the LV myocardium of the patient harboring
the variant was compared to wild-type controls including an autopsy sample from an individual without cardiac disease as well as one or
more CMP patients that did not harbor any known pathogenic coding or regulatory variants. Three independent experiments were performed
per sample with each experiment including three technical replicates per sample. Protein expression level of GAPDH as a house keeping gene
was used as a loading control for Western blots. Error bars indicate standard deviation between the averages of each independent
experiment. a BRAF: Promoter variant chr7:140624223_G/A was associated with normal BRAF mRNA expression on RNAseq, but reduced BRAF
mRNA expression on qRT-PCR. Promoter variant chr7:140624286_C/T was associated with increased mRNA expression on RNAseq (>75th
percentile). b DSP: Promoter variant (chr6:7541776_G/A) was associated with increased DSP mRNA expression on RNAseq (>75th percentile),
and on qRT-PCR (*p < 0.05 vs. controls). c FKTN: Promoter variant 1 (chr9:108320330_G/A) was associated with reduced FKTN mRNA expression
on RNAseq (<75th percentile), reduced mRNA expression on qRT-PCR (p < 0.05 vs. controls), reduced protein expression on Western blot
representative images, and reduced relative protein abundance on quantification (*p < 0.05 vs. controls). d LARGE1: Promoter variant
chr22:34316416_C/T was associated with lower perinuclear staining for LARGE1 (brown) (nuclear staining, blue) on representative
immunohistochemistry images, and lower % of LARGE1 positive cells in patient myocardium (*p < 0.05 vs. controls). Thymic tissue was used as
a negative control. Scale bar= 20 µm. e PRKAG2: Enhancer variant chr7:151392181_A/C was associated with normal PRKAG2 mRNA expression
on RNAseq, but higher mRNA expression on qRT-PCR (*p < 0.05 vs. controls), higher protein expression on Western blot representative images,
and higher relative protein expression on quantification (*p < 0.05 vs. controls). f TGFB3: Enhancer variant (chr14:76289218_A/G) was
associated with higher TGFB3 mRNA expression on RNAseq, higher mRNA expression on qRT-PCR (*p < 0.05 vs. controls), higher protein
expression on Western blot representative images, and higher relative protein abundance on quantification (*p < 0.05 vs. controls). RNA Seq
RNA sequencing, WT wild-type, 2ΔΔCt the relative fold-change in mRNA abundance between samples as a function of polymerase chain
reaction thresholds.
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and LoF variants have been reported to cause ACM, DCM, and
RCM36.
A strength of our study was the ability to functionally validate

the effect of these regulatory variants on gene and protein
expression. We confirmed that the activity of a luciferase reporter

gene was altered under the effect of the variant promoter/
enhancer sequences compared to wild-type control in human
CMs. Moreover, endogenous gene expression was altered in the
LV myocardium of patients harboring these variants, a truly
unique finding from our study. Together, these findings represent
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an important advance in our understanding of the genomic
architecture of childhood CMP.
Our study has a few limitations. The contribution of regulatory

variants may have been underestimated since we did not explore
distal enhancers, and because TFBS that do not resemble the
consensus sequence could have been misclassified as not being
high-risk. As in silico predictions improve with time, it will enable
more widespread exploration of the regulome for disease variants.
The number of probands in whom parents and other family
members were available was small which limited our ability to
determine variant inheritance and segregation with the disease
for all cases. Also, we were not powered to assess the interaction
of co-existing regulatory variants on the expressivity of coding
variants, and the association of multiple variants with disease
severity. Nonetheless, there is growing evidence for the polygenic
origins of CMP with recent studies reporting an important
contribution of multiple common low impact variants to the
penetrance and expressivity of CMP28,29,37. However, these studies
did not perform a systematic search for rare functional non-coding
variants in known genes. In this regard, while regulatory variants
identified in our study may or may not be independently causal,
their ability to affect the expression of known genes that cause
CMP suggests that future efforts should focus on a systematic
search for and validation of functionally active regulatory variants
that can contribute to the phenotype.
Overall, our findings that high confidence variants identified

using in silico prediction models have functional consequences
validates our bioinformatics approach to WGS-based variant
discovery and makes a strong case for exploring cryptic splice
variants, CNVs, variants in new candidate genes, and variants in
recurrently altered regulatory elements of CMP genes in order to
identify the missing genomic etiology of CMP. In addition to
providing a guiding strategy to identify regulatory and new genic
variants in childhood CMP, our study provides a framework that
can be applied to the search for non-coding variants in other
genetic disorders.

METHODS
Study cohorts for WGS
The discovery cohort comprised 209 unrelated probands <21 years old at
diagnosis with isolated or primary CMP consented through the Heart
Centre Biobank at The Hospital for Sick Children, Toronto38. The cases
included 52% DCM, 31% HCM, 7% LVNC, 5% RCM, and 2% ACM, with
diagnoses based on published clinical criteria (Supplementary Table 6)39,40.
Patients with secondary CMPs resulting from inborn errors of metabolism,
mitochondrial disorders, syndromic, and neuromuscular disorders were
excluded. Based on principal components analysis using polymorphic SNVs
and data from the 1000 Genomes Project, 67% were of European ancestry,
19% were Asian, 10% were Black. Parents and family members were also
recruited whenever possible. This resulted in the availability of 32
probands with complete trios, and 17 with incomplete trios and/or
siblings. Collection and use of human DNA and myocardial tissue from
CMP cases through the Heart Centre Biobank Registry was approved by

the Institutional Research Ethics Boards (Hospital for Sick Children,
Children’s Hospital of Eastern Ontario, Toronto General Hospital, London
Health Sciences Centre, Kingston General Hospital, and Hamilton Health
Sciences Centre) and written informed consent was obtained from all
patients and/or their parents/legal guardians38,41.
The control cohort included 1326 cancer patients with WGS with no

known heart disease from the International Cancer Genome Consortium
(ICGC)42. All genomic data was generated from blood or non-tumor tissue;
747 (56%) were males; 83% were of European ancestry. The diagnoses
included 286 pancreatic cancers, 221 brain cancers, 178 prostate cancers,
123 breast cancers, 98 esophageal cancers, 82 liver cancers, 74 renal
cancers, 70 skin cancers, 68 ovarian cancers, 64 bone cancers, 37 gastric
cancers, 13 oral cancers, and 12 biliary tract cancers.
The 100,000 Genomes Project replication cohort included 1266 unrelated

primary CMP cases with WGS from the 100,000 Genomes Project available
through the Genomics England Clinical Interpretation Partnership from
version 8 of the main program43. LoF (in new candidate genes) and
regulatory variant burden analyses were extended to these samples. All
cases were required to be probands with WGS data available and have at
least one normalized specific disease term matching “cardiomyopathy”.
Individuals with additional syndromic Human Phenotype Ontology terms
were excluded. The replication cohort included 745 HCM, 355 DCM, 43
LVNC, and 119 ACM subtypes; 22% were less than 21 years old at the time
of diagnosis; 62% were male, 82% were of European ancestry.
The Australian replication cohort consisted of 528 whole-exome and 59

WGS data derived from 587 unrelated CMP probands recruited at the
Genetic Heart Diseases Clinic, Royal Prince Alfred Hospital, Sydney, or the
Royal Children’s Hospital, Melbourne44. The proband was defined as the
first affected family member who sought medical attention at these clinics.
Diagnoses of CMP were made based on published clinical criteria39,40.
Patients provided consent for genetic studies, which were carried out in
accordance with the ethics protocol approved by the Sydney Local Health
District Ethics Review Committee, Australia, The University of Sydney,
Australia, and the Royal Children’s Hospital, Melbourne.
The South Asian replication cohort consisted of whole exome sequencing

data derived from 100 unrelated HCM probands recruited at the Sri
Jayadeva Institute of Cardiovascular Sciences and Research, Bengaluru,
India45. 65% of cases were male of South Asian ancestry. 58% of cases were
childhood-onset (12 ± 4 years) and 42% of cases were adult-onset (29 ± 9
years) cases. All patients provided written informed consent, with
appropriate institutional ethics approval.

Whole-genome sequencing
Discovery cohort. WGS was performed on high quality DNA from blood or
saliva of probands and their family members to achieve a minimum of 30-
fold coverage using Illumina HiSeq X platform through Macrogen, South
Korea, and The Centre for Applied Genomics (TCAG, Hospital for Sick
Children, Toronto). High-quality paired-end reads (2× 150 bp) were
mapped to human genome reference sequence (hg19) using Isaac aligner
(https://github.com/Illumina/Isaac4) and short variants were called using
Isaac variant caller (https://github.com/sequencing/isaac_variant_caller)46.
Median sequencing coverage was 31× (range: 20–50×), with WGS quality
metrics were calculated using mosdepth (https://github.com/brentp/
mosdepth)47. Samples with average genome-wide coverage less than
10× were excluded from further analysis. Variants passing default Isaac
variant caller quality metrics were annotated using snpEff (v.4.3, https://
pcingola.github.io/SnpEff/)48 and annovar (v.2016.02.01, https://annovar.
openbioinformatics.org/)49. Variants used for downstream analysis were

Fig. 5 Reporter assays in human iPSC-cardiomyocytes. a Luciferase reporter assay showing the effect of regulatory variants on transcription.
The cloned promoter variants of BRAF (chr7:140624223_G/A), DTNA (chr18:32072866_A/G), FKTN (chr9:108319991_A/C, chr9:108320330_G/A),
and LARGE1 (chr22:34316416_C/T) reduced luciferase activity compared to reference sequences. The promoter variant of DSP
(chr6:7541776_G/A), a second promoter variant of LARGE1 (chr22:34316687_G/A), and an enhancer variant of TGFB3 (chr14:76289218_A/G)
significantly increased luciferase activity compared to reference sequences. *p < 0.05 versus reference sequence. All luciferase reporter assays
were performed with three biological replicates, each with three technical replicates. b Volcano plot representing the effect of 46 regulatory
variants on gene expression using MPRA. Twenty-five variants had significant differences in transcriptional activity between reference and
alternative allele (FDR < 0.05, represented by the horizontal black line). Gray = CMP variant activity less than reference allele; black = CMP
variant activity more than reference allele. c Totally, 67% of significant variants were associated with higher transcription activity of the
reference allele. d Log2-fold transcriptional activity changes between alternative and reference allele sequences. e Representative graphs of
MPRA counts of alternative allele (green) versus reference allele sequences (gray) of BRAF (chr7:140624223_G/A), DSP (chr6:7541468_T/C), and
DTNA (chr18:32073296_C/G). All MPRA assays were performed in five independent biological replicates. MPRA massively parallel reporter
assay, ref seq reference allele sequence, FDR false discovery rate, CMP cardiomyopathy.
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further required to have a “PASS” flag in the “FILTER” field. SNVs were
additionally required to have a total filtered read depth (“DP”) ≥ 10×, while
short insertions and deletions (indels) were additionally required to have a
total filtered read depth at the position preceding the indel (“DPI”) ≥ 10×.
The total number of SNVs per sample was calculated using bcftools (v1.9,
https://samtools.github.io/bcftools/)50. Sample genetic ancestry was pre-
dicted using somalier (https://github.com/brentp/somalier)51. For CNV
calling, two read-depth-based algorithms, ERDS estimation by read depth
with SNVs (v1.1, https://github.com/igm-team/ERDS)52 and CNVnator
(v0.3.2, https://github.com/abyzovlab/CNVnator)53, were used as previously
described54. Identified CNV regions were annotated using a custom
annotation pipeline developed at TCAG. To increase call confidence, only
CNV regions >1 kb in size with at least 50% reciprocal overlap between
ERDS and CNVnator calls and <70% overlap with telomeres, centromeres
and segmental duplications were included in downstream analyses. To
identify de novo variants, we built a full GATK (v4.1.2.0, https://gatk.
broadinstitute.org/) best practices55 workflow locally for joint calling of
short variants (SNVs and indels) within our cohort. Complete parent-
offspring trios were available in 32 discovery cohort cases. Paired-end raw
reads were first trimmed and cleaned by trimmomatic (v.0.32, http://www.
usadellab.org/cms/?page=trimmomatic), then mapped to human refer-
ence genome GRCh37 per sample by using bwa (v.0.7.15, https://github.
com/lh3/bwa). The reference genome sequence and training dataset were
downloaded from the GATK bundle site (ftp.broadinstitute.org/bundle/
b37). Mapped reads were realigned and calibrated by base quality score
recalibration tools. HaplotypeCaller was used to generate genotype VCF
(gVCF) files for each sample. Finally, the gVCF files for all the samples were
combined and joint-called by using CombineGVCFs and GenotypeGVCFs
tools. In order to filter out probable artifacts in the calls, SNPs and indels
were recalibrated separately by variant quality score recalibration (VQSR)
tools, and variants that passed VQSR truth sensitivity level 99.5 for SNPs
and level 99.0 for indels were retained. To infer possible high confidence
de novo sites, we first recalculated phred-scaled genotype likelihoods of
the samples by introducing 1000 Genomes project call set (1000G_pha-
se3_v4_20130502) and pedigrees of the trios. These additional data can be
used as prior knowledge to recalibrate the confidence of the genotypes,
not just calculating a sample’s genotype likelihoods only by its reads. The
tool CalculateGenotypePosteriors was applied in this step. Then, we used
VariantFiltration to mark out the low Genotype Quality (GQ) sites whose
GQ values were lower than 20 and read depths were lower than 10. Lastly,
only the sites with all trio numbers ≥ GQ 20 were defined as high
confidence de novo variants in the final call set.

Control cohort. Data were obtained from the ICGC Data Portal (https://
dcc.icgc.org/) Pan-Cancer Analysis of Whole Genomes (PCAWG) section.
Samples were aligned to hs37d5 (GRCh37), and germline short variant calls
(SNVs) were made using the DKFZ/EMBL variant call pipeline. The
“NORMAL” sample calls were extracted and filtered in a comparable way
to the discovery cohort: only variants with a “PASS” flag covered by at least
10 reads (DP/DPI ≥ 10) were used for downstream analysis. Variant calls
were converted to hg19 using Picard LiftoverVcf (http://broadinstitute.
github.io/picard/).

100,000 Genomes Project replication cohort. Where possible, SNVs (indels)
were obtained after alignment to the reference genome hg38, otherwise
GRCh37 variant calls were used. Variants were filtered to require a “PASS”
flag and to have a minimum total read depth (DP/DPI) of 10. hg38 and
GRCh37 variant calls were converted to hg19 using Picard LiftoverVcf
(http://broadinstitute.github.io/picard/). Variant burden analysis in the
cases from the 100,000 Genome Project was performed as previously
described by comparing with the ICGC control cohort.

Australian replication cohort. Sequencing was performed on an Illumina
HiSeq or NextSeq platform as previously described44. SNVs and short indels
were called using the Genome Analysis Tool Kit (v4.1.1.9, https://gatk.
broadinstitute.org/) best practice workflow and annotated using Ensembl
Variant Effect Predictor (v97, https://github.com/Ensembl/ensembl-vep).
Analysis was restricted to variants in cardiac genes with an allele count <15
in gnomAD v2.1.1 and v3.1 for autosomal dominant genes, or an allele
frequency <0.001 for autosomal recessive genes. Variants causing a
missense or nonsense change, or that alter the canonical splice
dinucleotides, or lead to in-frame or frameshift insertions or deletions,
and co-segregate with the disease in affected family members, where
available were prioritized. Rare variants of interest were verified using
Sanger sequencing.

South Asian replication cohort. Samples were sequenced by paired-end,
100-bp reads at service providers including the institutional sequencing
facility as previously described45. Data were mapped to the human
reference genome (GRCh38) using Burrows-Wheeler aligner version 0.7
(BWA-MEM, https://github.com/lh3/bwa). Variant calling was performed
using HaplotypeCaller from GATK (v.3.4, https://gatk.broadinstitute.org/).
Variants were annotated using web interface of ANNOVAR software
(https://annovar.openbioinformatics.org/). Cases were independently ana-
lyzed for rare (gnomAD MAF < 0.01%) heterozygous and homozygous loss
of function (LoF) variants in candidate genes.

CMP gene selection strategy
To identify known CMP genes, we curated ten commercially available CMP
gene panels to generate a list of putative CMP genes, and retained genes
included on at least 2 of 10 panels. Gene panels included Blueprint
Genetics Cardiomyopathy Panel, Centogene DCM and HCM Cardiomyo-
pathy Panel, Children’s Hospital of Eastern Ontario Genetics Diagnostic
Laboratory Pan Cardiomyopathy Panel, Fulgent Genetics Comprehensive
Cardiomyopathy NGS Panel, GeneDx Cardiomyopathy Panel, Invitae
Cardiomyopathy Comprehensive Panel, Mayo Clinic Laboratories Compre-
hensive Cardiomyopathy Multi-Gene Panel, Oregon Health & Science
University (OHSU) Knight Diagnostic Laboratories Comprehensive Cardio-
myopathy Panel, Partners Personalized Medicine Pan Cardiomyopathy
Panel, and PreventionGenetics Pan Cardiomyopathy Panel. Using ClinGen
(https://clinicalgenome.org/)56, Online Mendelian Inheritance in Man
(OMIM, https://www.omim.org/)57, ClinVar (https://www.ncbi.nlm.nih.gov/
clinvar/)58, and manual curation of literature, each gene was classified as
either associated with a primary or secondary CMP (i.e., syndromic,
metabolic, mitochondrial, or neuromuscular disorders). Genes were further
classified based on the strength of the evidence supporting disease
association into Tier 1 genes with moderate to definitive evidence, and Tier
2 genes with limited evidence for disease association. Genes with weak,
conflicting, or disputed evidence were excluded. Although mitochondrial
disorder genes were initially considered, they were ultimately excluded
from our final gene set since they are typically associated with autosomal
recessive multi-system disease and our cohorts had isolated CMP. The
exception was PRKAG2, an established Tier 1 gene with known association
with HCM. This process yielded a final list of 84 CMP genes (Supplementary
Table 7).

Annotation and classification of protein-coding variants in
known CMP genes
Protein-coding rare SNVs, insertion-deletions (indels), and CNVs in CMP
genes were classified as pathogenic (including likely pathogenic) using the
American College of Medical Genetics (ACMG) and Association for
Molecular Pathology (AMP) criteria 59,60.
Pathogenicity of missense variants was predicted using prediction

scores from at least five prediction tools including SIFT (https://sift.bii.a-
star.edu.sg/)61, PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/)62,
MutationTaster2 (http://www.mutationtaster.org/)63, Mutation Assessor
(http://mutationassessor.org/)64, CADD (https://cadd.gs.washington.
edu/)65, PROVEAN (http://provean.jcvi.org/index.php)66, phylogenetic
p-value from the PHAST package (http://compgen.cshl.edu/phast/) for
multiple alignments of 99 vertebrate genomes to the human genome
(phyloP100way_vertebrate)67, MetaSVM and MetaLR (https://sites.
google.com/site/jpopgen/dbNSFP)68. Genomic conservation score was
obtained from GERP++ (http://mendel.stanford.edu/SidowLab/
downloads/gerp/)69, and phastCons (http://compgen.cshl.edu/phast/)8.
Putative protein-truncating variants predicted to cause LoF including
splice-site, nonsense, and frameshift variants were assessed and
annotated using LOFTEE tool (https://github.com/konradjk/loftee) as a
plugin via Ensembl’s Variant Effect Predictor (VEP) tool (v90, https://
github.com/Ensembl/ensembl-vep)70. Cryptic splice site variants were
identified using SpliceAI software (v1.2.1, https://github.com/Illumina/
SpliceAI)71 and filtered by a delta score threshold of 0.5 in transcribed
regions of genes. ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/)58 and
Human Gene Mutation Database (HGMD, http://www.hgmd.cf.ac.uk/ac/
index.php)72 were used to identify previously reported pathogenic or
likely pathogenic variants. Rare SNVs and indels were defined by minor
allele frequency (MAF) < 0.01% in the Genome Aggregation Database
(gnomAD) reference population24. Ethnicity-specific MAFs and Popmax
95% confidence interval estimates were compared within gnomAD.
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Using human genome CNV map73, CNV events overlapping CNV regions
that were <30% copy number prone were prioritized for downstream
analyses. Rare CNVs were defined as variants occurring at <1% frequency
in over 1500 QC pass parental samples from an autism cohort, MSSNG12.
Rare CNVs >1 kb in size, impacting coding exons were manually inspected
using reads from BAM files and were further validated using qPCR with
100% concordance.
Where recommended by ClinGen expert panels, we applied additional

ACMG/AMP variant interpretation criteria to genes74. For each variant, we
assessed if the affected gene was known to be associated with the
observed CMP subtype. Each variant’s observed zygosity was compared
against the affected gene’s expected disease mode of inheritance. We
used complete trios were available to perform de novo variant discovery in
sporadic cases and to ascertain variant inheritance in familial cases.
However, where parents were unavailable or did not consent to study
participation, we used singletons for variant identification, but used other
available affected and unaffected family members for variant segregation
to assist with interpretation of variant pathogenicity. The pathogenicity of
variants identified on clinical testing was verified using ClinVar (https://
www.ncbi.nlm.nih.gov/clinvar/)58 and InterVar (https://github.com/WGLab/
InterVar)75 classifications where possible. For variants affecting Tier 2 and/
or secondary CMP genes, we only retained those considered clinically
reportable. Variants in CMP genes that met the pathogenicity criteria
described above were considered pathogenic for CMP in genes with
strong associations to the disease. These likely pathogenic variants were
reviewed and confirmed through independent classification by the
institutional molecular genetic screening laboratory and all reportable
variants were confirmed using Sanger sequencing where possible.

Protein-coding LoF variants in new candidate CMP genes
For patients who were gene-elusive, i.e., did not harbor pathogenic or
likely pathogenic SNVs, indels, or CNVs, we explored for rare deleterious
LoF variants (frameshift, stopgain/stoploss, splicing) in additional candi-
date genes involved in heart function with moderate-high heart
expression, with emerging moderate-strong evidence of association with
CMP and/or deemed to be intolerant to haploinsufficiency24. To identify
such candidate CMP genes that are not usually included in CMP gene
panels, we searched for predicted deleterious heterozygous and homo-
zygous LoF variants (i.e., frameshift, nonsense, stopgain, stoploss, and
splicing variants) in the in silico exome of CMP cases that did not harbor
pathogenic or likely pathogenic SNVs, indels, or CNVs in known CMP
genes. LoF variants were identified using LOFTEE (https://github.com/
konradjk/loftee)24,76. All LoF variants were required to be predicted as high
impact by VEP70, observed at an allele frequency <0.01% in the gnomAD
reference population, observed in <1% of unrelated families in the cohort,
and affect genes that are expressed in the human heart. Variants were
further prioritized if they were in a highly constrained gene (gnomAD
probability of LoF intolerance or pLI > 0.9) and/or were important in heart
function. Gene tissue expression level categories were obtained from the
Human Protein Atlas (http://www.proteinatlas.org) 77.

Regulatory variants associated with CMP genes
We generated a set of functionally active regulatory elements by mapping
non-coding regions in the human heart that putatively regulate the
transcription of cardiac-active genes based on experimental evidence and
data from the Encyclopedia of DNA Elements project (ENCODE, https://www.
encodeproject.org/)78, FANTOM project (https://fantom.gsc.riken.jp/)79, and
Roadmap epigenomics (http://www.roadmapepigenomics.org/)80. Discrete
regulatory regions that are active in the human heart have been previously
identified using these experimental data by Dickel et al81. We defined
promoter regions of CMP genes by merging the DNase-seq peaks of open
chromatin and histone marks specific for promoters and enhancers in these
data. Where this information was not available, we defined promoter
regions as 1.5 kb upstream and 1 kb downstream of the transcription start
site. Enhancers were mapped to genes based on genomic proximity and by
using the “False discovery rate-corrected Ordinary least squares with Cross-
validation and Shrinkage” database82. We focused on promoters and nearby
enhancers of known CMP genes rather than the entire genome to avoid
false-positive results related to genes with an unclear association with CMP.
This provided a total of 2,990,733 base pairs (bp) across 910 unique
regulatory regions associated with the 84 CMP genes (Supplementary Table
8). Genes had a median of 8 associated regulatory regions (range 1–38),
which encompassed a median of 29,714 bp per gene (range

2236–156,476 bp). The functional impact of rare regulatory variants was
assessed based on TFBS creation or disruption scores. The scores for TFBS
disruption (motif loss) and TFBS creation (motif gain) were based on
combined prediction scores from four different tools—RegulomeDB (https://
regulomedb.org/)83, motifbreakR (https://bioconductor.org/packages/
release/bioc/html/motifbreakR.html)84, DeepSEA (http://deepsea.princeton.
edu/job/analysis/create/)85, and Fathmm-MKL (http://fathmm.biocompute.
org.uk/)86. We mapped SNVs to these active regulatory regions of CMP
genes and defined them as high-risk regulatory variants if they overlapped
with established sites in the Ensembl Regulatory Build87, were rare (i.e., MAF
< 0.01% in gnomAD population controls), and were predicted to alter TF
binding by at least 3 of 4 tools that predict if a sequence alteration affects a
likely TFBS or has chromatin effects with single-nucleotide sensitivity. The
detailed strategy for regulatory variant selection is outlined in Supplemen-
tary Fig. 6. We prioritized those variants that were in regulatory elements
active in the human left ventricle (LV), were rare in control subpopulations
(gnomAD v3.1.2 Popmax AF < 0.1%), were enriched in cases versus controls
with OR≥ 1.3 and were found in gene-elusive cases, i.e., cases that did not
harbor pathogenic or likely pathogenic coding variants in known CMP
genes. Variants were assessed to determine concordance with expected
zygosity and with CMP subtype to be considered contributory to disease.
Intergenic and intronic CNVs as well as indels <1 kb overlapping promoter
and enhancer regulatory regions were also prioritized. These prioritized
high-risk regulatory variants are listed in Supplementary Table 2 and
Supplementary Table 4.

Functional validation of effect on myocardial gene and
protein expression
RNA sequencing (RNAseq) was performed in LV myocardial samples
available from 35 CMP patients with WGS in our biobank to validate the
effect of pathogenic LoF variants, CNVs, and high-risk regulatory variants
on target gene expression. LV myocardium was obtained from CMP
patients who had consented to biobanking from leftover tissue at the time
of cardiac surgery or cardiac transplantation and was immediately snap-
frozen in the operating room and stored in liquid nitrogen. RNAseq was
performed using Illumina HiSeq 2500 platform at TCAG in 35 LV samples.
Total RNA was extracted from LV myocardial samples using the RNeasy
Mini kit (QIAGEN, Canada). The generated raw sequence data was filtered
according to the procedures described previously88. The filtered sequence
reads were aligned to the human genome browser UCSC hg19, using
Tophat (v.2.0.11, https://ccb.jhu.edu/software/tophat/index.shtml), and
processed to extract raw read counts for genes using htseq-count
(v.0.6.1p2, https://htseq.readthedocs.io/). Sequencing data were mapped
to the human transcriptome using HISAT2 spliced aligner (https://
daehwankimlab.github.io/hisat2/)89, and the gene expression level was
quantified using StringTie (https://ccb.jhu.edu/software/stringtie/)90. Reads
per kilobase of transcript per million generated were normalized for the
size of each library and normalized for the length of the transcripts.
Normalized RNAseq data for the genes analyzed in this study are available
in Supplementary Table 9. Expression analysis was performed to determine
fold-difference in mRNA expression in the variant-positive patient
compared to the average values in the remaining cohort (i.e., patients
without the candidate SNV or CNV on WGS) 91.
For additional confirmation of a difference in the mRNA expression level

of the gene harboring the variant compared to the wild type sequences,
we determined the relative mRNA expression using qRT-PCR92. Total RNA
was extracted from patient LV myocardium using mirVana™ PARIS™ RNA
and native protein purification Kit (Invitrogen, Carlsbad, California, USA)
following the manufacturer’s protocol. The concentration and purity of the
RNA were assessed using a Nanodrop 2000c (Thermo Fisher, Waltham,
Massachusetts, USA). RNA with an A260/280 ratio of 2.0 ± 0.05 was further
evaluated for its integrity using a TapeStation 4200 (Agilent, Santa Clara,
California, USA). RNA samples with RNA Integrity number above 5 and
rRNA ratio of 1.7–2.0 were used to synthesize complementary DNA (cDNA)
using SuperScript IV Reverse Transcriptase (Invitrogen, Carlsbad, California,
USA). Specific oligonucleotide primers for each variant (Supplementary
Table 10) were designed by primer3-NCBI (https://www.ncbi.nlm.nih.gov/
tools/primer-blast/), and synthesized by Integrated DNA technologies
(Coralville, Iowa, USA). Glyceraldehyde-3-phosphate dehydrogenase
(GAPDH, human) was used as a housekeeping gene for normalization.
The qRT-PCR was performed in a ViiA7 qPCR system (Applied Biosystems,
Foster City, California, USA) using PowerUp SYBRTM Green Master Mix
(Applied Biosystems, Foster City, California, USA). The total volume of the
PCR reaction was 10 μl and PCR conditions consisted of a hold stage of
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50 °C for 2 min, then 95 °C for 2 min followed by 40 cycles of 15 sec at 95 °C
and 15 s at 55–60 °C (Primer Tm dependent) and 72 °C for 1 min. The
relative quantification of mRNA was performed using the 2−ΔΔCT method93.
mRNA expression of target genes in the LV myocardium of the patient
harboring the variant was compared to an autopsy sample from an
individual without cardiac disease, and from other CMP patients not
harboring any known pathogenic coding or regulatory variants. The
experiment was performed three independent times and with each
experiment, triplicates i.e., three technical replicates, of each sample were
prepared and tested.
To determine if change in mRNA expression was associated with a

change in protein expression, Western blots were performed to assess
myocardial protein expression (Supplementary Table 11)94,95. Frozen
tissues were homogenized in liquid nitrogen and lysed in radio-
immunoprecipitation assay buffer and a protease inhibitor cocktail (Sigma,
St. Louis, Missouri, USA). Samples were mixed with loading buffer, heated
at 90 °C for 5 min, separated using SDS-blot 4–12% Bis–Tris plus
(Invitrogen, Carlsbad, California, USA), and transferred to nitrocellulose
membrane. After blocking the membrane with 5% non-fat dry milk in
phosphate buffer saline (PBS; pH:7.4), the membrane was incubated with
either FKTN rabbit monoclonal antibody (ab131280; abcam, Cambridge,
UK), rabbit polyclonal TGFβ3 antibody (ab15537, Abcam, Cambridge, UK),
rabbit monoclonal BRAF antibody (ab33899, Abcam, Cambridge, UK) or
NRAP polyclonal antibody (PAS-88772; Invitrogen, Carlsbad, California,
USA) in blocking buffer at a dilution 1:1000 for 2 h at room temperature.
The reference gene GAPDH (ab8245, Abcam, Cambridge, UK) was used as a
loading control. After extensive washing of the membrane with PBS/
Tween-20, the goat anti-rabbit IgG-HRP and goat anti-mouse IgG-HRP
(Invitrogen, Carlsbad, California,) were used as secondary antibodies at a
dilution of 1:2000 for 1 h at room temperature. Reactive bands were
visualized by ChemiDoc MP imaging system (Bio-Rad, Hercules, California,
USA). Protein expression in the LV myocardium of the patient harboring
the variant was compared to control samples of other CMP patients who
did not harbor this variant. The results were quantified using ImageJ
software (http://rsb.info.nih.gov/ij/) and relative protein abundance of the
immunoblot signal from each target protein was normalized to the
average abundance of the immunoblot signal of control samples. Data
were obtained from three independent experiments. All blots or gels
derive from the same experiment and were processed in parallel.
Formalin-fixed paraffin-embedded (FFPE) LV tissue from a CMP patient

with a LARGE1 promoter variant and controls without LARGE1 variants were
used for immunohistochemistry (IHC) analysis using standard techniques96.
FFPE tissue blocks were sectioned at 4 μm, dewaxed in xylene, dehydrated
with a serial dilution of ethanol solution and washed with PBS. Antigen
retrieval was performed in target retrieval solution (Dako, Burlington, ON,
Canada) for 45min followed by blocking of tissues in 3% hydrogen
peroxidase (H2O2) for 10minutes. After washing with PBS, tissue sections
were incubated for 30min at room temperature with primary antibody for
anti-LARGE1 (PA5-78393, Thermo Fisher, Waltham, Massachusetts, USA)
followed by incubation of sections with biotinylated secondary antibody
for another 30min. Immunolabeling was detected using EnVision+
System-HRP DAB kits (Dako, Burlington, ON, Canada). Sections were
examined and imaged with a light microscope. Cell nuclei were counter-
stained with Myer’s Hematoxylin Histological Staining Reagent (Dako,
Burlington, ON, Canada). The photographs were analyzed with automated
image analysis software (Image J, National Institutes of Health, Bethesda,
Maryland). The number of LARGE positive cells was averaged in 10 fields
per section and repeated in 3 replicates. Staining was compared between
the individual harboring the LARGE1 variant and the controls.

Reporter assays in human induced pluripotent stem cells
(iPSC)-derived CMs
Gene promoters or enhancer/promoters harboring candidate SNVs and the
corresponding control region were cloned into Firefly Luciferase reporters
and transfected into human induced pluripotent stem cell (iPSC)-derived
CMs to determine the effect of the variants on the transcription activity of
the luciferase reporter gene (Supplementary Fig. 5). iPSC derived from
peripheral blood lymphocytes of a healthy adult donor (PGP17), were
differentiated into CMs using a STEMdiff CM Differentiation Kit94. The
beating of differentiated iPSC-derived CMs was observed at day 8 post
differentiation. Cells were re-seeded at day 16 into 12-well plates for
transient transfection. CMs were co-transfected with luciferase constructs
at day 20. Transfected cells were harvested 24 h after transfection and

firefly and renilla luciferase activity was measured using the Dual-
Luciferase® Reporter Assay System.
For functional validation of variant effect on endogenous gene

transcription, Dual-Luciferase® Reporter Assay System (Promega, Madison,
Wisconsin, USA) was used to test and compare the transcription activity of
a luciferase reporter gene under the effect of the variant promoter or
promoter/enhancer sequence from the patient, or genome reference
sequence of each regulatory region as wild-type control97,98. In order to
generate the luciferase plasmids harboring the sequence of the regulatory
element of the predicted variants and wild-type as a control, the
nucleotide sequences of 1.5-kb of the promoter region of BRAF, DSP,
DTNA, FKRP, FKTN, and LARGE1, and 2-kb of-enhancer/promoter region of
TGFB3, containing the strongest transcriptional activation region, were
commercially synthesized (Supplementary Table 12) (Synbio Technologies,
Monmouth Junction, NJ, USA). The commercial plasmids encoding the
respective wild-type, enhancer, or promoter variant sequences were
digested with appropriate restriction enzymes and cloned separately into
multiple cloning sites of Firefly Luciferase basic vectors (pGL4.10-luc2;
Promega, Madison, Wisconsin, USA). Human iPSC-derived CMs were
seeded in 12-well plates, and co-transfected with 2 µg firefly luciferase
vectors (pGL4.10-luc2; Promega, Madison, Wisconsin, USA) harboring
regulatory sequences of wild type, BRAF, DSP, DTNA, FKRP, FKTN, and
LARGE1 or TGFB3 variants and 40 ng of Renilla Luciferase control reporter
vectors (pRL-TK Vector; Promega, Madison, Wisconsin, USA) for normal-
ization of transfection conditions. At 48 h post-transfection, luminescence
was detected with Dual-Luciferase® Reporter (DLR™) assay system. The
experiment was performed in three independent replicates and each
sample was also tested in triplicate in each experiment. Firefly luciferase
was measured, and followed by Renilla luciferase, in the same well. The
normalizing activity of the experimental reporter was calculated by
dividing the firefly luciferase signal by the internal renilla luciferase signal.
Promoter-driven control firefly luciferase vector (pGL4.13-luc2/SV40;
Promega, Madison, Wisconsin, USA) was used as a reference.
For massively parallel reporter assays (MPRA), oligonucleotides of 135 bp

with 11-bp barcodes were designed and synthesized by TwistBioscience
(USA). Variants were centered within the 135 bp oligo. The full list of
variants tested can be found in Supplementary Table 5. To control for
technical variation and to assess biological relevance, each tested allele
was represented a minimum of 25 times, each with a unique barcode. The
oligonucleotide library contained 2700 oligos for our genomic variants, 100
oligonucleotides for positive controls, and 1500 oligonucleotides for
negative controls i.e., scrambled sequences. These oligonucleotides were
part of an oligonucleotide library that included an additional
234,500 sequences as part of a larger study. The cloning strategy of the
oligonucleotide library and selection of positive negative controls (300
random sequences, each with 5 barcodes) was performed according to
Mattioli et. al25. The oligonucleotide library was transfected into five
biological replicates of PGP17 iPSC-derived CMs with over 80% transfection
efficiency across all replicates, using Lipofectamine Stem Transfection
Reagent (STEM00015 Thermo Fisher, Waltham, Massachusetts, USA)
(Supplementary Fig. 5b). Forty-eight hours post transfection, total RNA
was harvested and DNA contamination was removed using DNase I
(18047019, Thermo Fisher, Waltham, Massachusetts, USA). RNA samples
with RNA Integrity number >7 were used to synthesize cDNA using
SuperScript IV Reverse Transcriptase (Invitrogen, Carlsbad, California, USA).
cDNA was used for library synthesis if it lacked plasmid contamination as
determined by qRT-PCR performed on a ViiA7 qPCR system (Applied
Biosystems, Foster City, California, USA) using PowerUp SYBRTM Green
Master Mix (Applied Biosystems, Foster City, California, USA) (Supplemen-
tary Fig. 5c). Tag-seq libraries were prepared as previously described25, and
sequenced with single-end 50 bp reads on the HiSeq2500 platform (TCAG,
Hospital for Sick Children, Toronto).

CRISPR–Cas9 editing to evaluate new candidate CMP gene
function in zebrafish embryos
All zebrafish embryo studies were performed at the SickKids Genetics and
Disease Models Core (Zebrafish Core), Toronto, and approved by the
SickKids Animal Care Committee (Protocol #401951).
All zebrafish guide RNA (gRNA) sequences were adapted from99, and are

described in Supplementary Table 13. The primer sequences (Supplemen-
tary Table 10) were synthesized by Integrated DNA Technologies (IDT,
Coralville, Iowa, USA) and used for sgRNA in vitro synthesis, according to
the earlier described protocol99. Microinjections were performed as
described previously99 with minor modifications. Briefly, for nrap gRNA1,
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250 pg of each gRNA with 800 pg Cas9 protein (Alt-R® S.p. Cas9 Nuclease
V3, cat #1081058, IDT, Coralville, Iowa, USA) were co-injected into wild-type
embryos at the one-cell stage. For the co-injection of 8 gRNAs of fhod3a+
b, gRNA1-gRNA4, 125 pg of each gRNA was injected while the amount of
Cas9 protein remained unchanged. The injected embryos were kept in
0.003% Phenylthiourea (PTU) solution and incubated in a dark incubator at
28.5 °C for 3 days. All phenotypic analysis, imaging, DNA extraction, and
sequencing were performed at 3-days post fertilization (dpf).
Crude DNA was extracted from whole zebrafish larvae using 1×-PCR

buffer (10 mM KCl, 10 mM Tris, PH 8.0; 1.5 mM MgCl2) containing 1mg/ml
proteinase K (Thermo Scientific, Waltham, Massachusetts, USA). The
mixture was incubated at 55 °C for 50min and then 98 °C for 10min to
deactivate proteinase K. To sequence each gRNA region, PCR was
performed using Taq DNA polymerase (Bio basic, Markham, ON, Canada).
The 25 μl reaction mixture contained 1×-PCR reaction buffer, 2 mM MgCl2,
0.2 mM dNTP, 0.2 mM of each forward and reverse primers, 0.75 U of Taq
polymerase, and 1.5 μl of crude DNA (~200 ng). The primer pairs and their
corresponding annealing temperatures are summarized in Supplementary
Table 10. The PCR reactions were set up as follows: 95 °C for 5 min,
followed by 35 cycles of 95 °C for 20 s, annealing temperature for 1 min,
72 °C for 1 min and the final elongation is 72 °C for 5 min. The PCR product
was purified using ExoSAP-IT (Applied Biosystems, Foster City, California,
USA) following the manufacturer’s instructions and 100 ng of each PCR
product was sent for sequencing to TCAG (Toronto, ON, Canada). The
sequencing results were analyzed using ICE Analysis (https://ice.synthego.
com/#/) or Geneious 9.1.4.
At 3 dpf, pooled RNA samples were collected either from zebrafish

larvae injected with gRNAs of target genes or Cas9 only as a control using
TRIzol™ Reagent (Invitrogen, Carlsbad, California, USA). First-strand cDNA
was synthesized using high capacity cDNA reverse transcription kit
(Applied Biosystems, Foster City, California, USA) following the manufac-
turer’s instructions. These primers were used to amplify two reference
genes of β-actin and GAPDH to normalize data. qRT-PCR assay was
performed in a Roche LightCycler 96 machine using PowerUp SYBR Green
Master Mix (Applied Biosystems, Foster City, California, USA). The relative
expression level was calculated based on two technical repeats using the
2−ΔΔCT method 93.
DNA samples were extracted from whole zebrafish larvae at 3 dpf and

submitted for Sanger sequencing to TCAG (Toronto, ON, Canada) to
confirm cutting efficiency in the exons targeted by nrap, fhod3a, and
fhod3b gRNA compared to Cas9 only as a control.
Cardiac phenotyping of zebrafish embryos was performed at 3 dpf to

assess cardiac chamber morphology, size and function. For wild field
microscope in vivo imaging, 3 dpf zebrafish larvae were anesthetized with
0.02% tricaine and mounted in 3% methylcellulose in 50mm glass-
bottomed dishes. Video imaging was done with the Zeiss AXIO Zoom V16
Microscope using a PlanNeoFluar Z 1×/0.25 FWD 56mm objective lens
under 112× magnification. The Movie Recorder function under Zen pro
program was used and approximately 100 frames were captured for each
video. All videos were exported at 17 frames per second for further
analysis. Images were captured with a Nikon Eclipse Ti microscope under
the Nikon A1 plus confocal imaging system using the NIS-Elements
program. Atrial area was measured at end-systole, and ventricular area was
measured at end-systole and end-diastole with ventricular ejection fraction
defined as (end-diastolic area – ventricular systolic area) / ventricular end-
systolic area × 100 using ImageJ (https://imagej.nih.gov/ij/).

Statistical analyses
Figure 1a and Supplementary Fig. 6 depict the workflow for filtering
pathogenic and likely pathogenic protein-coding SNVs, indels, CNVs, LoF
variants, and high-risk regulatory variants. WGS variant calls were obtained
from 1326 patients without heart disease enrolled in the International
Cancer Genome Consortium (ICGC)42. To compare variant burden between
cases and controls for high-risk regulatory variants of CMP genes, variant
calls were required to have an allele frequency ≤0.01% in gnomAD.
Variants observed in ≥1.5% of samples in the study cohort were excluded
from burden testing to reduce false-positive variant calls. Ethnicity-specific
allele frequencies were also assessed in the population. All cohorts tested
for burden analysis included a majority of samples with European ancestry
(Discovery= 67%, Controls= 83%, 100,000 Genomes Project=82%). For
genomic burden testing, a case was considered positive if it harbored at
least one pathogenic variant (SNV, indel, and/or CNV), otherwise, it was
considered negative. P-values were calculated using a two-sided Fisher’s
exact test. To reduce bias in these calculations and avoid “zero cells” in the

contingency tables, 0.5 was added to each observed frequency (Haldane-
Anscombe correction). A FDR was applied across genes after removing
tests where no variants were observed in any samples. To identify
enrichment for sarcomere and cytoskeletal genes among all prioritized
regulatory variants, a two-sided binomial test was used. Each variant was
considered a “success” if the variant was associated with a sarcomere gene
and was considered a “failure” if the variant was associated with a different
gene category. The prior probability of “success” was set at 9/84, i.e., equal
to the fraction of sarcomere genes among the total set of known CMP
genes. Statistical analyses were done using R statistical software (v3.5.1,
https://www.r-project.org/).
Pathway enrichment analysis was performed using g:Profiler with default

parameters (https://biit.cs.ut.ee/gprofiler)100. Queried databases included
Gene Ontology (GO), KEGG, and Reactome101–103. The protein-coding gene
set was ranked according to the total number of pathogenic SNVs, indels,
and CNVs observed in our cohort. The regulatory gene set was ranked
according to the total number of prioritized regulatory variants observed
among cases. Adjusted p-values were calculated using a Bonferroni
correction, and only pathways with an adjusted p-value < 0.05 were
considered significant.
For functional validation including qRT-PCR, Western blots, and IHC,

expression levels were compared between a case harboring a variant
versus control samples of other CMP cases that did not harbor this variant.
An unpaired two-tailed Student’s t-test was used to determine differences
between groups, with a p-value of < 0.05 considered significant.
An unpaired two-tailed Student’s t-test was used to compare luciferase

activity of the luciferase reporter gene under the effect of the regulatory
variant sequence versus the reference sequence of each regulatory region
as wild-type control. A p-value of < 0.05 was considered significant.
MPRA data were analyzed using MPRAAnalyze software (https://

bioconductor.org/packages/release/bioc/html/MPRAnalyze.html)25,104

using random oligonucleotide sequences as null distribution. P-values
were calculated using a likelihood ratio test with MPRAAnalyze and an
FDR < 0.05 was considered significant.
Zebrafish atrial and ventricular sizes and ventricular ejection fraction

were compared using an unpaired two-tailed Student’s t-test to measure
significant differences between mutants (nrap and fhod3) and controls
(Cas9 and wild-type). A p-value of < 0.05 was considered significant.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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