
HLS-Based HW/SW Co-Design of the
Post-Quantum Classic McEliece Cryptosystem

Vatistas Kostalabros
Barcelona Supercomputing Center

Bacelona, Spain
vaistas.kostalabros@bsc.es

Jordi Ribes-González
Universitat Rovira i Virgili

Tarragona, Spain
jordi.ribes@urv.cat

Oriol Farràs
Universitat Rovira i Virgili

Tarragona, Spain
oriol.farras@urv.cat

Miquel Moretó
Barcelona Supercomputing Center

Barcelona, Spain
miquel.moreto@bsc.es

Carles Hernandez
Universitat Politècnica de València

Valencia, Spain
carherlu@upv.es

Abstract—While quantum computers are rapidly becoming
more powerful, the current cryptographic infrastructure is immi-
nently threatened. In a preventive manner, the U.S. National Insti-
tute of Standards and Technology (NIST) has initiated a process
to evaluate quantum-resistant cryptosystems, to form the first
post-quantum (PQ) cryptographic standard. Classic McEliece
(CM) is one of the most prominent cryptosystems considered for
standardization in NIST’s PQ cryptography contest. However, its
computational cost poses notable challenges to a big fraction of
existing computing devices. This work presents an HLS-based,
HW/SW co-design acceleration of the CM Key Encapsulation
Mechanism (CM KEM). We demonstrate significant maximum
speedups of up to 55.2×, 3.3×, and 8.7× in the CM KEM
algorithms of key generation, encapsulation, and decapsulation
respectively, comparing to a SW-only scalar implementation.

I. INTRODUCTION

The advent of large-scale quantum computers may have a
positive impact on many computational disciplines. However,
the most popular public-key algorithms that we use today
could be efficiently broken by a sufficiently strong quantum
computer. This could have a disruptive effect on our society.
While ongoing advances in quantum computing bring large-
scale quantum computers closer to reality, the need to come
up with quantum-resistant replacements for traditional cryp-
tography is imperative.

Post-Quantum Cryptography (PQC) is a branch of cryptog-
raphy that aims to develop PQ cryptographic solutions that will
be able to execute on today’s non-quantum computers. These
PQ cryptosystems should be resistant to both conventional
and quantum attacks. In this direction, public institutions are
making a coordinated effort to standardize the use of PQ
cryptosystems.

Intending to define the first PQC standard, NIST launched
in 2017 an open contest to evaluate PQ cryptosystems [1]. Its
3rd evaluation round currently features 4 finalist PQ candidates
that advanced from the 69 initial submissions [2]. Our work
focuses on Classic McEliece [3], one of the most prominent
finalists to form the core of the first PQC standard.

CM is a code-based cryptosystem. Its security is based on
the hardness of decoding a hidden error-correcting code. While
its large public key (PK) matrix complicates its hardware
implementation, the fact that since its discovery at 1978 it
remains unbroken, renders its security properties particularly
appealing [3]. Nevertheless, it lacks performance evaluation
studies, especially on heterogeneous platforms.

Our work bridges this gap by proposing an acceleration of
CM on heterogeneous platforms containing CPUs and FPGAs.
To exploit the advantages of the heterogeneity of the target
architecture, we utilize a HW/SW co-design methodology. To
gain the speed efficiency of hardware designs with reduced
design effort, we use HLS-based techniques on the FPGA.
Finally, HLS-based HW/SW co-design acceleration is the
ideal methodology in terms of flexibility and performance
gain to address any possible changes of CM prior to its
standardization.

This paper makes the following contributions:

• The first, to the best of our knowledge, HLS-based HW/SW
co-design acceleration of CM on CPU+FPGA heteroge-
neous platforms.

• An effective HW/SW co-design approach that addresses the
large PK size of CM, providing speedups of up to 55.2× to
the most time-consuming part of CM.

• A design space exploration that delivers a balanced solution
to the performance-security tradeoff of CM implementation.

• An analysis of the CM acceleration potential on heteroge-
neous platforms including scalar or vector-processing cores.

• A highly-portable and OpenCL-based HW/SW co-design,
across embedded and data-centric heterogeneous accelera-
tion platforms containing FPGA devices.

• Open-source access to the developed source code at https:
//github.com/beatsnbytes/classic_mceliece.

This paper has the following structure: Section II introduces
the CM cryptosystem and presents the motivation for this
work. Section III analyzes our HW/SW co-design proposal.
Next, Section IV explains our experimental methodology.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.
DOI 10.1109/FPL53798.2021.00017

https://github.com/beatsnbytes/classic_mceliece
https://github.com/beatsnbytes/classic_mceliece

Section V demonstrates the performance evaluation of our
proposal. Finally, Section VI presents the related work and
Section VII concludes the current study.

II. BACKGROUND AND MOTIVATION

Key Encapsulation Mechanisms. Candidates of the NIST
PQC contest span two categories; KEMs and Digital Signature
algorithms. In this work, we focus on the CM KEM. KEMs
enable a server and a client to privately establish a common
session key. They consist of three algorithms: Key Generation
(KeyGen), Encapsulation, and Decapsulation. At first, a server
executes KeyGen to generate a public key (PK) and secret key
(SK) pair, and distributes the PK safely to the client. The client
then uses this PK on Encapsulation to generate a session key
in plaintext and ciphertext (CT) forms. The client then sends
this CT to the server. Finally, the server uses Decapsulation
with its own SK to decrypt the CT and obtain the session key.
Classic McEliece. CM is among the four NIST contest finalist
KEMs. It is based on the public-key encryption schemes
of McEliece and Niederreiter, with some custom algorithmic
optimizations [4], [5]. The main advantages of CM are: i) its
long-standing security, having resisted classical and quantum
attacks without significant modifications for over 40 years [3],
ii) its encryption/decryption speed, and iii) its unusually small
CTs, which are useful in some applications [6]. A well-
known drawback is its large PK size, which poses significant
challenges to its hardware implementation in a big fraction of
existing computing devices and may hinder its suitability for
some network protocols [7], [8]. The parameters of CM are:
• Three positive integers m,n, t with n ≤ 2m and m · t < n.

These also define two integers k = n−m · t and q = 2m.
• Two monic irreducible polynomials f , F that define the

finite fields Fq = F2[z]/(f(z)) and Fqt = Fq[y]/(F (y)).
The CM cryptosystem provides five parameter sets, belong-

ing to security levels 1, 3 and 5. Parameter sets alter the inner
configuration of the cryptosystem according to the desired
security strength the user wants to achieve. They ultimately
dictate the PK, SK, and CT sizes, thus increasing/decreasing
the provided security. We reproduce the most significant
parameters, as well as their respective values, of CM in Table I.

CM uses the hash algorithm H = SHAKE256. In the next
section we will describe the computational steps of the three
CM KEM algorithms.

TABLE I
CM parameter sets and sizes of Public Key (PK), Secret Key (SK), and

Ciphertext (CT) [8].

Security
Parameter set m n t

PK size SK size CT size

level [KB] [KB] [Bytes]

L1 mceliece348864 12 3488 64 255 6.3 128

L3 mceliece460896 13 4608 96 511.8 13.2 188

L51 mceliece6688128 13 6688 128 1020.5 13.56 240

L52 mceliece6960119 13 6960 119 1022.2 13.58 226

L53 mceliece8192128 13 8192 128 1326 13.75 240

KeyGen:
1) Generate a random monic irreducible polynomial g(x) ∈

Fq[x] of degree t.
2) Choose random distinct α1, . . . , αn ∈ Fq .
3) Compute the t× n matrix

(
αi−1
j /g(αj)

)
i,j

.
4) Extend this matrix to an mt × n matrix by writing

elements as column m-bit vectors.
5) If possible, systematize this matrix, obtaining (In−k, T).

If this fails, go to step 1.
6) Randomly generate s ∈ {0, 1}n.
7) Output (s, g, α1, . . . , αn) as the secret key, and T as the

public key.
Encapsulation(T):
1) Let e ∈ Fn

2 a random vector with exactly t ones.
2) Compute C0 = (In−k, T) · e ∈ Fn−k

2 .
3) Compute C1 = H(2, e).
4) Compute K = H(1, e, (C0, C1)).
5) Output the session key K and its ciphertext (C0, C1).
Decapsulation(s, g, α1, . . . , αn, (C0, C1)):
1) Let v ∈ Fn

2 be C0 padded with k zeros.
2) Compute the 2t× n matrix

(
αi
j/g

2(αj)
)
i,j

.
3) Extend this matrix to a 2mt× n matrix H(2) by writing

elements as column m-bit vectors.
4) Compute the syndrome H(2) · v.
5) Find the error locator polynomial σ(x) of the syndrome,

using Berlekamp-Massey decoding.
6) Let c = (ci)i ∈ Fn

2 with ci = 1 if and only if σ(αi) = 0,
and ci = 0 otherwise.

7) Let e′ = v + c. If C0 = (In−k, T) · e′ and
C1 = H(2, e′) and e′ has exactly t ones, then out-
put K = H(1, e′, (C0, C1)). Otherwise, output K =
H(0, s, (C0, C1)).

Our HW/SW acceleration focuses on the most time-consuming
parts of the three KEM algorithms: step 5 of KeyGen, step 2
of Encapsulation, and steps 2, 3, 4 of Decapsulation.

Motivation. CM KEM is one of the most prominent cryp-
tosystems to form the core of the first PQC standard. How-
ever, as the standardization process advances, CM lacks an
extensive performance evaluation on heterogeneous platforms.
Therefore, we assist the hardware benchmarking process of
CM by providing an efficient HW/SW co-design acceleration,
based on heterogeneous CPU+FPGA platforms. The finalist
KEM’s may undergo significant changes to conform to stricter
security, and to correct any possible flaws prior to their
standardization process. We effectively address this need by
providing a flexible, reduced design-effort HLS acceleration
that is also portable across CPU+FPGA heterogeneous plat-
forms. Finally, broadening the scope of our work, we evaluate
the performance of our proposal in heterogeneous platforms
containing different classes of scalar or vector processors.

III. HARDWARE/SOFTWARE CO-DESIGN

Our HW/SW co-design acceleration of CM focuses on het-
erogeneous systems-on-chip (SoCs) including hard processors

1 for (i = 0; i < (PK_NROWS + 7) / 8; i++){
2 for (j = 0; j < 8; j++){
3 row = i*8 + j;
4 if (row >= PK_NROWS) break;
5 // forward elimination
6 for (k = row + 1; k < PK_NROWS; k++){
7 mask = mat[row][i] ^ mat[k][i];
8 mask >>= j;
9 mask &= 1;

10 mask = -mask;
11 for (c = 0; c < SYS_N/8; c++)
12 mat[row][c] ^= mat[k][c] & mask;
13 }
14 if (((mat[row][i] >> j) & 1) == 0){
15 // return if not systematic
16 return -1;
17 }
18 // backwards substitution
19 for (k = 0; k < PK_NROWS; k++){
20 if (k != row){
21 mask = mat[k][i] >> j;
22 mask &= 1;
23 mask = -mask;
24 for (c = 0; c < SYS_N/8; c++)
25 mat[k][c]^= mat[row][c]&mask;
26 }
27 }
28 }
29 }

Listing 1. Gaussian systemizer’s main computational loop source code.

and embedded FPGAs. Examples of these type of devices
are the Xilinx Zynq multi-processor SoC family and some
more recent SoCs like the RISC-V based Arnold chip and
the DHALIA radiation hardened SoC [9]–[11]. This section
explains the reasons behind our choices on the acceleration
techniques, both in the CPU and FPGA part of the target
acceleration platform. Performance and resource consumption
results are presented in Section V.
Acceleration Methodology Rationale. We accelerate CM
by designing three accelerators decoupled from the CPU’s
pipeline. Each accelerator implements the most computational
intensive parts of the KEM algorithms. These parts were
identified by a software profiling process whose findings
are presented in Section IV. The designed accelerators are:
i) a Gaussian systemizer for the acceleration of KeyGen,
ii) a syndrome encoder for the acceleration of Encapsulation,
and iii) a syndrome decoder module for the acceleration of
Decapsulation.

Some works consider unnecessary the acceleration of Key-
Gen [12]. Their approach is based on the strong assumption
that KeyGen is not called frequently in the cryptosystem
execution and therefore is implemented on a separate device
than the rest of the KEM, or even executed entirely in software.
However, when the application scenario mandates the use of
frequent PK-SK pair generation [13], the acceleration of Key-
Gen is performance-critical, since it accounts for 95% of the
total execution time consumed by the CM KEM algorithms.
HLS Primer. Here we explain the specific HLS techniques we
use to design the accelerators and elaborate on the way they
impact their performance. HLS directives impact the hardware
generation in two ways: i) they increase performance, and
ii) they control resource usage. To increase the FPGA to
DRAM communication performance, we wrap every acceler-
ator in an AXI interface. Arrays placed at the FPGA DRAM

1 for (i = 0; i < PK_NROWS; i++)
2 { // row initialization loop
3 for (j = 0; j < SYS_N/8; j++)
4 row[j] = 0;
5 for (j = 0; j < PK_ROW_BYTES; j++)
6 row[SYS_N/8-PK_ROW_BYTES+j] = pk_ptr[j];
7 row[i/8] |= 1 << (i%8);
8 b = 0;
9 // perform the multiplication

10 for (j = 0; j < SYS_N/8; j++)
11 b ^= row[j] & e[j];
12 b ^= b >> 4;
13 b ^= b >> 2;
14 b ^= b >> 1;
15 b &= 1;
16 s[i/8] |= (b << (i%8));
17 pk_ptr += PK_ROW_BYTES;
18 }

Listing 2. Syndrome encoder’s main computational loop source code.

by the CPU direct memory access (DMA) are loaded/stored
via AXI-bursts from/to local BRAMs of the accelerator. AXI-
bursts are implicitly inferred by defying HLS primitives at
the accelerator load/store loops. Array elements can be par-
titioned to multiple BRAMs and accessed through separate
BRAM read/write ports using specific HLS directives. This
way we mitigate memory bottlenecks and achieve parallelism
by accessing multiple elements of the same array at the same
clock cycle at the expense of increased BRAM usage. Data
parallelism can be exploited by unrolling and pipelining com-
putational loops to increase the design’s throughput. Finally,
to avoid using up specific FPGA resources, we leverage HLS
directives to map operations to specific FPGA computational
cores (e.g DSP, LUT).
Gaussian Systemizer. The source code of the Gaussian sys-
temizer comprises two main computational loops: forward
elimination and backwards substitution (Listing 1). It is exe-
cuted in step 5 of KeyGen (see Section II). In our accelerator,
every new iteration of the outer loop (line 2), caches the
matrix row mat[row] in separate BRAMs than the rest of
the matrix mat. This decoupling enables the concurrent and
quick access to all matrix elements involved in computations
at lines 12, 25. This way we pipeline and partially unroll
the forward elimination inner loop (line 11), increasing its
throughput at one row element per clock cycle. To take
further advantage of the internal parallelization potential of
the Gaussian systemizer, we completely unroll and pipeline
the backwards substitution loop (lines 19-27). Its two compu-
tational loops (lines 19, 24) are merged, thus decreasing the
latency. To increase the throughput, we use array partitioning
for the mat matrix. The extent to which we partition the mat
array defines the throughput of the backward substitution loop.
Syndrome Encoder. Syndrome encoding is a part of the
Encapsulation of CM (step 2 at Section II). We reproduce
its source code in Listing 2. Pipelining and unrolling the
outermost loop (line 1) seems to be the best solution from a
performance perspective, but this is not the case for syndrome
encoder for two basic reasons. First, this accelerator performs
computations based on the PK of CM. Due to its large size,
moving the PK from the FPGA DRAM to the local BRAMs

1 c = (r[i/8] >> (i%8)) & 1;
2 e = eval(f, L[i]);
3 e_inv = gf_inv(gf_mul(e,e));
4 for (j = 0; j < 2*SYS_T; j++){
5 out[j] = gf_add(out[j], gf_mul(e_inv, c));
6 e_inv = gf_mul(e_inv, L[i]);
7 }
8 }

Listing 3. Syndrome decoder’s main computational loop source code.

of the accelerator takes up >80% of its total execution time.
Second, completely pipelining and unrolling the loop at line
1 causes a considerable resource consumption increase in
the accelerator (≈50% of total BRAMs), with a negligible
performance increase (< 1% reduction in execution time), as
the total execution time is governed by the PK loading from the
DRAM. We manage to provide a balanced solution, regarding
performance and resource consumption, by adhering to the
following approach. Initially, we focus our attention on the
most computationally intensive loops (lines 5, 10), and we
increase their performance by unrolling and pipelining them
according to the array partition we perform for the pk_ptr,
row and e matrices. Next, we split the computational task into
multiple independent accelerators of equal size. By executing
these accelerators in parallel, we effectively hide the PK trans-
fer time by a factor proportional to the accelerator multiplicity.
Each of these smaller accelerators, by not being fully HLS-
optimized (internal parallelization, pipelining), consumes less
FPGA resources than a fully-optimized monolithic accelerator.
Syndrome Decoder. The syndrome decoder belongs to the
Decapsulation of the CM KEM (steps 2, 3, and 4 at Section II).
Its main computational loop calls four different Galois Field
(GF) arithmetic functions: gf_mul, gf_add, gf_inv, and
eval (Listing 3). They perform GF multiplication, addition,
inversion, and evaluation of a polynomial at a field element,
respectively. The addition is implemented as bitwise XOR,
while the rest of the functions iterate over the execution of
gf_mul. Therefore, we focus on the performance optimiza-
tion of gf_mul. In the acceleration of syndrome decoder we
balance the tradeoff between hardware overhead and speedup.
Specifically, we pipeline only the gf_mul execution and the
computational intensive loop at line 4. We inline the rest
of the GF arithmetic functions, replicating their hardware
implementation each time they are called. Finally, we split the
main computational loop (line 4) into smaller and equally-
sized parts, forming multiple accelerators that execute concur-
rently on the FPGA. This way, we achieve significant speedup
increase and smaller resource consumption in comparison to
that of a single, fully HLS-optimized accelerator instance.
Task-Level Parallelism. To further increase the throughput
and decrease the latency of our design we analyzed the
behavior of the three accelerators under the dataflow HLS
optimization. The dataflow optimization converts a series of
sequential software tasks in concurrent hardware processes,
taking advantage of the task level parallelism. Pipelining at the
task level allows functions and loops to execute concurrently.
However, we observed that the required modifications to

Gaussian
Systemizer

systematic pk

Generate
parameters

Generate
parameters

N
Y

Gaussian
Systemizer

Generate
parameters

systematicpk

Generate
parameters

N

Y
Gaussian

Systemizer

SW executionHW execution

A B

Fig. 1. (A) Sequential and (B) parallel execution of Gaussian systemizer
and parameter regeneration in case of systemization failure.

TABLE II
SW profiling results of the CM KEM. Bold=functions chosen for
acceleration, B=Baseline, V=auto-vectorized, Hash=SHAKE256.

KeyGen Encapsulate Decapsulate

Function

Exec. time

Function

Exec. time

Function

Exec. time

[%] [%] [%]

B V B V B/V

pk_gen
81.8 97.6 syndrome 66.1 85.4

gf_mul 60.5

Gaussian systemizer synd 8.1

int32_sort 9.8 0.4 randombytes 21 9.2
gf_add 1.9

gf_inv 1

gf_mul 3.5 0.1 Hash 6.1 3.2 eval 0.9

Other 4.9 1.9 Other 6.8 2.2 Other 27.6

increase the performance of the accelerators (i.e increased
amount of data streamed between CPU and accelerators,
modification of the accelerators’ internal architecture) severely
limit the acceleration gains. We conclude that this type of
optimization better serves a fully detached accelerator design
approach.
CPU-Side Optimizations. Besides the performance gain that
the FPGA accelerators provide, we get a considerable speedup
by employing HW/SW co-design techniques on the CPU
of the acceleration platform. Specifically, we focus on the
optimization of the software part of the PK generation. Fig. 1
depicts the approach we follow. While systemization is taking
place in the Gauss systemizer accelerator, we harness the idle
time of the CPU to compute a second set of input parameters
to the Gaussian systemizer and load them to the FPGA
DRAM. In case the matrix systemization fails, this allows us to
swiftly perform a subsequent Gaussian systemization, without
waiting to sequentially recompute the input parameters of the
accelerator between accelerator calls. This technique provides
significant speedup increase to KeyGen.

IV. EXPERIMENTAL METHODOLOGY

HW/SW Partitioning. Using the Valgrind profiling tool [14],
we profile the execution of the CM software implementation
on all security levels, both with and without the use of auto-
vectorized code. To include auto-vectorized code in software,

BRAMBRAM

HW
Accelerator

HW
Accelerator

Arm
HOST

HW
Accelerator

FPGA
DRAM

CPU
DRAM

DMA

BRAM

AXI
IRQC

CLOCK
GEN

AXI
INTC

MAIN
CLOCK

AXI-Full AXI-Lite CPU

FPGA

Clock signal Data/Control Interconnect CPU-FPGA Separation

Interrupt

AXI
INTC

Fig. 2. Base accelerator platform with HW components and their basic
interconnection signals. Blue color denotes the reconfigurable, dynamic region
of the FPGA device that gets modified with every new accelerator design.

we use the code auto-vectorization feature of the gcc compiler.
Software auto-vectorization optimization is included by default
in the -O3 optimization level of gcc, and it can be turned off
with the respective compiler flag -fno-tree-vectorize.

In Table II, we report the execution time percentage of the
most time-consuming functions of each CM KEM algorithm.
The values are averaged over all security levels and 100 exe-
cutions. We consider as ideal acceleration candidates, the most
time consuming functions of each KEM algorithm. Regarding
the total execution time of all three KEM algorithms, we
report that KeyGen takes 95% of it, while Decapsulation and
Encapsulation take 4% and < 1%, respectively.
Experimental Platform. We implement our proposal on the
Xilinx zcu102 heterogeneous CPU+FPGA platform. The plat-
form comprises a quad-core Arm Cortex-A53, running at 1.1
GHz, and a Zynq-UltraScale+ FPGA-device [9]. 4GB and
512MB DRAMs are attached to the CPU and FPGA devices,
respectively. The software application uses one of the four
available cores. Fig. 2 presents a high-level overview of the
acceleration platform that supports our HW/SW co-design
acceleration approach. The accelerators communicate via AXI-
Full/Lite interface with the rest of the FPGA and CPU.
DMA between the CPU and the DRAM FPGA is supported.
Petalinux, a Xilinx’s Linux operating system (OS) distribution,
boots on top of the platform and takes care of OS-related
tasks such as address translation, DMA communication, FPGA
interrupt servicing, etc.
Development Tools and Functional Verification. The effi-
cient implementation of both the software part of CM on the
CPU and of the hardware accelerators on the FPGA device
is of paramount importance to achieve high performance.
Moreover, the interaction between hardware accelerators and
CPU is also a crucial factor for performance. To meet these
needs, we use the OpenCL programming framework. The
native support of OpenCL from the Xilinx runtime lets the
hardware designer focus on the efficient design of the hardware
accelerators by abstracting away complex tasks such as the
data movement through the AXI interface and the DMA data
transfer from the CPU to the FPGA DRAM. It also offers high-
portability between different heterogeneous platforms, with

L1 L1 L1L3 L3 L3L51
KeyGen

L51
Encapsulation

L51
Decapsulation

L52 L52 L52L53 L53 L53
1x
5x

10x
15x
20x
25x
30x
35x
40x
45x
50x
55x
60x

Sp
ee

du
p

CPU-v only
CPU&FPGA
CPU-v&FPGA

Fig. 3. CM KEM speedup for all security levels. Baseline=CM SW imple-
mentation without auto-vectorization (CPU). (CPU-v=SW auto-vectorization,
FPGA=HW accelerators)

minimal design modifications.
We test the functional correctness of our design, by using

real FPGA runs and the Known Answer Test (KAT) utility
provided by the NIST contest.
Constant-Time Evaluation. The software implementation of
CM KEM is verified to be constant-time [3], and our software
changes do not introduce timing leaks. We leave the constant-
time analysis of our HLS implementation for future work.

V. EVALUATION

KEM Speedup. We evaluate the impact of our proposal on
the execution time of the CM KEM algorithms for all security
levels. Fig. 3 presents the maximum achieved speedup for each
CM KEM algorithm across the 5 security levels. The baseline
is the software implementation of CM on a single Arm core,
without the use of auto-vectorized instructions.

Our proposal outperforms the baseline for all KEM al-
gorithms and security levels. KeyGen achieves a significant
speedup ranging from 22.6× to 55.2×, taking advantage of the
internal parallelization potential of the Gaussian systemizer.
Decapsulation executes between 7.5× and 8.7× faster than
the baseline, by splitting the syndrome decoding computation
between multiple concurrent accelerators. Finally, overcoming
the big timing overhead that PK loading puts on the syndrome
encoder, we provide Encapsulation with speedups ranging
from 1.4× up to 3.3×.
Security-Performance Tradeoff. For high CM security levels,
the sizes of PK, SK, and CT increase (see Table I). Table III
shows that our proposal does not have to sacrifice performance
to provide increased security. Contrarily, we efficiently provide
bigger speedup as the security levels increase.

KeyGen increases its speedup from 22.6× to 55.2× (144%)
from L1 to L53. This happens because the Gaussian systemizer
exploits the bigger internal parallelization that the PK matrix
offers. Encapsulation raises its speedup from 2.2× to 3.3×
(50%) from L1 to L53. The 1.4× speedup value of L52 is an
outlier in terms of performance. The size of the accelerator ma-
trices at L52 does not allow a balanced split of the syndrome

TABLE III
Maximum achieved speedup & FPGA resource consumption

Accelerator
Security

level
Resource Consumption [%]

Speedup [x]
LUT BRAM DSP FF

Gaussian
systemizer

L1 6.5 20.4 0 3.7 22.6

L3 8.3 41.4 0 5.4 30.6

L51 14.4 63.3 0 8.2 46.1

L52 8.8 55.8 0 5.5 50.8

L53 9.8 64.8 0 7.4 55.2

Syndrome
encoder

L1 15.6 24 0.4 6.2 2.2

L3 18.2 52.4 1 6.4 2.8

L51 14.1 54.4 1 5 3.2

L52 6 44 1.2 1.9 1.4

L53 15.3 76 1.2 7 3.3

Syndrome
decoder

L1 18.6 2.7 67.8 7.2 8.7

L3 40.6 43.4 28.1 33.6 7.5

L51 49.6 68.4 25.8 36.5 7.8

L52 53.2 41.2 35.1 33 8

L53 55 64.4 37.5 47.3 8.3

encoder to more than one computational unit, thus providing
a smaller speedup. Finally, the Decapsulation algorithm shows
a speedup from 7.5× to 8.3× (16%) from L2 to L53. Interest-
ingly, L1 achieves an 8.7× speedup, the highest speedup out of
all security levels. This happens due to the small matrix sizes
involved in L1 that enable a single accelerator configuration
to be fully HLS-optimized and provide high speedup while
fitting in the FPGA device area.
Resource Consumption. Table III shows the resource con-
sumption and the respective speedup for each accelerator and
security level of the CM KEM.

The resource consumption of the Gaussian systemizer is
mainly dominated by BRAMs. BRAM usage is directly pro-
portionate to the amount of dual-port BRAMs we utilize in
the accelerator, to provide concurrent accesses to different ele-
ments of the same array in the same clock cycle. The Gaussian
systemizer uses no DSP resources and the amount of LUTs
and FFs shows a small increase across the 5 security levels.
In a similar manner, the syndrome encoder utilizes BRAMs
to perform concurrent accesses to the PK matrix, while the
rest of the FPGA resources show a small increase. Finally, the
syndrome decoder demonstrates a more balanced profile in its
resource consumption. Its LUT and DSP usage is attributed
to the bitwise boolean operations and GF multiplications.
Moreover, its BRAM consumption is associated with array
partitioning. The L1 implementation of syndrome decoder uses
a single accelerator configuration. To provide speedup it fully
pipelines and unrolls the gf_mul computation, thus resulting
in high DSP usage. The rest of the FPGA resources exhibit a
low usage, as their increased consumption is observed at the
creation of multiple concurrent accelerators. Table III reveals
that L52 provides the lowest resource consumption among all
L5 implementations. This is so because L52 has the smallest
t value among all L5 KEM parameters, resulting in smaller

TABLE IV
Duration in 103 clock cycles [kcc] and overhead over total execution time
for the computation and data movement part of the hardware accelerators.

Accelerator
Computation Data movement Total

[kcc] Overhead [%] [kcc] Overhead [%] [kcc]

Gaussian S. 72913.2 98.6 1043.4 1.4 73956.5

Synd. Enc. 13.8 17.2 65.8 82.8 79.5

Synd. Dec. 2444.4 99.97 0.9 0.03 2445.3

matrices and decreased FPGA resource usage.
Impact of Vector Instructions. This section quantifies the
impact of vector instructions on the performance of our
proposal. Fig. 3 shows a 5× and 8.18× average speedup
increase over the speedup of auto-vectorized code for KeyGen
and Decapsulation, respectively. For the case of Decapsulation
we observe that the software auto-vectorization does not
provide significant performance increase compared to the non-
vectorized code. That is, due to the fact that the Decapsula-
tion software part that can benefit from auto-vectorization is
already accelerated on the FPGA accelerators. Table IV shows
the runtime percentage of each kernel spent between data
movement and data computation. Unlike Gaussian systemizer
and Syndrome decoder, the Syndrome encoder accelerator has
a high data movement overhead of 82%. The large amount
of time spent in data communication, due to the PK data
movement, hinders the acceleration gains for the Encapsu-
lation KEM part. For this reason hardware-acceleration of
Encapsulation cannot outperform the speedup of software
auto-vectorization. Therefore, when executed on a vector pro-
cessor, software auto-vectorization could be the acceleration
method of choice for the Encapsulation part, thus avoiding
the accelerator’s hardware cost. However, Encapsulation takes
< 1% of the total CM execution time, so we still provide
significant speedup over the whole CM KEM application.

We also compare our proposal with the vec CM KEM
implementation. vec is a hand-coded, vectorized across 64-bits
software implementation, part of the CM KEM NIST submis-
sion. Note that manually vectorized implementations provide
performance gains only when they execute on vector proces-
sors. However, reconfigurable SoCs do not usually include
cores with vector units [10], [11]. Furthermore, unlike HLS-
based designs, they require a lot more effort to be developed.
Finally, the software part of our proposal is not manually-
vectorized, giving us an a priori handicap in this comparison.
Nevertheless, in the case of KeyGen, we observe a substantial
performance increase of 2.3× in speedup. With KeyGen being
the most time-consuming part of the whole KEM, taking up
95% of its total execution time (see Section IV), this com-
parison demonstrates the solid performance gain we provide
to the whole CM KEM. Encapsulation and Decapsulation
show speedups of 0.5× and 0.1×, respectively. However,
since Encapsulation and Decapsulation have a combined KEM
execution time of 5%, we still outperform vec for the whole
CM KEM execution.

TABLE V
Speedup & resource consumption for different accelerator configurations.
For Synd Enc, Synd Dec. #=accelerator’s multiplicity, h=High resource

consumption config. For Gaussian S. #=(internal
parallelization-parallel/sequential parameter regeneration, see Fig 1).

Accelerator #
Freq. Resource Consumption [%] Speedup [x]

[MHz] LUT BRAM DSP FF over baseline # gain[%]

Gaussian
systemizer

44-s
200 8 41.1 0 5.8

25.7 0

44-p 31.2 21.4

128-s
170 14.5 63.2 0 8.2

35 0

128-p 46.1 31.7

Syndrome
encoder

1h 250 6.8 46 3.9 4.5 1.4 -44

1 333 3.1 37.8 0.3 1 2.5 0

2 333 6 43.3 0.5 1.7 3 20

4 333 12.1 54.4 1 3.7 3.2 28

8 333 25.2 77.2 2 7.5 3.1 24

Syndrome
decoder

1h 333 18.9 3.5 71.9 8.5 3.9 18.1

1 333 2.9 2.6 2.3 2.4 3.3 0

2 333 6.6 5 4.7 4.9 4.8 45

4 333 12.5 10.3 9.4 9.7 6.2 87

8 333 25.7 26.3 18.7 21.3 7.1 115

16 333 53.5 64.3 37.4 46 7.5 127

18 333 61.8 76.6 42.1 53.3 7.5 127

Design Space Exploration. The HLS techniques we used in
the accelerators design provide our proposal with a balanced
solution to the performance-area tradeoff. Table V presents the
speedup that different accelerator configurations provide.

Gaussian systemizer takes advantage of its internal paral-
lelization potential to provide acceleration. We point out that
the CPU-side optimization of the parallel parameter regener-
ation (see Section III) provide a performance increase of up
to 31.7%. In the case of syndrome encoder and syndrome
decoder, we observe that the speedup from executing multiple
concurrent accelerators is superior to that of a single fully
HLS-optimized accelerator. However the performance gain
of KEM plateaus after a certain accelerator multiplicity. For
syndrome encoder and syndrome decoder, this saturation is
evident for 8 and 16 parallel accelerators, respectively. As
security levels and resource consumption of accelerators rise,
this number decreases. For all accelerators, along with the
increased performance gain, we observe a respective increase
in their overall resource consumption. This behavior defines
the Pareto optimal solution for the performance-area tradeoff.

VI. RELATED WORK

Several works have studied the implementation of NIST
contest candidates and their acceleration in hardware [15]–
[24]. Farahmand et al. [25] and Nguyen et al. [26], [27]
present a HW/SW co-design methodology in the context of
lattice-based PQ KEMs. Their work validates our choice for
adopting an HLS-based design, since it provides a good
tradeoff between hardware overhead and speedup. The original
McEliece cryptosystem has been the subject of hardware
implementation studies [12], [28]–[33]. The CM KEM is based

on the Niederreiter cryptosystem, which is implemented in an
FPGA device by Heyse et al. [34]. Wang et al. [35], [36] also
provide a fully-RTL (Verilog) FPGA implementation of the
Niederreiter cryptosystem and use the same core mathematical
operations as CM, thus making their implementation applica-
ble to the CM KEM. However, their solution does not provide
an end-to-end CM KEM implementation, and thus, it cannot
be compared with our proposal. In any case, a fully-hardware
implementation of CM can naturally surpass the performance
of a HW/SW acceleration approach. However, our proposal
relies on a reconfigurable SoC and can therefore be adapted
to potential CM KEM changes prior to its standardization.
Interestingly, our HLS-based accelerators of the CM are able to
achieve higher frequencies than the ones reported by Wang et
al. [35], [36]. Basu et al. [37] present a purely-hardware (HLS)
design of the Encapsulation and Decapsulation algorithms in
an FPGA device. Contrarily, our proposal follows the more
flexible approach of HW/SW co-design. Additionally, KeyGen
which is accelerated by our proposal and not addressed by
Basu et al. [37], is the most time consuming part of CM KEM
(95% of the total execution time).

VII. CONCLUSIONS

To the best of our knowledge, this paper presents the first
HW/SW co-design acceleration of the CM KEM based on
HLS coding. Our proposal demonstrates significant speedups
for the most time consuming parts of the CM KEM. The de-
sign of our proposal is highly-portable and can be implemented
in current heterogeneous CPU+FPGA platforms. Finally, the
source code of this study is available, under an open-source
license, at https://github.com/beatsnbytes/classic_mceliece.

VIII. ACKNOWLEDGEMENTS

We are profoundly grateful to all our anonymous reviewers
for their constructive feedback throughout the paper drafting.

This research was supported by the European Union Re-
gional Development Fund within the framework of the ERDF
Operational Program of Catalonia 2014-2020 with a grant of
50% of the total cost eligible, under the DRAC project [001-
P-001723]. It was also supported by the Spanish goverment
(grant RTI2018-095094-B-C21 “CONSENT”), by the Span-
ish Ministry of Science and Innovation (contracts PID2019-
107255GB-C21, PID2019-107255GB-C21) and by the Catalan
Government (contracts 2017-SGR-1414, 2017-SGR-705). This
work has also received funding from the European Union
Horizon 2020 research and innovation programme under grant
agreement No. 871467.

V. Kostalabros has been partially supported by the Agency
for Management of University and Research Grants (AGAUR)
of the Government of Catalonia under "Ajuts per a la
contractació de personal investigador novell" fellowship No.
2019FI B01274. M. Moreto was also partially supported by the
Spanish Ministry of Economy, Industry and Competitiveness
under "Ramón y Cajal" fellowship No. RYC-2016-21104.

https://github.com/beatsnbytes/classic_mceliece

REFERENCES

[1] “NIST announce the release of draft nistir 8105,
report on post-quantum cryptography for public com-
ment,” 2016. [Online]. Available: https://csrc.nist.gov/News/2016/
NIST-Announce-the-Release-of-DRAFT-NISTIR-8105

[2] “PQC standardization process: Third round candidate announce-
ment,” 2020. [Online]. Available: https://csrc.nist.gov/News/2020/
pqc-third-round-candidate-announcement

[3] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. Misoczki,
R. Niederhagen, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier
et al., “Classic mceliece: conservative code-based cryptography,” NIST
submissions, 2017.

[4] R. J. McEliece, “A public-key cryptosystem based on algebraic coding
theory,” Coding Thv, vol. 4244, pp. 114–116, 1978.

[5] H. Niederreiter, “Knapsack-type cryptosystems and algebraic coding
theory,” Prob. Contr. Inform. Theory, vol. 15, no. 2, pp. 157–166, 1986.

[6] A. Hülsing, K.-C. Ning, P. Schwabe, F. Weber, and P. R. Zimmermann,
“Post-quantum wireguard,” Cryptology ePrint Archive, Report 2020/379,
2020, https://eprint.iacr.org/2020/379.

[7] E. Crockett, C. Paquin, and D. Stebila, “Prototyping post-quantum and
hybrid key exchange and authentication in tls and ssh,” Cryptology
ePrint Archive, Report 2019/858, 2019, https://eprint.iacr.org/2019/858.

[8] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher,
T. Lange, V. Maram, I. von Maurich, R. Misoczki, R. Niederhangen,
K. G. Paterson, E. Perischetti, C. Peters, P. Schwabe, N. Sendrier,
J. Szefer, C. J. Tjhai, M. Tomlinson, and W. Wang, “Classic McEliece:
conservative code-based cryptography,” 2020. [Online]. Available:
https://classic.mceliece.org/nist/mceliece-20201010.pdf

[9] Xilinx Inc., “Ultrascale architecture and product data sheet:
Overview,” 2020. [Online]. Available: https://www.xilinx.com/support/
documentation/data_sheets/ds890-ultrascale-overview.pdf

[10] P. D. Schiavone, D. Rossi, A. D. Mauro, F. Gurkaynak, T. Saxe,
M. Wang, K. C. Yap, and L. Benini, “Arnold: an eFPGA-augmented
RISC-V SoC for flexible and low-power IoT end-nodes,” 2020,
arXiv:2006.14256.

[11] J. Poupat, T. Helfers, P. Basset, A. G. Llovera, M. Mattavelli, C. Papadas,
and O. Lepape, “DAHLIA, very high performance microprocessor for
space applications,” dahlia-h2020.eu, Tech. Rep., 2019.

[12] S. Ghosh, J. Delvaux, L. Uhsadel, and I. Verbauwhede, “A speed area
optimized embedded co-processor for mceliece cryptosystem,” in 2012
IEEE 23rd International Conference on Application-Specific Systems,
Architectures and Processors. IEEE, 2012, pp. 102–108.

[13] P. Schwabe, D. Stebila, and T. Wiggers, “Post-quantum TLS without
handshake signatures,” in Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security, 2020, p. 1461–1480.

[14] N. Nethercote and J. Seward, “Valgrind: a framework for heavyweight
dynamic binary instrumentation,” ACM Sigplan notices, vol. 42, no. 6,
pp. 89–100, 2007.

[15] J. W. Bos, S. Friedberger, M. Martinoli, E. Oswald, and M. Stam, “Fly,
you fool! faster Frodo for the ARM Cortex-M4,” Cryptology ePrint
Archive, Report 2018/1116, 2018, https://eprint.iacr.org/2018/1116.

[16] J. Howe, T. Oder, M. Krausz, and T. Güneysu, “Standard lattice-based
key encapsulation on embedded devices,” IACR Transactions on
Cryptographic Hardware and Embedded Systems, vol. 2018, no. 3, pp.
372–393, Aug. 2018. [Online]. Available: https://tches.iacr.org/index.
php/TCHES/article/view/7279

[17] D. Kales, S. Ramacher, C. Rechberger, R. Walch, and M. Werner,
“Efficient FPGA implementations of LowMC and Picnic,” in Topics in
Cryptology – CT-RSA 2020 - The Cryptographers Track at the RSA
Conference 2020, Proceedings, S. Jarecki, Ed., vol. Lecture Notes in
Computer Science. Springer, 2 2020, pp. 417–441.

[18] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “pqm4:
Testing and benchmarking nist pqc on arm cortex-m4,” Cryptology
ePrint Archive, Report 2019/844, 2019, https://eprint.iacr.org/2019/844.

[19] B. Koziel, R. Azarderakhsh, and M. Kermani, “A high-performance and
scalable hardware architecture for isogeny-based cryptography,” IEEE
Transactions on Computers, vol. 67, no. 11, pp. 1594–1609, nov 2018.

[20] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M. Cheng,
and B.-Y. Yang, “High performance Post-Quantum key exchange on
FPGAs,” Cryptology ePrint Archive, Report 2017/690, 2017, https://
eprint.iacr.org/2017/690.

[21] T. Oder and T. Güneysu, “Implementing the newhope-simple key
exchange on low-cost fpgas,” in Progress in Cryptology - LATINCRYPT
2017 - 5th International Conference on Cryptology and Information
Security in Latin America, Havana, Cuba, September 20-22, 2017,
Revised Selected Papers, T. Lange and O. Dunkelman, Eds., vol. 11368.
Springer, 2017, pp. 128–142.

[22] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-
key encryption on reconfigurable hardware,” in Selected Areas in Cryp-
tography – SAC 2013, T. Lange, K. Lauter, and P. Lisoněk, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2014, pp. 68–85.

[23] J. Jang, S. B. Choi, and V. K. Prasanna, “Energy- and time-efficient
matrix multiplication on FPGAs,” IEEE Trans. Very Large Scale Integr.
Syst., vol. 13, no. 11, pp. 1305–1319, 2005.

[24] S. M. Qasim, S. A. Abbasi, and B. Almashary, “A proposed fpga-based
parallel architecture for matrix multiplication,” in APCCAS 2008 - 2008
IEEE Asia Pacific Conference on Circuits and Systems, 2008, pp. 1763–
1766.

[25] F. Farahmand, D. T. Nguyen, V. B. Dang, A. Ferozpuri, and K. Gaj,
“Software/hardware codesign of the post quantum cryptography algo-
rithm NTRUEncrypt using high-level synthesis and register-transfer level
design methodologies,” in 2019 29th International Conference on Field
Programmable Logic and Applications (FPL). IEEE, 2019, pp. 225–
231.

[26] D. T. Nguyen, V. B. Dang, and K. Gaj, “High-level synthesis in
implementing and benchmarking number theoretic transform in lattice-
based post-quantum cryptography using software/hardware codesign,”
in International Symposium on Applied Reconfigurable Computing.
Springer, 2020, pp. 247–257.

[27] ——, “A high-level synthesis approach to the software/hardware code-
sign of NTT-based post-quantum cryptography algorithms,” in 2019
International Conference on Field-Programmable Technology (ICFPT).
IEEE, 2019, pp. 371–374.

[28] A. Shoufan, T. Wink, G. Molter, S. Huss, and F. Strentzke, “A novel
processor architecture for mceliece cryptosystem and fpga platforms,”
in 2009 20th IEEE International Conference on Application-specific
Systems, Architectures and Processors (ASAP). IEEE, 2009, pp. 98–
105.

[29] T. Eisenbarth, T. Güneysu, S. Heyse, and C. Paar, “Microeliece:
Mceliece for embedded devices,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems. Springer, 2009, pp. 49–64.

[30] S. Ghosh and I. Verbauwhede, “BLAKE-512-based 128-bit CCA2 secure
timing attack resistant mceliece cryptoprocessor,” IEEE Transactions on
Computers, vol. 63, no. 5, pp. 1124–1133, 2012.

[31] S. Ghosh, “On the implementation of mceliece with CCA2 indetermi-
nacy by sha-3,” in 2014 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2014, pp. 2804–2807.

[32] P. M. C. Massolino, P. S. Barreto, and W. V. Ruggiero, “Optimized
and scalable co-processor for mceliece with binary goppa codes,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 14, no. 3,
pp. 1–32, 2015.

[33] M. López-García and E. Cantó-Navarro, “Hardware-software implemen-
tation of a mceliece cryptosystem for post-quantum cryptography,” in
Future of Information and Communication Conference. Springer, 2020,
pp. 814–825.

[34] S. Heyse and T. Güneysu, “Towards one cycle per bit asymmetric
encryption: Code-based cryptography on reconfigurable hardware,” in
International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2012, pp. 340–355.

[35] W. Wang, J. Szefer, and R. Niederhagen, “FPGA-based key generator
for the Niederreiter cryptosystem using binary goppa codes,” in Interna-
tional Conference on Cryptographic Hardware and Embedded Systems.
Springer, 2017, pp. 253–274.

[36] ——, “FPGA-based Niederreiter cryptosystem using binary goppa
codes,” in International Conference on Post-Quantum Cryptography.
Springer, 2018, pp. 77–98.

[37] K. Basu, D. Soni, M. Nabeel, and R. Karri, “Nist post-quantum
cryptography-a hardware evaluation study.” IACR Cryptol. ePrint Arch.,
vol. 2019, p. 47, 2019.

https://csrc.nist.gov/News/2016/NIST-Announce-the-Release-of-DRAFT-NISTIR-8105
https://csrc.nist.gov/News/2016/NIST-Announce-the-Release-of-DRAFT-NISTIR-8105
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://csrc.nist.gov/News/2020/pqc-third-round-candidate-announcement
https://eprint.iacr.org/2020/379
https://eprint.iacr.org/2019/858
https://classic.mceliece.org/nist/mceliece-20201010.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds890-ultrascale-overview.pdf
https://eprint.iacr.org/2018/1116
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2017/690
https://eprint.iacr.org/2017/690

	Introduction
	Background and Motivation
	Hardware/Software Co-Design
	Experimental Methodology
	Evaluation
	Related Work
	Conclusions
	Acknowledgements
	References

