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2

Abstract 

SARS-CoV-2 is a coronavirus responsible for the international outbreak of respiratory 

illness termed Covid-19 that forced the World Health Organization to declare a pandemic 

infectious disease situation of international concern at the beginning of 2020. The need for a 

swift response against Covid-19 prompted to consider different sources to identify bioactive 

compounds that can be used as therapeutical agents including available drugs and natural 

products. Accordingly, this work reports the results of a virtual screening process aimed at 

identifying antiviral natural products inhibitors of the SARS-CoV-2 Mpro viral protease. For 

this purpose, ca. 2000 compounds of the Selleck database of Natural Compounds were 

subject of an ensemble docking process targeting the Mpro protease. Molecules that showed 

binding to most of the protein conformations were retained for a further step that involved 

the computation of the binding free energy of the ligand-Mpro complex along a molecular 

dynamics trajectory. Those compounds showing a smooth binding free energy behaviour 

were selected for in vitro testing. From the resulting set of compounds, five exhibit an 

antiviral profile and are disclosed in the present work.
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3

Introduction

Coronaviruses, like other members of the coronaviridae family are enveloped, 

positive single-stranded RNA viruses infecting a wide range of hosts including avian, swine 

and humans [1]. While most members of the family produce mild respiratory effects in 

humans, the 21st century has witnessed the appearance of new members producing severe 

respiratory diseases in afflicted individuals. SARS-CoV-1 was identified as the pathogen 

responsible for an outbreak of a severe acute respiratory syndrome (SARS) in the 

Guangdong Province, China in 2002, and 10 years later, MERS-CoV was identified in the 

sputum of a patient that was retrospectively diagnosed with the Middle East respiratory 

syndrome (MERS) in Jordania. Both pathogens produced an epidemic that spread into 

several countries due international travel of infected persons that ended about a year later 

of the outbreak after taking strict measures of infection control [2]. Beginning in December 

2019, a novel coronavirus, designated as SARS-CoV-2 was identified as the pathogen 

causing an international outbreak of respiratory illness termed Covid-19, originated in 

Wuhan, Hubei Province, China. Data gathered on the epidemic suggests that although 

SARS-CoV-2 exhibits a ~2% fatality rate, lower than its two ancestors, it is more contagious 

resulting in higher overall death tolls. This fact forced the World Health Organization to 

declare SARS-CoV-2 as a pandemic infectious disease of international concern on March 11, 

2020 [3]. Until June 20th, 2021, there are 178.491.800 confirmed cases of Covid-19 with 

3.866.200 confirmed deaths worldwide [4].

The need for a swift response against Covid-19 prompted to consider drug 

repurposing as a valuable strategy to cope with the pandemic in a reasonable period of time 

[5]. Today, there are a few hundred on-going clinical trials aimed at assessing the effect of 

diverse available drugs at different stages of the disease [6]. A few drugs are currently 

available for the treatment of Covid-19 patients [7-9]. Specifically, remdesivir alone [10] or 

combined with the Janus kinase inhibitor baricitinib [11] is the only antiviral agent against 

SARS-CoV-2 approved with an emergency use authorization for the treatment of patients 

with severe symptoms. Other antivirals already marketed, like favipiravir [12] and EIDD-

2801 [13] show mixed evidence whereas, drugs like lopinavir and ritonavir were shown 
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4

ineffective for the treatment of Covid-19 [14]. Similarly, the antimalarial 

hydroxychloroquine and chloroquine were also shown ineffective [14,15]. Presently, clinical 

treatment of Covid-19 is mainly symptomatic using anti-inflammatories like 

dexamethasone [16] or cytokine inhibitors, combined with antibiotics to treat secondary 

infections. Accordingly, there remains an urgent need for the development of specific 

antiviral therapeutics against SARS-CoV-2.

  Among the diverse targets available to design antiviral agents, the main proteinase 

(Mpro) constitutes an attractive one, since it controls the activities of the coronavirus 

replication complex. Inhibition of Mpro was demonstrated to be effective against SARS-CoV-

1 in vitro [17]. Accordingly, several recent studies focus on the design and discovery of 

inhibitors of the Mpro protease for its use as antiviral agents for the treatment of Covid-19. 

Thus, as a follow up of previous work devoted to design suicide inhibitors of Mpro in diverse 

coronavirus, a α-ketoamide has been recently disclosed as a potent inhibitor of the SARS-

CoV-2 protease in vitro [18]. Other authors have also reported the design of non-covalent 

inhibitors with a high inhibitory profile against virus duplication in vitro [19, 20]. In the 

present study, we specifically focus in the identification of natural products, inhibitors of 

Mpro for its use as antiviral agents for the treatment of Covid-19, through the use of virtual 

screening. Natural products represent an interesting source of molecules for the discovery 

of antiviral agents [21, 22]. Presently, there are several natural products under efficacy 

studies for the treatment of Covid-19 [23]. Specifically, diverse plant terpenoids and lignoids 

demonstrated to be efficacious antivirals against SARS-CoV-1, inhibiting viral replication in 

vitro, with IC50 ~1 µM [24] and more recently, a series of flavonoids have also been identified 

as potent inhibitors of SARS-CoV-2 replication in vitro [25]. 

Virtual screening is a reliable procedure for a quick and cost-effective way to discover 

bioactive compounds from large collections against a specific molecular target [26,27]. A 

number of in silico studies have recently published on the identification of natural products 

as inhibitors of Mpro [28-30]. However, these studies explore a small set of compounds and 

do not consider protein plasticity, limiting their scope [31]. Moreover, most of these studies 
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5

report predictions that still need to be contrasted experimentally [32]. 

The present work reports the results of a robust in silico procedure involving 

information concerning protein plasticity. Specifically, the study involves a virtual 

screening of the Selleck database of Natural Compounds containing ~2000 compounds 

against a set of diverse conformations of the SARS-CoV-2 Mpro protease, characterized from 

a molecular dynamics study. Accordingly, we first report the characterization of the 

dynamical profile of protease in its apo form, using conventional (cMD) as well as gaussian 

accelerated (GaMD) molecular dynamics simulations, in the form of a set of structure 

representatives. These structures were subsequently used to carry out ensemble docking. 

Then, the binding free energy of the most promising candidates was assessed using two 

different procedures, to finally provide a shortlist of prospective candidates. These 

compounds were purchased and tested for their ability to inhibit the Mpro protease in vitro. 

Accordingly, the present work reports the discovery of five SARS-CoV-2 antivirals, 

inhibitors of Mpro and identified from a database of natural products using a virtual 

screening procedure.

Methods

1. Computational Studies

1.1 System preparation

The crystallographic structure of SARS-CoV-2 Mpro protease (PDB access code 6Y84) 

was the starting structure for the present study. Although the crystallographic structure is 

dimeric, since the active site is not affected by the other copy of the protein, we only 

considered a monomer for present study. Hydrogens were subsequently added to every 

protein residue at their corresponding protonation state at pH 7.0 and side chains 

orientations were established using the Protonate3D method [33] embedded in MOE [34]. 

Next, the protein was placed in a cubic box filled with OPC water molecules [35], setting a 

minimum distance of 15 Å between the solute and the box walls. Water molecules closer 

than 1.2 Å to any complex atom were removed. Then, two Na+ ions were added to neutralize 

the system, at the positions of lowest electrostatic potential using the Leap module of 
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6

AMBER18 [36]. All calculations were done using the ff19SB force field [37] with a cut-off of 

10 Å for noncovalent interactions, and using the PME method [38] for the treatment of the 

electrostatic interactions. 

1.2 Energy minimization

Before starting the molecular dynamics calculations, the structure was first relaxed to 

eliminate possible steric clashes in a multistep minimization procedure of 5000 steps each, 

using the steepest descent method. First, only water molecules and ions were allowed to 

relax by keeping fixed all the atoms of the protein applying harmonic positional restrictions 

of 5 kcal/mol·Å-2. In a second step, only the main atoms of the protein were kept fixed with 

the same harmonic positional restrain as before. Finally, in a third step all the atoms were 

allowed to move.

1.3 Molecular Dynamics Simulations

After minimization, the system was heated to 300 K stepwisely at a rate of 30 K every 

20 ps, fixing the main atoms of the protein with a harmonic positional restriction of 0.5 

kcal/mol·Å-2, using the Langevin thermostat algorithm with a collision frequency of 2 ps−1 

under the NVT ensemble (from now on heating). Subsequently, 2 ns simulation was 

performed at constant pressure (NPT ensemble) keeping fixed the main atoms of the protein 

with a harmonic positional restrictions of 0.1 kcal/mol·Å-2 for density equilibration (from 

now on density equilibration). Finally, conventional molecular dynamics (cMD) and gaussian 

accelerated molecular dynamics (GaMD) of 500 ns length were carried out within the NVT 

ensemble in duplicate to increase the explored conformational space of the system [39]. In 

the case of the GaMD simulations, after density equilibration an intermediate step of 20 ns 

was performed to obtain the initial statistical analysis of the dual boost potential. The upper 

limit of the standard deviation of the total potential boost (σ0P) was set to 3 and the upper 

limit of the standard deviation of the dihedral potential boost (σ0V) was set to 5. In these 

simulations, a cuttof of 11 Å was used together with a switch function at 8 Å.

1.4 Root-Mean Square Deviation (RMSD) and Root-Mean Square Fluctuation (RMSF)
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7

Root-Mean Square Deviation (RMSD) along the simulation time was computed using 

the cpptraj module [40] from AMBER18 for all the molecular dynamics trajectories to assess 

the structural stability of the systems along the time. RMSD was computed using the last 

minimized structure as a reference. However, an iterative procedure was used to select 

those alpha carbons atoms (Cα) with smallest fluctuations. Thus, in a first step all Cα of the 

diverse residues were used to reorient the structures. The resulted superposed trajectories 

were used to calculate the Root-Mean Square Fluctuation (RMSF) for each of the residues of 

the protein using cpptraj. Residues with a RMSF smaller than a first threshold were selected 

to be used in the next calculation of the RMSD and so on. Thus, for the first step all the Cα 

atoms were used in the superposition but in the next three steps a cut-off of 2.0, 1.0 and 0.5 

Å, respectively on the RMSF values were used to select the Cα to be superposed (Figures S1 

and S2 of the Supporting Information (SI)). In the last step, a total of 35 amino acids met the 

desired criteria. This iterative process provides a set of amino acids with small fluctuations 

along the full MD that can be used to obtain information of the local conformational 

flexibility for the non-superposed residues. 

1.5 Cluster Analysis

In order to select a group of structures representing the greatest structural diversity 

of the binding site of the Mpro protease, similar structures in both the cMD and GaMD 

simulations were grouped into 15 different clusters using the average linkage algorithm 

[41], as implemented in the cpptraj module of AMBER18 [36]. For this process, the RMSD of 

the Cα located in the binding site with a larger RMSF was used as distance. A total of 54 

amino acids were selected (Figure S2 of the SI).

1.6 Principal Component Analysis

In order to determine and analyse the extend of the conformational space accessed 

in the different approaches and understand how different are the representatives selected 

by our clustering methodology, we used the Principal Component Analysis (PCA). This 

statistical technique is routinely applied to reduce the number of dimensions needed to 

describe protein motions from the largest to the smallest spatial scales. First, a covariance 
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8

matrix was constructed including all the structures obtained in the different molecular 

dynamics and using the atomic coordinates of the Cα atoms of the same residues as in the 

clustering process. Subsequently, the covariance matrix was diagonalized to produce a set 

of eigenvectors or Principal Components (PC(i), i=1, N), being N the number of selected 

residues of the protein (in our case 54 residues), as well as their corresponding eigenvalues, 

λ(i). After the eigenvalues are rank ordered, the first components define the “essential” space 

or motions of the protein [42]. 

1. 7. Virtual screening

A multistep virtual screening procedure was performed on each of the seven Mpro 

representatives selected that is summarized in Figure 1. In step 1, the QVina2 software [43] 

was used to dock the 1872 molecules of the Natural Products database from Selleck 

Chemicals [44] in each of the seven target representatives. Molecules from the database had 

been previously processed to have the right protonation state and their geometries 

optimized using the MOE software [34]. The docking process was carried out using a 

rectangular box of dimensions 32.25x31.5x35.25 Å, centred in the middle of the plane 

defined by the Cα of residues Cys145, Leu27 and His41. In step 2, we selected those complexes 

with a scoring function higher than -7.0 kcal/mole in each Mpro representatives. In step 3, the 

Antechamber and LeaP modules of Amber18 package [36] were used to parametrise the 

ligands with gaff2 force field [45], solvate the complexes in a box of TIP3P water molecules 

[46] and add counterions to the complexes, respectively. The ff14SB force field [47] was used 

to parametrize the protein. Then, each complex was relaxed in a three-step minimization 

process using 5000 steps in each by means of the steepest descent method. First, only the 

water molecules and ions were allowed to relax by keeping fixed all the atoms of the protein 

and ligand applying harmonic positional restrictions of 5 kcal/mol·Å-2. In a second step only 

the main atoms of the protein were kept fixed, with a harmonic positional restrain of 5 

kcal/mol·Å-2, allowing the ligand to move freely. Finally, in a third step all the atoms were 

allowed to move. In step 4 of the process, the free energy of binding ΔGbinding (GB) was 

computed for all the minimized structures using both the Molecular Mechanics Poisson-

Boltzmann Surface Area (MMPBSA) [48] and the Molecular Mechanics Generalized-Born 
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9

Surface Area (MMGBSA) [49] procedures. These calculations provide a new scoring to rank 

order the ligands. Next, we introduced in step 5 a consensus criterion to select those 

complexes that will be studied further using molecular dynamics simulations in step 6. 

Then, in step 7, a new rank ordered list is obtained after applying the MMGBSA approach 

to the full length molecular dynamics simulation. Next, an iterative process was done 

where, at each step, for the best compounds obtained in the previous step their molecular 

dynamics length was extended and the GB recalculated. In the last step, a final selection of 

compounds is performed based on their GB for the more extended molecular dynamics and 

the analysis of the ligand-receptor interactions at the binding site.

Figure 1. The multi-step Virtual Screening flowchart.

1.8. Binding Free Energy Computation

Binding Free energy was computed using the MMPBSA and the MMGBSA 

procedures [50], as implemented in the AMBER18 package [36]. In both methods, the free 

binding energy is computed according to the equation:

∆𝐺𝑏𝑖𝑛𝑑𝑖𝑛𝑔 = ∆𝐻𝑔𝑎𝑠 + ∆𝐺𝑠𝑜𝑙𝑣 ― 𝑇∆𝑆𝑔𝑎𝑠
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10

where ∆Hgas is the gas-phase interaction energy calculated by summing the internal energy, 

noncovalent van der Waals ( ), and electrostatic ( ) molecular mechanics energies. Δ𝐻𝑔𝑎𝑠
𝑣𝑑𝑊 Δ𝐻𝑔𝑎𝑠

𝑒𝑙𝑒𝑐

On the other hand, ∆Gsolv is computed as the sum of polar (  ) and non-polar terms (Δ𝐺𝑠𝑜𝑙𝑣
𝑝𝑜𝑙𝑎𝑟 Δ

). The former term is calculated numerically by solving the Poisson-Boltzmann (PB) 𝐺𝑠𝑜𝑙𝑣
𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟

equation [51] or in its simplified form, the Generalized Born (GB) method [52] for both the 

MMPBSA and MMGBSA algorithms, respectively. In the present work, we used the 

Onufriev-Bashford-Case (OBC) generalised Born method (igb=2) [53].  Regarding to Δ

r, it is calculated using the following equation:𝐺𝑠𝑜𝑙𝑣
𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟

ΔG𝑠𝑜𝑙𝑣
𝑛𝑜𝑛𝑝𝑜𝑙𝑎𝑟 = 𝛾𝑆𝐴𝑆𝐴 +  𝛽

where SASA is the Solvent-Accessible Surface Area, calculated using the LCPO method [54], 

and the values for γ and β constants were set to 0.00542 kcal/mol·Å2 and 0,92 kcal/mol for 

MMPBSA [48] and 0.0072 kcal/mol·Å2 and 0 kcal/mol for MMGBSA [49]. All the calculations 

were carried out with the MMPBSA.py program [55].

2. Experimental Procedure

2.1. SARS-CoV-2 Mpro expression and purification

Mpro was expressed in a pET22b plasmid transformed into BL21 (DE3) Gold E. coli 

strain. Small-scale cultures grown in LB/ampicillin (100 µg/mL) at 37 °C overnight were 

employed for inoculating 4 L large-scale cultures of LB/ampicillin (100 µg/mL) incubated at 

37 C until reaching OD close to 0.6 at 600 nm. Protein expression was induced with 1 mM 

isopropyl 1-thio-β-D-galactopyranoside (IPTG) at 18 °C for 5 h. Cells were harvested by 

centrifugation at 4 C for 10 min at 10,000 rpm (Beckman Coulter Avanti J-26 XP Centrifuge) 

and resuspended in lysis buffer (sodium phosphate 50 mM, pH 7, sodium chloride 500 mM). 

Cells were lysed by sonication (Sonics Vibra-Cell Ultrasonic Liquid Processor) on ice, 

adding benzonase 20 U/mL (Merck-Millipore) and lysozyme 0.5 mg/mL (Carbosynth). Cell 

debris was removed by centrifugation at 4 °C for 30 min at 20,000 rpm, and by subsequent 

filtration (0.45 µm-pore membrane). Affinity chromatography (ÄKTA FPLC System, GE 

Healthcare Life Sciences) using a cobalt HiTrap TALON column (GE-Healthcare Life 
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11

Sciences) allowed fast purification in a single chromatographic step, applying an imidazole 

10-250 mM gradient. Purity was assessed by SDS-PAGE, and pure protein fractions were 

pooled and dialyzed to remove imidazole in buffer (sodium phosphate 50 mM, pH 7, 

sodium chloride 150 mM). Protein concentration was quantitated using an extinction 

coefficient of 32890 M−1 cm−1 at 280 nm. Protein identity was assessed by mass spectrometry 

(LC-ESI-MS/MS).

2.2. SARS-CoV-2 Mpro proteolytic activity assay

A continuous assay based on Förster resonance energy transfer (FRET) to measure in 

vitro the catalytic activity of Mpro was implemented by using the substrate 

(Dabcyl)KTSAVLQSGFRKME(Edans)-NH2 (Biosyntan GmbH). The enzymatic reaction 

was initiated by adding substrate at 20 M (final concentration) to the enzyme at 0.2 M 

(final concentration) in a final volume of 100 L. The reaction buffer was sodium phosphate 

50 mM, pH 7, NaCl 150 mM. For compounds dissolved in pure DMSO as stock solution, a 

constant DMSO percentage (2.5%) was kept in all assays. Fluorescence emission was 

measured in a FluoDia T70 microplate reader (Photon Technology International) for 20 min 

(excitation wavelength, 380 nm; emission wavelength, 500 nm). The initial slope of the time 

evolution curve of the fluorescence emission signal provided a direct quantification of the 

enzymatic activity. The Michaelis-Menten constant, Km, and the catalytic rate constant or 

turnover number, kcat, were previously estimated (Km = 11 M and kcat = 0.040 s-1).

2.3. SARS-CoV-2 Mpro inhibition assay

The in vitro inhibition potency of the compounds against Mpro was assessed through 

the estimation of the inhibition constant, Ki, and the half-maximal inhibitory concentration, 

IC50, from experimental inhibition curves. Inhibition curves were obtained by measuring the 

enzyme activity (at fixed 0.2 µM enzyme concentration and fixed 20 µM substrate 

concentration) as a function of compound concentration (serial 2-fold dilution from 125 µM 

to 0 µM), maintaining the percentage of DMSO constant (2.5%) for compounds dissolved in 

DMSO. The enzymatic activity was quantitated as the initial slope of the substrate 
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fluorescence emission time evolution curve, and was plotted as a function of compound 

concentration. The ratio between the activity (slope) in the presence and absence of 

compound provides the residual percentage of activity at a given compound concentration. 

Non-linear regression analysis employing a simple inhibition model (considering inhibitor 

depletion due to enzyme binding) allowed us to estimate the apparent inhibition constant, 

Ki
app, for each compound, according to Equation 1:

(1)

[𝐸𝐼] =
1
2([𝐼]𝑇 + [𝐸]𝑇 + 𝐾𝑎𝑝𝑝

𝑖 ― ([𝐼]𝑇 + [𝐸]𝑇 + 𝐾𝑎𝑝𝑝
𝑖 )2 ― 4[𝐸]𝑇[𝐼]𝑇)

[𝐼] = [𝐼]𝑇 ― [𝐸𝐼] =
1
2([𝐼]𝑇 ― [𝐸]𝑇 ― 𝐾𝑎𝑝𝑝

𝑖 + ([𝐼]𝑇 + [𝐸]𝑇 + 𝐾𝑎𝑝𝑝
𝑖 )2 ― 4[𝐸]𝑇[𝐼]𝑇)

𝑣([𝐼])
𝑣([𝐼] = 0) = 1 ―

[𝐸𝐼]
[𝐸]𝑇

=
1

1 +
[𝐼]

𝐾𝑎𝑝𝑝
𝑖

where [EI] is the concentration of the enzyme-inhibitor complex, [E]T and [I]T are the total 

concentrations of enzyme and inhibitor, Ki
app is the apparent inhibition constant for the 

inhibitor, [I] is the concentration of free inhibitor, and v is the initial slope of the enzymatic 

activity trace at a given (free) inhibitor concentration [I] (or total inhibitor concentration [I]T). 

No approximation for the free inhibitor concentration (e.g., assuming to be equal to the total 

inhibitor concentration) was made, thus having general validity for any total enzyme and 

inhibitor concentration and any value of the inhibition constant. In addition, if the inhibitor 

acts through a purely competitive mechanism, the previous equation can be substituted by 

Equation 2:

(2)
𝑣([𝐼])

𝑣([𝐼] = 0) =
1

1 +
[𝐼]

𝐾𝑎𝑝𝑝
𝑖

=
1

1 +
[𝐼]

𝐾𝑖(1 +
[𝑆]
𝐾𝑚)

where Ki is the intrinsic (i.e., substrate concentration-independent) inhibition constant, Km 

the Michaelis-Menten constant for the enzyme-substrate interaction, and [S] the substrate 

concentration. By approximating the free compound concentration by the total compound 

concentration and neglecting ligand depletion, the Ki
app in equation 2 is equivalent to the 

IC50. It should be noted that, as the IC50 is an assay-dependent inhibition potency index 

Page 13 of 37

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



13

(among other parameters, it depends on the enzyme and substrate concentrations, as well 

as on the Km), the intrinsic inhibition constant is a better inhibition potency index.

Purity of the compounds tested

The 11 compounds tested in the present study were purchased from Selleck Chemicals 

(Houston, TX, USA). All compounds are >95% pure by HPLC. HPLC traces for representative 

compounds is included in the SI.

Results and Discussion

Selection of Structures Representing Mpro Plasticity

A clustering process was performed for both conventional (cMD) and gaussian 

accelerated (GaMD) molecular dynamics calculations separately, as explained in the 

methods section to identify representative structures of the most populated clusters. We 

previously had performed an iterative process to select the set of atoms to be involved in 

the superposition process, bearing in mind to cover the maximum conformational diversity 

of the binding site in the selected representatives (Figure S1 of the SI). Thus, we iteratively 

selected the atoms involved in the superposition process according to their RMSF (Figure 

S2 of the SI). After the last step, 35 amino acids located in the binding site with small 

fluctuations along the MD trajectory were selected to superimpose the structures (Figure S3 

of the SI). Once the superposition was performed using the corresponding Cα, the RMSD of 

a total of 54 amino acids located in the binding site with large RMSF values was used as 

distance for the clustering process (Figures S2 and S3 of the SI). Three and four 

representatives were selected for both the cMD and GaMD, respectively, representing 

clusters with more than a 10% population. Despite assessment of the conformational 

diversity of our selected structures can be done by visual inspection (Figure S4 of the SI), we 

used Principal Component Analysis (PCA) to get a clearer picture. For this purpose, we 

analysed the RMSF of the amino acids located on the binding site. Those amino acids with 

lower RMSF were used for superimposition of the structures, whereas those with larger 

RMSF were used for the computation of the covariance matrix (Figure S3 of the SI).  As 

shown in Figure 2, the conformational space covered by cMD and GaMD is markedly 

different, a fact that is further stressed after using two MD runs for each approach. Thus, 

Page 14 of 37

ACS Paragon Plus Environment

Journal of Chemical Information and Modeling

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



14

the representatives selected will describe a broad range of situations where the ligands can 

bind. 

Figure 2. Representation of the first two Principal Components (PC) sampled by cMD and GaMD approaches. 

Blue and red indicate the two different MD. The big black points are the positions of the selected representatives 

for the clusters with more than 10% of the total population; three for the cMD and four for the GaMD.

Virtual Screening Targeting the SARS-Cov-2 Mpro Protease.

The QVina2 software [43] was used to perform ensemble docking of the diverse 

molecules from the Natural Product database onto the seven Mpro structural representatives 

and compute their corresponding scoring function values. For each structure representative, 

those ligand-Mpro complexes with a scoring function lower or equal to an established 

threshold were rank ordered and conserved for further analysis. A threshold of -7.0 kcal/mol 

was established after analysis of the results produced for the most populated cluster 

representative identified from the cMD. Specifically, the plot of the cumulative number of 

complexes obtained versus their scoring function value (see in Figure S5 of the SI), shows 

that there are already around 500 complexes values with -7.0 kcal/mol or lower, that 

represents a number large enough to include chemical diversity and permits to keep the 

computational cost at a reasonable size. Complexes selected may include more than one 

pose per compound, and actually, the same compound may appear in the rank ordered list 

of different representatives. Application of the threshold to the different Mpro structures 

yields different number of complexes for each structure. Specifically, 513, 878 and 637 for 
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the three cMD representatives and 558, 1840, 949 and 293 for the four GaMD representatives.

Ligand-receptor complexes selected from the docking process were subsequently 

subjected to a minimization process in explicit water, allowing complete conformational 

freedom for both the ligand and the protease. The binding energy of the minimized 

structures was subsequently computed using the end-point methodologies MMPBSA [48] 

(ΔGbinding(PB)) and MMGBSA [49] (ΔGbinding(GB)). Thus, at the end of this process we 

produced two rank ordered lists for each Mpro representative structure, giving a total of 14 

lists. Selection of the set of prospective binders was performed following a consensus 

approach. The procedure is based on the assumption that the larger the number of target 

conformations a ligand binds, the higher its chances of being a hit. Accordingly, we did not 

select directly compounds with the lowest binding energy, but those ligands that exhibit 

binding to diverse conformations of the target within the threshold. Using this criterion, we 

selected 47 compounds that exhibit binding to all 7 structural representatives of the target, 

together with additional 21 compounds that exhibit binding to six out of the seven structural 

representatives, producing a total of 68 compounds. For each compound, we selected the 

complex structure with the lowest binding energy for further studies. 

The 68 selected complex structures were prepared for the production step as described 

in section 1.3. Thus, a heating from 0 K to 300 K and a density equilibration for each one was 

carried out before a 100 ns of production molecular dynamics simulation.  After completion, 

the ΔGbinding(GB) time evolution of every compound was computed using the MMGBSA 

approach. Analysis of these plots shows that 38 out of the 68 ligand-protease complexes 

either exhibit a smooth fluctuating behaviour during the last 20 ns. In order to reduce the 

final number of candidates, these 38 complexes were selected to extend their MD 

simulations up to 200 ns. After analysis of the ΔGbinding(GB) behaviour and using the same 

criterion, 21 ligand-protease complexes were selected for another round of MD simulations, 

extending them up to 500 ns. In a final step, using the same criterion, only 11 complexes 

were selected for extending their MD simulations up to 1.5 s to check the smooth behaviour 

of the free energy of binding previously observed. 
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Figures 3a-3k. Time evolution of the binding free energy of the 11 compounds selected from the virtual screening 

process. 

Compounds were selected after inspection of the time evolution of the binding free 

energy during the MD simulation. A smooth behaviour with small fluctuations around the 

mean are considered as indication of good candidates, although some of the compounds 

show important fluctuations that are corrected at the end of the respective simulations. The 

time evolution of ΔGbinding (GB) for the 11 selected complexes using the MMGBSA approach 

is shown in Figures 3a-3k. 

After analysis of the time evolution plots, 11 compounds were selected as prospective 

candidates resulting from the virtual screening process, including (-) epigallocatechin 

gallate (1) (This refers to (2R,3R)-5,7-Dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-

2H-1-benzopyran-3-yl 3,4,5-trihydroxybenzoate, the major polyphenolic catechin found in 

green tea), proanthocyanidins (2), narirutin (3), amentoflavone (4), ziyu-glycoside I (5), 

luteoloside (6), vitexin-2-O-rhaMnoside (7), linarin (8), aloin (9), rhoifolin (10) and corilagin 

(11) (Figure 4). 
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Figure 4. Chemical structures of the natural compounds identified as prospective hits targeting the Mpro protease 

from the virtual screening process. (-) epigallocatechin gallate (1), proanthocyanidins (2), narirutin (3), 

amentoflavone (4), ziyu-glycoside I (5), luteoloside (6), vitexin-2-O-rhaMnoside (7), linarin (8), aloin (9), rhoifolin 

(10) and corilagin (11)

In vitro Mpro inhibitory activity of candidate compounds

The 11 prospective candidates identified from the virtual screening process were 

purchased and tested in an in vitro assay. Specifically, the inhibitory potential of the 

compounds against recombinant SARS-CoV-2 Mpro was tested by a Förster resonance 

energy transfer (FRET) assay, as described in the methods section. Five compounds showed 

specific inhibitory activity, with substrate concentration-independent inhibition constants 

(Ki) ranging from 7.8 µM for (-) epigallocatechin gallate to 82 µM for aloin. The remaining 

seven compounds did not yield detectable inhibitory activities at concentrations below 125 
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µM. Table 1 lists their measured activity together with their binding energy computed as 

described in the methods section. Inhibition curves are shown in Figure S6 of the SI.

Table 1.  in vitro inhibition values exhibited by the diverse compounds purchased rank ordered by their 

computed binding energies. Compounds with no detectable inhibitory activity at concentrations below 125 µM 

are marked with an asterisk.

Compound Ki(µM) IC50(µM) ΔGbinding(GB)
(kcal/mol)

(-) Epigallocatechin gallate 7.8 22 -54.6
Proanthocyanidins * * -52.9
Narirutin * * -48.9
Amentoflavone 10 28 -48.5
Ziyu-glycoside I * * -48.1
Luteoloside * * -43.6
Vitexin-2-O-rhaMnoside 23 65 -40.9
Linarin * * -39.6
Aloin 34 96 -38.9
Rhoifolin 82 230 -36.9
Corilagin * * -33.4

Inspection of Table 1 shows that there is a correlation for the active compounds 

between the computed binding energy to the Mpro protease and their inhibitory capacity in 

vitro. However, despite having reasonable binding affinities, several of the listed 

compounds do not exhibit inhibitory activity. Actually, the procedure followed to identify 

active compounds yields a 45% success rate, as previously found in similar studies [56, 57]. 

This can be attributed to diverse factors related to the physicochemical properties of the 

compounds like solubility or lipophilicity profile among others that may prevent reaching 

the target in the conditions of the experiment. Among the compounds reported in the 

present study, (-) epigallocatechin gallate [58-60] and rhoifolin [61] have already been 

reported as Mpro protease inhibitors from screening studies. Moreover, vitexin has also been 

proposed as a prospective Mpro inhibitor from modelling studies [62]. The rest of the active 

compounds are disclosed in the present work for the first time.

As previously shown, the procedure used in the present work to select prospective 
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candidates is based on the behavior of the time evolution of the ligand-Mpro complex binding 

free energy. Fluctuations are associated to the movement the ligands experience inside the 

binding pocket. Specifically, when time evolution of the binding free energy is smooth it 

fluctuates ~20 kcal/mol around an average value and it is stable with time. These 

fluctuations can be associated with ligand rattling inside the binding pocket but bound in a 

specific pose. Ligands of this category are considered for experimental evaluation. Larger 

fluctuations may be associated with a lack of steric complementarity between the ligand and 

the protein binding pocket, so that ligands have lower chances to become hits. In contrast, 

abrupt changes are associated with the accommodation of the ligand inside the binding 

pocket. When the subsequent behavior is stable, ligands are considered for experimental 

evaluation. In contrast, if fluctuations persist, ligands are discarded as candidates. Finally, 

behaviors where the binding free energy does not get a stable average behavior have lower 

chances to become hits. In summary, this procedure relies on the ligand bound residence 

time as indicator of the chances for a ligand to be a hit and represents a more a robust 

discrimination procedure than using only the predicted binding free energy. Thus, (-

)epigallocatechin gallate, the most active compound identified in this study, exhibits a 

smooth time evolution (Figure 3a) with fluctuations around 20 kcal/mol. Similarly, plots of 

the other active compounds including amentoflavone (Figure 3d), vitexin-2-rhaMnoside 

(Figure 3g), aloin (Figure 3i) and rhoifolin (Figure 3j) show stable behaviors. The only 

exception to this criterion is represented by ziyu-glucoside I that despite exhibiting a stable 

time evolution (Figure 3g) the compound turns out to be non-active in the experimental test. 

Regarding the non-active compounds, inspection of the time evolution of the free 

energy of binding can provide hints of their lack of inhibitory capacity. Specifically, 

inspection of the proanthocyanidins plot (Figure 3b) shows a large fluctuation around 700 

ns as a sign of instability. Despite the average binding free energy comes back to previous 

values the system exhibits fluctuations larger than 20 kcal/mole. In this case, the compound 

turns out to be non-active despite exhibiting a good binding free energy. The plot of linarin 

(Figure 3h) shows several fluctuations that suggest positional changes of the ligand inside 

the binding pocket that can explain its lack of activity. The behavior of corilagin (Figure 3k) 
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suggests that the ligand, despite showing a stable behavior after 600 ns is subjected to 

conformational changes that produce a loss of stability from the starting position. On the 

other hand, narirutin and luteoloside exhibit a time evolution binding free energy plots 

(Figures 3c and 3f, respectively) that are not converged after 1.5 µs simulation time. 

The prospective bound conformation of the five ligands found to be active onto the 

active site of Mpro is shown in Figures 5-9. Specifically, these structures correspond to the 

last snapshot of the corresponding 1.5 µs molecular dynamics trajectory. Inspection of 

Figures 5-9 suggests that ligands occupy common spots of the binding site including the S1’ 

and S1 and/or S2 subsites [20], although some of the residues involved in ligand-enzyme 

interactions can be different for the diverse ligands. Thus, all the ligands occupy the S1’ 

subsite, location of the catalytic dyad Cys145 and His41, establishing hydrogen bond 

interactions with the former and quadrupole-quadrupole interactions with the latter. 

Furthermore, other residues like Glu166 (located in the S1 subsite) or Gln142 together with 

Asp187 (located in the S2 subsite) establish hydrogen bonds with some of the ligands, as 

summarized in Table S1 of the SI. Interestingly, the ligand amentoflavone due to its size also 

occupies the S4 subsite of the binding site. All these residues have already been reported as 

important for designing novel Mpro inhibitors [20, 63]. 

The most active compound, (-) epigallocatechin gallate (Figure 5) occupies subsites 

S1’, S1 and S2 establishing multiple interactions with different residues of the enzyme. 

Specifically, the ligand exhibits hydrogen bonds with Asp48, Cys145, His164, Glu166 and Asp187 

together with a quadrupole-quadrupole interaction with His41, exhibiting complementary 

stereochemical features with the protease binding site. 
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Figure 5. Spatial representation of the complex Mpro- (-) epigallocatechin gallate  in its last snapshot of the 1.5 

µs molecular dynamics. a) Ligand bound to the binding pocket; b) Spatial distribution of the most important 

residues that interact with the ligand; c) Ligand-protease hydrogen bonds in yellow.

Amentoflavone (Figure 6) occupies subsites S1’, S1, S2 and S4 establishing multiple 

hydrogens bonds with different residues of the enzyme including Cys44, Asn142, Cys165 and 

Glu166 together with a quadrupole-quadrupole interaction with His41.

Figure 6. Spatial representation of the complex Mpro-Amentoflavone in its last snapshot of the 1.5 µs molecular 

dynamics. a) Ligand bound to the binding pocket; b) Spatial distribution of the most important residues that 

interact with the ligand; c) Ligand-protease hydrogen bonds in yellow.

Vitexin-2-O-rhaMnoside (Figure 7) occupies subsites S1’ and S1 establishing multiple 

hydrogens bonds with different residues of the enzyme including Ser46, Ser144, Cys145, His164, 

Glu166 and Asp187 together with a quadrupole-quadrupole interaction with His41.
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Figure 7. Spatial representation of the complex Mpro-Vitexin-2-O-rhaMnoside in its last snapshot of the 1.5 µs 

molecular dynamics. a) Ligand bound to the binding pocket; b) Spatial distribution of the most important 

residues that interact with the ligand; c) Ligand-protease hydrogen bonds in yellow.

Aloin (Figure 8) also occupies subites S1’ and S1, establishing multiple hydrogens 

bonds with different residues of the enzyme including Ser46, Met49, Ser144, Cys145, Met165, 

Asp187 and Gln189 together with a quadrupole-quadrupole interaction with His41.

Figure 8. Spatial representation of the complex Mpro-Aloin in its last snapshot of the 1.5 µs molecular 

dynamics. a) Ligand bound to the binding pocket; b) Spatial distribution of the most important residues that 

interact with the ligand; c) Ligand -protease hydrogen bonds in yellow.

Rhiofolin (Figure 9) occupies subsites S1’ and S2, establishing multiple hydrogens 

bonds with different residues of the enzyme including Met49, Asn142, Gly143, Cys145, Glu166, 

Gln189 and Lys236 together with a quadrupole-quadrupole interaction with His41.
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Figure 9. Spatial representation of the complex Mpro-Rhiofolin in its last snapshot of the 1.5 µs molecular 

dynamics. a) Ligand bound to the binding pocket. b) Spatial distribution of the most important residues that 

interact with the ligand. c) Ligand -protease hydrogen bonds in yellow.

This qualitative description of ligand-enzyme interactions can be further reinforced 

through the analysis of the individual residue contributions to the binding free energy 

shown in Figures 10a-10e. Binding interaction for each residue-residue pair includes three 

terms: van der Waals contribution, electrostatic contribution and solvation contribution. The 

polar contribution of ΔGsolv was computed as in the case of the ΔGbind using the generalized 

Born model based on the parameters developed by Onufriev et al. [53]. All energy 

components were calculated using 25000 snapshots corresponding to the last 100 ns of the 

full-length molecular dynamics run.
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Figure 10. Residue decomposition of the binding free energy interaction for the diverse ligand-Mpro protease 

complexes found active. a) (-) epigallocatechin gallate; b) amentoflavone; c) vitexin-2-O-rhaMnoside; d) aloin; e) 

rhoifolin.

Analysis of Figures 10a-10e shows that not all the compounds exhibit the same pattern 

of interactions, although there are specific residues relevant for binding that are common to 

all the compounds. Thus, these plots corroborate the involvement of dyad residues Cys145 

and His41 in all the complexes. Moreover, the relevance of residue Glu166 and in some cases 

Asn142 or Asp187 as ligand anchoring points is also underlined, as previously described. 

Actually, Glu166 is an important contributor to the binding energy of compounds like (-) 

epigallocatechin gallate, amentoflavone, vitexin-2-O-rhaMnoside and rhoifolin, whereas the 

Asn142 is important for (-) epigallocatechin gallate, amentoflavone and rhiofolin, whereas 

Asp187 is an important contributor for vitexin-2-O-rhaMnoside and aloin. Interestingly, there 
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are residues like Met49 or Pro168 that make a remarkable contribution to the binding energy 

of the ligands through van der Waals interactions. 

Inspection of Table S1 of the SI also suggests the capacity of these ligands to form 

hydrogen bonds as a consequence of the high number of alcohol moieties they exhibit. 

Moreover, these molecules belong to chemical class of polyphenols, considered to have 

antiviral, antibacterial, antioxidant, and anti-inflammatory activities. Specifically, diverse 

studies have investigated their potential antiviral efficiency against SARS-CoV-2 with 

varied results. Specifically, (-) epigallocatechin gallate [58-60] and rhoifolin [61] were 

previously identified as a Mpro inhibitors, although other poylphenols may act as ligands of 

different enzymes [64].

Conclusions

The need for availability of compounds that can be used as therapeutical agents for 

the treatment of Covid-19 prompted to screen for approved drugs and natural products. 

Virtual screening is a cost-effective technique to screen for large libraries of compounds. The 

purpose of this work was to carry out virtual screening of the Selleck library of Natural 

Compounds using the Mpro protease of SARS-CoV-2 as target aimed at identifying 

prospective antivirals. For this purpose, we carried out an ensemble docking of ca. 2000 

compounds using 7 different structures characterizing the plasticity of the Mpro binding 

pocket. Compounds showing binding to 6 or 7 of the diverse Mpro structures and with a 

scoring function above a threshold were selected for further analysis. After this process, we 

analyzed about 68 compounds that were screened according to the behavior of the binding 

free energy along a molecular dynamics process. Finally, 11 compounds were purchased 

and tested in vitro, for their capability to inhibit the Mpro protease. The results show that 5 

out the 11 are active that gives a 45% success rate. 

The resulting active 5 compounds were analyzed to identify residues responsible for 

their activity. Two analyses were done. On the one hand, one more qualitative from 

inspection of the prospective bound conformation of the ligands inside the Mpro binding 

pocket and another, more quantitative where the binding free energy is decomposed in 
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residue contributions. The results show that dyad residues Cys145 and His41 are involved in 

all the complexes and that Glu166 and Asn187 play an important role in the affinity of this 

group of inhibitors. Finally, other residues including Met49, Asn142 or Pro168, despite not 

being in direct contact with the ligands they interact with other residues playing a relevant 

role in defining the Mpro binding pocket.  

Data and Software Availability

Coordinates of the 7 structures of Mpro protease identified in the cluster analysis, as 

well as of the 11 ligand-Mpro complexes studied in this work are provided in pdb format 

upon request to the authors.

Supporting Information Available

Diverse information regarding the computational procedure followed, as well as 

details on the results produced in the in vitro studies are available as supplementary 

material.
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