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Abstract—AODVv2 is a well-known routing protocol used in 
MANETs (Mobile Ad hoc Networks). Formerly known as DYMO 
(DYnamic MANET On-demand), it is frequently used as a 
reference for routing protocols assessment. However, 
implementations of these protocols are scarce and the few ones 
available are currently outdated, no longer maintained and hardly 
upgradeable. This paper provides the details of a new AODVv2 
implementation to be used in embedded devices working with the 
ARM microprocessor architecture. A user-space approach has 
been followed so both the upgradability and platform-
independence are favored. A WiFi ad hoc network, modeling 
representative real scenarios, has been deployed to verify the 
correctness of the developed AODVv2 code and assess the 
performance of the protocol under realistic traffic conditions. A 
virtual machine has been used to perform a cross-compilation of a 
the code that implements the DYMO protocol in the Intel x86 
computer architecture. Once compiled for being used in ARM-
based devices, the code has been tested in Raspberry Pi devices to 
verify the proper behaviour. Simple scenarios and scenarios with 
high density of nodes have been deployed and data have been 
collected and analysed. 
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I. INTRODUCTION 

A. The AODVv2 protocol 

AODVv2 is a pure reactive protocol used in MANETs 
which was formerly known as DYMO (DYnamic MANET 
On-demand). It is based on AODV (Ad hoc On-demand 
Distance Vector) and shares with it some of its benefits while 
being simpler to implement [1, 2, 3]. The protocol works on a 
hop by hop basis and nodes do not send packets unless they 
are performing routing or transmitting tasks. The main benefit 
of this protocol is a low routing overhead that leads to an 
improved traffic capacity and lower energy consumption. 

It uses basically two packet types to discover possible 
routes to the destination. On the one hand, Route Request 
packets (RREQ) are sent in broadcast mode through the 
MANET, each RREQ holding a list of all the nodes passed in 
its way to the destination. On the other hand, Routing Reply 
(RREP) packets are sent to the source from either the 
destination or from any forwarding node that has a valid route 
to destination, upon reception of the RREQ. RREP packets go 
back to the source by the same route traversed by the RREQ 
packet that trigger the reply, and inform that the route has been 
finally established. Hence the function of the RREP message 
is to set up a route between destination node and source node, 
and all the intermediate nodes between them. In addition to 

these two basic packet types related to the route discovery 
process, another message has been defined for route 
maintenance [3]. This the Route Error message (RERR), 
which used to indicate an invalid route from any intermediate 
node to the destination node. 

The source sets a time-out after which a new RREQ will 
be sent if a RREP has not been received yet. This new RREQ 
has a larger time-out and, after repeating this process a given 
number of times without success, the destination node is 
considered unreachable (Route Discovery Fail). Routing 
tables are not maintained and kept after each topology change 
so control packets are not sent unless a transmission is needed. 

B. Motivation and goals 

In [4], an implementation of AODVv2 was developed to 
run over the Intel x86 architecture and tested with 3 laptop 
computers. The test proved that all functionalities worked as 
expected, without evaluating the performance. The AODVv2 
protocol is targeted to MANET consisting of sensors or small 
devices that work with limited resources of CPU and energy 
and are better represented by the ARM architecture. 

Several modifications of the AODVv2 protocol have been 
presented including possible upgrades, such as information 
about the nodes’ position proposed in the DYMOselfwd [5]  to 
guarantee loop-free routes [7]. It has been shown through 
simulation [6] that AODVv2 reduces the protocol overhead, 
hence the energy and consumption and traffic volume, which 
allows to slightly speed-up the route discovery and data 
transfer. A benchmark is necessary in order to assess that the 
performance of such protocols in real scenarios agrees with 
the forecast obtained through theoretical analysis and 
simulation. 

The first goal of this work is to build an implementation of 
AODVv2 to run over ARM devices with limited resources of 
energy and CPU. This will be programmed in C and must 
work for WiFi WiPi (Wireless Internet Platform for 
Interoperability) adapters. Once built the protocol and checked 
its functionalities, the second goal is to obtain a performance 
evaluation of its behaviour in real scenarios. 

II. IMPLEMENTATION OF THE AODVV2 PROTOCOL 

The code has been managed and developed using GNU 
Autotools [8] a suite of programming tools that assists to write 
cross-platform software and makes it easier to export the code 
to many Unix-like systems. Moreover, it also provides tools 
for cross compilation. The code has been developed in Linux 
and it has been compiled for both Intel x86 and 32-bit ARM 
architectures. The implementation of the routing protocol 



 

 

follows the AODVv2 Internet Draft version 16 [9] and it has 
been coded in the user space in order to simplify the 
development, testing, deployment and portability of the source 
code. The user space refers to all the code in an operating 
system that lives outside the kernel.  

The code is executed as a system daemon and can be setup 
through a configuration file, which defines the values of the 
AODVv2 parameters. These parameters are grouped into three 
main categories: timers, protocol constants, and administrative 
parameters and controls. When the daemon starts, it launches 
the two main threads along with the main blocks of the code, 
as depicted in Figure 1. These two threads are responsible for 
the AODV2 operation and they remain running as long the 
daemon is alive. 

Figure 1 shows the data-flow diagram of the AODVv2 
implementation. The process is triggered when a data packet 
is received (Figure 1 on the right). Then, the 
aodv_2_decisor_thread handles the packed and 
proceeds checking if a valid route to the target prefix is 
available. In the case it is not, the data packet is queued using 
NFQUEUE as the target of the iptables route. NFQUEUE is 
an iptables/ip6tables target which delegates the decision on 
packets to a user space software. Once the data packet has been 
queued, the focus moves to the aodv_v2_thread, which is 
responsible for the AODVv2 message processing, and the the 
route discovery process begins. Thus, a RREQ message is 
firstly sent in order to learn a route to the destination target. 
The node remains then waiting for a RREP message. When it 
arrives (Figure 1 on the left), the aodv_v2_thread will 
forward it unless the node is the destination of the RREP; in 
the latter case, a valid route to the target prefix has just been 
discovered and it must be installed in the Kernel forwarding 
table (i.e. the Forwarding Information Base, FIB). As a final 
step, this event is signaled to the 
aodv_2_decisor_thread so that the packet, which was 
queued while the route discovery process was seeking a valid 
route, is re-injected in the netfilter POSTROUTING hook and 
eventually transmitted via the outbound network interface. 
The same would happen in case a valid route is already 
available when a data packet is received.  

 

 
Figure 1. Main blocks of the code for ARM devices  

Along with the code, a suite of unit tests have been run to 
ensure the correctness of the software. Furthermore, a set of 
use cases has been developed in order to cross validate the 
implementation under real conditions. This validation has 

been focused on three points: 1) AODVv2 message processing, 
2) routing table update, and 3) timeout management. A 
specific procedure may involve more than one of these use 
cases. For instance, when a node receives a RREP as a reply 
to a given RREQ that was previously issued, one needs to 
cross check that such message is correctly processed (i.e., use 
case 1) and that the forwarding table is updated accordingly 
(i.e., use case 3).  

III. SCENARIOS AND DATA COLLECTION 

A. Network topologies 

Two sets of scenarios have been tested in order to asses the 
performance of the protocol in very simple cases. The first set 
is based on chain topologies with different number of nodes 
while the second set is a ring without and with a mesh 
connection of the intermediate nodes. 

The first set of scenarios includes three scenarios based on 
the chain layout. Chain layouts with five, six and seven nodes 
have been studied. Figure 2 shows the layout with five nodes, 
the other two with six and seven nodes are exactly the same 
by just adding one and two intermediate nodes, respectively. 
The distance between neighbour nodes is set to 4 meters, 
modeling what could be a simple wireless sensor network. 

 

 

 

 

 

 

 

 

Figure 2. Chain topology with five nodes. 

The data transfer is assumed to start at the source node (e.g., 
the node on the left) with destination to the other end (e.g., the 
node on the right). The IP addresses belong to the private 
network 10.0.3.0/24, being the source 10.0.3.5 and the 
destination 10.0.3.7. Notice that the coverage of each node 
reaches only its closest neighbour in order to avoid skipping 
nodes hence using actually a topology different to the one 
planned. To this end, the transmission power of each Wireless 
Network Interface Card (WNIC) is reduced to 1 mW instead 
of the default value of 25 mW, through the iwconfig command. 
Since this reduction is not enough to avoid a coverage larger 
than the next node in all cases (i.e., propagation conditions are 
variable in general due to temperature, reflexions, etc), the 
power is faded by enclosing each device into a Faraday cage 
that is built with a paperboard wrapped by metal paper. In this 
way, the proper attenuation is obtained in order to reach only 
the closest device. 

The second set of scenarios consists of two diamond 
scenarios in order to show topologies more complex than the 
simple chain and to allow more than one path between source 
and destination. Figure 3 shows this layout with 6 nodes. The 
paths between the upper and lower chain in the figure have 
been blocked to ensure that the two paths are not 
communicated between them. Though according to the 
coverage map the upper and lower nodes do not reach among 
them, coverage and device sensitivity depend too much on 
temperature and air conditions to trust that they actually do not 
reach while being close to the planned coverage border. This 



 

 

is why mechanical blocking (i.e., iron panels) has been used to 
avoid communication between nodes of the upper and lower 
chains. 

The layout shown in Figure 3 represents in fact a ring with 
a maximum of two possible paths for each data transfer. In 
order to broaden the variety of possible paths, two new nodes 
have been added as shown in Figure 4. Notice that now the 
homogeneity of distances between neighbour nodes is no 
longer present while the number of hops to reach destination 
can change, leading to more realistic cases. The above-
mentioned technique used to limit the power in order to reach 
the adequate coverage must be kept as in the chain topologies.  

The topology in Figure 4 can be seen as the one displayed 
in Figure 3 after changing the iron blocking panels by two new 
nodes well under coverage of the upper and lower chains. In 
the following, we will refer to topology in Figure 3 as D1, and 
the one in Figure 4 as D2. Notice that in D1 the number of 
hops is 3 and no transmission with a different number of hops 
is possible while in D2 the number of hops is variable between 
3 and 5. 

 

 

Figure 3. Diamond topology 1 (D1). 

 

Figure 4. Diamond topology 2 (D2).  

 

B. Metrics 

In order to analyse the performance of the protocol in each 
specific scenario, the following metrics have been considered: 
latency, number of needed retries for the route discovery, and 
overall number of RREQ sent.  

 

Latency. This is the time needed to discover a route 
between the source and destination. Specifically, it is the time 
involved since the source sends its first RREQ until the source 
receives the corresponding RREP from the destination  

𝑙𝑎𝑡𝑒𝑛𝑐𝑦 = 𝑡 (𝑅𝑅𝐸𝑃) −  𝑡 (𝑅𝑅𝐸𝑄)  (1) 

Number of needed retries for the route discovery. This 
is the number of times that a source starts the discovery 
procedure for a given destination by sending a new RREQ 
with increased time-out 

𝑛𝑢𝑚_𝑟𝑒𝑡𝑟𝑖𝑒𝑠_𝑅𝑅𝐸𝑄 = ∑ 𝑅𝑅𝐸𝑄(𝑡𝑖𝑚𝑒𝑜𝑢𝑡 )   (2) 

Overall number of RREQ sent. This metric allows to 
evaluate the whole overhead traffic injected into the network 
by the protocol and is obtained by accounting every RREQ 
sent by every node in the network. 

C. Procedure to collect the data 

In order to collect the metrics of interest, each minute the 
source node sends a PING to the destination, hence activating 
the route discovery protocol for the given destination node. 
Then the packets in the network must be captured with their 
corresponding timestamps and filtered in order to process only 
the packets that are needed in order to obtain the considered 
metrics. Wireshark [10] has been used to carry out this task. In 
order to obtain a sample large enough so that the confidence 
intervals remain within 5%, a number of PING between 300 
and 500 are needed for each scenario. 

As an example of the procedure, Figure 5 shows the 
capture obtained with Wireshark for the chain topology with 7 
nodes. The IP addresses in the chain from source to destination 
are: 10.0.3.5 (source)  .2  .3  .4  .6  .20  .7 
(destination). Packets marked with protocol packetbb and with 
a broadcast IP as destination address (10.0.3.255) correspond 
to the RREQs, while the packets also belonging to the 
packetbb protocol but with an IP address different to broadcast 
are RREPs addressed to the next node in the return route, as 
explained in section 1. ICMP packets are also displayed. The 
timestamps associated to each packet are collected together 
with the packet class in order to get average values for the 
three metrics of interest. These timestamps are used to obtain 
the metrics. As an example, the timestamp corresponding to 
the 𝑡 (𝑅𝑅𝐸𝑄) (267.692) and the one corresponding to the 
𝑡 (𝑅𝑅𝐸𝑃) (268.184) are highlighted in red in Figure 5 and 
are used to obtain a measure of the latency.  

The setup consists of one only source sending pings to the 
destination with a time interval between pings of 1 minute and 
the maximum number of retries set to 3. 

IV. RESULTS 

A. Chain scenarios 

In Figure 6 the probability density function for the latency 
(route discovery time) is presented for the three cases with five 
(orange), six (yellow) and seven (blue) nodes respectively. 
The peak value and the average of the latency are shorter for a 
smaller number of nodes, as could be expected since the 
number of hops is smaller, thus leading to shorter times spent 
in processing the packets (i.e., the impact of the shorter signal 
propagation time is negligible given the short distances 
involved). Since the access method is CSMA/CA, the amount 
of collisions must be also considered as another source of 
delay for larger amount of nodes. As the coverage reaches only 
the closest node, the collisions observed at each node are 
roughly the same independently of the number of nodes. 
However each node receives packets from its left and right  



 

 

 

Figure 5. Wireshark results for the chain scenario with 7 nodes. 

 

neighbour, so collisions are a source of delay similar to the 
processing time at the node. The delays introduced by the 
collisions and processing time are both of random nature and 
its characterization is out of the scope of this work.   

The three shapes are quite similar among them and close 
to a Gauss bell; also, the function is slightly more spread over 
time in the case of a higher number of nodes, which could also 
be predicted since more hops involved means more variability 
in the times spent for processing. 

B. Diamond scenarios 

In Figure 7 the probability density functions of the latency 
for the two cases corresponding to the diamond topology are 
displayed. The shorter latency displayed in D2 (i.e., after 
introducing two new nodes to D1) does not seem to match 
what was expected since now, contrary to what happened with 
the chain topology where more nodes connected involved 
more collisions and longer latency. Notice that with D2 
topology every intermediate node is not only connected to the 
node on the left and on the right, but also to two other 
intermediate nodes. It is obvious that a noticeable increase of 
the collisions must take place when changing from D1 to D2 
leading to expect a longer latency.  

The explanation to the shorter latency in D2 must be 
associated to the actual implementation of the protocol that 
limits to three the number of RREQ looking for a route. In 
other words, if a route has not been discovered after three 
retries, no more tries are sent and the route is just considered 
not accessible. As shown later (see explanations to figures 8 
and 9 below), in D1 the percentage of discovered routes is 
higher than in D2, where the higher number of collisions tend 
to reduce the performance. Since the latency provided in the 
figures is the latency of the routes discovered only and non-
discovered routes are not involved in the statistics, the latency 
is slightly shorter while the number of routes discovered is 
clearly smaller in D2. Accordingly, it can be stated that 
AODVv2 performs better in D1 mainly due to the higher 
amount of collisions in D2. 

 

 

 

 

 

 

 
Figure 6. Latency for the chain topology with 5, 6 and 7 nodes. 

 

 

Figure 7. Latency pdf for diamond topologies 1 and 2. 

 

 



 

 

 

Figure 8. Histogram of the number of retries a) D1, b) D2. 

 

Figure 9. Histogram of the overall number of RREQs in D1 and D2. 

 

C. Retries 

According to the notation used in [9] “If the requested rout 
is not learned within the wait period, another RREQ is sent, up 
to total of DISCOVERY_ATTEMPTS_MAX”. If the first try 
fails to obtain a route this procedure starts initiating a retry, 
which is the first discovery attempt.  

Figure 8 shows the histogram of the number of retries 
needed to discover a route in both diamond topologies. The 
peak at 0 retries means that the route was discovered upon the 
first RREQ (i.e., no retry was needed), while the peak at 3 
retries is explained by the fact that the maximum amount of 
retries was set to 3 in the protocol (as established by default in 
[9]). This last peak at 3 retries contains routes that were 
discovered at the third retry together with route discovery fails. 
It must be noted that the amount of routes discovered upon the 
third retry is marginal, below 1% in both topologies. Hence, 
the bar at 3 in Figure 8 shows in fact the figure for the number 
of discovery fails that was 33% for D1 and 42% for D2. The 
poorer performance of D2 can be associated to the fact that the 
number of hops is variable between 3 and 5 while in D1 the 
number of hops is always 3. While the mesh topology 
observed in D2 makes it more robust to link and node failures, 

 

 

 

 

 

 

the impact of more possible hops is negative on the protocol 
performance. 

D. Overhead 

Figure 9 shows the histogram of the overall number of 
RREQs sent by all nodes in the network for topologies D1 and 
D2 respectively, this representing the total amount of overhead 
traffic injected by the protocol. Notice that in D1 a RREQ can 
generate a maximum of 5 RREQs belonging to the source and 
to the four intermediate nodes. Hence the peak at 4 and 5 
shows how the route is discovered upon the first try. The larger 
number of possible paths in D2 leads to a noticeable increase 
of the overall traffic together with a smaller concentration of 
the number of RREQ around a single value. Notice also how 
the tail of the distribution is related to the topology. In D1a 
total of 5 nodes (source plus 4 before the destination) can send 
a maximum of 4 RREQ each one (one first plus 3 retries) 
reaching a maximum of 20 RREQ in total. In D2 the maximum 
is much larger since there 7 nodes generating RREQ with 
variable number of possible hops, however, the tail decreases 
drastically above 20. 



 

 

V. CONCLUSIONS 

A practical implementation of the DYMO protocol in 
devices working with the ARM architecture has been 
developed and tested. Also a performance analysis of this 
protocol working in real scenarios has been presented. To the 
authors’ knowledge, this is the first attempt at providing the 
research community with the code of a common routing 
protocol in wireless sensor networks. Moreover, it is the first 
time that results from a real, even though simple, testbed are 
presented and discussed.  

For simple chain topologies, the results show how the 
route discovery time increases along with the number of 
necessary hops, and presents more dispersion as the number 
of hops increases since every hop introduces a time which is 
partially random. When the topology is more compact, with 
more possible paths between source and destination, the 
discovery time reduced. The number of retries needed for a 
route discovery has also been checked showing how the 
benefit of more possible paths does not grant a better 
performance since the traffic caused by the protocol increases 
involving more collisions, which can lead to a lower 
percentage of route discovery. 
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