
Memory Demands in Disaggregated HPC:
How Accurate Do We Need to Be?

Felippe Vieira Zacarias
Universitat Politècnica de Catalunya

Barcelona Supercomputing Center
Barcelona, Spain

fvieira@bsc.es

Paul Carpenter
Barcelona Supercomputing Center

Barcelona, Spain
paul.carpenter@bsc.es

Vinicius Petrucci
University of Pittsburgh
Pittsburgh, United States

vpetrucci@pitt.edu

Abstract—Disaggregated memory has recently been proposed
as a way to allow flexible and fine-grained allocation of memory
capacity, mitigating the mismatch between fixed per-node
resource provisioning and the needs of the submitted jobs.
By allowing the sharing of memory capacity among cluster
nodes, overall HPC system throughput can be improved, due
to the reduction of stranded and underutilized resources. A key
parameter that is generally expected to be provided by the user
at submission time is the job’s memory capacity demand. It is
unrealistic to expect this number to be precise.

This paper makes an important step towards understanding
the effect of overestimating the job memory requirements. We
analyse the implications on overall system throughput and
job response time. We leverage a disaggregated simulation
infrastructure implemented on the popular Slurm resource
manager. Our results show that even when the cost of a 60%
increase in memory demands only increases a single job’s user
response time by 8%, the aggregate result of everybody doing
so can be a 25% reduction in throughput and a 5 times increase
in response time. These results show that GB–hours should be
explicitly allocated in addition to core–hours.

Index Terms—Disaggregation, Throughput, Response time,
Resource scheduling, Resource provisioning, Slurm

I. INTRODUCTION

Disaggregated memory has recently been proposed as a way
to provide flexible and fine-grained allocation of memory ca-
pacity [1], [2], [3], [4], [5], [6]. The addition of disaggregated
memory to an High Performance Computing (HPC) cluster
architecture would allow applications to share system memory
capacity, reducing or eliminating stranded memory resources
that would otherwise be unavailable to other HPC jobs, while
maintaining the cost-effectiveness and scalability of traditional
HPC cluster architectures.

Although there is some ongoing work on dynamic resource
assignment and malleability [7], [8], most HPC job schedulers
statically assign resources to jobs. This means that the user
of a disaggregated memory system is required to provide
an accurate upper bound on the job’s memory demands at
submission time.

This work investigates how critical such memory demand
bounds are for maximising system throughput and minimising
job response time (defined to be waiting time in the queue plus
execution time). We analyse to what degree the users would
have a natural incentive to provide accurate memory bounds.

Our analysis uses Barcelona Supercomputing Center’s (BSC)
scalable Slurm simulator for disaggregated memory systems
(see Section II-C) [9], [10].

We use a simulation approach for two main reasons. Firstly,
there are no large-scale HPC systems with disaggregated
memory hardware including a complete software stack. Sec-
ondly, and more importantly, simulations allow studies to be
performed more quickly without occupying resources of large-
scale production systems. Moreover, the correlation analysis of
Section III-D can only realistically be done using simulation.

In our studies, we show that, from the HPC system opera-
tor’s perspective, overall system throughput is conditional on
accurate memory estimations, but, from the perspective of a
single user on a large system, there is little incentive to provide
an accurate bound on memory consumption. Even when the
cost of a 60% increase in memory demands only increases a
single job’s user response time by 8%, the aggregate result
of everybody doing so can be a 25% reduction in system
throughput and a 5 times increase in average response time.
We make some initial recommendations and encourage addi-
tional research in this direction. If these results are reproduced
more widely, then it will almost certainly be necessary to
allocate GB–hour memory capacity explicitly, as part of the
peer review process, in addition to core–hours.

In summary, we make the following contributions:

1) We use BSC’s scalable Slurm simulator for disaggregated
memory to investigate how the user-specified memory
upper bound affects overall system throughput

2) We introduce a simulation-based methodology to correlate
the accuracy of the memory upper bound with the job’s
response time

3) Assuming these results can be reproduced more widely, we
make recommendations that can be applicable to produc-
tion systems.

The rest of the paper is organized as follows. Section II
provides a brief background of our work and Section III ex-
plains the methodology to support our experiments. Section IV
provides the results and discussions. Section V distinguishes
our approach from the large body of related work. Finally,
Section VI concludes the paper.

© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse 
of any copyrighted component of this work in other works. DOI 10.1109/PMBS54543.2021.00006



II. BACKGROUND

A. Disaggregated memory

Although NUMAcc machines are available with hundreds
of sockets, for example SGI Altix [11] and Bull Coherent
Switch (BCS) [12], it is difficult to scale cache-coherent
systems to thousands of nodes. Modern HPC systems are
therefore typically built from thousands of NUMAcc nodes
communicating via a fast interconnect such as InfiniBand or
OmniPath.

Disaggregated architectures interconnect individual compo-
nents such as processor, memory and storage over a net-
work [13], [14], [15]. The EUROSERVER [14], ExaNoDe [16]
and EuroEXA [17] projects have pioneered a disaggregated
system architecture, which provides a global physical ad-
dress space known as UNIMEM [14], with the ability for
cores to access remote memory. A similar approach is taken
by ThymesisFlow [18]. Computing units execute their own
Operating System, and can access memory directly attached
to it (local memory access) as well as memory attached to
another computing unit through a global interconnect (remote
memory access). The remote memory access is performed
through a common Global Address Space, either using or-
dinary load–store instructions or via Remote Direct Memory
Access (RDMA).

B. Slurm Resource manager

Slurm is a popular open-source resource and job man-
agement system used for HPC [19]. It features a plug-in
module architecture that is highly configurable for a variety of
extensions including workload, queueing, scheduling, and so
on. Its baseline node allocation uses an exclusive mode and
the selection of resources that satisfy the minimum resource
request, nevertheless if not all resources within the node are
utilized by a specific job, no other job is allowed to share the
resource.

We use the BSC Slurm simulator [20], [21], which enables
a precise and deterministic evaluation of the job scheduler,
since it is built upon and uses most of the original Slurm
source code. It is able to capture all parameters and behavior
that occurs in a real environment, exceeding that of theoretical
models.

C. Slurm simulator supporting disaggregated memory

We use the BSC simulator extensions for disaggregated
memory [9], [10], which adds support for disaggregated
memory, modelling the slowdown due to remote memory
accesses, and extends Slurm’s allocation policy to exploit dis-
aggregated memory. The performance model is a slowdown-
based method [22], extended to support MPI processes [9].
The allocation policy first selects nodes that have enough
local memory to satisfy the job’s requirement of memory per
node to avoid unnecessary remote memory access. To improve
performance when it uses disaggregation, the approach does
not use the CPU cores of nodes that have already lent memory
to another node. This means that such a node effectively
becomes a memory node for other jobs. The approach allocates

TABLE I
SLURM CONFIGURATIONS USED IN OUR SIMULATIONS.

Configuration parameter Value(s)

System size 1024 nodes
Number cores per node 32
Memory per node 32GB, 64GB
Allocation policy Disaggregated
Scheduling policy Backfill
Queue and Backfill size 100
Backfill and Scheduling interval 30 s
Heterogeneous system ratio: % Large nodes 0, 15, 25

jobs to the nodes with higher available memory, applying a
weight to each node based on the free memory. This tends to
reduce the slowdown due to remote memory accesses.

III. METHODOLOGY

A. Simulated system and input configurations

The configuration of the simulated system is given in
Table I. We use multiple scenarios, each with 1024 nodes,
separated into normal nodes, which have the typical memory
capacity, and large nodes, which have twice the memory
capacity of the normal nodes. The scenarios correspond to
different ratios between large and normal nodes, varying
from 0% (all normal nodes) to 100% (all large nodes). The
simulations were conducted on a cluster of two-socket 8-core
Intel Xeon SandyBridge-EP E5-2670 servers with 20MB L3
cache (LLC) per socket, shared among all cores, and 64GB
of DDR3-1600 DIMMs.

The input job trace files were generated using the CIRNE
Comprehensive Model [23] and augmented to target each of
the specific heterogeneous system ratios, listed in Table I.
We ensured that all traces have total node–hours (#nodes ×
runtime) of large and small jobs in the indicated ratio. The
characteristics of the large and small jobs are given in Table II.
The memory demand of normal jobs is less than the capacity
of a normal node, whereas all large jobs demand more memory
than a normal node capacity.

TABLE II
LARGE AND SMALL JOB CHARACTERISTICS

Normal Jobs Large Jobs

Metric Memory (GB) Node–hours Memory (GB) Node–hours

Min 0.12 0.0 33.0 0.0
1st Qu. 1.7 0.85 48.2 0.0
Avg 6.2 52.6 48.5 24.9
3rd Qu. 3.8 15.0 49.8 2.1
Max 27.6 6412 49.8 3659.0

B. Extending the simulator with memory overestimation

We first extended the Slurm simulator with a memory
overestimation module that represents the user, by determining
the memory consumption bound at submission time, as a
function of the actual peak memory consumption and the
intended user behavior. The output of this module is the
estimated upper bound, which the Slurm simulator passes to
the disaggregated-aware Slurm in order to allocate resources.



The actual memory consumption, however, is still used by the
slowdown model to determine the effect on performance.

In the baseline experiments, the upper bound equals the
actual memory consumption. This is the unrealistic best case,
in which the users perfectly estimate each job’s memory
consumption. Otherwise, the estimated memory bound can be
either (1) overestimated by a fixed percentage, which can be
used to quantify the general effect of overestimation on overall
system throughput and response times, or (2) overestimated
by an independent, identically distributed (i.i.d.) uniformly-
random percentage between 0% and 100%, which is used by
the correlation analysis to quantify the effect on single job
response time.

C. Determining the effect on system throughput

To determine the effect of overestimation on system
throughput, we configure the memory overestimation module
to uniformly over-estimate the memory demands of all jobs,
between +0%, the baseline, and +60%, which doubles the
memory demands of all jobs. We then plot system throughput
as a function of the overestimation.

D. Correlating memory overestimation and response time

To determine the effect of overestimation on individual job
response time, we may plot a typical job’s response time as a
function of its memory overestimation, holding everything else
constant. But it is clearly not practical, in terms of simulation
time, to do this one job at a time.

Instead, we perform a correlation analysis, by running the
original trace several times, applying a uniformly-random
overestimation to each job. For this correlation analysis to
make sense, it is important that the degree of memory overes-
timation is independent of other job characteristics. This is one
reason why the simulation approach is important, as it allows
us to apply an i.i.d. random overestimation. Observational data
may be misleading, for instance, if larger jobs systematically
had a larger (or smaller) degree of overestimation.

Fig. 1a shows a direct plot of the response time as a function
of the memory overestimation, across all jobs, for the scenario
with 50% large jobs and 0% large nodes. The full results, for
all scenarios, are in Section IV. We add a trend line using
linear regression. Since the jobs have widely varying response
times, even with no memory overestimation, the points on the
y-axis have a very large range, of which Fig. 1a shows a small
part. We therefore filter the jobs by the baseline response time,
when the overestimation is +0%, to obtain Fig. 1b, which is
for jobs whose baseline response time was between 3× 105 s
and 4.2 × 105 s, which was the maximum baseline response
time. Similar plots were obtained for each interval of baseline
response times. There is still significant noise, but it is much
less than before. Fig. 1b also shows the trend line, which
allows us to predict the average response, for jobs with the
given range of baseline response times, i.e. from +0% to
+100%, as a function of the memory overestimation.

Finally, Fig. 1c assembles all the information into a single
figure. The x-axis is the baseline response time, for +0%

2.30e+05

2.35e+05

2.40e+05

2.45e+05

2.50e+05

0 25 50 75 100
Memory overestimation (%)

Re
sp

on
se

 ti
m

e 
(s

)

(a) Response time for all jobs

100%
overestimation

0%
overestimation

4e+05

6e+05

8e+05

1e+06

0 10 20 30 40 50 60 70 80 90 100
Memory overestimation (%)

Re
sp

on
se

 ti
m

e 
(s

)

(b) Filtering response time using a fixed interval range

100%
overestimation

0%
overestimation

2.5e+05

5.0e+05

7.5e+05

1e+05 2e+05 3e+05
Average baseline response time (s)

Ac
tu

al
 re

sp
on

se
 ti

m
e 

(s
)

Memory Overestimation 0% 25% 50% 75% 100%

(c) Using trend line to derive the response time
Fig. 1. Correlating memory overestimation to response time (example with
50% large jobs and 0% large nodes)

overestimation, and the y-axis is the actual response time,
depending on the overestimation (five different curves). In this
example, we see a large increase in the overall response times,
e.g. from 2.0×105 s to 7.5×105 s for the top-rightmost point,
but we see very little difference between the +0% and +100%
cases. In the next section, we will show the complete results,
which follow a similar trend.

IV. RESULTS

A. System job throughput

Fig. 2 presents the throughput of the system, in jobs per
second, as a function of the memory demand overestimation,
across all scenarios. We notice that, in all cases, system
throughput drops as the overestimation increases. Even though
for low degrees of overestimation, the impact on throughput is
modest, the degradation increases with the mismatch between
system and the job mix, reaching almost 40%.

We therefore conclude that, from the system operator’s
perspective, effective system utilization requires that the jobs
generally have accurate estimations of their memory demands.

B. System job response time

Fig. 3 shows the average response time when all jobs overes-
timate the memory demands by the same amount. Following
a similar trend as the decrease in throughput, the response



System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

0.000

0.002

0.004

0.006

0.000

0.002

0.004

0.006

0.008

0.000

0.002

0.004

0.006

Memory overestimation (%)

Th
ro

ug
hp

ut
 (j

ob
s/

se
c)

Fig. 2. System throughput (y-axis) when all jobs overestimate memory
requirements by the same percentage (x-axis).

System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60

0
1
2
3
4
5

0

1

2

3

0

1

2

Memory overestimation (%)

N
or

m
al

iz
ed

 re
sp

on
se

 ti
m

e

Fig. 3. Normalized response time (y-axis) when all jobs overestimate memory
requirement by the same amount (x-axis).

time increases, showing that the system’s response time is
impacted as a whole when all jobs overestimate their requests.
For such a scenario, we notice that when all users are accurate
in specifying the memory usage, it would benefit the whole
system, because it would decrease the load on the system
in queuing time due to the lack of resources. Consequently,
the system would run more efficiently by decreasing overall
response time and increasing overall throughput.

C. User job response time

Each plot in Fig. 4 shows the average response time (y-
axis) as a function of the baseline response time (x-axis) for
the jobs of two types of user. The data is obtained following
the methodology described in Section III. The 0% line is
for a “diligent” user who accurately determines the memory
consumption whereas the 100% line is for a “careless” user
whose prediction is twice the actual consumption. Results are
shown in a 3 × 3 grid, corresponding to the three different

systems and job mixes. Fig. 4(a) on the left plots the actual
average response time, whereas Fig. 4(b) on the right plots the
normalized response time.

We see in each scenario a large increase in response time,
compared with the baseline (represented by the black line).
We notice, as expected, that in all scenarios the response time
is impacted even for the diligent user, whose jobs do not
overestimate the memory demands. For 0% large node system,
where disaggregation is more often used to accommodate the
job mixes, we perceive a slight increase on response time
when the job doubles its request. However there is little or
no difference in the response time when we start adding large
nodes to the system. We observe that being accurate on a
scenario where other users are not, provides a small benefit
to a single user, whose jobs will be impacted by the load the
other users create on the system due their overestimation.

V. RELATED WORK

Memory Disaggregation — Gu et al. [2] implement a
scalable and decentralized remote memory paging solution
to enable memory disaggregation. It divides the swap space
of each machine and distributes the pages across many re-
mote machines using RDMA operations for all remote I/O
operations. Lim et al. [6], [15] propose a remote memory
blade that can be used for memory capacity expansion to
improve performance and for sharing memory across servers.
The authors extended the Xen hypervisor to emulate a disag-
gregated memory design, in which remote pages are swapped
into local memory. Shan et al. [24] propose a split kernel
OS architecture to manage disaggregated systems. It breaks
the OS into pieces with different functionalities, each running
on and managing a hardware component. Peng et al. [5]
implement a user-space remote paging library to allow ex-
ploration of applications using disaggregated memory. Their
architecture contemplates nodes with fast but small local
memories and large but slow remote memories, and it is
aided by the library, which evicts local pages and fetches
remote pages when the local memory is exhausted. Pinto et
al. [18] present ThymesisFlow, a fully-functional software-
defined disaggregated memory prototype using commercially
available hardware components. The architecture introduces
the concepts of a compute role, which uses remote memory,
and a memory-stealing role, which donates memory. Its design
leverages the latest cache-coherent attachment technology for
off-chip peripherals to intercept memory transactions and
realize the endpoint functionality. They analyze the impact of
disaggregated memory by measuring the performance of cloud
applications and demonstrate an acceptable performance.
Resource allocation — Amaral et al. [25] develop a dynamic
loop-based controller to manage resources and a flow-network
algorithm to determine the optimal placement of workloads on
virtualized data-centers. Their approach disaggregates GPUs
using middleware that intercepts GPU calls and offloads API-
related data via the network. Amaro et al. [26] present
a swapping mechanism that uses remote memory through
RDMA and a remote memory-aware cluster scheduler to split



System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

0.0
e+

00

2.5
e+

05

5.0
e+

05

7.5
e+

05
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5

2e+05

4e+05

6e+05

3e+05

6e+05

9e+05

0.0e+00
5.0e+05
1.0e+06
1.5e+06
2.0e+06

Average baseline response time (s)

Av
er

ag
e 

ac
tu

al
 re

sp
on

se
 ti

m
e 

(s
)

System 0% Large System 15% Large System 25% Large

Jobs Large 50%
Jobs Large 75%

Jobs Large 100%

0.0
e+

00

2.5
e+

05

5.0
e+

05

7.5
e+

05
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5
0e

+0
0

2e
+0

5
4e

+0
5

6e
+0

5

2
3
4
5
6

2.5

3.0

3.5

4.0

2.00
2.25
2.50
2.75
3.00

Average baseline response time (s)

N
or

m
al

iz
ed

 a
ve

ra
ge

 a
ct

ua
l r

es
po

ns
e 

tim
e

Memory
Overestimation

0%
100%

(a) (b)
Fig. 4. Individual job response times increase when the users overestimate job memory demands, but memory overestimation has little effect on response
times (+0% curves vs +100% curves)

each job’s memory demand between local and remote memory.
Then, they examine the scenarios for which remote memory
can increase job throughput. Papaioannou et al. [27] propose
a resource scheduling and network management algorithm
designed for a disaggregated data center. The scheduler al-
lows the administrator to define policies, which are enforced
through a set of weights. The proposed scheduler is evaluated
using simulation improving the resource utilization compared
to state-of-the-art algorithms and thus reducing the energy
consumption. Zervas et al. [4] propose a set of algorithms to
allocate and maximize resource utilization for a disaggregated
data center based on the dRedBox architecture. They devel-
oped a simulator that performs orchestration and allocation
of resources with reservation of their network bandwidth and
interconnection to serve VM requests. Farias et al. [28]
use traces of a representative production system to simulate
a scheduler for disaggregated architectures. They investigate
the efficiency gains when the scheduler can either create new
logical servers, or increasing the capacity of those existent.

Accessing/pricing schemes — Access to large-scale HPC
infrastructures usually requires submission of proposals to
undergo a peer-review process describing computational re-
sources as in [29], [30], [31]. Mahloo et al. [32] compare the
cost in terms of capital and operational expenditures of a dis-
aggregated architecture and one based on traditional servers.
Their framework results show that disaggregation brings high
savings in the presence of heterogeneous workloads. Borgh-
esi et al. [33] present a model to analyze the impact of
frequency scaling on energy. To assess the cost benefits for the
facility and user, they propose four different pricing schemes
and conclude that is possible to save energy while not penaliz-
ing users from the economic point of view. Ferretti et al. [34]
introduce a model to help researches to understand whether
is convenient using Cloud infrastructures as alternative to
HPC systems for running scientific applications. Their model
takes into account performance, cost, waiting time and user’s

preference. They concluded that the best infrastructure may
be that which optimizes the user’s expectations. Breslow et
al. [35] present a runtime system to enable fair pricing
for HPC clusters that run co-located applications and a new
pricing model to fairly price applications when co-locations
are present. The pricing model provides to the user discounts
at a rate proportional to the degradation that each of their jobs
experience due contention.

VI. CONCLUSION

Disaggregated memory is under development as a way to
provide flexible fine-grained allocation of physical memory.
Users of an HPC system supporting disaggregated memory
would likely be expected to estimate their job’s memory
demands. This paper investigates how the system’s overall
throughput and response time would be affected, according to
various assumptions on the user’s ability to predict the memory
consumption. We find that even when there is a large effect on
system throughput (-25%) and response time (5 times higher),
there is very little direct incentive for the users to be accurate
in their estimates, with only an 8% increase in response time.
This paper is a step towards understanding how to bring
disaggregated memory to HPC, by demonstrating that users
should receive incentives to provide accurate memory usage
estimates. These incentives could translate to an increase in
priority, number of simultaneous running jobs or larger core–
hour allocations.

ACKNOWLEDGEMENT

This work is part of a project that has received funding from
the European Union’s Horizon 2020 research and innovation
programme under grant agreement No 754337 (EuroEXA); it
has been supported by the Spanish Ministry of Science and
Innovation (project TIN2015-65316-P and Ramon y Cajal fel-
lowship RYC2018-025628-I), Generalitat de Catalunya (con-
tracts 2014-SGR-1051 and 2014-SGR-1272), and the Severo
Ochoa Programme (SEV-2015-0493).



REFERENCES

[1] D. Syrivelis, A. Reale, K. Katrinis, I. Syrigos, M. Bielski, D. Theodor-
opoulos, D. N. Pnevmatikatos, and G. Zervas, “A software-defined ar-
chitecture and prototype for disaggregated memory rack scale systems,”
in 2017 International Conference on Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS). IEEE, 2017, pp.
300–307.

[2] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient
memory disaggregation with infiniswap,” in 14th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 17), 2017, pp.
649–667.

[3] V. R. Kommareddy, A. Awad, C. Hughes, and S. D. Hammond,
“Exploring allocation policies in disaggregated non-volatile memories,”
in Proceedings of the Workshop on Memory Centric High Performance
Computing. ACM, 2018, pp. 58–66.

[4] G. Zervas, H. Yuan, A. Saljoghei, Q. Chen, and V. Mishra, “Opti-
cally disaggregated data centers with minimal remote memory latency:
technologies, architectures, and resource allocation,” Journal of Optical
Communications and Networking, vol. 10, no. 2, pp. A270–A285, 2018.

[5] I. Peng, R. Pearce, and M. Gokhale, “On the memory underutilization:
Exploring disaggregated memory on hpc systems,” in 2020 IEEE 32nd
International Symposium on Computer Architecture and High Perfor-
mance Computing (SBAC-PAD). IEEE, 2020, pp. 183–190.

[6] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for expansion and sharing in blade
servers,” in ACM SIGARCH Computer Architecture News, vol. 37, no. 3.
ACM, 2009, pp. 267–278.

[7] M. D’Amico, A. Jokanovic, and J. Corbalan, “Holistic slowdown driven
scheduling and resource management for malleable jobs,” in Proceedings
of the 48th International Conference on Parallel Processing. ACM,
2019, p. 31.

[8] S. Iserte, R. Mayo, E. S. Quintana-Ortı́, V. Beltran, and A. J. Peña,
“Efficient scalable computing through flexible applications and adaptive
workloads,” in 2017 46th International Conference on Parallel Process-
ing Workshops (ICPPW). IEEE, 2017, pp. 180–189.

[9] F. V. Zacarias, P. Carpenter, and V. Petrucci, “Improving hpc system
throughput and response time using memory disaggregation,” in 2021
IEEE 27th International Conference on Parallel and Distributed Systems
(ICPADS). IEEE, 2021.

[10] “Disaggregated memory slurm simulator and allocation policy.” https:
//github.com/felippezacarias/slurm simulator, 2021, accessed: 2021-04-
08.

[11] “SGI Altix UV 1000 Datasheet,” https://cutt.ly/McVBAFS, 2021, ac-
cessed: 2021-01-21.

[12] “Bull Coherent Switch (BCS),” https://cutt.ly/IcVVZt3, 2021, accessed:
2021-01-21.

[13] M. Bielski, I. Syrigos, K. Katrinis, D. Syrivelis, A. Reale, D. Theodor-
opoulos, N. Alachiotis, D. Pnevmatikatos, E. Pap, G. Zervas et al.,
“dReDBox: Materializing a full-stack rack-scale system prototype of a
next-generation disaggregated datacenter,” in 2018 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp.
1093–1098.

[14] Y. Durand, P. M. Carpenter, S. Adami, A. Bilas, D. Dutoit, A. Farcy,
G. Gaydadjiev, J. Goodacre, M. Katevenis, M. Marazakis et al., “Eu-
roserver: Energy efficient node for european micro-servers,” in 2014
17th Euromicro Conference on Digital System Design. IEEE, 2014,
pp. 206–213.

[15] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan,
and T. F. Wenisch, “System-level implications of disaggregated mem-
ory,” in IEEE International Symposium on High-Performance Comp
Architecture. IEEE, 2012, pp. 1–12.

[16] A. Rigo, C. Pinto, K. Pouget, D. Raho, D. Dutoit, P.-Y. Martinez,
C. Doran, L. Benini, I. Mavroidis, M. Marazakis et al., “Paving the way
towards a highly energy-efficient and highly integrated compute node
for the exascale revolution: the exanode approach,” in 2017 Euromicro
Conference on Digital System Design (DSD). IEEE, 2017, pp. 486–493.

[17] EuroEXA project, “H2020 project number 754337,” 2009, accessed:
2021-09-20. [Online]. Available: https://euroexa.eu/

[18] C. Pinto, D. Syrivelis, M. Gazzetti, P. Koutsovasilis, A. Reale, K. Ka-
trinis, and H. P. Hofstee, “Thymesisflow: a software-defined, hw/sw co-
designed interconnect stack for rack-scale memory disaggregation,” in
2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 2020, pp. 868–880.

[19] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility
for resource management,” in JSSPP. Springer, 2003, pp. 44–60.

[20] “BSC slurm simulator,” https://github.com/BSC-RM/slurm simulator,
2021, accessed: 2021-01-20.

[21] A. Jokanovic, M. D’Amico, and J. Corbalan, “Evaluating slurm simula-
tor with real-machine slurm and vice versa,” in 2018 IEEE/ACM Perfor-
mance Modeling, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). IEEE, 2018, pp. 72–82.

[22] F. V. Zacarias, R. Nishtala, and P. Carpenter, “Contention-aware appli-
cation performance prediction for disaggregated memory systems,” in
Proceedings of the 17th ACM International Conference on Computing
Frontiers, 2020, pp. 49–59.

[23] W. Cirne and F. Berman, “A comprehensive model of the supercomputer
workload,” in Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No. 01EX538).
IEEE, 2001, pp. 140–148.

[24] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang, “Legoos: A disseminated,
distributed OS for hardware resource disaggregation,” in 13th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
18), 2018, pp. 69–87.

[25] M. Amaral, J. Polo, D. Carrera, N. Gonzalez, C.-C. Yang, A. Morari,
B. D’Amora, A. Youssef, and M. Steinder, “Drmaestro: orchestrating
disaggregated resources on virtualized data-centers,” Journal of Cloud
Computing, vol. 10, no. 1, pp. 1–20, 2021.

[26] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ousterhout, M. K. Aguilera,
A. Panda, S. Ratnasamy, and S. Shenker, “Can far memory improve job
throughput?” in Proceedings of the Fifteenth European Conference on
Computer Systems, 2020, pp. 1–16.

[27] A. D. Papaioannou, R. Nejabati, and D. Simeonidou, “The benefits of
a disaggregated data centre: A resource allocation approach,” in 2016
IEEE Global Communications Conference (GLOBECOM). IEEE, 2016,
pp. 1–7.

[28] G. Farias, F. Brasileiro, R. Lopes, M. Carvalho, F. Morais, and D. Turull,
“On the efficiency gains of using disaggregated hardware to build
warehouse-scale clusters,” in 2017 IEEE International Conference on
Cloud Computing Technology and Science (CloudCom). IEEE, 2017,
pp. 239–246.

[29] “Partnership for Advanced Computing in Europe,” https://prace-ri.eu/
about/introduction/, 2021, accessed: 2021-01-20.

[30] “Extreme science and engineering discovery environment,” www.xsede.
org, 2021, accessed: 2021-01-20.

[31] “Innovative and novel computational impact on theory and experiment,”
https://www.doeleadershipcomputing.org/proposal/call-for-proposals/,
2021, accessed: 2021-01-20.

[32] M. Mahloo, J. M. Soares, and A. Roozbeh, “Techno-economic frame-
work for cloud infrastructure: A cost study of resource disaggregation,”
in 2017 Federated Conference on Computer Science and Information
Systems (FedCSIS). IEEE, 2017, pp. 733–742.

[33] A. Borghesi, A. Bartolini, M. Milano, and L. Benini, “Pricing schemes
for energy-efficient hpc systems: Design and exploration,” The Interna-
tional Journal of High Performance Computing Applications, vol. 33,
no. 4, pp. 716–734, 2019.

[34] M. Ferretti and L. Santangelo, “Cloud vs on-premise hpc: a model
for comprehensive cost assessment,” Parallel Computing: Technology
Trends, vol. 36, p. 69, 2020.

[35] A. D. Breslow, A. Tiwari, M. Schulz, L. Carrington, L. Tang, and
J. Mars, “Enabling fair pricing on hpc systems with node sharing,”
in Proceedings of the international conference on high performance
computing, networking, storage and analysis, 2013, pp. 1–12.

https://github.com/felippezacarias/slurm_simulator
https://github.com/felippezacarias/slurm_simulator
https://cutt.ly/McVBAFS
https://cutt.ly/IcVVZt3
https://euroexa.eu/
https://github.com/BSC-RM/slurm_simulator
https://prace-ri.eu/about/introduction/
https://prace-ri.eu/about/introduction/
www.xsede.org
www.xsede.org
https://www.doeleadershipcomputing.org/proposal/call-for-proposals/

	Introduction
	Background
	Disaggregated memory
	Slurm Resource manager
	Slurm simulator supporting disaggregated memory

	Methodology
	Simulated system and input configurations
	Extending the simulator with memory overestimation
	Determining the effect on system throughput
	Correlating memory overestimation and response time

	Results
	System job throughput
	System job response time
	User job response time

	Related Work
	Conclusion
	References

