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Abstract
We present a stable finite element formulation for the shallow water equations using the finite increment calculus (FIC)

rocedure. This research is focused on the stability properties of the FIC technique and uses linear triangles for the spatial
iscretization with an equal order of interpolation for all the variables. The extension to higher order polynomial interpolation
unctions and different geometries is straightforward. The present FIC-FEM procedure is also able to introduce artificial viscosity
or an adequate shock capturing. An implicit time integration has been used. Special attention has been payed to the dry domain
n order to solve the moving boundaries with a fixed mesh eulerian approach. Three academic examples are included in order
o test the capabilities of the FIC-FEM procedure: the global stabilization, the shock capturing technique and the dry-wet
nterface. An experimental benchmark tests the overall accuracy of the present formulation.

2021 Published by Elsevier B.V.

eywords: Shallow water equations; Finite element method; Continuous Galerkin; FIC stabilization; Dry-wetting model

1. Introduction

The shallow water equations are often used to study the hydrological dynamics of rivers and estuaries or coastal
ydrodynamics. Derived from the vertical integration of the three-dimensional (3D) Navier–Stokes equations, the
hallow water equations define an averaged free surface flow in the horizontal plane. Due to the complexity of the
eometry and the source terms is not possible to find an analytical solution for the PDE’s, this explains the need
o design strategies to find numerical solutions. In those physical phenomena, flooding or moving shoreline may
ccur, which is numerically defined by a null water depth.

The shallow water equations have traditionally been modelled using finite volumes (FV) because of its advantages
f stability and monotonicity. Given its geometric flexibility and its natural way to introduce high order schemes, the
nite element method (FEM) has been applied too [1–3]. However, since the FEM can exhibit spurious oscillations,
ifferent strategies such as stabilization, monotonic schemes or different order of polynomial interpolation can be
xplored [1,4,5]. As an alternative to the continuous FEM, more recently the discontinuous Galerkin (DG) technique
as been introduced [6–8]. DG method has the advantages of the geometrical flexibility of the FEM and the stability
f FV, but the introduction of high order DG schemes is not straightforward. This research is focused in classical
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stabilized finite elements with an equal order interpolation for all the variables. We will explore the capabilities of
the finite increment calculus (FIC) technique to develop stable formulations for the shallow water equations.

Several families of stabilization methods can be found in the literature, usually applied to the convection–diffusion
equations and the Navier–Stokes equations. The most relevant are SUPG [9], ASGS [10], GLS [11] and FIC [12,13].
Due to the hyperbolic character of the shallow water equations, a particular stabilization method for compressible
flow or the Euler equations need to be developed. The FIC approach is based on the incremental solution of a
modified system of non-local governing equations accounting for higher order terms obtained by applying the
balance laws in domains of finite size. The FIC-based stabilization has been applied in conjunction with the FEM to
convection–diffusion, incompressible flows, among other applications [13,14]. In those cases, where the convective
term has an important role, a first order FIC term is enough to provide stability to the system. However, the
shallow water equations are governed by the convective term and the wave equation in a mixed formulation [15]. In
consequence, the common derivation of the FIC-based stabilization is not enough to provide stability in all the range
of applicability of the shallow water equations. A generalization of this method is proposed in order to provide a
global stability for the shallow water equations.

Once global stability is achieved, local instabilities may appear near discontinuities, which are inherent to the
supercritical flows. A local shock capturing technique was initially proposed by Hughes [16] and a review of shock
capturing techniques can be found in Codina [17]. Other possibilities of the FIC-based formulations are explored
to provide a shock capturing stabilization [18].

Additionally, the dry domain requires an accurate modeling because the hyperbolic equations require positive
water depth in all the domain. Several authors have proposed different methods to solve the shallow water equations
with moving shoreline. Leclerc et al. [19] proposed an Eulerian method. Later, Heniche et al. [20] modified
the method allowing the free surface to plunge under the topography. Other authors developed a rough-porous
layer [21,22] or a modified depth integration [23]. These approaches introduce new physical parameters in the
balance equations. An Eulerian approach based on the work of [19,20] is presented.

This article is organized as follows. Firstly the governing equations of the shallow water problems are presented.
In Section 3 the FIC stabilization procedure is applied to add the stabilization terms and the shock capturing terms.
In Section 4 the spatial (FEM) and temporal discretizations are described. The dry domain model is presented in
the same section because it mainly depends on the discretization. Section 5 presents some numerical examples. The
first simple example tests the stability, the second one tests the dry-wet interface and the third one tests the shock
capturing. The last example is a simulation of an experiment and the results are compared with the reference. The
conclusions are given in Section 6.

2. Governing equations and linearization

The shallow water equations are the result of integrating vertically the Navier–Stokes equations, assuming the
vertical velocity and its acceleration negligible [1,24]. The equations governing mass and momentum conservation
can be written in conservative form with water depth h and specific discharge q = (hu) as follows,

∂φ

∂t
+

∂Fi

∂xi
+

∂Gi

∂xi
+ Q = 0 for i = 1, 2 (1)

with

φ =

⎧⎪⎨⎪⎩
hu1

hu2

h

⎫⎪⎬⎪⎭ (2a)

Fi =

⎧⎪⎨⎪⎩
hu1ui + δ1i

1
2 g(h2

− z2)

hu2ui + δ2i
1
2 g(h2

− z2)
hui

⎫⎪⎬⎪⎭ (2b)

Gi =

⎧⎪⎨⎪⎩
−(h/ρ)τ̄1i

−(h/ρ)τ̄2i

⎫⎪⎬⎪⎭ (2c)

0

3
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Fig. 1. Diagram and notation for the balance equations (1) and (2).

Q =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−g(h − z)

∂z
∂x1

+
h
ρ

∂pa

∂x1
−

1
ρ

τ s
31 +

1
ρ

τ b
31

−g(h − z)
∂z
∂x2

+
h
ρ

∂pa

∂x2
−

1
ρ

τ s
32 +

1
ρ

τ b
32

r

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2d)

where φ is the vector of conserved variables, Fi is the vector of convective fluxes, Gi is the vector of viscous
uxes and Q is the vector source terms. In Fig. 1 there is a representation of the variables and the notation. The
oordinates are denoted with the index notation xi . Since this formulation is defined in a two dimensional space

(nd = 2), in the following we will consider i = 1, 2. δi j is the Kronecker delta. The topography is expressed with
he variable z and the free surface elevation is expressed in terms of the topography and the total depth, η = z + h.
τ̄i j are the averaged horizontal stresses, and τ b

3i and τ s
3i denote the bottom and surface friction stresses respectively.

Finally, r is the rain source term and pa is the atmospheric pressure.
The problem is closed with an initial boundary condition,

φ(t = t0) = φ0 (3)

where φ0 are the initial water height and specific discharge.
The following Dirichlet boundary conditions are considered covering all the boundary Γ of the domain Ω :

• Inflow boundary: the flow rate is known

q = qin in Γin

If the inflow is supercritical, the water depth is also specified

q = qin

h = hin

}
in Γin

• Outflow boundary: the water depth is known

h = hout in Γout

if the outflow is supercritical, no conditions have to be imposed.
• Solid boundary: slip or no slip condition can be imposed

q · n = 0 or q = 0 in Γsolid

The bottom friction τ b
3i is modelled with the Manning formula generalized for two dimensions as

τ b
3i

= −gn2 |q|q
7 (4)
ρ h /3

4
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where n is the Manning coefficient. It defines the resistance to flow by the roughness of the bottom or other
macroscopic factors and it is determined empirically. In practice, the Manning coefficient varies from 0.01 for
a very smooth bed (concrete) to 0.05 for a rough bed (rocks) [25].

The averaged horizontal stresses are calculated from the combination of the molecular stresses and the Reynolds
stresses as follows

τ̄i j

ρ
= (ν + νt )

(
∂ui

∂x j
+

∂u j

∂xi
−

2
3
δi j

∂uk

∂xk

)
(5)

where ν is the kinematic viscosity and νt is the turbulent kinematic viscosity. When any model of turbulence is
considered, the turbulent stresses can be included in the bottom friction with the Manning formula [26]. In this
work, the turbulent stresses will be neglected.

The balance equation (1) is linearized in the following form

∂φ

∂t
+ Ai

∂φ

∂xi
−

∂

∂xi

(
Ki j

∂φ

∂x j

)
+ Sφ + bi

∂z
∂xi

= 0 (6)

where the matrices Ai and Ki j are the linearization matrices of the convective fluxes and the diffusive fluxes
respectively. The convective matrices Ai are obtained after applying the chain rule to the vector of fluxes Fi ,

∂Fi

∂xi
=

∂Fi

∂φ

∂φ

∂xi
(7a)

Ai =
∂Fi

∂φ
(7b)

A1 =

⎡⎣2u1 0 −u2
1 + c2

u2 u1 −u1u2
1 0 0

⎤⎦ , A2 =

⎡⎣u2 u1 −u1u2

0 2u2 −u2
2 + c2

0 1 0

⎤⎦ (7c)

nd c =
√

gh is the wave speed. For the one dimensional case, the eigenvalues of A are λ1,2 = u ± c. In two
imensions, given the unit vector e, the eigenvalues of the matrix ei Ai are λ1,3 = e · u ± c and λ2 = e · u.

The eigenvalues are real and always different (λ1 < λ2 < λ3), this property is called strictly hyperbolicity [27].
The eigenvalues are velocities, namely the ones of surface waves on the fluid. Note that in the dry zones, where
h = 0, the eigenvalues coincide and the system is no longer hyperbolic. This introduces difficulties at theoretical
and numerical level.

The viscous fluxes Gi are rewritten in a more convenient manner as Gi = Ki j∂φ/∂x j . The fourth order tensor
Ki j is obtained making use of Eq. (5). It is an auxiliary variable to write the linearized tensor in Voigt’s notation
and it is explained in more detail in Section 4.

The vectors bi are the result of the linearization of the topography. They are obtained by the linearization of the
fluxes Fi respect to the topography coordinate z. Rearranging terms with the independent vector Q yields

bi =

⎡⎣δi1c2

δi2c2

0

⎤⎦ (8)

The bottom friction term acting on the source term vector is linearized using a reaction matrix S

S =

⎡⎢⎣ gn2
|u|

h4/3 0 0

0 gn2
|u|

h4/3 0
0 0 0

⎤⎥⎦ (9)

n the following sections, the rain, the atmospheric pressure and the wind friction will be neglected.

. FIC stabilization

We will consider the quasi-linear balance equations written in residual form as a vector

r ..=
∂φ

+ Ai
∂φ

−
∂
(

Ki j
∂φ

)
+ Sφ + bi

∂z
i, k ∈ {1, nd} (10)
∂t ∂xi ∂xi ∂x j ∂xi

5
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where nd = 2 is the number of dimensions. The size of the vector r is equal to the number of balance equations,
b = 3.

In the one dimensional case (nd = 1) and scalar balance (nb = 1), the FIC-based stabilization is based on a
odified non local version of the governing equations as [13]

r −
1
2

le ∂r
∂x

= 0 (11)

The stabilization parameter le is usually taken the element length. However, in 2D and 3D, or when the number
f balance equations nb is different than nd , the choice of the le parameter is non trivial. Several approaches can
e found in the literature. In [13] le is chosen as a vector, but in later publications such as [14] a generalized
ormulation for different values of nd and nb was presented. For the stabilization of the Navier–Stokes equations
ifferent projections of the element size over the velocity and over the velocity gradient have been proposed [18].
ere we will use index notation for the residual vector r in order to distinguish the indices that goes to nd or to

b. To sum up, the different forms of the FIC stabilization procedure can be written as

rk −
1
2

le
i
∂rk

∂xi
= 0 i ∈ {1, nd} , k ∈ {1, nb} (12a)

rk −
1
2

le
u

ui

∥u∥

∂rk

∂xi
= 0 i, k ∈ {1, nd} (12b)

rk −
1
2

le
gi

∂u/∂xi

∥∇ui∥

∂rk

∂xi
= 0 i, k ∈ {1, nd} (12c)

In this paper we propose a stabilization term which is oriented along the characteristics of the hyperbolic
quations, as

rk −
1
2

le Ai

λ

∂rk

∂xi
= 0 i ∈ {1, nd} , k ∈ {1, nb} (13)

For consistency the linearization matrix Ai is normalized with the maximum eigenvalue λ = |u| + c. This
tabilization is analogue to the virtual multi-scale stabilization proposed in [28]. The linearization matrix Ai provides
weighting procedure between the stabilization of the convective and the mixed wave equation terms. In practice

he element size is multiplied by an algorithmic constant in order to control the amount of diffusion added by the
tabilization and it will be studied in the examples of Section 5. Recovering the vector notation for the residual,
he FIC-balance reads

r − βle Ai

λ

∂r
∂xi

i ∈ {1, nd} (14)

The FIC formulation is the result of introducing the residual of the shallow water equations (10) into the
xpression in Eq. (14). The variational expression of the equation is obtained by multiplying the equation by a test
unction ωk and integrating over the domain Ω . This gives∫

Ω

(
ωkr − ωkβle Ai

λ

∂r
∂xi

)
dΩ = 0 (15)

he second term of Eq. (15) is integrated by parts. Note that the element length le, the linearization matrix Ai and its
igenvalue λ are defined constant inside the element. Hence, the boundary integral which appears after integration
y parts should be understood as the boundary of all the elements∫

Ω

ωkrdΩ +

∫
Ω

βle Ai

λ

∂ωk

∂xi
rdΩ −

∑
e

∫
Γe

βle Ai

λ
ωknkrdΓ = 0 (16)

In this work we neglect the boundary integrals assuming that the residual r is null at the boundary of the elements.
At this point we introduce the balance equation (10) and integrate by parts the diffusive term. Derivatives of order
6
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higher tan two will be neglected since we are using linear triangles (see Section 4). The result is∫
Ω

(
ωk

∂φ

∂t
+ ωkAi

∂φ

∂xi
+

∂ωk

∂xi
Ki j

∂φ

∂x j
+ ωkSφ + ωkbi

∂z
∂xi

)
dΩ

+

∫
Ω

βle

λ

(
∂ωk

∂x j
A j

∂φ

∂t
+

∂ωk

∂x j
A j Ai

∂φ

∂xi
+

∂2ωk

∂x2
j

A j Ki j
∂φ

∂xi

+
∂ωk

∂x j
A j

(
Sφ + bi

∂z
∂xi

))
dΩ = 0 (17)

q. (17) is the stabilized variational form for the shallow water equations, similar to the expression obtained by
UPG. Note that the parameter βle/λ is analogous to the characteristic time τ of the classical SUPG or GLS

echniques [18].

.1. Shock capturing stabilization

In this section we explore other possibilities of the characteristic length definition in order to obtain a shock
apturing stabilization. Here, the mass balance and the momentum balance are considered separately and the
haracteristic length is projected onto the gradient of the unknown

Momentum balance: rq
i −

le

2 ∥∇qi∥

∂qi

∂x j

∂rq
i

∂x j
= 0 (18a)

Mass balance: rh
−

le

2 ∥∇h∥

∂h
∂x j

∂rh

∂x j
= 0 (18b)

Multiplying the momentum balance equation (18a) by a proper test function ωk , integrating over the domain in
he same way as in Eq. (15), one obtains the following variational form:∫

Ω

ωkrq
i dΩ −

∫
Ω

ωk
le

2 ∥∇qi∥

∂qi

∂x j

∂rq
i

∂x j
dΩ = 0 (19)

After integration of Eq. (19) by parts and rearranging terms we obtain∫
Ω

ωkrq
i dΩ +

∫
Ω

∂ωk

∂x j

lerq
i

2 ∥∇qi∥

∂qi

∂x j
dΩ

+

∫
Ω

ωk
∂

∂x j

(
le

2 ∥∇qi∥

∂qi

∂x j

)
rq

i dΩ −

∫
Ω

∂

∂x j

(
ωk

le

2 ∥∇qi∥

∂qi

∂x j
rq

i

)
dΩ = 0 (20)

ince we will use linear triangles (see Section 4), the last two terms of Eq. (20) are dropped because they involve
erivatives of the characteristic length and can be transformed into a boundary integral.

The same procedure is applied to the mass balance equation (18b). As a result we obtain the following system
f equations for both unknowns

Momentum balance:
∫
Ω

ωkrq
i dΩ +

∫
Ω

∂ωk

∂x j

lerq
i

2 ∥∇qi∥

∂qi

∂x j
dΩ = 0 (21a)

Mass balance:
∫
Ω

ωkrhdΩ +

∫
Ω

∂ωk

∂x j

lerh

2 ∥∇hi∥

∂qi

∂x j
dΩ = 0 (21b)

The above expressions (21) are equivalent to a classical shock capturing method, in which the artificial diffusivity
art and artificial viscosity νart can be identified as

νart =
1
2
αle

|rq
i |

∥∇ui∥
(22a)

kart =
1
2
αle

|rh
|

∥∇h∥
(22b)

where α is an algorithmic constant.
 24
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Such approach can be refined by introducing the stabilization along the streamlines. This way, kart and νart need
o be added only in the crosswind direction. The diffusive term is added to the mass balance with the following
rthogonal tensor

Dart = kart

(
I −

1
|u|2

u ⊗ u
)

(23)

he viscosity is introduced into the momentum balance with a fourth order tensor in the crosswind direction. Using
oigt’s notation,

Cart = νart I4J (24)

ith

J =

⎡⎢⎣1 −
q1q1
qq −

q1q2
qq 0

−
q1q2
qq 1 −

q2q2
qq 0

0 0 1 −
q1q2
qq

⎤⎥⎦ (25)

here I4 is the fourth order identity tensor for the stresses, which is derived from Eq. (5) and will be defined in
ection 4.

. Finite element formulation

It is conventional to use higher order of interpolation for the momentum or velocity than for the water depth or
ree surface in order to develop stable finite element formulations [4,20,29]. In this work we restrict ourselves to
inear triangles for both q and h unknowns, since the FIC-FEM procedure is intrinsically stable. For that reason,
ll terms including spatial derivatives of order higher than two will be neglected. Bilinear quadrilaterals and higher
rder elements with the same number of degrees of freedom for all the variables will be also stable.

.1. Spatial discretization

A finite element discretization Ωh is introduced in the domain Ω and the problem variables can be interpolated
ith the basis functions of the finite elements space as

φi =

nΩ∑
a

Na(x)φai i ∈ {1, nb} (26)

here nΩ represents the total number of nodes in Ωh and φi are the problem variables defined in (2). Note that
he shape functions are the same for all the variables, h and qi . Here we introduce the notation φh for the vectors
f nodal unknowns -momentum and water height- on the finite element domain. Following the standard Galerkin
iscretization, the shape functions Na are used to interpolate the test functions ωk and the unknowns. The continuous
q. (17) is combined with Eq. (21) and can be expressed as the following algebraic system of equations

[M + MF ]φ̇h + [G + GF + L + LSC + R + RF ]φh = T + TF (27)

here the dot (˙) means temporal derivative. The matrices in Eq. (27) without subscript are related to the original
roblem (10); the matrices with subscript F correspond to the terms added by the FIC procedure to ensure stability,
nd those with the subscript SC are the terms added by the shock capturing technique. Using a, b to denote the
odes, i , j to denote the space dimension index and k, l to denote the balance equation number, the matrices in
q. (27) are defined as

Mab
=

∫
Ωe

NaINbdΩ Gab
=

∫
Ωe

NaAi
∂ Nb

∂xi
dΩ

Lab
=

∫
Ωe

Ba

[
C 0
0 D

]
BT

b dΩ Rab
=

∫
Ωe

NaSNbdΩ (28)

Tab
=

∫
Ωe

Nabi
∂z
∂xi

dΩ +

∫
Γe

NatbdΓ
8
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where the diffusive matrix Lab is defined using the derivatives matrix Ba and the isotropic tensors C and D of
viscosity and diffusivity. Note that the diffusivity is zero, but the matrix structure will be reused for the stabilization.
The viscosity tensor in Voigt’s notation is constructed using the linearization matrices Ki j . The matrix and the tensors
are given by

Ba =

⎡⎢⎣
∂ Na
∂x1

0 ∂ Na
∂x2

0 0
0 ∂ Na

∂x2

∂ Na
∂x1

0 0
0 0 0 ∂ Na

∂x1

∂ Na
∂x2

⎤⎥⎦ (29a)

C = νI4 , D = kI2 , I4 =
1
3

⎡⎣ 2 −1 0
−1 2 0
0 0 3

⎤⎦ , I2 =

[
1 0
0 1

]
(29b)

The stabilization and shock capturing terms from Eq. (27) result in analogous matrices with higher derivatives
rder, the boundary integral is neglected, i.e.,

Mab
F =

∫
Ωe

βle

2
∂ Na

∂xi
Ai NbdΩ Gab

F =

∫
Ωe

βle

2
∂ Na

∂xi
Ai A j

∂ Nb

∂x j
dΩ

Lab
SC =

∫
Ωe

Ba

[
Cart 0

0 Dart

]
BT

b dΩ Rab
F =

∫
Ωe

βle

2
∂ Na

∂xi
Ai SNbdΩ (30)

Tab
F =

∫
Ωe

βle

2
∂ Na

∂xi
Ai b j

∂z
∂x j

dΩ

4.2. Temporal integration

The resulting expression from the spatial discretization (27) can be written in the following compact form

M̃φ̇h + K̃φh = f̃ (31)

here the symbol (˜) denotes the assembly of the system matrices and vectors for all the elements. We have
ntegrated this equation introducing a time discretization using the well known BDF2 implicit scheme [30,31].
he system of equations in a discrete time domain yields

M̃φ̇
n+1
h + K̃n+1φn+1

h = f̃n+1

φ̇
n+1
h = β0φ

n+1
h + β1φ

n
h + β2φ

n−1
h

(32)

e will consider a variable time step to compute the BDF coefficients using the notation tn+1
= tn

+ ∆tn:

β0 = τ (ρ2
+ 2ρ)

β1 = −τ (ρ2
+ 2ρ + 1)

β2 = τ

(33)

ith

τ =
1

∆tn(ρ2 + ρ)

ρ =
∆tn−1

∆tn

(34)

The solution of this implicit system requires an iterative procedure. We have used the Newton–Raphson method,
y which the problem unknowns are computed in an incremental way as φ

n+1,i+1
h = φ

n+1,i
h + δφi

h , where the
superscript i denotes the non linear iteration. This notation allows us to rewrite the system of Eqs. (32) defining a
left hand side matrix multiplied by the increment δφi

h and a right hand side vector which depends on the previous
non linear iteration as

[β M̃ + K̃n+1,i ]δφi
= f̃n+1,i

− K̃n+1,iφ
n+1,i

− M̃φ̇
n+1,i

(35)
0 h h h 24

9
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Fig. 2. Dimensionless functions to compute the inverse height and the wet fraction.

The first non linear iteration φ
n+1,0
h is initialized using a prediction given from the BDF formula at the last time

tep:

φ
n+1,0
h = φn

h + ∆tnφ̇
n
h (36)

.3. Dry domain model

When small or quasi zero water depths are involved in simulations, some instabilities may arise. In addition, the
olution of the time integration scheme requires the inverse of a matrix which is singular in the dry regions. In this
ection we review the challenges associated to such a problem, and the way we have circumvented them.

ecovery of the velocity field. The evaluation of the characteristic matrices Ai involves the velocities, which are
ecovered given the primary variables φ from the previous iteration. Since the computation of the velocity is the
esult of dividing the discharge by the water height, this operation is ill-conditioned in the dry regions. In this
esearch, the velocity field is computed in a two step procedure. First of all, the inverse of the water depth is
omputed at each element following the next expression, initially proposed in [32]:

ĥ−1 ..=

√
2 max(h, 0)√

h4 + max(h4, ε4)
(37)

here ε is a threshold which depends on the element size; usually ε = 0.1le is chosen. Fig. 2 shows a dimensionless
epresentation of Eq. (37). The second step in the velocity computation is a diffusive projection on the nodes:

MLu = ĥ−1
k M(q) (38)

here M is the consistent mass matrix and ML is the lumped mass matrix. This projection will introduce some
rtificial diffusion in the velocity field near the dry-wet interface reducing the possible maxima extrema.

The expression(37) tends to zero in dry or partially dry regions, while the analytical expression of the height
nverse is recovered when h > ε.

artially wet elements. At the elements where the shoreline is located, the interpolated water depth will not
epresent the real water surface. Therefore, those elements need a special consideration in order to prevent unrealistic
scillations. Excluding those elements from the computations is equivalent to introduce an artificial barrier, and the
nclusion of those elements will incur in a consideration of an extra volume of water. We chose to include all the
lements in the computation and to modify the balance equations in order to satisfy equilibrium at rest (Fig. 3).
10
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Fig. 3. Dry, wet and partially wet elements in 1D. The dashed line shows the modified topography and the corresponding free surface.

his is achieved by introducing a modified topography z′ which is obtained imposing the following equilibrium
ondition:

∂η′

∂xi
=

∂z′

∂xi
+

∂h
∂xi

= 0 (39)

Following the idea of [23], the identification of partially wet elements is done across the definition of a wet
raction function. In this research, instead of modifying the vertical integration of the Navier–Stokes equations, the
et fraction is defined making use of the pseudo inverse ĥ−1. The wet fraction w reads:

w = hĥ−1 (40)

The wet fraction function is defined in all the elements -wet, dry and partially dry- and its value goes from 0 for
ry elements to 1 for wet elements (see Fig. 2) This function makes possible to construct the source system vector

(see Eqs. (27) and (28)) with a linear combination between the two topographies as wz + (1 − w)z′.

voiding the singularity of the system matrix. Since all the elements are included in the computational domain, the
ast issue to overcome with small water depths are the numerical difficulties stated in Section 2. When there is a
ull water depth, the theoretical flow rate and velocity are zero. In that point the matrices Ai are not invertible and
he eigenvalues are all equal to zero. In that case, the hyperbolicity property of the system is lost. In practice, due
o spurious oscillations, the flow rate and the velocity may be different from zero. The idea is to freeze the flow
nd to allow to invert the system matrix adding a diagonal of non zero terms to the momentum equation, i.e.,

G ..= G + ξ diag(1, 1, 0) (41)

The selection of the areas where there is a dry domain is controlled with the wet fraction function and ξ is
efined as

ξ = k(1 − w) (42)

In our numerical experiments we have chosen k = 103. The addition of a diagonal matrix remembers the artificial
anning friction proposed in [20]. This term plays the role of freezing the flow in dry areas.

ass conservation properties. The stabilized method proposed is not monotonic and the dry domain model is acting
o ensure stability, but it does not provide monotonicity. We note that all the modifications have been done at the

omentum balance level. This means that mass is conserved globally by the weak formulation, but the mass sign
reservation is not guaranteed.

Both unknowns, water depth and flow rate, are continuous at the dry-wet interface, but its derivatives are
iscontinuous. Even though the shock capturing scheme can not avoid this kind of oscillations, it will mitigate
hem, and the order of accuracy will be lost due to the introduction of the non-linear artificial diffusion [33].

. Examples

The FIC-FEM formulation presented has been implemented in KratosMultiphysics [34,35], an open source
ramework of numerical methods written in C++. In this section we present four different examples. Three of them
re oriented to verify a single aspect of the procedure explained in this research, the global stabilization, the shock
apturing technique and the dry-wet interface. The last one is devoted to test all the capabilities of the formulation
n a practical case for which experimental data is available.
11
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Fig. 4. Channel with a backward step. Domain and mesh used in the simulation. All the boundary conditions are slip. The average element
size is 0.06 m. Near the obstacle the mesh size is 0.02 m. There are 3.125 nodes and 5.826 elements.

Fig. 5. Channel with a backward step. Timestamps of the free surface along the cut AA’ from Fig. 4. (a) The initial perturbation is
ropagating to the right. (b) Propagation of the reflected wave from right to left.

.1. Wave in a channel with a backward step

The aim of the first example is to show that the Galerkin formulation applied to the shallow water equations
s unstable and how the present stabilization method can overcome this issue. A calibration of the stabilization
arameter is performed to optimize the effect of the stabilization terms in the obtained solution. We study the
ropagation of a wave in a channel with a backward step (Fig. 4) where all the boundaries are slip. The channel
epth is 1 m. An initial perturbation in the free surface at the left wall generates a wave which travels from 0 to
s. The initial perturbation reads

η(t = 0) = 0.05 cos(πx) if x < 1, η = 0 otherwise (43)

The wave is reflected at the right wall and then faces the step in the opposite direction. Fig. 5 shows the
ropagation of the wave along the channel. The problem is discretized with a mesh fine enough to test the artificial
iffusion added by the stabilization (Fig. 4). The average element size is 0.06 m and near the corner the mesh is
efined to 0.02 m. The time step is set automatically to keep a maximum Courant number equal to 1.0 at every
tep. The problem is run three times with different algorithmic constants β = 0.001, 0.01 and 0.1. In this example,
he shock capturing term is disabled.
12
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Fig. 6. Channel with a backward step. Contour plots of the free surface elevation at time t = 1 s for different stabilization factors. (a)
β = 0.001, (b) β = 0.01, (c) β = 0.1.

Fig. 7. Channel with a backward step. Contour plots of the free surface elevation at time t = 5 s for different stabilization factors. (a)
β = 0.001, (b) β = 0.01, (c) β = 0.1.

The best results are achieved with the intermediate value and it has been fixed for the rest of the examples in
his paper. Figs. 6 and 7 show that the lower value of β is not enough to provide stability, while the higher value

is over diffusive.

5.2. Oscillation in a parabolic basin

The second example is a classical benchmark oriented to test the accuracy of the location of the moving boundary.
he topography follows a parabolic profile while the initial free surface elevation is planar and intersects the

opography. The initial configuration corresponds to zero velocity but the free surface is in a non horizontal plane.
he solution of the problem is oscillatory and the free surface elevation remains planar. An analytical solution can
e found in the compilation made by Delestre et al. [36].

The domain Ω is defined in the interval [0, L] × [0, 1] m where L = 10 m and all the boundaries are reflective
u · n = 0). The topography is given by the following expression

z(x, y) = h0

(
1
a2

(
x −

L
2

)2

− 1

)
(44)

The primitive variables are defined by

h(x, y) =

{
−h0

(( 1
a

(
x −

L
2

)
+

1
2a cos(2Bt)

)2
− 1

)
if x1(t) < x < x2(t)

0 otherwise
(45a)

u(x, y) =

{
(B, 0) sin(2Bt) if x1(t) < x < x2(t)

(45b)

(0, 0) otherwise

13
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Fig. 8. Parabolic basin. One of the meshes used in the analysis. The element size is 0.1 m.

Fig. 9. Parabolic basin. Convergence analysis for the water height.

where B =
√

2gh0/2a, and x1, x2 are time dependent functions which define the location of the dry-wet interface:

x1(t) = −
1
2

cos(2Bt) − a +
L
2

x2(t) = −
1
2

cos(2Bt) + a +
L
2

(46)

In that example the selected parameters are h0 = 1 m and a = 1 m.
The domain Ω is discretized using several meshes in order to perform a convergence analysis. The meshes

mployed are listed in Fig. 9. Fig. 8 shows one of the intermediate mesh. Once the simulation begins, the water
tarts to oscillate on the parabolic basin and the velocity field is constant on the spatial domain, while follows a
eriodic function respect to the time.

Fig. 10 shows a cut along the mesh at different times. The most challenging problem is to capture the discontinuity
f the velocity. Even though the velocity presents a discontinuity, it isn’t the origin of the oscillatory behavior since
he velocity is not a degree of freedom. It can be appreciated how the discontinuity of the velocity is not an issue.

A mass conservation test is performed with the mesh of size 0.05 m in a simulation of 5 s. The results are
resented in Fig. 11. The integration of the mass is performed over all the domain and over the wet domain. The
et domain is identified with the wet fraction, requiring that it is equal to 1. Since the presented scheme is not
ass sign preserving, the wet mass can not be equal to the total mass and a small fraction is lost from the wet

omain. The loss depends on the element size and presents an oscillatory behavior inherent of the method. Fig. 11
hows that the mass loss is bounded and the mean does not increase with time.

Fig. 12 shows the results using the finest mesh. The discretization is not shown for the sake of simplicity. As
xpected, there is no variation on the results in the transversal section.

.3. Short channel with smooth transition and shock

The third example in a benchmark based on the Mac Donald’s type solutions [37]. The analytical solution can
e found in the same compilation than the previous example [36]. This test presents a channel with a steady state
olution. There is a subcritical inlet and a transcritical flow is produced. The outlet is also subcritical and then
shock is generated at 2/3 of the channel. The aim of this example is to evaluate the shock capturing technique

resented and the correct location of the hydraulic jump, which depends on the bottom friction law.
Here we will consider the 1D shallow water equations without diffusion and only with Manning bottom friction

s source term. A steady state solution satisfies ∂q
∂x = 0 and Eq. (1) reduces to

∂z
=

(
v2

− 1
)

∂h
− n2 |v|v

4/3
(47)
∂x gh ∂x h
14
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Fig. 10. Parabolic basin. Cuts along the mesh of size 0.03 m at different times. There are 333 nodes on the cut.

his relation allows to integrate the topography given an analytical expression for the water height. Another approach
n hydraulics is to consider a given discharge and topography and integrate the water height using Eq. (47). Following
oth approaches exact solutions can be obtained. Since this expression involves the bottom friction, we can verify
f the friction term is correctly coded in order to satisfy the steady state.

For this benchmark we have considered the domain defined by the spatial domain [0, 100] × [0, 5] which is a
channel of 100 m length and 5 m width (Fig. 13), and the following boundary conditions:

qx = 2 m/s in Γupstream

h = hex (100) in Γdownstream (48)

qy = 0 in Γwalls

15
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Fig. 11. Parabolic basin. Mass conservation error. The element size used in this simulation is 0.05 m. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. Parabolic basin. Results with the fine mesh of size 0.01 m at time t = 1 s. (a) Water height, (b) x-discharge and (c) x-velocity.
There is no legend for simplicity, the red colour is positive and blue means a null or negative magnitude. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

The problem is initialized with the following values:

h(x, 0) = max(hex (100) − z(x), hex (0))
q(x, 0) = 0

(49)

The Manning coefficient is 0.0328 m−1/3s and the water height hex (x) is a piecewise function defined in [36].
The discontinuity of the water height function is located at x = 200/3 m and defines the hydraulic jump. The
expression of the stationary exact water depth is:

hex =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

4
g

) 1
3 ( 4

3 −
x
L

)
−

9x
10L

( x
L −

2
3

)
, for x < 2L

3(
4
g

) 1
3
(

a1
( x

L −
2
3

)4
+ a1

( x
L −

2
3

)3
− a2

( x
L −

2
3

)2

+a3
( x

L −
2
3

)
+ a4

)
, for x ≥

2L
3

(50)

where a1 = 0.674202 m, a2 = 21.7112 m, a3 = 14.492 m, a4 = 1.4305 m and L = 100 m. The topography is
obtained by a numerical integration using the fourth order Runge Kutta method.

As in the previous example, several meshes are employed and a convergence analysis is performed (Fig. 14).
The shock capturing parameter is α = 1.0 and we will study the accuracy of the hydraulic jump. Given the initial
conditions, the hydraulic jump is generated between the first 50 and 80 s. The overall error is computed at time
t = 200 s, in order to ensure the stationary state is achieved. The table from Fig. 14 shows the error of the
x-discharge over all the domain using the L2 norm.

Results from different meshes are compared in Figs. 15 and 16. The oscillations are reduced with the finer
mesh (Fig. 16), but there is a peak on the discharge at the location of the shock. This peak is initiated because
16
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Fig. 13. Short channel. Geometry of the channel. The vertical line shows the position of the hydraulic jump.

Fig. 14. Short channel. Convergence analysis for the x-discharge.

Fig. 15. Short channel. Graph along the cut defined by the center of the channel. The mesh size is 0.5 m.

the momentum balance includes the gradient of the total water depth, and the analytical gradient is a Dirac delta
function.

5.4. Experimental dam break flow against an isolated building

The last example consists on the reproduction of the experiment carried out by Soares [38]. A dam break flow
ith a building downstream is simulated. The problem definition is depicted in Fig. 17. The channel is 3.4 m wide

nd the end of the dam is located at x = 0. As initial conditions, the water depth is set to 0.4 m in the reservoir,
hile the channel is dry. The Manning coefficient is 0.01 sm−1/3 over all the domain. At the beginning of the

imulation, the gate of the dam is removed and the water is allowed to flow around the building.
There are some gauges (Table 1 and Fig. 17) where the water height and velocity are recorded. Experimental

ata is used to validate the numerical method.
 10

17



CMA: 114362
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Fig. 16. Short channel. Graph along the cut defined by the center of the channel. The mesh size is 0.2 m.

Fig. 17. Experimental dam break flow. Definition of the isolated building benchmark. The dimensions are in m.

Table 1
Experimental dam break flow. Positions of the gauges, units in m.

Gauge number X Y

1 2.65 1.15
2 2.65 −0.60
3 4.00 1.15
4 4.00 −0.80
5 5.20 0.30
6 −1.87 1.10
18
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Fig. 18. Experimental dam break flow. Detail of the mesh near the dam and around the building. The coarse elements have an average size
of 0.06 m and the refined area has an average element size of 0.02 m. There are 160.000 elements.

The domain is discretized with a mesh with an average element size of 0.05 m. There are 115.000 elements and
the time step is computed to keep a courant number of 1.0. Fig. 18 displays two details of the mesh, near the dam
and around the building.

To get a general idea of the flow, Fig. 19 shows several results of the water depth after the gate release. Fig. 20
hows the evolution of the water depth at the gauges. An initial delay is observed in the propagation of the front
n the gauges 1 to 5.

Gauge 1 is located upstream of the building and close to the left wall of the channel. In gauge 1 there are the
ain discrepancies between the numerical and experimental results. The vicinity of the wall is responsible for the

apid variations in the water level. After the arrival of the front wave, this is reflected in the wall and a second raise
f the water level is observed. About t = 6 s, an oblique hydraulic jump is formed and registered in gauge 1. The
wo first shocks are well captured by the numerical results, but the oblique hydraulic jump is registered latter, at
= 10 s, and there is a general overestimation of the ones for the water depth values.

The main hydraulic jump in gauge 2 formed by the reflection against the building is registered at t = 15 s, but
n the numerical simulation is it formed very rapidly, presenting a discontinuity in time.

Gauge 3 is located at the left hand side of the building, where multiple waves are reflected and practically always
t is in subcritical regime. There is a good correlation between numerical and experimental results. Gauge 4 is at
he opposite side of the building but the superposition of the reflected waves is more clearly identified. The main
iscrepancies in the results are concentrated in the first seconds, where the flow is more dynamic.

Gauge 6 is located at the reservoir and registers the superposition of smooth waves during the emptying of the
ank.

As stated in [38] there are some difficulties in the recording of the velocity and its validity is discussed. Here we
ompare only the most representative gauges. Gauge 2 is not fully submerged and the validity of the measurements
s good after t = 14.5 s. It illustrates the change from supercritical flow to subcritical (Fig. 21). The considerations
re similar to the water depth study.

The experimental measurements in gauge 4 (Fig. 22) show a change in the velocity direction around t = 15 s
due to the rise of water level. The numerical results do not capture this change but the mean and the stationary
values are correctly simulated.

In gauge 5 the formation of eddies behind the building can be appreciated from t = 20 (Fig. 23). In that case, the
experimental results have difficulties to capture the eddies. Results will probably improve by extending the refined
region of the mesh. The authors have observed the formation of eddies, but they are not fully developed and its
area of influence is not enough to arrive to gauge 5.

In fluid–structure interaction studies, pressure is needed to compute to forces over the structure. The shallow water
assumptions drop the dynamic pressures retaining only the hydrostatic ones. In the present case, the pressures are
recovered by integrating the hydrostatic pressures given the water depth around the building. However, there is no
experimental data about the forces applied to the building and thus, the importance of the dynamic pressures can
not be evaluated.

Regarding the performance of the FIC-FEM formulation, it captures the main aspects of the flow, but not the
details, since there are some regions on that experiment which violate the shallow water approximations.
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Fig. 19. Experimental dam break flow. Results of the benchmark at times 0, 1 and 3 s.

. Concluding remarks

We have extended the FIC-FEM procedure to the shallow water equations. Unlike the FIC-based stabilizations
or incompressible flows, the present procedure is applied to the coupled mass and momentum balance at the same
ime using the linearization matrix Ai . It can be seen that this procedure casts to the classical FIC-stabilization

for convection diffusion problems, taking the velocity as linearization term. The same procedure can be applied to
develop stabilized formulations for compressible flows.

The present extension of the FIC-procedure to the shallow water equations uses the linearization matrix Ai for
the flux terms to project the characteristic length. However, an alternative framework can be explored with the
ASGS [15,39] formulation, which includes the linearization matrices of the viscous terms and reaction terms. Since
20



CMA: 114362
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Fig. 20. Experimental dam break flow. Comparison between the obtained water depth with the reference data.

Fig. 21. Experimental dam break flow. Comparison of velocity at gauge 2.

the shallow water equations are dominated by the convective matrix Ai , and thus are strictly hyperbolic, the present
stabilization is enough to provide stability, as shown in Section 5.

The present stabilization provides two algorithmic constants, one for the global stabilization and other one for
the shock capturing term. From our numerical experiments, we have chosen β = 0.01 for the stabilization and
α = 1.0 for the shock capturing.

Regarding the accuracy of the shock capturing and the dry domain model, one must notice that this method
is not monotonic. Therefore, like in many other stabilized methods, the order of convergence is dropped around
 7
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Fig. 22. Experimental dam break flow. Comparison of velocity at gauge 4.

Fig. 23. Experimental dam break flow. Comparison of velocity at gauge 5.

discontinuities such as hydraulic jumps and the shoreline. However, the spurious oscillations, specially the
oscillations related to the moving shoreline, are bounded and the method is globally mass preserving.

The present FIC-FEM procedure has produced accurate results for the examples considered. In the first example,
the artificial diffusion is evaluated and it has been proved to be small and practically inappreciable. The shock
capturing term allows to solve supercritical problems with discontinuities and the present procedure is also able to
deal with partially wet domains. Finally, a numerical simulation of a dam break flow against an isolated building is
performed. The limitations of the model essentially come from the shallow water equations hypothesis. In fact, the
last example presents local regions where the dynamic pressure is not negligible. It is not an obstacle to simulate
the main aspects of the flow and the numerical results are in good agreement with the experimental data.
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The stabilization matrices are the result of multiplying A tensor by itself:

A1A1 =

⎛⎝3u2
1 + c2 0 −2u3

1 + 2u1c2

2u1u2 u2
1 −2u2

1u2 + u2c2

2 2

⎞⎠ (51a)

2u1 0 −u1 + c
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A2A2 =

⎛⎝u2
2 2u1u2 −2u1u2

2 + u1c2

0 3u2
2 + c2

−2u3
2 + 2u2c2

0 2u2 −u2
2 + c2

⎞⎠ (51b)

A1A2 =

⎛⎝2u1u2 u2
1 + c2

−2u2
1u2

u2
2 2u1u2 −2u1u2

2 + u1c2

u2 u1 −u1u2

⎞⎠ (51c)

A2A1 =

⎛⎝ 2u1u2 u2
1 −2u2

1u2 + u2c2

u2
2 + c2 2u1u2 −2u1u2

2
u2 u1 −u1u2

⎞⎠ (51d)
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