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Abstract
Programming Model Abstractions For Optimizing I/O Intensive Applications

by Hatem ELSHAZLY

Recent advances in science and technology are being driven by computing systems that
are able to deliver unprecedented levels of performance. Applications in many scientific
areas and data analysis disciplines such as life sciences, earth sciences, artificial intelligence
and big data analysis generate more and more amounts of data. However, storage and I/O
performance has not kept a matching performance improvement trend. Hence, many appli-
cations have witnessed a paradigm shift from being computation-bound to be I/O-bound.
I/O became the bottleneck that prevents achieving more performance. In addition to that,
execution platforms design that is geared towards distribution and heterogeneity, has made
it increasingly complex for non-expert users such as field experts and domain scientists to
design, program and launch large-scale experiments. Thus, limiting programmability and
productivity.

This thesis contributes to the efforts of optimizing nowadays I/O intensive applications
by proposing and introducing programming model abstractions and mechanisms that have
a twofold objective: On the one hand, improving applications I/O performance to achieve
total overall performance enhancement. On the other hand, expose those techniques and
mechanisms in such a manner that abstracts the complexities of modern distributed and
heterogeneous execution platforms. We achieve this objective by extending the PyCOMPSs
framework, a general purpose, task-based programming model for executing applications
on large-scale distributed systems. The main contributions of this thesis are summarized in
the following paragraphs.

First, we propose enabling I/O awareness in task-based programming models. I/O
Awareness refers to the ability to separate the handling of I/O from computation. Such a
separation allows the optimization of each workload in terms of scheduling and execution.
We achieve I/O awareness by introducing the concept of I/O tasks that can overlap with
compute tasks execution. In addition to that, we improve I/O performance by supporting
programming annotations and mechanisms for mitigating application-level I/O congestion:
manual constraining of tasks, and a mechanism for automatically setting and tuning task
constraints based on execution time metrics.

Second, we target the transparent management and exploitation of the heterogeneity of
modern storage systems to improve I/O performance. To this end, we propose a set of
capabilities that can be referred to as Storage Heterogeneity Awareness. For instance, we
provide programming model support to transparently expose the underlying storage de-
vices as a hierarchical pooled resource such that the top layer has the highest storage band-
width whereas the bottom layer has the lowest storage bandwidth. Moreover, we propose
dedicated I/O schedulers to take advantage of this storage devices organization to increase
I/O task parallelism without causing I/O congestion. In addition to that, we present an
automatic data movement mechanism to maximize the usage of higher storage layers.

Third, we increase applications parallelism by introducing a hybrid programming model
that combines task-based programming models and MPI. Such a hybrid model allows the
execution of tasks on distributed platforms, while using MPI to parallelize tasks execution.
This goal is achieved by extending the task-based programming model to support Native
MPI Tasks. The same application source code can have different Native MPI tasks (each
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with its own number of MPI processes) and different sequential tasks. We extend the pro-
gramming model to provide complete transparency with regard to the interaction between
different types of tasks, tasks execution, data transfer, etc. This hybrid programming model
enables the implementation of parallel-I/O tasks or using high-level parallel I/O libraries
inside tasks.

Finally, we introduce a mechanism for eagerly releasing the data dependencies of tasks.
Using such a mechanism, successor tasks are launched for execution as soon as their data
requirements are generated by the predecessor task(s). Unlike traditional programming
models, task execution does not have to be delayed until the predecessor task(s) finishes
execution. Our proposed behaviour enhances execution by allowing the overlapping execu-
tion of tasks. For instance, overlapping I/O with computation. To this end, we describe two
necessary modifications to data dependencies definition and management: (i) parameter-
aware dependencies, (ii) a mechanism for notifying the programming model that a task has
generated data before reaching the return statement in the task code.

Keywords: Distributed Computing, High Performance Computing, I/O Bottleneck, Task-
based Workflows, Heterogeneous Systems, COMPSs, PyCOMPSs, MPI, I/O Awareness,
Storage-Heterogeneity Awareness, Eager-Realse Of Dependencies, Hybrid Programming
Model, Programmability, Productivity
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Chapter 1

Introduction

1.1 Research Context

1.1.1 Towards the Exascale Computing Era

In recent years, the computing power of supercomputers and production systems in
terms of execution rate of floating-point operations has increased to reach the Petaflop-
s/Second landmark [107]. This exponential growth in computing power has benefited from
multi-core architectures that can accommodate an increasing number of cores on a single
chip.

In addition to processor technology scaling, it has been observed that reaching these new
records in computing power was also made possible by two notable changes in infrastruc-
ture design: Heterogeneous Design and Distributed Architecture.

On the one hand, modern and future systems are increasingly incorporating hardware
accelerators such as Graphical Processing Units (GPUs) and Field Programmable Gate Arrays
(FPGAs) to leverage their computing capabilities and achieve more performance [13]. Such
devices can be used along side multi-core CPUs to efficiently execute compute intensive
applications [18].

On the other hand, platform architecture trends has have scaled out to include multiple
computing nodes connected by a network in the same system [53]. Such architectural design
takes advantage of the extra computing power added by including more nodes into the
system to distribute the execution of computing workloads. Current production systems
consist of thousands of computing nodes while future generations of supercomputers are
expected to incorporate more [66].

Such astonishing increase in performance and processing capabilities is driving the com-
puting scene towards what became to be known as the "Exascale Computing Era". Scientific
and engineering breakthroughs have been made possible in numerous fields to solve the
major problems that face us today. For instance, problems in disciplines as earth science, life
science, climate modeling, astrophysics, etc [97].

The advances in modern infrastructure architecture and system design trends has been
followed by similar advances in programming paradigms and software design. In order to
get the best possible performance out of the underlying execution systems, it is necessary
to use software frameworks and programming models that allow and support parallel and
distributed execution.

However, one of the major drawbacks of such paradigm shift is the increased difficulty
and complexity of developing parallel and distributed applications on modern infrastruc-
tures [54]. This is especially true for end-users and domain scientists with little or no back-
ground in computer science or parallel programming. To this end, several programming
models, libraries and tools have emerged to ease the complexity of programming for perfor-
mance on modern infrastructures [5].
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1.1.2 I/O and Data Intensive Applications

The rapid increase of computing capabilities has made data processing and generation
happen at a much faster rate. Nowadays, applications produce increasing amounts of data.
The sizes of such data ranges from gigabytes to petabytes and beyond. For instance, LIGO
(gravitational wave detection) generates 1500TB/year [56], climate modeling is projected to
produce 100EB of data and Genomics analysis produces data that can reach up to 10PB [40].

The Big Data and Exascale Computing (BDEC) project [6] highlights that the manage-
ment, analysis, mining and knowledge discovery from data sets of this scale are very chal-
lenging problems.

Previous research studies have observed patterns in the I/O behaviour of data intensive
scientific applications [44], [15]. These applications alternate between computation and I/O
phases in a periodic fashion [36]. The I/O phases occur in intense bursts of data that are
produced by the application to be written to the storage device. Such pattern is recurrent
in applications that do checkpointing [47] or post-mortem analysis where intermediate data
are used to gain more scientific insights [14].

Figure 1.1 depicts the execution view of an I/O intensive application. Each compute
phase is followed by an I/O phase (e.g., checkpointing the results of the previous compute
phase). Once each I/O phase is over, it is followed by another compute phase except at the
end of application’s execution where there is no more computation. The time of each I/O
phase varies depending on the size of I/O workload in each phase.

I/O I/O I/OC C C

Time
FIGURE 1.1: Execution View Of An I/O Intensive Application

1.1.3 The I/O Bottleneck

While the exponential growth of computing capabilities can be leveraged to achieve
more parallelism and performance, the storage infrastructure performance is increasing at
a much slower rate. Recent systems has delivered more than 10x peak computing perfor-
mance with only around 3x improvement in Parallel File System (PFS) bandwidth. For
example, the Mira IBM Blue Gene/Q supercomputer of the Argonne Leadership Facility
(ALCF) has a peak performance of 10 PetaFlops [70], which is 20 times faster than its prede-
cessor IBM Blue Gene/P system [83]. However, the I/O throughput on Mira has increased
only 3 times compared to the previous system [84].

The increasing performance gap between compute rate and I/O rate has created what
is now called I/O Bottleneck. That is, storage access has became the new bottleneck pre-
venting improving applications performance. Consequently, scientific applications that are
traditionally compute-intensive have undergone a paradigm shift in which I/O dominates
execution time. In this situation, I/O operations become a major bottleneck for achieving
any further scale up for critical applications [116].

Due to the under-provisioning of the bandwidth of storage systems, the I/O dominant
phases of the I/O intensive applications overwhelm the bandwidth storage device creating
the problem of I/O Congestion. I/O congestion was observed to cause significant slowdown
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in the I/O performance of applications [36]. Indeed, I/O performance slowdown conse-
quently degrades applications total performance.

1.1.4 Modern Storage and I/O Infrastructures

In order to bridge this performance gap, different studies has been performed at different
perspectives. Research communities are studying and designing hardware and software
solutions to optimize storage devices and I/O performance of I/O intensive applications.

Similar to heterogeneity infrastructure design trend adopted to achieve more computing
performance, heterogeneous design has been adopted when designing storage subsystems.
Newly emerging storage devices are incorporated in storage systems to optimize I/O per-
formance. For example, Non-Volatile RAM (NVRAM) [78] and Solid-State Drivers (SSD)
[69] are added to the underlying base storage subsystem of Parallel File System (e.g., Lustre
[11], General Parallel File System (GPFS) [96]). These storage devices can help to reduce
the gap between compute and I/O performance because of their high I/O bandwidth and
low latency capabilities compared to the traditional cost-effective and low-bandwidth Hard
Disk Drives (HDDs).

NVRAMs and SSDs are deployed in modern storage subsystems as Burst Buffers [63].
Due to their higher I/O bandwidth capabilities, they can absorb the data bursts produced
by applications in their I/O-dominant phase. Consequently, prevent I/O congestion if huge
amounts of data are written directly to the usually-backed HDD Parallel File System.

There are two approaches to incorporate Burst Buffers into a storage system: Node-Local
and Remote-Shared. Figure 1.2 shows the two approaches of modern storage subsystems.
Regardless of the design, compute nodes read input data from Parallel File System and
Burst Buffers absorb intermediate data to later store it in the Parallel File System. For the
sake of simplicity, SSDs are used as the Burst Buffer storage device. However, it is common
to use a mixture of NVRAMs, SSDs and other new storage devices.

Figure 1.2(a) depicts a node-local Burst Buffer configuration where SSDs or NVRAMs
are attached locally to each compute node. In this design data bursts are written to local
storage devices directly.

Figure 1.2(b) depicts a remote-shared Burst Buffer design where the burst buffers are
available for all compute nodes. This design offers more burst buffers to the compute nodes
since any compute node can access any device in the Burst Buffer system, however, unlike
the node-local design, remote-shared design adds overhead because large amounts of data
need to travel the network to access the Burst Buffer system. Therefore, extra effort needs
to be provided for provisioning the network and Burst Buffer system (i.e., managing meta-
data, coordinating access, etc..).

Besides the hardware advances in storage devices and heterogeneous design trend in
storage subsystem design, it is of critical importance to provision the bandwidth of the Burst
Buffer layers and manage it for performance by avoiding I/O congestion. To this end, sev-
eral efforts have been done from the software perspective at two main levels of the software
system stack: (i) global I/O scheduling to reduce I/O congestion between different I/O
intensive applications when they make concurrent accesses to the Burst Buffers. (ii) par-
allelizing I/O and optimizing application’s I/O access patterns by using I/O middleware
such as MPI-IO [89] and HDF5 [105].
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FIGURE 1.2: Modern Storage System Design

1.1.5 Task-based Programming Models

Task based parallel programming models [22] offer a high-level abstraction that facili-
tates extracting high performance from nowadays distributed and complex execution sys-
tems. They achieve such performance without exposing the infrastructure details of these
systems to application developers. It is the responsibility of the task based system to man-
age the existing execution resources and schedule work to available resources dynamically
at application execution time.

Following the execution model of task-based programming models, applications are de-
composed into units of computations, called tasks. Tasks describe certain functions or pieces
of code that will be executed in parallel. The specification of tasks and the order of their ex-
ecution varies depending on the implementation of each programming model. A common
task-based execution paradigm is by defining data dependencies between tasks. If a certain
task A produces a certain output, and another task B requires the output of task A as input,
then a data dependency relationship is created between both tasks such that task A is called
the Predecessor task of B and task B is called the Successor task of A.

Indeed, a predecessor task can have one or many successors and a successor task can
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have one or many predecessors. No matter how many predecessors a task may have, a
successor task will be launched for execution if and only if all of its predecessors have suc-
cessfully finished their execution.

Task-based models enable application developers to specify the code regions, intervals
or functions that are to be treated and handled as tasks. Different task-based models offer
different approaches such as a Graphical User Interface (GUI) or using Command Line In-
terfaces, configuration files or through a built-in capability in the programming language.
Therefore, task-based models offer a more flexible manner to specify and exploit parallelism
in applications.

Tasks do not have permanent state, i.e., all the data structure and variables created dur-
ing the execution of a certain task are removed as soon as this task finishes execution. In
addition to that, tasks do not share state among each other. A task is executed in a totally
independent manner from all other tasks that are executed concurrently.

1.2 Challenges and Contributions

1.2.1 Problem Statement: A bird’s-eye Overview

I/O performance became the bottleneck that is preventing to achieve higher levels of
performance and limiting the scalability of applications. Due to the widening performance
gap between compute performance and I/O throughput, the only way to achieve higher
performance for data and I/O intensive applications is through optimizing the performance
of their I/O-dominant phases.

This necessity to improve the I/O performance of applications goes side by side with an
increasing complexity in applications or problem domain from one side and infrastructure
and middleware or solution domain from the other side.

From the problem domain perspective, in fields of science and engineering (e.g., compu-
tational biology, molecular dynamics, mechanical turbines simulation, etc.), it is necessary
to solve complex problems that exhibit irregular parallelism patterns. These patterns are
characterized by their complex computation flows, access patterns and execution branches.
Such problems are usually best represented by complex data structures such as trees and
graphs.

From the solution domain perspective, nowadays infrastructures and architecture design is
characterized by distribution and heterogeneity. In large-scale supercomputers and produc-
tion systems, workloads are distributed to large number of Burst Buffer nodes to be stored.
Moreover, such systems utilize heterogeneous hardware devices that offer different capabil-
ities and higher performance. These systems have to be provisioned and their usage must
be optimized to maximize I/O performance.

Furthermore, various I/O middlewares exist to parallelize I/O or perform fine-grained
optimization to I/O access patterns. However, this fine-grained parallelism often depends
on the architecture of the underlying storage system and the capabilities of the Parallel File
System. Therefore, such solutions have to be tuned according to the configuration parame-
ters of each storage system. Hence, increasing complexity and limiting portability.

As a consequence of this context, programming becomes a tedious task for application
developers, let alone programming for improved I/O and total application performance.
This problem can be traced back to a lack of suitable high-level abstractions that should be
able to perform the following intertwined goals:

I improve I/O and total performance on modern heterogeneous storage subsystems.

II simplify the design and programming of applications and make it accessible to non-
expert end-users such as field experts and domain scientists.
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The next sections summarize the research questions that motivate this thesis, the main
objectives of the thesis, its contributions and finally list the publications that are associated
with this thesis.

1.2.2 Research Questions

Following the specification of the problem statement in the previous section (1.2.1), the
main research question that is motivating this thesis can be summarized as follows:

• Q: How to improve applications I/O and total performance on distributed heteroge-
neous infrastructures without increasing programming complexity?

This main question can be decomposed into more specific questions to define the main
points that this thesis will address:

• Q1: How to take advantage of the execution patterns of I/O intensive applications and
address I/O performance problems to improve total performance?

• Q2: How to exploit heterogeneous storage devices in modern storage systems to im-
prove I/O performance in a transparent manner?

• Q3: How to increase parallelism levels in applications while maintaining program-
ming simplicity?

• Q4: How to overlap the execution of I/O and computation?

1.2.3 Objectives

The main objective of this thesis is to address the main research question Q defined in
the previous section (1.2.2), that is, to address the lack of abstractions and techniques to im-
prove I/O performance on modern systems without increasing programming complexity.
To this end, this thesis presents high-level programming model techniques and abstractions
to achieve two goals at the same time: First, abstract infrastructure details of modern het-
erogeneous storage systems from application programmers while exploiting it to optimize
I/O performance. Second, exploit the execution patterns of I/O intensive applications to
achieve not only I/O performance improvement, but total performance improvement.

Throughout this thesis, we use task-based programming models to propose our con-
tributions. We argue that this type of programming models offers a suitable abstraction
that can be leveraged to abstract the heterogeneity of underlying execution systems and ex-
ploit parallelism opportunities in I/O intensive applications to improve total performance.
Hence, end users can focus on their domain science and the logic of experiments and simu-
lations without dealing with the challenges of programming applications for I/O and total
performance improvement on modern infrastructures.

More specifically, the objectives of this thesis can be listed as follows:

• O1: Improve I/O and total performance of applications by taking advantage of their
overlapping compute-I/O phases and mitigating I/O congestion.

• O2: Abstract the heterogeneity of underlying storage systems and maximize its usage
to optimize I/O performance in a transparent manner to application developers.

• O3: Increase applications parallelism by enabling fine-grained I/O parallelism inside
high-level distributed execution models.
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• O4: Optimize applications performance by enabling a mechanism to overlap the exe-
cution of computation with I/O and accelerate applications execution.

• O5: Validate these proposals with real-world applications and synthetic applications
that mimic real execution patterns on large-scale heterogeneous systems.

1.2.4 Contributions to the field

The main contributions of this thesis are:

• C1: I/O Aware task-based approach that is able to increase performance by overlap-
ping I/O with computation and enhance I/O performance by mitigating I/O conges-
tion.

• C2: Storage-heterogeneity Aware task-based approach that is able to maximize the
usage of the underlying storage system to improve I/O performance.

• C3: A hybrid programming model that is able to support fine-grained I/O parallelism
inside coarse-grained distributed tasks.

• C4: A mechanism to enable the eager-release of data dependencies in task-based pro-
gramming models to overlap the execution of computation and I/O.

Table 1.1 connects each of these contributions with the research questions and objectives
that are mentioned in Section 1.2.2 and 1.2.3 respectively.

Contribution Research Questions Objectives

C1 Q1, Q4 O1, O5

C2 Q2 O2, O5

C3 Q3 O3, O5

C4 Q4 O4, O5

TABLE 1.1: Relationship Between Contributions, Research Questions And Ob-
jectives.

We did a prototype implementation of each of the objectives by extending the PyCOMPSs
programming model [100]. PyCOMPSs provides a unique high-level abstraction to enable
the parallelization of Python applications that is based on sequential programming. Us-
ing PyCOMPSs, programmers just have to select methods to be considered as tasks, and
the PyCOMPSs Runtime (COMPSs [8]) handles tasks execution asynchronously. Hence, it
confirms with the thesis goal to facilitate application programming for end users. A more
extensive overview of PyCOMPSs and its runtime system is presented in Chapter 3.

1.2.5 Publications

The following list presents the list of scientific publications that has resulted from the
contributions of this thesis:
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• C1: I/O Awareness

– Towards Enabling I/O Awareness in Task-based Programming Models
Hatem Elshazly, Jorge Ejarque, Francesc Lordan, Rosa M Badia.
Future Generation Computer Systems (FGCS), The International Journal of e-
Science.
March 2021.
Impact Factor (JCR): 6.125 (Q1).

• C2: Storage heterogeneity Awareness

– Storage Heterogeneity-Aware Task-based Programming Models to optimize I/O Intensive
Applications
Hatem Elshazly, Jorge Ejarque, Rosa M Badia.
Submitted.

• C3: Hybrid Programming Models to exploit Parallelism

– Performance meets Programmability: Enabling Native Python MPI Tasks in PyCOMPSs
Hatem Elshazly, Francesc Lordan, Jorge Ejarque, Rosa M Badia.
28th Euromicro International Conference on Parallel, Distributed and Network-
based Processing (PDP).
November 2020.
Core Rank: C.

• C4: Eager-release of Task Dependencies

– Accelerated Execution via Eager-release of dependencies in Task-based Workflows
Hatem Elshazly, Francesc Lordan, Jorge Ejarque, Rosa M Badia.
The International Journal of High Performance Computing Applications (IJH-
PCA).
March 2021.
Impact Factor (JCR): 1.956 (Q2).

1.3 Research Methodology

Throughout this thesis, a Research and Development method was followed to carry out the
main objective of the thesis, which is to provide high-level techniques and abstractions to
optimize I/O intensive applications executions on modern infrastructures. More specifically
to achieve each of the objectives defined in the Objectives section (1.2.3). The following
sections provide in-depth information about the scientific method design (Section 1.3.1), the
development strategy (Section 1.3.2) and the validation strategy (Section 1.3.3).

1.3.1 Scientific Method Design

To achieve each of the objectives, we carried out a scientific approach that consists of
four main phases:

1. Literature Review Phase: during this phase, we carried out an in-depth analysis and
investigation about the problem, its critically, previous efforts and state of the art solu-
tions that addressed this problem (more details in Part 2) and how can we contribute to
solving it. At the end of this phase, we defined the problem statement (Section 1.2.1),
the main objectives of the thesis (Section 1.2.3) and our target contributions (Section
1.2.4).
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2. Design and Implementation Phase: We designed the proposal and its software architec-
ture. Then, we implemented a prototype version ready for validation and evaluation.

3. Experimentation Phase: This phase included the activities of testing the prototype im-
plementation to determine the advantages and disadvantages of our proposals. Our
prototype was evaluated with real-world use cases, and sythethic use-cases that mimic
real application patterns. We carried out our experiments on different large-scale pro-
duction systems and supercomputers.

4. Documentation and Dissemination Phase: Finally, during this phase, we documented a
description of the proposal along with a summary of the evaluation results to share it
with the research community.

1.3.2 Development Strategy

We followed an Agile development strategy for achieving each objective. Following this
approach, the objective is completed incrementally in short-to-medium cycles. At the end
of each cycle, we investigated and measured the progress-so-far with respect to the final
objectives and the main objectives of the thesis as a whole.

It should be noted that in our experience, identifying the main problem from the start
along with the target applications has significantly helped us following this strategy and not
losing track of the purpose of the objective nor how we are advancing towards solving the
main problem statement as a whole.

Knowing the start point (i.e., the problem and the objective) and the end point (i.e., the
estimated target and the target application(s)), we started the development in a top-down
approach until a prototype implementation is ready for evaluation.

Finally, we go back and forth between development and initial evaluation to tune the
prototype implementation and adjust it if necessary when the results of the initial evaluation
has clearly diverged from our targets and expectations.

1.3.3 Validation Plan

After the initial prototype implementation has achieved the minimum expectations, we
carried out an extensive evaluation and validation process with real-world workloads on
various large-scale production systems. For example, our validation platforms include the
MareNostrum 4 supercomputer [66] and the MareNostrum CTE-Power Cluster [33].

At this phase, the proposal is tested against different uses cases and the results are ana-
lyzed to study the advantages and disadvantages of the proposal and how they match the
set expectations and advance our investigation towards solving the main problem of the
thesis.

1.4 Thesis Structure

The rest of the thesis is structured as follows: with respect to the remainder of this Intro-
duction (Part I), Chapter 2 describes previous efforts that have been performed with regard
to I/O performance optimization. Followed by Chapter 3 which introduces necessary back-
ground information. Next, Part II details the contributions of the thesis. Each contribution
is discussed in-detail in a separate chapter. Each chapter starts with a brief overview of the
contribution and highlights the related work, and ends with a discussion about the conclu-
sions regarding the contribution.
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Part II is decomposed as follows:

• Chapter 4 presents the concepts of I/O awareness in task-based programming mod-
els, implementation of these concepts in the PyCOMPSs programming model and a
prototype evaluation with different I/O intensive use cases.

• Chapter 5 proposes storage-heterogeneity awareness in task-based models by abstract-
ing the heterogeneity of storage systems, presenting I/O dedicated schedulers with
different policies. In addition to an automatic data movement technique for maximiz-
ing the utilization of faster storage devices.

• Chapter 6 introduces a hybrid programming model of tasks and MPI inside tasks. This
chapter presents the programming abstraction for achieving such execution model
along with its benefits in terms of enabling I/O parallelism in tasks while facilitating
applications programmability.

• Chapter 7 describes a programming model technique to eagerly releasing tasks depen-
dencies in order to overlap I/O with computation and accelerate applications execu-
tions. In addition to a detailed discussion about its performance on real and synthetic
workloads.

Finally, Part III contains Chapter 8 to present the conclusions of the thesis and planned
future work.
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Chapter 2

State of the Art

This chapter gives a broad overview of recent research efforts and the state of the art
related to this thesis. The specific related work with regard to each contribution is analyzed
in more detail in separate sections in Part II (see Sections 4.2, 5.2, 6.2 and 7.2).

This chapter is structured as follows: First, Section 2.1 starts by presenting recent ad-
vances in the field of task-based programming models. Next, Section 2.2 describes recent
efforts targeting the optimization of I/O performance by using I/O libraries and I/O mid-
dleware.

2.1 Task-based Programming Models

In recent years, task-based programming models have gained popularity in orchestrat-
ing and executing applications on large-scale distributed infrastructures [29]. Such program-
ming models offer an almost-complete abstraction of the underlying large-scale complex
infrastructure. Execution monitoring and management is transparently carried out by the
programming model.

The main similarity between all of the task-based programming models is the working
unit that is called tasks. Tasks describe pieces or regions of code that are going to be executed
in parallel. The Task abstraction simplifies the process of application parallelization on large-
scale distributed infrastructures because users only have to specify the tasks, and in some
tasking frameworks the data dependencies. Data transfer and management between tasks
executing on different nodes will be done transparently by the framework.

Different tasking models follow different approaches for tasks specification. These ap-
proaches mainly depend on the philosophy and execution model of the tasking framework.
For example, some frameworks such as Aneka [108] and Jolie [71], have the concept of bag
of tasks, where tasks wait for execution. At execution time, tasks are selected from the bag
to be executed. In such scenario, tasks are assumed to be independent, i.e., no order or de-
pendencies are enforced on tasks execution. Therefore, users have to explicitly manage the
dependencies and plan the execution order.

Other tasking frameworks such as MapReduce [20] enforce a specific parallelism pat-
tern where a map function is applied to different data in parallel, then the result is reduced
according to a reduce function and returned to the user. Using such frameworks, it is the
responsibility of programmers to specify the map and reduce functions whereas the exe-
cution order will be applied by the runtime system of the framework. Even though these
frameworks take care of dependencies and execution order, its applicability to scientific ap-
plications that do not conform with the map-reduce parallelism pattern is limited.

Unlike frameworks that follow a rigid parallelism patterns, other frameworks enables
application developers to specify the tasks workflow in a custom manner. Following this
approach, the only responsibility of application programmers is to decide which regions of
code should be considered as tasks, whereas the data dependencies between tasks and their
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execution order is decided by the framework itself in the form of a Directed Acyclic Graphs
(DAGs). For simplicity, we will call frameworks that follow this approach: DAG Frameworks.

Different DAG frameworks offer different ways to specify workflows of tasks. On the
one hand, some frameworks require dependencies to be explicitly defined by means of
Graphical User Interface (GUI) (such as Galaxy [1] and Taverna [45]), or a Command Line
Interface (such as Copernicus [88]), or by an API provided by the programming language
(such as Pegasus [21], Luigi [32] and Apache Airflow [4]). Such as approach can increase
programming complexity as dependencies specifications need to be adjusted every time a
modification needs to be made to the code. Furthermore, it is not practical when dealing
with large and complex applications.

On the other hand, other DAG frameworks automatically infer the dependencies and
execution workflow from users code. Such frameworks use input and output information
between tasks to decide the order in which they should be executed. Examples of these
frameworks include: Spark [119], Dask [93] and COMPSs [8]. This approach in workflow
specification eases the programming of applications as users can develop applications in al-
most sequential manner with minimal modifications to code. In addition to that, it increases
productivity as it offers a very flexible approach in specifying and changing task workflows.

Furthermore, the granularity of tasks differ between different task-models. Some tasking
models and frameworks (such as Luigi) handle tasks to be of granularity of whole applica-
tion where each task represents an application. This approach is useful to use in situations
where applications have to be executed in specific order. However, in other frameworks
(such as COMPSs), finer granularity task workflows are specified in which tasks represent
specific function(s) in applications.

Due to their simple execution model, DAG frameworks offer the unique capability of
providing the means to exploit the unstructured patterns of parallelism. These patterns arise
because of the different control paths and execution flows that are increasingly common in
nowadays applications.

Task-based programming models and frameworks are available in different program-
ming languages (such as Java/C++/Python). Nevertheless, it is very common for a frame-
work to support binding layers to allow the usage for applications in different programming
languages (e.g., Spark supports Java and Python, COMPSs supports Java/C++/Python).
However, Python-based tasking models and framework are known for their user friendly
abstractions and also the ease of programmability of the Python programming language.
Therefore, they are widely used by non-expert domain users and field scientists.

2.1.1 Discussion

Although task-based programming models and frameworks have a lot of advantages
in terms of: ease of programmability, optimized execution, transparent data management
on large-scale distributed infrastructures, all of these efforts are directed towards the op-
timization of applications computations. However, given that applications performance
bottleneck in recent years shifted from the computing bottleneck to I/O bottleneck, current
tasking framework offer no support to improve the I/O performance of applications.

Indeed, it is possible that users manually tune the configuration parameters of the exe-
cution environment of task-based frameworks to target I/O performance optimization. For
instance, many frameworks (such as Dask) allow users to override or specify tasks schedul-
ing parameters such as target nodes or number of tasks to be executed in parallel. Hence,
this can be used to plan a scheduling policy where I/O workload is scheduled to specific
nodes that have modern storage devices or to execute specific amounts of I/O requests at
a time to prevent I/O congestion. However, such intrusive approach of programming and



2.2. I/O Performance Optimization 15

execution planning results in several drawbacks that increase programming complexity and
waste total performance improvement opportunities:

• First, users are required to have knowledge about I/O performance characteristic, I/O
performance issues, I/O parameters tuning, etc. in order to plan the execution for
improved I/O performance. In addition to the increased complexity, such requirement
is not realistic for non I/O expert end users.

• Second, since there is no programming model distinction between I/O and compute
workloads, tuning execution parameters for optimizing one type of execution will af-
fect the other. Total application performance will be limited to either optimizing com-
pute or I/O performance but not both. Thus, performance improvement opportunities
are wasted.

• Third, details of heterogeneous storage systems are exposed to application program-
mers. Hence, programming complexity is increased. In addition to that, performance
improvement opportunities are wasted because there is no automatic support to make
execution time decisions and optimize the usage of modern storage subsystems given
a certain I/O workload.

• Finally, related to the previous point, if I/O optimization is planned for a certain infras-
tructure, it may not yield similar or better performance on a different infrastructure.
Thus, portability is not achieved.

Throughout the Contributions part of this thesis (Part II), we address the shortcomings
and lack of support in current task-based programming models and frameworks towards
addressing I/O performance issues.

2.2 I/O Performance Optimization

Extensive research has been done in the area of I/O performance optimization [10].
Those research efforts have been conducted from different perspectives that can be sum-
marized as follows:

• First, new system design innovations to unburden the Parallel File System (PFS) and
efficiently manage large number of concurrent I/O requests (i.e., mitigate I/O conges-
tion) (Section 2.2.1).

• Second, optimizing I/O performance by enabling parallel I/O and improving I/O
access patterns (Section 2.2.2).

• Third, coordinating the interference between I/O requests of multiple running appli-
cations (Section 2.2.3).

• Finally, transparently scheduling of I/O requests and data movement on heteroge-
neous storage systems (Section 2.2.4).

The next following sections highlight the most common ideas and state of the art in each
of the previous perspectives.
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2.2.1 Burst Buffers

The problem of I/O performance is caused because the increasing amounts of data pro-
duced by nowadays applications is outpacing the increase in Parallel File System (PFS)
bandwidth [9]. As applications alternate between computationally dominant and I/O dom-
inant execution phases, multiple jobs may access the PFS concurrently. Thus, overwhelming
its bandwidth and creating the problem of I/O congestion.

Several works presented a solution to this problem [63], [16], [95]. The idea of this solu-
tion is to basically introduce a layer of faster and higher bandwidth storage devices called
Burst Buffers (BBs). As presented in Section 1.2, Burst Buffers absorb the bursty I/O requests
during applications I/O dominant execution phase then flush these requests at a later point
of the execution asynchronously as a steady I/O stream to the PFS. Therefore, mitigating
the I/O bottleneck at the PFS level.

Furthermore, previous studies have been performed the configuration and setup of the
Burst Buffers within the production system [50], [39], [51]. Such efforts describe that Burst
Buffers placement can be classified into two approaches: On the one hand, Burst Buffers are
be locally attached to computing units. This configuration is called Node-Local, and it has
the advantage that network congestion is avoided because data are stored locally. On the
other hand, Burst Buffers are separated from compute nodes and attached to separate nodes
on the network called I/O Nodes. Such Burst Buffer configuration is called Remote-Shared. In
this configuration, the number of I/O nodes is typically less than the number of computing
nodes and more than the number of servers in the PFS [109].

In remote-shared Burst Buffer configuration, I/O requests are absorbed in storage nodes
which are responsible for handling them as efficiently as possible, then forwarded to the Par-
allel File System. In this configuration, I/O nodes are called I/O Forwarding Layer. In the I/O
forwarding layer, optimization techniques are performed on the I/O request to improve its
access patterns and reduce the load on the PFS. For instance, Vishwanath et al. [111] pro-
posed aggregating requests from the computing nodes to the I/O forwarding layer to en-
hance the usage of the storage system. Another approach is to use caching and prefetching
to hide the latency of remote accesses by caching data in I/O nodes and prefetching it when-
ever needed as proposed by Zhao et al. [120]. Moreover, several efforts presented adaptive
methods to balance the workload to the file system according to the file system performance
by monitoring the file system performance and schedule the workload accordingly [110],
[118], [79].

In general, the innovation of Burst Buffers have greatly advanced I/O performance op-
timization research. The next sections give an overview about different I/O optimization
research efforts at different perspectives. Each of those research efforts moves from the
premise that the underlying storage system is equipped with Burst Buffers on top of a Par-
allel File System.

2.2.2 I/O Libraries

Applications access patterns include I/O requests sizes, number and access locations on
disks. Each application has its own access pattern parameters. These parameters depend
on how applications were designed and programmed and they have a direct impact on
performance. Therefore, a lot of research efforts have been put into investigating how data
accesses can be optimized.

One popular technique to boost I/O performance is to use I/O libraries. These libraries
are responsible for applications I/O operations and have the power to perform optimiza-
tions to adapt to their access patterns. The most popular I/O library is MPI-IO [89] [102],
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which enables the parallelization of applications I/O requests by providing a set of pro-
gramming APIs.

MPI-IO has been extended by high-level I/O libraries such as HDF5 [105] and netCDF
[59]. These libraries have two advantages over MPI-IO: On the one hand, they offer more
optimizations by storing metadata for applications, such as the datatypes and dimension-
ality of an array, etc. On the other hand, they are easier to use because they abstract I/O
operations by allowing the definition of complex data types and file formats that can be
mapped to real files.

Several other I/O libraries have been developed to optimize applications access patterns.
For instance, Seelam et al. [98] applies a library that traces and detects the application ac-
cess pattern. Similar approaches that rely on access pattern detection to guide optimization
decisions are proposed by Patrick et al. [86] and Lu et al. [64].

2.2.3 System-wide I/O Schedulers

Although I/O libraries can be used by some applications to locally optimize their ac-
cess patterns, interference produced by multiple applications accessing the shared storage
infrastructure might also compromise or decrease the efficiency of the optimizations and
degrade the performance. Therefore, some research efforts focused on optimizing I/O per-
formance by managing the I/O interference of different applications running at the same
time in the system. In these scenarios, I/O scheduling techniques can be applied to improve
access to storage layers by organizing and reordering requests. Such efforts claim that per-
formance improvement is possible by taking into account multiple competing applications
and important system-wide performance metrics such as system utilization.

Gainaru et al. [36] proposed a global I/O scheduler that has global view of the system
and of the past behaviour of all applications running on it. These information can be used
to optimize scheduler heuristics such as maximum efficiency or fairness.

Liang et al. [61] proposed a contention-aware resource scheduling strategy to improve
the performance of burst buffers by minimizing I/O congestion caused by I/O of differ-
ent applications. This strategy analyzes I/O load on the burst buffers nodes and assigns
incoming I/O to burst buffer nodes with least I/O load. Herbein et al. [42] incorporated
I/O workload scheduling into existing policies such as First Come First Served (FCFS) and
EASY backfilling. The idea is to add I/O as additional constraint when determining if a job
can be scheduled. Jobs are only scheduled for execution if and only if there are available
resources to satisfy their I/O requirements.

Zhou et al. [121] presented an I/O batch scheduler with two policies: conservative and
adaptive. The conservative policy avoids I/O congestion as much as possible targeting
system-performance metrics. Whereas the adaptive policy allows I/O congestion to happen
to increase jobs performance.

2.2.4 I/O Systems and Frameworks

The introduction of Burst Buffers into nowadays storage subsystems to absorb bursty
I/O patterns helped improving I/O performance by mitigating I/O congestion. However,
this heterogeneous design of the system has also increased the complexity of programming
and execution planning. Hence, this scenario pushed research attention to innovate software
solutions and frameworks to solve this issue.

Previous research efforts targeted abstracting storage and memory subsystem hetero-
geneity to maximize I/O performance. Systems such as BurstFS [112] and BurstMem [113]
propose to redirect I/O calls from PFS to local NVMes and SSDs. Hermes [52] and UniviStor
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[114] are frameworks that provide I/O buffering and optimize data movement across dif-
ferent storage devices. DataWarp [41] and Data Elevator [25] enhances applications writes
by redirecting writes from PFS to Burst Buffers.

Other efforts proposed by Alturkestani et al. [3] presented a tool for optimizing oil ex-
ploration simulation application. This tool maximizes the usage of high bandwidth storage
devices and handles data movement between faster storage layers from one side and the
PFS from the other side.

2.2.5 Discussion

From the aforementioned description of the state of the art in I/O performance opti-
mization research, one can notice that improving I/O performance is a complicated task.
Different efforts target solving specific problems at different levels of the system and soft-
ware stacks. These efforts can be classified into three main categories:

I Access patterns optimization.

II System-wide mitigation of I/O congestion.

III Taking advantage of storage system heterogeneity.

Upon analyizing the state of the art in the light of this categorization, we can identify the
following observations:

• First, access pattern optimization techniques can improve applications I/O perfor-
mance by improving its access patterns. However, such techniques are very application-
centric, i.e., they do not provide any support tools to mitigate the problem of I/O con-
gestion.

• Second, system-wide I/O mitigation approaches, unlike the first point, aims at solv-
ing I/O congestion using system-wide performance metrics. Therefore, they end up
taking global decisions that may not be optimal for a specific application use-case.

• Third, mixing the two previous approach together to reach overall application perfor-
mance improvement is a complex process, because it requires fine-tuning and previous
experience with the application expected I/O workloads and infrastructure details.

• Finally, all these approaches specifically focus on optimizing I/O performance. Users
have to deploy these different frameworks and techniques with other frameworks that
target improving computation performance. Hence, such an approach increases the
complexity and decreases portability and productivity.

Throughout the Contributions part of this thesis (Part II), we address the lack of a suit-
able user-level abstractions that targets improving I/O performance while maintaining ease
of programmability and without sacrificing computation performance. Therefore, improv-
ing total application performance and increasing productivity.
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Chapter 3

Background

This chapter provides an overview on the main frameworks and tools that are used
throughout this thesis. First, Section 3.1 introduces the PyCOMPSs/COMPSs framework
because this thesis extends its programming model and runtime functionalities as previ-
ously mentioned in Section 1.2.3. Next, Section 3.2 presents a general overview on the MPI
library due to its predominant use in high performance computing and I/O parallelization.
Also, MPI is used in different parts in this thesis.

3.1 PyCOMPSs

PyCOMPSs [100] is a task-based programming model used for executing Python appli-
cations on large-scale distributed infrastructures. is used to parallelize Python applications.
The contributions of this thesis extends on the PyCOMPSs framework. PyCOMPSs relies
on the COMPSs [8] framework and runtime system to carry out core functionalities such
as tasks analysis, dependencies management, scheduling tasks and monitor their execution.
PyCOMPSs allows parallelizing sequential applications by providing a programming in-
terface which is used to specify which functions should be treated and executed as tasks.
Due to its powerful programming model, PyCOMPSs makes it easy to exploit the inherent
parallelism of applications at execution time by detecting tasks and data dependencies be-
tween them. In addition to transparently managing data transfers between tasks executing
on different distributed nodes and a support to use Parallel File Systems.

Figure 3.1 illustrates an overview of the COMPSs framework. COMPSs enables paral-
lelizing applications in different programming languages. It natively supports Java appli-
cations. In addition to that, it provides bindings for parallelizing and executing Python and
C/C++ applications. It should be noted that the Python bindings and the COMPSs runtime
together constitute the PyCOMPSs framework. Additionally, COMPSs allows transparent
execution on various infrastructures (e.g., clusters, grids and clouds) without modifying
the source code of the application. Furthermore, COMPSs is rich with features such as
fault tolerance, job failure or infrastructure failure, and has a built-in checkpointing mech-
anism. Also, COMPSs supports ecosystem framework such as Extrae [34] that generates
post-mortem execution traces that can be analysed with the Paraver tool [85].

The main advantages of the PyCOMPSs/COMPSs framework can be summarized in the
following points:

• Ease of programmability: users do not have to deal with any parallelism aspects such
as thread creation, synchronization or data distribution. Using PyCOMPSs, users
should only select which application functions to be executed as task. It is the re-
sponsibility of the COMPSs runtime to handle all parallelism details and launch the
selected tasks for execution in an asynchronous, parallel and distributed manner.

• Infrastructure Transparency: the PyCOMPSs framework abstracts all infrastructure
details from users. Hence, PyCOMPSs applications do not include any configuration
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FIGURE 3.1: The COMPSs Framework Overview

of deployment details. Such capability makes PyCOMPSs applications portable across
different infrastructures which increases portability and productivity.

3.1.1 Programming Model

The PyCOMPSs programming model is based on sequential programming, that is, ap-
plications are coded as if they are going to run sequentially. Users only have to select which
functions in the application should be executed as tasks. Such selection is made possible by
annotating the application code. These annotation can be classified into two type:

• Method Annotation: Annotations added to applications functions to mark such func-
tions as tasks.

• Parameter Annotation: Annotations added to the parameters of annotated functions
to handle data dependencies and transfers.

These annotations depend on the programming languages, i.e., COMPSs provides Java
annotations for Java applications, Python annotations for Python applications and C/C++
annotations for C/C++ applications. Since the main contributions of this thesis extends
the PyCOMPSs programming model, next sections will give an overview of the COMPSs
annotations for the Python programming languages.

3.1.1.1 Python

COMPSs uses a Python binding layer to parallelize Python applications. This binding
layer exposes the Runtime functionalities to applications programmed in Python. This bind-
ing layer communicates with the COMPSs Runtime using the Java Native Interface (JNI)
[60].
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PyCOMPSs annotations are done inline, that is, in the same source file as the application
code. The Method Annotations are in the form of Python decorators. Users can use the
@task PyCOMPSs decorator to specify a function as a task. This decorator can be used to
annotate a class or object methods in applications designed with object oriented paradigm.
Once a function is annotated with @task, all the invocations of this function will become
tasks at execution time.

Furthermore, the Parameter Annotations are specified inside the Method Annotation.
For instance, users can specify if a certain parameter is to be read (IN), written (OUT) or both
read and written (INOUT) in the method. Parameter annotations helps COMPSs runtime
building data dependencies and deciding necessary data transfer during execution.

Listing 3.1 shows an example of a PyCOMPSs task annotation. The parameter c is of
type INOUT whereas parameters a and b are set to the default type IN. Even though no
explicit return is specified in the example function of Listing 3.1, it will return the updated c
parameter because it is of type INOUT.

1 @task(c=INOUT)
2 def multiply(a, b, c):
3 c += a * b

LISTING 3.1: PyCOMPSs Example Task Annotation

The IN, OUT, INOUT directionality parameters are used to specify the parameter anno-
tation of objects. However, the parameters: FILE_IN, FILE_OUT, FILE_INOUT are used to
annotate the parameters of file types.

A light-weight synchronisation API completes the PyCOMPSs syntax. As shown in Line
4 of Listing 3.2, the PyCOMPSs function compss_wait_on waits until all the word_count
and reduce_count tasks finishes executions then retrieves the result to the master node
that has launched the application. Once the value is transferred to the main node, the exe-
cution of the main program code is resumed. Notice that because PyCOMPSs is mostly used
for executing applications in distributed environments, using the synchronization APIs may
imply a data transfer from the remote node where the task calculating the value has been
executed to the master node that is executing the main part of the application.

1 for block in data:
2 partial_result = word_count(block)
3 reduce_count(result, partial_result)
4 final_result = compss_wait_on(result)

LISTING 3.2: PyCOMPSs Example: Retrieving Task Result

Taking a closer look at Listing 3.1 and Listing 3.2, one can note that the code is almost
the same as the code of a sequential application. However, few lines of codes should be
added to mark tasks by annotating functions and retrieve the results to the master node if
necessary by using the synchronization API.

In addition to compss_wait_on, the PyCOMPSs programming model provides other
APIs to perform different functions. These APIs and a brief description of their functionali-
ties are listed in Table 3.1.
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PyCOMPSs API Call Use

compss_wait_on(object) synchronises the given object and returns it to
the master node.

compss_barrier() synchronises the execution and waits the
completion of all the previous tasks.

compss_delete_object(object) requests the deletion of the given object.

compss_open(file_name, mode='r') synchronises the given file and returns its as-
sociated file descriptor.

compss_delete_file(file_name) requests the deletion of the given file.

TABLE 3.1: List Of PyCOMPSs API Calls

In addition to the @task annotation for marking functions as tasks, the PyCOMPSs pro-
gramming model provides additional annotations that extend the functionalities of the sys-
tem. For instance, the @constraint to allow enforcing hardware of software requirements
on tasks execution. The COMPSs runtime will not launch any executions of a constrained
task unless all task requirements are satisfied. The @constraint allows specification of
different parameters to specify the type of the constraints, for instance: ComputingUnits
for specifying the number of required CPUs for task execution, MemorySize for specify-
ing the required memory size. Listing 3.3 shows the same code in Listing 3.1 with added
constraints of computing units of 8 CPUs. For a complete list of the annotations and pa-
rameters allows by the PyCOMPSs programming model, refer to the COMPSs User Guide:
Application Development [90].

1 @constraint(ComputingUnits=8)
2 @task(c=INOUT)
3 def multiply(a, b, c):
4 c += a * b

LISTING 3.3: PyCOMPSs Example Task Annotation

3.1.2 COMPSs Runtime System

The COMPSs runtime system is deployed on execution infrastructures as a master-worker
architecture. It has two main components:

• Master Component: Only one process running on the master node where the appli-
cation has been launched. It is responsible for provisioning the whole execution en-
vironment (launching and terminating worker components), interacting with the user
code, in addition to detecting data dependencies, schedule tasks and manage their
executions.

• Worker Component: As many processes as available CPUs. It is responsible for receiv-
ing tasks execution request from the master and perform the actual task execution.

The master and worker component communicate with each other over the network us-
ing various adaptors and communication libraries to coordinate the distributed execution
and data transfer of the application.
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Figure 3.2 depicts the main components of the COMPSs master. These sub-components
and their uses can be summarized as follows:

• Task Analyzer: responsible for detecting dependencies between tasks.

• Task Dispatcher: which consists of the Task Scheduler that is responsible for schedul-
ing tasks to a suitable resource and a submission engine for submitting tasks to be
executed. The COMPSs runtime allows transparent use of multiple schedulers, for in-
stance: Load Balancing, Data Locality, etc. Desired scheduler is passed as a command-
line argument at launch time, else the default Load Balancing scheduler will be used.
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FIGURE 3.2: The COMPSs Runtime Overview

Once the master and worker components have been successfully launched, the Python
binding interprets the used decorators in the application code. Then, it performs the nec-
essary calls to the COMPSs runtime through the JNI. When the COMPSs runtime receives
task execution requests, the Task Analyzer checks the task dependencies. If the task is de-
pendency free, the Task Scheduler takes over to try to schedule the task to one of the avail-
able resources. Next, the Task Dispatcher of the master component sends the task execution
request to the worker through a communication layer. Once the worker component on a cer-
tain worker node receives a task execution request, it assigns the task to one of the available
processes to be executed. The worker monitors the task execution and reports the success or
failure status to the master to take the necessary procedure.

In addition to the Task Analyser and the Task Dispatcher, the COMPSs master contains
other components such as the Resource Optimizer. The Resource Optimizer is responsible
for performing optimization decisions during applications execution. For instance, support-
ing infrastructure elasticity by adding or removing worker nodes at execution time accord-
ing to the workload and requirements of applications. The Resource Optimizer runs on a
separate process, hence, critical components of the system such as the Task Scheduler do not
get blocked or burdened by doing extra operations.

Figure 3.3 depicts an overview of the architecture of the worker component of the COMPSs
runtime. Every worker component consists of a Java process called the Execution Manager
which is responsible for setting up and managing an execution platform at the launch time
of the application. The execution platform consists of a Java thread pool with as many
threads as the number of CPUs on the worker. These Java threads are called Executors. Each
Java executor handles the execution of one task. Furthermore, each Java executor launches a
Python process, called Python Worker, that will ultimately carry out the execution of the task.
Java executors and Python workers communicate with each other using operating system
pipes.
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It should be noted that in order to facilitate the communication between the Java and
Python components of the system and data transfer between nodes, tasks outputs are stored
in a serialized format.

Java Thread
Pool

Python
Workers Pool

.

. .
.

 Execution Platform

Execution Manager

Python
Process

Java Thread

Incoming
Tasks Task

FIGURE 3.3: COMPSs Worker Component

3.2 Message Passing Interface (MPI)

The Message Passing Interface (MPI) is a standard for writing and executing message
passing programs [72]. For a long time, it has been regarded as the de-facto standard for
performing distributed memory parallelization and execution. The MPI standard provides
two modes for inter-process communication: (i) point-to-point communications where only a
sender process and receiver process are involved and (ii) collective communications where all
the processes participate in messages the sends or receives calls. In addition to that, the stan-
dard describes APIs that allow wide range of functionalities such as process topologies, ex-
ecution environment management, one-sided communications, profiling interface, among
others [72]. Several implementations are available such as MPICH [73], OpenMPI [81], IMPI
[48] and MVAPICH [75]. These implementations provides bindings for parallelizing and
executing C and Fortran applications.

Parallelizing applications with MPI requires explicitly handling the spawning of pro-
cesses and the communication between processes. All MPI processes execute the applica-
tion, unless specified otherwise by conditional statements. MPI application must be com-
piled and executed by the MPI compiler and launch manager provided by the MPI imple-
mentation. This approach allow users full control of application flow and execution which,
if done correctly and efficiently, can yield high performance improvement on the underlying
infrastructure. However, achieving high performance MPI executions requires experience
with different concepts of parallel computing, performance analysis and optimization. Such
requirements are not suitable to inexperienced users with little background on these topics.
In this scenario, application programming, debugging and optimization become a tedious
process. Users become responsible for explicitly planning and distributing data between
processes and collect the result to the desired process.

Listing 3.4 shows an example of MPI application written in C. The code shows a point-to-
point communication where a number of processes is spawned at application launch time,
one process is set as the m̈asterẅhile the rest of the processes as ẅorker.̈ In a typical MPI
application, the master process distributes the data and receives the final results, whereas
the worker processes receives the data from the master, do some computation, then send
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back the result to the master. As shown in Listing 3.4, the send and receive communications
between different processes are realized using the MPI_Send and MPI_Receive API calls.

1 #include <assert.h>
2 #include <stdio.h>
3 #include <string.h>
4 #include <mpi.h>
5 int main(int argc, char **argv) {
6 char buf[256];
7 int my_rank, num_procs;
8 /* Initialize the infrastructure necessary for communication */
9 MPI_Init(&argc, &argv);

10 /* Identify this process */
11 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
12 /* Find out how many total processes are active */
13 MPI_Comm_size(MPI_COMM_WORLD, &num_procs);
14 /* Until this point, all programs have been doing exactly the same.
15 Here, we check the rank to distinguish the roles of the programs */
16 if (my_rank == 0) {
17 int other_rank;
18 printf("We have %i processes.\n", num_procs);
19 /* Send messages to all other processes */
20 for (other_rank = 1; other_rank < num_procs; other_rank++) {
21 sprintf(buf, "Hello %i!", other_rank);
22 MPI_Send(buf, sizeof(buf), MPI_CHAR, other_rank,
23 0, MPI_COMM_WORLD);
24 }
25 /* Receive messages from all other process */
26 for (other_rank = 1; other_rank < num_procs; other_rank++) {
27 MPI_Recv(buf, sizeof(buf), MPI_CHAR, other_rank,
28 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
29 printf("%s\n", buf);
30 }
31 } else {
32 /* Receive message from process #0 */
33 MPI_Recv(buf, sizeof(buf), MPI_CHAR, 0,
34 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
35 assert(memcmp(buf, "Hello ", 6) == 0),
36

37 /* Send message to process #0 */
38 sprintf(buf, "Process %i reporting for duty.", my_rank);
39 MPI_Send(buf, sizeof(buf), MPI_CHAR, 0,
40 0, MPI_COMM_WORLD);
41 }
42 /* Tear down the communication infrastructure */
43 MPI_Finalize();
44 return 0;
45 }

LISTING 3.4: Simple MPI Application Written in C.
Source: Wikipedia, Message Passing Interface

Listing 3.5 shows the command-line used to launch the MPI application of Listing 3.4,
and its result. Users specify the number of MPI processes at launch time, in this case 4 MPI
processes are specified: process 0 is the master process and the rest are worker processes.
Notice that exact order result is not guaranteed every time the program is launched, since
MPI processes are executing in parallel.

In addition to providing a standard for optimizing computation, MPI also provides APIs
to parallelize I/O operations through the MPI-IO library [89]. These parallel I/O APIs draw
a lot of inspiration and similar to the original MPI APIs, for instance: writing is similar
to sending data and reading is like receiving data, support for collective operations, user-
defined data types to describe files layout, etc. In addition to that, MPI-IO is able to carry
about access pattern guided optimizations provided by its popular implementation ROMIO
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1 $ mpicc hello_mpi.c
2 $ mpirun -n 4 ./a.out
3 We have 4 processes.
4 Process 1 reporting for duty.
5 Process 2 reporting for duty.
6 Process 3 reporting for duty.

LISTING 3.5: Simple MPI Application Execution

[101]. MPI-IO APIs can be used to optimize I/O and n̈ormalM̈PI APIs can be used to opti-
mize computations simultaneously in the same application.

MPI-IO exposes APIs that allow users to parallelize I/O in a similar flow to sequential
POSIX I/O: open a file, read or write data to the file, then close the file. In addition to that,
it provides different modes for doing parallel I/O: multiple processes access different files
where a single process accesses a single file, or multiple processes access the same file.

Listing 3.6 shows a simple MPI-IO application written in C. The code simply writes
a buffer to a file. Line 12 opens a file in writing mode only, if the file does not exist, it
will be created. Indeed, similar to POSIX APIs, different access modes can be specified.
File open and close operations are done collectively whereas file reads and writes are done
independently, hence the process rank check on Line 16.

1 #include <stdio.h>
2 #include <mpi.h>
3

4 int main(int argc, char *argv[]){
5 MPI_File fh;
6 int buf[1000], my_rank;
7 /* Initialize the infrastructure necessary for communication */
8 MPI_Init(&argc, &argv);
9 /* Identify this process */

10 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
11 /* Create a file and open it in write mode */
12 MPI_File_open(MPI_COMM_WORLD, "example.out",
13 MPI_MODE_CREATE|MPI_MODE_WRONLY,
14 MPI_INFO_NULL, &fh);
15

16 if (my_rank == 1) {
17 /* Write the content of buf to the file */
18 MPI_File_write(fh, buf, 1000, MPI_INT, MPI_STATUS_IGNORE);
19 }
20 /* Close the file */
21 MPI_File_close(&fh);
22 /* Tear down the communication infrastructure */
23 MPI_Finalize();
24

25 return 0;
26 }

LISTING 3.6: Simple MPI-IO Application Written in C

It should be noted that MPI-IO applications are compiled and launched in the same
manner as non MPI-IO applications similar to what is shown in Listing 3.5. The number of
spawned MPI processes are specified at application launch time.

Indeed, in order for MPI-IO to be effective, it requires a system level support to parallel
I/O operations, i.e., a parallel file system and hardware that support concurrent accesses.
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Chapter 4

Enabling I/O Awareness in Task-based
Programming Models

SUMMARY

Storage systems have not kept the same technology improvement rate as computing
systems. As applications produce more and more data, I/O becomes the limiting factor
for increasing applications performance. I/O congestion caused by concurrent access to
storage devices is one of the main obstacles that cause I/O performance degradation and,
consequently, total performance degradation.

Although task-based programming models made it possible to achieve higher levels of
parallelism by enabling the execution of tasks in large-scale distributed platforms, this par-
allelism only benefits the compute workload of the application. Previous efforts addressing
I/O performance bottlenecks either focused on optimizing fine-grained I/O access patterns
using I/O libraries or avoiding system-wide I/O congestion by minimizing interference be-
tween multiple applications.

This chapter focuses on solving research questions: Q1 and Q4 by proposing to enable
I/O Awareness in task-based programming models for improving the total performance of
applications. An I/O aware programming model is able to create more parallelism and
mitigate the causes of I/O performance degradation. On the one hand, more parallelism
can be created by supporting special tasks for executing I/O workloads, called I/O tasks, that
can overlap with the execution of compute tasks. On the other hand, I/O congestion can be
mitigated by constraining I/O tasks scheduling. This chapter proposes two approaches for
specifying such constraints: explicitly set by the users or automatically inferred and tuned
during application’s execution to optimize the execution of variable I/O workloads on a
certain storage infrastructure.

In this chapter, we describe how to implement such proposals by extending the Py-
COMPSs programming model and runtime system. Furthermore, in the evaluation section
of this chapter, a performance evaluation of the implementation is performed with differ-
ent use cases, each exhibiting different I/O workloads. The evaluation experiments on the
MareNostrum 4 Supercomputer demonstrate that using the I/O aware implementation of
PyCOMPSs can achieve significant performance improvement in the total execution time.
This performance improvement can reach up to 43% of total application performance as
compared to the traditional I/O non-aware implementation of PyCOMPSs.
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4.1 Overview

The continuous growth in computing power has the ability to deliver increasing levels
of parallelism to satisfy the computing demands of scientific applications. In order to har-
ness this increasing computing power and turn it into performance improvements for ap-
plications, task-based programming models offer a flexible approach for parallelizing and
executing applications in distributed platforms.

Along with the demand for computational power, scientific applications are also becom-
ing I/O intensive where I/O performance dominates the total performance of applications.
This paradigm shift has been already observed in critical scientific areas such as computa-
tional biology and climate science. Applications in these disciplines generate large amounts
of data usually for checkpointing intermediate results and restarting after failures [47], or
for performing post-processing operations such as visualization and post-mortem analysis
[14]. The life cycle of these applications typically alternates between a computing phase fol-
lowed by an I/O phase. During the I/O phase, large amounts of concurrent I/O requests
overwhelm the I/O bandwidth of the storage system causing I/O congestion. I/O conges-
tion causes significant slowdown in the I/O performance of applications [36]. Consequently,
I/O performance degradation negatively affects applications total performance.

As discussed in Chapter 3 of Part I, improvements in storage devices such as solid state
drives (SSDs) and non-volatile memories (such as NVRAM) have been introduced to su-
percomputers besides the traditional parallel file system to absorb the I/O of applications.
These hybrid storage solutions have been gaining popularity because simply replacing all
hard disks by higher bandwidth storage drives would have a high cost.

Nevertheless, as the amount of data generated by applications continues to grow, relying
only on Burst Buffers is not enough to completely hide or mitigate I/O congestion. There
must be a software-support for provisioning the use of the storage system.

However, current task-based programming models do not offer support targeting the
I/O bottleneck of I/O intensive applications. Addressing I/O performance problems is
conventionally done using low-level I/O libraries (e.g., MPI-IO, HDF5) that focus on par-
allelizing and optimizing I/O access patterns of applications. However, this approach is
limited, as it cannot take advantage of coarse-grained performance improvements opportu-
nities. Additionally, it does not take into account the problem of I/O congestion.

Other efforts addressed I/O congestion as a global scheduling problem using global
I/O aware schedulers to optimize whole system utilization by minimizing I/O interference
between different applications running on the system. However, this direction does not offer
programming support to express opportunities of I/O performance improvements that are
inherent in I/O intensive applications. Moreover, it focuses on optimizing system-wide
performance metrics when handling the I/O of different running applications instead of
optimizing the total performance of applications.

This chapter addresses the lack of support for mitigating the I/O performance bottle-
neck in task-based programming models. We argue that task-based programming models
offer a suitable abstraction that can be leveraged to exploit parallelism opportunities in I/O
intensive applications to improve total performance. On the one hand, I/O workloads can
be wrapped by tasks whose execution overlap with the execution of compute tasks. Hence,
application parallelism is increased. Furthermore, fine-grained I/O libraries can be still used
for I/O optimization inside tasks (more details on this are discussed in Chapter 6). On the
other hand, task-based programming models have application-level information such as the
number of I/O tasks and the I/O bandwidth requirement of each task, that can be used to
manage I/O congestion.

More specifically, this chapter proposes enabling I/O Awareness in task-based program-
ming models. The main objective of an I/O aware task-based programming model is to
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improve the performance of I/O intensive applications by exploiting their inherent per-
formance improvement opportunities. To this end, I/O aware task-based systems should
support the following capabilities:

• First, increasing task parallelism by defining I/O Tasks to handle I/O workloads exe-
cution. I/O tasks execution can be overlapped with compute tasks execution.

• Second, managing I/O congestion by controlling I/O tasks scheduling through con-
straining tasks execution.

The proposals of this chapter are realized by implementing the aforementioned I/O
awareness capabilities in the PyCOMPSs task-based programming model [100]. I/O aware
PyCOMPSs allows users to set constraints to I/O tasks to control their scheduling. Since
the value of this constraint is fixed for the whole application execution, we call this a Static
constraint.

However, identifying a suitable constraint at application development time may be com-
plex due to the lack of information about the amount of I/O that the application will pro-
duce and I/O performance on a given infrastructure. Therefore, we propose an automatic
and abstract constraining mechanism that is exposed by the execution manager to settle on
and tune the constraints of I/O tasks during application’s execution. Hence, offering greater
flexibility and portability. This mechanism carries out a performance exploration process to
identify the optimal manner to execute I/O tasks on a given system. We call this type of con-
straints: Auto-Tunable constraint. Using auto-tunable constraints, the burden of identifying
the optimal constraint is removed by making the runtime system automatically infer and
tune I/O tasks’ bandwidth constraints with the goal of achieving total time performance
benefit.

In the evaluation section of this chapter, we validate the implementation prototype by
applying these capabilities in a set of applications with different I/O workloads on the
MareNostrum 4 supercomputer. In addition to that, we compare their execution with a
version that is not using the I/O awareness capabilities.

The rest of the chapter is structured as follows. Section 4.2 discusses related work. Sec-
tion 4.3 presents the main concepts and capabilities of an I/O aware task-based system.
Section 4.4 presents the design and implementation of the I/O awareness capabilities in
PyCOMPSs: I/O tasks and storage bandwidth constraints. Section 4.5 analyzes the per-
formance results of I/O aware PyCOMPSs on the MareNostrum 4 supercomputer using
different I/O workloads. Finally, Section 4.6 offers a conclusion and a discussion about the
achieved performance.

4.2 Related Work

As the design of large-scale execution systems headed towards distribution to provide
more computing power by adding more computing nodes, task-based programming mod-
els has enabled optimized applications execution without exposing the infrastructure details
to application developers. Therefore, they became the go-to programming models for exe-
cuting domain-specific applications [29].

This section presents a brief description about some of the most popular task-based mod-
els and highlights the lack of support to improve I/O performance of applications. In addi-
tion to that, this section gives a brief description of I/O optimization efforts related to the
contribution of this chapter.

Parsl [7] uses function decorators to compose workflows. Parsl provides a different set
of extensible executors to address different parallelization requirements of applications and
enable execution on different platforms.
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Luigi [32] enables the explicit specification of dependency graphs. Using Luigi, users
have to use the provided object oriented API to explicitly define dependencies in the code
rather than annotating functions. At execution time, Luigi builds the execution graph by
inspecting defined dependencies.

The Dask [93] Python library implements parallel versions of Python libraries such as
Numpy [80] and Pandas [68]. Dask enables specifying constraints on tasks execution which
is similar to one of our contributions. Additionally, it is possible to explicitly specify zero
CPU requirements for tasks which can allow for overlapping I/O and computation. How-
ever, the Dask runtime does not provide an automatic mechanism for setting and tuning
constraints such as the one proposed in this chapter.

Unlike the proposal of this chapter, the aforementioned tasking models do not have the
notion of I/O tasks and there is no support for I/O-compute tasks overlap. Moreover, there
is no programming model support for addressing I/O congestion.

As mentioned in Section 2.2 of Part I, numerous studies have been performed to address
I/O performance problems at different levels. A traditional approach to improve applica-
tions I/O performance is to use I/O libraries, such as MPI-IO [89], HDF5 [105] and NetCDF
[59]. These libraries provide a programming API to manipulate data access. Therefore, ap-
plications do not need to assume the POSIX interface. MPI-IO provides a low-level interface
to enable parallel I/O. This interface can be used to define how to access a file system to
perform parallel I/O operations. On the other hand, HDF5 and NetCDF provide file for-
mats that optimize the storage of large amounts of data by stipulating their formats and
performing low-level optimizations.

Using I/O libraries allows for fine-grained I/O optimization related to I/O access and
storage. However, this approach does not address the problem of I/O congestion. Another
limitation of this approach is portability; once these libraries are used in an application for
a specific platform, it is not a straightforward task to use it on other platforms.

Targeting a solution for I/O congestion, efforts in this direction have addressed I/O
congestion as a classical scheduling problem with the objective of optimizing for system-
wide performance metrics. Gainaru et al. [36] proposed a global I/O scheduler that has a
global view of the system and of the past behaviour of all applications running on it. These
information can be used to optimize scheduling heuristics such as maximum efficiency or
fairness.

Liang et al. [61] proposed a contention-aware resource scheduling strategy to improve
the performance of the burst buffers by minimizing I/O congestion caused by I/O of dif-
ferent applications. This strategy analyzes I/O load on the burst buffers nodes and assigns
incoming I/O to burst buffer nodes with least I/O load. Herbein et al. [42] incorporated
I/O workload scheduling into existing policies such as First Come First Served (FCFS) and
EASY backfilling. The idea is to add I/O as additional constraint when determining if a job
can be scheduled. Jobs are only scheduled for execution if and only if there are available
resources to satisfy their I/O requirements.

Zhou et al. [121] presented an I/O batch scheduler with two policies: conservative and
adaptive. The conservative policy avoids I/O congestion as much as possible targeting
system-performance metrics. Whereas the adaptive policy allows I/O congestion to happen
to increase jobs performance.

Tillenius et al. [106] proposed a predictive model for task performance degradation and
a resource aware scheduling policy by enabling users to set constraints for tasks execution
using task annotation, similar in spirit to one of our contributions.

Unlike global I/O schedulers, our proposal does not target optimizing any system-wide
performance metric, nor does it have any information about any other applications running
on the system. I/O aware PyCOMPSs addresses I/O congestion from the view point of the
application to increase its total performance. We consider that the previously mentioned
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efforts targeting I/O performance improvement (i.e., I/O libraries and I/O schedulers) can
jointly work along with our proposal to achieve optimal application performance while im-
proving the system-wide performance targets.

It should be noted that these research efforts focused on addressing I/O congestion for
write-intensive applications. In these applications, I/O congestion occurs when data are
sent to be written to the storage device. This happens when the data are flushed from the
system caches because they cannot fit in them or when caching is avoided altogether by
doing direct I/O. Direct I/O is beneficial to avoid data loss if failure happened when the
data are still in the system caches. However, in the case of reading, caching offers better
performance than directly accessing the storage devices every time data are needed.

4.3 I/O Awareness in Task-based Programming Models

As previously mentioned in Section 1.1.2 in the Introduction (Part I), I/O intensive ap-
plications follow a periodic pattern of alternating compute-I/O phases. Figure 4.1 shows
a high-level abstraction of the life cycle of such applications. Each compute phase is fol-
lowed by an intense burst of I/O. It should be noted that this model assumes that the data
consumed by the i-th I/O phase cannot be invalidated by the i+ 1 compute phase. This as-
sumption is valid if the i+1 compute phase is independent from previous compute phases.
Otherwise, if there is a data dependency between two compute phases (e.g., the i − th and
i+ 1 compute phase), then the i+ 1 compute phase should receive an independent copy of
the data so as to not invalidate the data consumed by i− th I/O phase.

i-th
I/O

Phase

i-th
Compute
Phase

Tstart Tend

Compute I/O

 .  .  . 
    

FIGURE 4.1: Life Cycle Of An I/O Intensive Application

Taking a closer look at Figure 4.1, one can observe optimization opportunities that are
possible due to the compute-I/O workloads pattern. For instance, the start of each compute
phase (i+1) is delayed until the previous I/O phase (i) has finished. However, since there is
no dependency between each I/O phase and the following compute phase, their execution
can be overlapped.

A traditional task-based system will not be able to exploit the parallelism opportunities
of applications with such pattern. Figure 4.2 shows a high-level abstraction of how a tra-
ditional system can be used to execute an I/O intensive application. Using such models,
computation and I/O are executed in one task without the ability to differentiate between
each workload. Using such approach wastes a lot of performance improvement opportuni-
ties for both computation and I/O. This is due to two reasons:

• Application parallelism is decreased because computing resources cannot execute any
compute workload while they are waiting for I/O completion.

• The scheduling of workloads is limited; tasks scheduling can be optimized for either
compute performance or I/O performance but not for both. For instance, launching
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more computing workloads in parallel usually results in more performance. However,
in the case of I/O workloads it could result in increasing I/O congestion.

Tstart Tend .  .  . 
    

Task performing computation and I/O

FIGURE 4.2: I/O Intensive Application Executed With A Traditional Task-
based Programming Model

To take advantage of the performance improvement opportunities present in Figure 4.1,
we propose enabling I/O awareness. I/O Awareness enables task-based models to separate
compute and I/O workloads. Therefore, allowing for the optimization of each workload
depending on its properties. Figure 4.3 shows the life cycle of an application executed with
an I/O aware task-based model. This application has two types of tasks: tasks that execute
compute workloads and tasks that execute I/O workloads. In an I/O aware execution,
compute workloads execution can be overlapped with the execution of dependency free
I/O workloads, i.e., the I/O workloads executed by tasks which their data dependencies are
satisfied and can be released for execution. Thus, the level of parallelism is increased due
to the overlapping execution of tasks. In addition to that, I/O workloads can be scheduled
independently from compute workloads to improve I/O performance by minimizing I/O
congestion.

Task performing I/O
Task performing computation

Tstart Tend .  .  . 
    

FIGURE 4.3: I/O Intensive Application Executed With An I/O Aware Task-
based Programming Model
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The following sections introduce in-depth the core concepts and features of an I/O aware
system. Sections 4.3.1 to 4.3.3 present the I/O awareness capabilities that we propose to be
supported by task-based models: Section 4.3.1 introduces the concept of I/O Tasks, which
allow to take advantage of the proprieties of I/O workload to increase task parallelism by
overlapping tasks execution. Next, Section 4.3.2 focuses on addressing I/O-specific perfor-
mance problems such as I/O congestion by constraining tasks scheduling. Finally, Section
4.3.3 proposes the automatic inference of task constraints during application’s execution.

4.3.1 I/O Tasks

We define I/O tasks as special tasks for exclusively executing I/O workloads in applica-
tions. Indeed, I/O tasks can execute a single I/O request or several consecutive requests
(e.g., a loop of write accesses). Using I/O tasks, a programming model should be able to
differentiate between I/O workloads and compute workloads and exploit their differences
to create optimization opportunities.

Unlike current task-based systems that schedule all tasks based on computing constraints,
I/O aware systems should be able to schedule I/O tasks according to their I/O bandwidth
requirements instead of computing requirements. Hence, I/O tasks scheduling will not be
bounded by the capabilities of the computing infrastructures nor by the compute workload
in the application because their scheduling will not depend on the availability of computing
units. This approach allows the scheduling of as many concurrent I/O tasks to reach the
peak performance of the storage infrastructure, even if the number of running I/O tasks
exceeded the available computing resources.

In addition to that, the execution of I/O tasks can be overlapped with the execution of
compute tasks. Dependency-free I/O tasks can be executed along with compute tasks on
the same CPU with negligible impact on the performance of compute tasks. This takes ad-
vantage of CPUs being idle during I/O execution. This capability increases task parallelism
in applications because computing resources will not be occupied solely for executing I/O
workloads and progress can be made in terms of executing compute tasks.

Moreover, Using I/O tasks to identify I/O workloads enables the scheduling of I/O
tasks to specialized storage subsystems in distributed heterogeneous infrastructures. Be-
cause these heterogeneous storage subsystems can offer higher bandwidth, more I/O tasks
can run concurrently without causing I/O congestion. The dedicated scheduling of I/O
tasks to heterogeneous storage infrastructures is another contribution of this thesis that is
presented and described in the next chapter (Chapter 5).

4.3.2 Storage Bandwidth Constraints

The second capability that we propose to enable I/O awareness in task-based systems is
the ability to address the problem of I/O congestion. I/O congestion mainly occurs because
the aggregate amount of data to be written by the concurrently running I/O tasks surpasses
the maximum I/O bandwidth of the storage devices. Consequently, assuming that the I/O
bandwidth is fairly allocated between concurrent I/O tasks, the more I/O tasks running
concurrently, the less I/O bandwidth would be allocated to serve the requirements of each
task. Therefore, the execution time of I/O tasks increases leading to not only degraded I/O
performance but also total performance degradation. Therefore, I/O awareness which only
provides increased parallelism by supporting I/O tasks may not be enough to achieve total
performance improvement.

I/O congestion can be tackled by constraining the scheduling of I/O tasks. Using con-
straints to control I/O tasks scheduling guarantees that only a maximum number of tasks
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can run concurrently at any given time of application’s execution. Hence, I/O bandwidth
can be managed and I/O congestion can be minimized or completely avoided.

To this end, we propose enabling the use of Storage Bandwidth constraints to specify an
estimate for the storage bandwidth requirements of a task. Using the storage bandwidth
constraint implies that if scheduling a task will over-allocate the storage bandwidth of the
available storage resources, then this task should not be scheduled even though compute
resources are idle. Tasks with storage bandwidth constraint will only be scheduled if there
is available storage bandwidth to satisfy their constraints. Otherwise, they will wait for
more storage bandwidth to become available.

One approach to specify the storage bandwidth constraints is to extend the program-
ming model to allow users to set it at application development time. Hence, users can plan
the execution of applications by controlling the level of I/O tasks parallelism that would
benefit their applications on a given infrastructure.

Another approach is described by the following section which is to give programming
model and runtime support to enable the automatic inference and tuning of constraints
based on I/O performance given a certain I/O workload and a specific storage system state.

4.3.3 Automatic Inference of Storage Bandwidth Constraints

Identifying a suitable storage bandwidth constraint that minimizes I/O congestion and
improves I/O and total application performance may be difficult at application develop-
ment time. Indeed, a high storage bandwidth constraint leads to a lower number of con-
current tasks and more bandwidth allocated to each task. Hence, I/O congestion will be
minimized and I/O performance will increase but task parallelism will decrease. Similarly,
a low storage bandwidth constraint will allow more tasks to be executed concurrently but
less I/O bandwidth will be allocated for each task. Hence, task parallelism will increase
but increased I/O congestion will negatively affect application’s performance. Therefore,
a balanced constraint value is challenging to identify at application design time because it
depends on execution time information. For instance, the amount and size of application’s
I/O workload, in addition to the I/O performance on a given storage system. Hence, a non-
educated choice of the storage bandwidth constraint may lead to non-optimal performance
and decreased portability.

To overcome the aforementioned difficulties and improve the programming experience
and applications performance, we propose that I/O aware systems support the automatic
inference of storage bandwidth constraints. The main objective of this mechanism is to allow
the runtime system to automatically estimate a constraint that is not very high so it allows
more I/O tasks to run concurrently in order to maximize task parallelism. At the same time,
this constraint should not be very low so it minimizes I/O congestion as much as possible
by avoiding the launch of a lot of I/O tasks concurrently.

More specifically, the automatic inference of a constraint is the process of finding a con-
straint value that maximizes task parallelism and minimizes I/O congestion. During ap-
plication’s execution, the runtime system should use a constraint that would minimize the
execution time of the I/O tasks waiting to be scheduled.

In order to identify such a constraint, we propose a two-steps mechanism:

• First, the runtime system runs a learning phase, in which it collects information about
the I/O tasks performance with different levels of I/O tasks parallelism (i.e., different
constraint values).

• Second, the information collected during the learning phase is applied to a heuristic
function with the objective of minimizing the execution time of the I/O tasks to be
scheduled.
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Section 4.3.3.1 describes in more detail the learning phase, whereas Section 4.3.3.2 presents
the objective function for setting an optimal constraint given a number of I/O tasks.

4.3.3.1 Learning Phase

During the learning phase, the system keeps track of the average I/O task time when
running different number of concurrent I/O tasks. Indeed, the number of concurrent I/O
tasks at any moment of the application execution is controlled by the value of the constraint
that is used. Therefore, the system tries different constraint values to launch different num-
ber of concurrent I/O tasks.

The learning phase consists of several Learning Epochs. In each learning epoch, the sys-
tem uses a different constraint value to launch different number of concurrent I/O tasks.
The purpose of each learning epoch is to identify the average I/O task time when using a
certain constraint value. Therefore, a learning epoch can be defined as the set of I/O tasks
that are allowed to run concurrently when using a certain constraint.

It should be noted that the lifetime of an epoch is not defined by any time limits nor by
any assumptions based on the task-graph properties. For example, if the maximum number
of tasks allowed to run concurrently when using a certain constraint is 5, then the lifetime
of the learning epoch of this constraint is the execution time of the 5 concurrent tasks. Once
the average I/O task time of the maximum number of tasks allowed to run concurrently at
any given time is obtained, a learning epoch is ended and the next epoch (where different
constraint is used) is started.

Different approaches can be used to determine the details of the learning phase (i.e., the
number of learning epochs and how to progress the learning phase). We propose two types
of auto-tunable constraints: bounded and unbounded.

In the case of the bounded auto-tunable constraint, three values can be used to control
the learning phase: minimum and maximum constraint values that set the boundaries of the
constraint and a delta value which represents the step size that allows the progression from
the minimum value to maximum value. The first learning epoch in the learning phase starts
with the minimum constraint value, then the learning phase progresses until it reaches the
maximum constraint value by multiplying the current constraint by the value of delta.

Whereas in the case of the unbounded automatic constraint, no values are used to bound
or guide the learning phase, instead such values are estimated by the runtime system. An
unbounded auto-tunable constraint starts with the lowest constraint value that would allow
the maximum number of I/O tasks to run concurrently. After each learning epoch, the con-
straint value is doubled and used as the constraint of the next learning epoch. Doubling the
constraint would progress the constraint value without risking skipping possible optimal
constraint values.

For the unbounded constraint, after each learning epoch, the following condition is eval-
uated to decide whether to continue or end the learning phase:

tEpoch(i) 6 tEpoch(i−1)/2

where:
tEpoch(i): average execution time of I/O tasks in learning epoch i

This condition assumes that since the constraint is doubled each new learning epoch (i.e.,
the number of concurrent tasks is halved), then the average task time in a learning epoch
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should decrease by at least half compared to the average task time recorded in the previous
learning epoch.

Comparing the bounded and unbounded auto constraints, the bounded auto constraint
has the ability to achieve more fine-grained results. This is because it has a longer learning
phase where it tries as high constraint as the maximum constraint value set by the user.
Whereas the unbounded auto constraint follows a stricter learning approach. It follows the
assumption that not getting the expected I/O task time improvement in a learning epoch
will lead to a divergence path where no more improvement should be expected. Indeed,
these different behaviours lead to different application performances that are discussed in
the evaluation section of this chapter (Section 4.5).

More details on how to acquire and calculate the hyper parameters of the learning phase
for the bounded constraint (i.e., minimum, maximum and delta) and the starting constraint
value for the unbounded constraint are described in the implementation section (Section
4.4.3.2).

4.3.3.2 Objective Function

After the learning phase ends, the information that has been collected about the aver-
age task time when launching a certain number of concurrent tasks (i.e., using a certain
constraint) are applied to minimize the following objective function:

∀c ∈ C: min T(numTasks, c) (4.1)

where:
C: is the set of constraints used during the learning phase.
T (numTasks, c): is the time estimation for executing the given number of I/O auto-

constrained tasks using the constraint c. This function can defined as:

T(numTasks, c) =

(numTasks/maxNumTasksc) ∗ tc
where:

maxNumTasksc: is the maximum number of concurrent I/O tasks allowed to run using
the given constraint c.

tc: is the average I/O task time when using the given constraint c.

The objective of this function is to choose a constraint that minimizes the execution time
of the auto-constrained tasks waiting to be scheduled. In this function, the number of execu-
tion groups in which the tasks will be executed is calculated by dividing the given number
of tasks by the maximum number of concurrent tasks using a given constraint c. Then this
number is multiplied by the average task time obtained during the learning phase. For
instance, if numTasks is 20 and the current constraint c only allows maximum amount of
10 concurrent I/O tasks, then these 20 tasks will be executed in 2 groups, each group con-
tains a maximum of 10 concurrent tasks. The number of task groups is then multiplied by
the average I/O tasks time to get the time estimation of executing the numTasks using the
constraint c.

After evaluating the objective function with all the constraints used during the learning
phase, the constraint that results in the least execution time is assigned to the task.



4.4. Implementation 39

4.4 Implementation

This section presents the implementation details of the I/O awareness capabilities in the
PyCOMPSs framework. Section 4.4.1 introduces the special handling of the I/O workload
through the use of I/O Tasks and how can their execution be overlapped with the execution
of compute tasks. Section 4.4.2 describes how task constraints are used to control I/O tasks
scheduling to minimize I/O congestion. Finally, Section 4.4.3 presents the details of the
automatic inference mechanism of the storage bandwidth constraint.

4.4.1 I/O Tasks

Following task declaration conventions of the PyCOMPSs programming model described
in Section 3.1.1, a task is declared as I/O task by the means of the @IO decorator. Listing 4.1
shows the I/O tasks annotation in PyCOMPSs. Besides using the @task decorator to define
a PyCOMPSs task, the @IO decorator is used to declare that this task should be registered
and handled as an I/O task.

1 @IO()
2 @task()
3 def io_task(data):
4 # perform I/O operations on data

LISTING 4.1: I/O Task Annotation

Figure 4.4 shows how using I/O tasks can affect the execution. In the main code snippet,
a loop launches three tasks:

• a generate_block task which returns a block of a certain size.

• a checkpoint task which writes the block to the disk.

• a scale task which does some computation on the block, the output of this task is
stored in the results list.

Notice that both the checkpoint and scale tasks are dependent on the generate_block
task, however, they do not have dependencies between each other. Therefore, their execu-
tion can overlap.

As shown in Figure 4.4, the checkpoint task can be handled in two different ways
during the execution of the application depending on how it is defined in the code: On the
one hand, it can be defined as a normal compute task by only using the @task decorator.
Consequently, when there are no available computing resources, the execution of the scale
tasks will be delayed until the checkpoint tasks finish execution. On the other hand, the
checkpoint task can be defined as an I/O task by using the @IO decorator. This way, the
COMPSs runtime handles the checkpoint tasks as I/O tasks, hence, the scale compute
tasks are launched and the execution of both tasks is overlapped.

In order to enable the overlapping execution between dependency free I/O tasks and
compute tasks as illustrated in Figure 4.4, modifications were made to the master and worker
components of the COMPSs runtime. In the master component, by default, the COMPSs
runtime assigns one CPU to every task. Consequently, the runtime scheduler will not launch
any new tasks for execution unless there is enough CPUs to execute them. However, unlike
regular compute tasks, when the COMPSs runtime receives an I/O task registration request,
it sets its computing requirements to zero. Consequently, incoming I/O tasks with no de-
pendencies will be scheduled immediately even if all the CPUs in the infrastructure are
consumed by compute tasks.
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FIGURE 4.4: I/O Tasks Overlap With Compute Tasks

In case of using a shared working directory between tasks, it will be used to store tasks
outputs in a serialized format. Therefore, no node-to-node data transfer is required and, as a
consequence, I/O tasks are scheduled to the first candidate node (because I/O tasks always
require 0 CPUs). However, if the working directory is not shared, then I/O tasks will be
scheduled taking into consideration data locality.

Indeed, for the case when a shared working directory is used, alternative design ap-
proaches can be adopted to distribute the tasks to candidate workers (e.g., round-robin).
However, our proposed behavior of scheduling tasks based on their requirements, specifi-
cally computing units and storage bandwidth, provides the most general approach and least
intrusive implementation. In addition to that, our focus in this part of the thesis is to control
the scheduling of I/O tasks based on their optimal bandwidth requirements; that minimizes
I/O congestion and improves total application performance.

As for the worker component of the COMPSs runtime, it needs to support CPU oversub-
scription to enable the execution of I/O tasks side by side with compute tasks on the same
CPU. Therefore, we extended the worker component architecture (described in Section 3.1.2)
by adding an additional execution platform, called I/O Execution Platform, dedicated to han-
dling I/O tasks execution. The other execution platform, called Compute Execution Platform,
is dedicated to handling compute tasks execution.

Figure 4.5 illustrates a high-level overview of the architecture of the I/O aware worker
component. Similar to the compute execution platform, the I/O execution platform han-
dles the execution of I/O tasks by managing a number of executor threads. These executor
threads are created at the launch time of the application and their number can be set in the
PyCOMPSs launch command. By default, the I/O execution platform launches only one
executor thread. However, the number of executor threads in the I/O execution platform
can be set at application launch time by using the io_executors command-line argument
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of the PyCOMPSs launch command.
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FIGURE 4.5: I/O Aware PyCOMPSs Worker; I/O Execution Platforms Han-
dles The Execution Of I/O Tasks

It should be noted that at any given moment during application execution, the maximum
number of tasks to be executed is equal to the number of threads in the execution platform.
If there are more tasks to be executed on a worker than available I/O executors, then their
execution will be blocked until any of the busy executors becomes available.

4.4.2 Static Storage Bandwidth Constraints

In order to constrain I/O scheduling to avoid I/O congestion, we extended the Py-
COMPSs @constraint decorator (described in Section 3.1.1) to support a storage band-
width constraint. During application execution, the COMPSs runtime keeps track of the
state of the available I/O bandwidth of the system by updating its value based on the stor-
age bandwidth requirement of each task.

Listing 4.2 shows a sample I/O task with the storage bandwidth constraint. Using the
storageBW argument of the @constraint decorator, users can set an estimated band-
width for I/O tasks. During the scheduling of the constrained_write task, the Py-
COMPSs scheduler will use its storage bandwidth constraint value to determine at which
point of application execution and to which node this task should be scheduled. If the
storage bandwidth constraint of the constrained_write task is not satisfiable, then its
execution will be blocked until its requirement becomes available.

The storage bandwidth constraint presented in Listing 4.2 is a Static constraint. This
means that the value of the constraint is set before launching the application. Moreover, the
value of this constraint does not change during the execution of the application.
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1 @constraint(storageBW = 20)
2 @IO()
3 @task()
4 def constrained_write(data):
5 ...

LISTING 4.2: Constrained I/O Task Using Storage Bandwidth Constraint

Static constraints can be used to optimize applications execution by enforcing execution
constraints while offering programming simplicity. Such constraints are useful when exe-
cution time information are already known by the users from possibly previous runs. For
instance, I/O workloads sizes, their optimal storage constraints, etc. When such information
are not available at application design and coding time, then it is better to rely on the I/O
awareness capabilities by using the auto-tunable constraints to identify these information
and use them to manage the execution in order to improve the total performance.

It should be noted that the COMPSs runtime expects a Resources Description File to be
provided at application launch time. This file is a XML format file that contains informa-
tion about the available capabilities of the underlying infrastructure. It contains a list of all
nodes participating in the execution and their properties. For instance, computing units of
each node, memory size, storage capacity, etc. These system values are used at application
execution time by the COMPSs runtime to enforce execution constraints.

In order to allow the COMPSs scheduler to reason about the available storage bandwidth
in the system, we extended the resources description file to enable users to specify the max-
imum I/O bandwidth of the storage devices. This value will be used by the COMPSs run-
time during applications execution to make better scheduling decisions. Listing 4.3 shows a
part of a sample resources description file that specifies the PFS bandwidth for a computing
node. It should be noted that the bandwidth units in the resources description file and the
constraint value in the application code have to be the same. The COMPSs system does not
require the values to be of any specific unit.

1 <ResourcesList>
2 <ComputeNode Name="worker">
3 ...
4 <Storage Name="GPFS">
5 <Type>PFS</Type>
6 <Bandwidth>980</Bandwidth>
7 ...
8 </Storage>
9 ...

10 </ComputeNode>
11 </ResourcesList>

LISTING 4.3: Sample Resources Description File Of COMPSs

4.4.3 Auto-tunable Storage Bandwidth Constraints

This section describes how auto-tunable constraints can be specified programmatically
in the PyCOMPSs framework, then it presents more details about the implementation of the
learning phase and the objective function. For brevity, we will refer to Auto-tunable Storage
Bandwidth Constraints as Auto Constraints in the rest of this chapter.
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4.4.3.1 Auto Constraints Syntax

As previously discussed in Section 4.3.3, we enabled two different types of auto con-
straints: Bounded and Unbounded. On the one hand, users can set bounded auto constraint
as auto(min, max, delta); where min represents the minimum starting constraint, max repre-
sents the maximum possible constraint and delta represents the value by which the runtime
advances the constraint value from min to max. On the other hand, users can specify an
unbounded auto constraint by setting the value of the storage bandwidth constraint to auto.

Listing 4.4 shows an example of bounded auto constraint. To set a bounded auto con-
straint, users have to estimate the hyper-parameters that will guide the learning phase (i.e.
min, max and delta). Whereas Listing 4.5 shows an unbounded auto constraint, in which
the runtime will estimate the min, max and delta hyper-parameters.

1 @constraint(storageBW = "auto(10,50,4)")
2 @IO()
3 @task()
4 def constrained_io_task(data):
5 ...

LISTING 4.4: Bounded Automatic Constraint With Syntax auto(min, max, delta)

1 @constraint(storageBW = "auto")
2 @IO()
3 @task()
4 def constrained_io_task(data):
5 ...

LISTING 4.5: Unbounded Automatic Constraint

4.4.3.2 The Learning Phase

The COMPSs runtime automatically estimates the auto-constraints by carrying out the
two-steps mechanism discussed in Section 4.3.3. After the completion of the learning phase,
the runtime will have an Auto Constraint Registry for each auto-constrained task. This auto
constraint registry contains pairs of: constraint value and the average I/O task time when
using this constraint is used (Constraint → Avg I/O Task Time). Figure 4.6 illustrates the
progress of a learning phase from the master and worker components of PyCOMPSs.

Looking closely at Figure 4.6, one can observe the progress of the learning phase for a
given auto constraint. The figure shows two learning epochs, each learning epoch has three
key moments:

• First, the learning epoch starts with assigning the storage bandwidth constraint (C1 in
the first learning epoch and C2 in the second learning epoch) to all auto-constrained
tasks. During each learning epoch, the master component schedules and launches
tasks as long as the assigned task constraint does not bandwidth constraint of the
system.

• Second, when the running I/O tasks that are in a learning phase finish executions
successfully, the average time per I/O task is calculated and set in the auto-registry.
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FIGURE 4.6: Learning Phase Progress

• Third, the master component decides whether to continue or end the learning phase
depending on the criteria that was described in Section 4.3.3.1. In the case of continued
learning phase, the scheduler sets the new constraint value and repeat steps 1 and 2
in Figure 4.6. However, in case the learning phase ends, the scheduler will use the
auto constraint registry that was set during the learning phase to try to minimize the
objective function described in Section 4.3.3.2 for the I/O auto-constrained tasks ready
to be scheduled.

It should be noted that defining an auto constraint for a certain task will not affect how
the COMPSs runtime handles the other tasks in the application. In addition to that, it is
possible to have different auto-constrained tasks in the same application. The COMPSs
runtime will run a separate learning phase for each auto-constrained task and will set a
constraint suitable for the workload of each task. We assume that an I/O task will always
produce the same I/O workload during the application lifetime.

In the case of an unbounded automatic constraint, the COMPSs runtime calculates the
value of the starting constraint by dividing the maximum I/O bandwidth of the storage de-
vice by the number of I/O executors in each worker node. The number of I/O executors is a
convenient choice for calculating the starting constraint because it represents the maximum
number of I/O tasks that can run concurrently during any time of application execution.

In order to guarantee the integrity of the learning phase, the scheduler dedicates a worker
node for each auto-constrained task in an active learning phase. These nodes are called Ac-
tive Learning Nodes. Once a node is marked as an active learning node for a specific auto-
constrained task, the scheduler avoids scheduling any other I/O tasks or auto-constrained
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I/O tasks to that node. Therefore, it is guaranteed that the learning phase of an auto-
constrained task will not be interfered by the other I/O tasks. As soon as the learning
phase of an auto-constrained task ends, the scheduler un-marks the associated active learn-
ing node and use it for scheduling as normal. It should be noted that the compute tasks
are scheduled normally on all available nodes because they do not consume any storage
bandwidth resources.

We study the performance of both types of automatic constraint and the effect of chang-
ing their hyper-parameters (the values of max, min, delta in the bounded constraint and the
number of I/O executors per worker node in the unbounded constraint) in the evaluation
section (Section 4.5).

4.4.3.3 The Objective Function

After finishing the learning phase for a certain auto-constrained task, the COMPSs run-
time applies the auto constraint registry to objective function 4.1 to choose a constraint that
will result in the execution of the pending auto-constrained tasks in the minimum possible
time.

Some cases are considered when evaluating objective function 4.1 for a given number of
scheduling-ready auto-constrained tasks:

• If the number of tasks is not divisible by the maximum number of concurrent tasks,
then the time for executing any remainder is estimated. Then, it is added to the original
time estimate T (numTasks, c).

• If there is a tie and several constraints result in the same execution time for a given
number of ready tasks, then the highest constraint is used because it result in the min-
imum I/O congestion.

It should be noted that the objective function is re-evaluated and a new constraint is set
-if necessary- every time new execution requests of an auto-constrained task arrive to the
scheduler. This approach allows the continuous tuning of the constraint value throughout
application execution depending on the number of I/O auto-constrained tasks.

4.5 Evaluation

This section shows the improvement that I/O aware PyCOMPSs can achieve in the total
performance of applications with different workloads.

We start this section with describing the infrastructure of the MareNostrum 4 supercom-
puter and its storage architecture (Section 4.5.1). Followed by a brief discussion about the
impact of launching I/O tasks with compute tasks on the same node (Section 4.5.2). Next,
we present a brief description of the applications used in the evaluation, their I/O workload
characteristics and their performance results (Section 4.5.3). Finally, the section ends with
presenting the experiments results that show the impact of the hyper-parameters of the auto
constraints on applications performance (Section 4.5.4).

4.5.1 Infrastructure

The MareNostrum 4 supercomputer [66] of the Barcelona Supercomputeing Center (BSC)
is composed of 3,456 nodes. Each node has two Intel Xeon Platinum chips, each with 24 pro-
cessors for a total of 48 cores per node. The MareNostrum 4 supercomputer contains two
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types of nodes: low memory and high memory. The low memory nodes contain 92 GB main
memory whereas the high memory nodes contain 370 GB of main memory.

Figure 4.7 shows a high-level overview of the MareNostrum 4 supercomputer storage
infrastructure. All nodes have access to shared Hard Disk Drives (HDD) with total capac-
ity of 14 PetaBytes mounted with the IBM General Parallel File System (GPFS). The GPFS
servers are shared and accessible to all the users of the system. Each computing node in the
MareNostrum 4 supercomputer has a local Solid State Drive (SSD) with a capacity of 200 GB
and bandwidth of 470 MB/s and 450 MB/s for reading and writing respectively.
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 SSD Size: 200 GB 
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FIGURE 4.7: High-Level Overview Of The Storage Infrastructure On The
MareNostrum 4 Supercomputer

In all the experiments, the GPFS is used to store the input data and final results -if any-
of the applications. In addition to that, the GPFS is also used in our experiments as a shared
working directory to store tasks logs and dependencies between tasks. Therefore, no node-
to-node data transfer is required.

Node-local SSD disks are used as Burst Buffers to checkpoint the intermediate results
of the applications. On the one hand, as they are used exclusively by the nodes running
the experiments, they offer better performance than the globally shared HDD-backed GPFS.
This is because the whole bandwidth of the SSDs are dedicated for our experiments and
no interference occurs from the experiments of other MareNostrum 4 users. On the other
hand, they offer a controlled environment in which performance benefit can be planned and
expected. As previously discussed, using SSDs as a caching layer to absorb intensive I/O of
applications has been discussed in previous I/O research.

4.5.2 I/O Tasks Impact on Compute Tasks

In order to measure the impact of oversubscribing the CPUs with I/O tasks on the per-
formance of the compute tasks that already use these CPUs, we performed multiple ex-
periments such that each experiment launches a fixed number of concurrent compute tasks
and a variable number of concurrent I/O tasks. Each compute task performs a compute-
intensive matrix multiplication algorithm, whereas each I/O task writes 100 MB of data to
a file. In all experiments, the node is occupied with 48 concurrent compute tasks, which is
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the maximum number of concurrent compute tasks that a node can host. However, in each
experiment, a different number of concurrent I/O tasks is launched.

Each experiment was repeated 10 times and the average result is reported. Figure 4.8
depicts the average time of the compute and I/O tasks of the different experiments. It can
be noted that I/O tasks have negligible effect on compute tasks or does not have any effect
at all. Regardless of how many concurrent I/O tasks are being executed, the average time of
compute tasks is not impacted. However, as the number of concurrent I/O tasks increases,
the average time for an I/O task increases because of the increasing I/O congestion.
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FIGURE 4.8: Average Time For Compute Tasks With Increasing Number of
Concurrent I/O Tasks

4.5.3 Use Cases and Experiments

We implemented three different I/O intensive applications with PyCOMPSs. Each ap-
plication exhibits a different I/O workload which allows for evaluating the impact of the
I/O awareness capabilities in different scenarios. These three applications are:

• The HMMER application: an application that produces Homogeneous I/O workload;
there is only one task that execute I/O in the application. In addition to that, for a
given input size, the checkpointing task writes the same amount of I/O every time it
is called during the lifetime of the application. This application is intended to show
the impact of using I/O awareness capabilities on I/O throughput, I/O task time and
total time. In addition to the behaviour of auto-tunable constraints with homogeneous
I/O workloads.

• The Variants Discovery Pipeline: exhibits a Heterogeneous I/O workload, because it has
more than one checkpointing task. Each checkpointing task writes different amount
of data to the disk. This application is intended to show the behaviour of auto-tunable
constraints with different I/O workloads.

• Kmeans: an iterative algorithm to test the effect of the number of available tasks on the
total performance of the application when using auto-tunable constraints.
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In all the experiments, the I/O non-aware PyCOMPSs implementation (i.e., no I/O tasks
nor storage bandwidth constraints) is used as the baseline version. Moreover, for the HM-
MER and Variants Discovery Pipeline, we launched several runs of the I/O aware implemen-
tation. Each run has a different setting of the storage bandwidth constraint for the I/O tasks.
These runs include:

• A non-constrained run where I/O tasks are used to execute I/O workload but no
storage bandwidth constraints are used.

• Several runs with increasing values of static storage bandwidth constraint. The value
of these constraints is MB/S.

• Two runs with the both types of the auto-tunable constraints. For each of the runs
with an auto-tunable constraint, we show graphs of its learning phase progress during
application execution.

It should be noted that for the HMMER application and the Variants Discovery Pipeline,
reading I/O tasks have been used in order to read input data. However, they do not offer
any performance benefit because they do not overlap with compute tasks.

In addition to that, in order to test the effectiveness of our proposals for solving the
problem of I/O congestion, writing I/O tasks in all experiments has avoided using system
buffers by flushing the data to storage devices. This is achieved by using the fsync call of the
OS library of the Python programming language [82].

All the experiments were run on 12 high-memory MareNostrum 4 nodes plus one node
dedicated as the master node. The master node runs the master component of the COMPSs
runtime and manages the execution without taking part in any computation.

4.5.3.1 HMMER Application

The HMMER Application is used for searching sequence databases for sequence homol-
ogous proteins or nucleotide sequences using a variant of Hidden Markov Models (HMM)
called profile-HMM. It takes two inputs: a sequence database and a sequence file. Figure 4.9
depicts a sample PyCOMPSs skeleton dependency graph of the application.

Our implementation of the HMMER application first splits the sequence file and se-
quence database into multiple fragments. A hmmpfam task is called for each sequence and
database fragment. The hmmpfam task calls the HMMER tool [27] on its sequence fragment
and database fragment. Each hmmpfam task has as a checkpointFrag successor task that is
responsible for checking the results of the HMMER tool. Later, the application calls a gath-
erDB task which gathers the results obtained of running a single sequence fragment against
all database fragments. Finally, all the sequence fragments are gathered into one single file
in the gatherSeq task.

For running the experiments of this application, we used as inputs a 64.5 GB HMM
protein-families database (pfam) and a sequence file that contains 14,942,208 sequences
with a total size of 3.2 GB. Databases and sequence files are available on the ftp servers of
the European Bioinformatics Institute (EMBL-EBI) [30] which hosts up-to-date sequences,
databases and software widely used by academics and life science researchers.

We set the number of database fragments and the sequence fragments to 48 each. This
means that every run of the application will have 2,304 hmmpfam tasks followed by the same
number of checkpointFrag tasks. Each checkpointFrag task writes 290 MB of data to a separate
file on the node-local SSD disk. As each of the 12 worker nodes used in this experiment has
48 cores, then the maximum number of tasks that can run at the same time across the whole
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FIGURE 4.9: Task Skeleton Of The HMMER Application

system is 576 tasks. Consequently, the application will be executed in multiple compute-IO
phases.

Figure 4.10 presents the performance results of the application. In Figure 4.10, the red
bar represents the baseline run where non of the I/O capabilities (i.e., I/O tasks and stor-
age bandwidth constraint) are used. Whereas the yellow bar represents a non-constrained
run where only one capability of I/O aware PyCOMPSs is used: declaring the checkpoint-
Frag as an I/O task but without using any storage bandwidth constraint for the I/O tasks.
The blue bars represent runs with both I/O capabilities of PyCOMPSs, each run using a
higher static storage bandwidth constraints. Finally, there are two bars: one shows the to-
tal time using the unbounded automatic storage bandwidth constraint and the other with
a bounded auto storage bandwidth constraint of auto(2,256,2). In order to show the nega-
tive impact of not controlling I/O task parallelism and I/O congestion, the Non-constrained
experiment used 500 I/O executors. Using this number of I/O executors allows the execu-
tion of the maximum number of I/O tasks concurrently without causing any node failure
for this application. On the other hand, the rest of the experiments used 225 I/O executors,
which allows to host the concurrent execution of all I/O the tasks when using the least static
storage constraint (i.e., 2).

As can be noted in Figure 4.10 using the I/O awareness capabilities of PyCOMPSs can
achieve more than 38% performance improvement in the total time of the application com-
pared to the baseline version. In the baseline run, the checkpointFrag tasks are treated as
compute tasks, no overlap between I/O and computations occurs and only 48 checkpoint-
Frag tasks can be executed at a time. However, using I/O tasks without setting any storage
bandwidth constraint (as in the non-constrained run) results in a much worse total time than
the baseline. Even though the execution of the checkpointFrag I/O tasks is overlapped with
the execution of the hmmpfam compute tasks, the effect of the I/O congestion negatively
affects the total time of the application.
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FIGURE 4.10: Experimental Results Of The HMMER Application

Nevertheless, continuing with Figure 4.10, as we start setting a storage bandwidth con-
straint for the I/O tasks, the total time of the application starts to decrease not only because
I/O and compute tasks overlap execution but also I/O congestion is controlled. As the value
of the storage bandwidth constraint increases, the total time of the application improves un-
til a certain point where it starts to deteriorate again. Indeed, increasing the value of the
constraint decreases the maximum number of concurrent I/O tasks. Even though execut-
ing less I/O tasks concurrently minimizes I/O congestion and improves I/O task time, this
improvement in I/O task time does not compensate the decreased task parallelism. This is
most apparent when using a storage bandwidth constraint of 256 where only one I/O task is
allowed to run at a time. In this case, even though the whole I/O bandwidth is entirely ded-
icated for the currently running I/O task, the sequential execution of I/O tasks drastically
harms the total time of the application.

Furthermore, it can be observed in Figure 4.10 that both runs with the auto storage band-
width constraint achieve total time improvements compared to the baseline experiment.
However, it can be noted that the total time when using a bounded auto constraint is worse
than the total time when using the unbounded auto constraint.

Figure 4.11 presents the achieved I/O throughput for I/O tasks. The non-constrained
experiment has the worst I/O throughput due to the increased and uncontrolled I/O con-
gestion. As we start to control the number of I/O tasks running concurrently by using
bandwidth constraints, I/O congestion decreases and the achieved I/O throughput begins
to increase until it reaches the peak value when a constraint of 8 is used (which is the same
value at which the application has the best total time in Figure 4.12(a)). As the constraint
value keeps increasing, the number of I/O tasks running concurrently decreases, therefore
I/O throughput slightly decreases because the local-SSDs of the nodes are not fully utilized.
Furthermore, it can be observed that both of the auto constraints achieve peak I/O through-
put similar to using the optimal constraint.

In order to understand the auto constraints behaviour, we refer to Figure 4.12 that shows
the progress of the learning phases of both auto constraints during application’s execution
time.
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FIGURE 4.12: Auto-tunable Constraints Learning Phase Progress In The HM-
MER Application

Figure 4.12(a) depicts the progress of the learning phase when using an unbounded auto
constraint. First, the runtime sets the initial constraint to 2, because this run used 225 I/O
executors on each worker node to handle the execution of I/O tasks. After the end of the
first learning epoch the runtime registers the average I/O task time during this epoch and
doubles the value of the constraint to progress the learning phase. When the second epoch
ends, in order to decide whether to continue or abort the learning phase, the runtime checks
whether the I/O task time in the second learning epoch is at least half of the I/O task time
in the previous epoch. Since this condition is met, the runtime registers the average I/O
task time during the second epoch. Next, the runtime progresses the learning phase until it
stops after the fourth epoch because the continuation condition is violated; the task time in
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the fourth epoch is not at least half of the task time in the third epoch. Upon the termination
of the learning phase, the runtime applies the auto constraint registry, that now contains
the average I/O task time in three learning epochs, to objective function 4.1. Finally, the
runtime sets the constraint to 8 which is the value that minimizes the execution time of the
auto constrained checkpointFrag I/O tasks ready for scheduling.

Similarly, the learning phase progress of the bounded auto constraint auto(2,256,2) is
depicted in Figure 4.12(b). Using this type of auto constraints, the runtime starts the first
epoch with the minimum constraint value provided in the @constraint decorator in the
application code: 2. After the end of the first epoch, the runtime registers the average I/O
task time and progress the learning phase by multiplying the current constraint value by
the value of delta provided in the application code: 2. Therefore, the second learning epoch
has a constraint of 4. The learning phase keeps progressing in this manner until the current
value of the constraint becomes bigger than the maximum value provided by the user: 256.
Therefore, the learning phase stops after the eighth learning epoch. Now that the runtime
has filled the auto constraint registry, it uses the auto constraint registry to minimize the
execution which in this case is 8.

As the bounded auto constraint spends more time in the learning phase, its application
total time is worse than the unbounded auto constraint that follows a stricter and shorter
learning process. In addition to that, the bounded auto constraint has a more fine-grained
auto constraint registry, since it tries higher constraint values. During most of the execution
time, the final constraint value of the bounded auto constraint and the unbounded auto
constraint is the same (in this application, this constraint value is 8). However, for a certain
number of scheduling-ready checkpointFrag I/O tasks, the fine-grained auto constraint reg-
istry of the bounded auto constraint may result in a different constraint value than the un-
bounded auto constraint for smaller number of tasks. However, the value of the constraint
is re-adjusted and the minimization function is re-evaluated every time a new checkpoint-
Frag I/O task arrives to the scheduler and the number of scheduling-ready checkpointFrag
I/O tasks increases. Therefore, if the runtime sets a high constraint value for a certain num-
ber of scheduling-ready tasks, this constraint value will be adjusted in the next scheduling
iteration.

4.5.3.2 Variants Discovery Pipeline

The Variants Discovery Pipeline is popular pipeline of tools in the field of bioinformatics
and computational genomics. The purpose of this pipeline is to discover genomic variants
in sequence data.

Figure 4.13 illustrates the PyCOMPSs tasks dependency graph of this pipeline. Since the
pipeline performs a lot of operations, we split it into three phases for visualization purposes:
Data Preprocessing, Data Mapping and Variant Calling. We defined a checkpointing task
for each major step in the pipeline to checkpoint the results of the pipeline so far. We define
a major step in the pipeline as the last step in each processing phase (e.g., convertSAMto-
FASTQ at the end of Data Processing phase) or any step that is not easily recomputed (e.g.,
after bwa_map in the Data Mapping phase). Decomposing and checkpointing the Variants
Discovery Pipeline in the aforementioned manner is recommended by the widely followed
Broad Institute Best Practices Guide [12]. This design of the pipeline has many advantages
other than failure recovery; for example, the intermediate checkpointed data can be used
for post-mortem analysis such as visualization, or to run separate pipelines on these data or
simply to be stored in genomic databases for using them as references in future experiments.

When two compute tasks produce output of the same size, they call the same check-
pointing task. For instance, the bwa_map that maps its input to the reference genome and
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FIGURE 4.13: Task Skeleton Of The Variants Discovery Pipeline

the sort task that sorts the mapped sequence, use the checkpoint_mapped task because they
produce almost the same size of output data.

We launched the experiments for this application with 1,728 sample sequence files. Each
sequence file has a size of 72 MB in a compressed gzipped format. For each input, the
application launches a separate pipeline to discover its variants. The input sequence files
and the meta-data are publicly available on the GATK Broad Institute servers [37] which
is a well-known resource for providing human sequencing data (e.g., sample sequences,
genome references, variants databases, etc.). Table 4.1 lists the checkpointing tasks in the
application and the data sizes that each task writes.

Figure 4.14 presents the performance results of different runs of the application. Using
both capabilities of I/O awareness (i.e., I/O tasks and storage bandwidth constraints) can
achieve up to 43% performance improvement in the total time of the application compared
to the baseline run. The non-constrained run has the worst total time because of the I/O con-
gestion that happens as all the I/O tasks concurrently access the node-local SSD disk of the
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TABLE 4.1: Amount Of Data Written By Checkpointing Tasks

Task Amount of Data Produced

checkpoint_fastq 162 MB
checkpoint_mapped 290 MB
checkpoint_merged 330 MB
checkpoint_marked 596 MB
checkpoint_grouped 615 MB

same worker node. In this run, a maximum of 325 I/O tasks are allowed to run concurrently
because 325 I/O executors are used. After several experimental runs, it was observed that
this number of I/O executors allows the execution of the maximum number of I/O tasks to
show the impact of I/O congestion without causing any node failures. Using the storage
bandwidth constraint immediately mitigates the I/O congestion problem and the total time
starts to improve. However, as the static storage bandwidth constraint increases, the total
time starts to degrade due to the decreased level of task parallelism. Moreover, both auto
constraints runs achieve performance improvement comparable to the optimal total time
when using a static constraint of 4 with some overhead incurred due to the time spent in the
learning phase.
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FIGURE 4.14: Experiment Results Of Variant Discovery Pipeline

It should be noted that in the static constraint runs, the same static constraint is used for
all the checkpointing tasks mentioned in Table 4.1. However, in the auto constraint runs,
the final value of the auto constraint is different for each checkpointing task. Each of these
checkpointing tasks has its own learning phase, and the objective function is evaluated for
each of them separately. Figures 4.15 to 4.19 show the learning phase progress for each
checkpointing task with the unbounded and bounded auto constraint.
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FIGURE 4.15: Learning Phase Of checkpoint_fastq Task

FIGURE 4.16: Learning Phase Of checkpoint_mapped Task

FIGURE 4.17: Learning Phase Of checkpoint_marked Task
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FIGURE 4.18: Learning Phase Of checkpoint_merged Task

FIGURE 4.19: Learning Phase Of checkpoint_grouped Task

It can be noticed from Figures 4.15 to 4.19 that each checkpointing task goes through its
own learning phase. The runtime uses the constraint value that will optimize the execution
of the I/O workload of this task independently of the other checkpointing tasks. Table 4.2
lists the final auto constraints that were used for each checkpointing I/O task.

TABLE 4.2: Constraint Values For Checkpointing Tasks

Task Constraint

checkpoint_fastq 16
checkpoint_mapped 8
checkpoint_merged 4
checkpoint_marked 4
checkpoint_grouped 4

Although different constraints are used for each checkpointing I/O task, using auto con-
straints can achieve a total time close to the optimal total time achieved when a static con-
straint of 4 is used. This is possible because the runtime sets the auto constraint for the
checkpoint_merged and checkpoint_grouped tasks to 4, which is the constraint that leads to the
best total time. Therefore, unlike static constraints where a certain constraint value maybe
optimal for one checkpointing task but not optimal for the others, auto constraints will use
the constraint that achieve best possible I/O task time and total execution time.
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Note that the constraint choice of both: checkpoint_merged and checkpoint_grouped has
bigger impact on the total time than the other checkpointing tasks because these two tasks
are executed at the end of the pipeline where there are no compute tasks that can hide the
effect of using a bad constraint.

4.5.3.3 Kmeans Application

In order to evaluate the impact of the number of I/O tasks on the time of the learning
phase of the auto constraints and consequently the application total time, we run multi-
ple experiments with the Kmeans application as an example of iterative applications. The
Kmeans Algorithm is a well-known machine learning algorithm that is widely used for dif-
ferent purposes such as cluster analysis in data mining fields. The Kmeans application fol-
lows an iterative process where it groups a set of multidimensional points into a number of
clusters following a nearest mean distance rule. By changing the number of iterations, we
change the number of tasks that will be executed in the application. Increasing the number
of iterations will generate more tasks to be executed.

The dataset considered for evaluating the Kmeans application is composed of 10,000,000
points of 1000 dimensions, 3,000 centers and 500 fragments. Each of the checkpointing tasks
writes 109 MB to the SSD storage disks.

Figure 4.20 shows the task dependency skeleton graph of the Kmeans application imple-
mented with PyCOMPSs. A generate_fragment generates fragments of random data given a
specific seed. In each iteration, the partial_sum task is called on each fragment to calculate
the distance of each point to all cluster centers. The new centers are checkpointed using the
checkpointCenters task.

generate_fragment

partial_sum

checkpointCenters

kmeans_merge

main

Compute
Phase

I/O
Phase

K-means
Iteration

FIGURE 4.20: Task Skeleton Of The Kmeans Application

Figure 4.21 shows the experiments results of the Kmeans applications with different
number of iterations. It can be noticed that with a single iteration the results of both of
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the auto constraints experiments do not show a performance improvement. This can be
explained due to the small number of auto-constrained checkpointing tasks in the applica-
tion. Out of 500 checkpointing tasks to be executed, the unbounded auto constraint uses 435
checkpointing tasks for learning, whereas the bounded auto constraint uses 446 checkpoint-
ing tasks. Therefore, after the learning phase ends, a very small number of checkpointing
tasks remains to take advantage of the results of the learning phase.

In order to validate this conclusion, we repeated the experiments but this time with
higher numbers of iterations (3 and 6). In the case of 3 iterations, the total number of check-
pointing task available for execution increases to 1500 tasks. Consequently, the number of
auto-constrained tasks available for execution increases and we start getting performance
improvement for both of the auto constraints. This gain increases with increasing the num-
ber of iterations because the application can make up the time spent in the learning phase
and more I/O tasks overlap with the execution of compute tasks.
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FIGURE 4.21: Kmeans Application With Different Number Of Iterations

4.5.4 Hyper-parameters Experiments

In this section, we evaluate the performance impact of changing the values of the hyper-
parameters of both of the auto constraints. In the case of the bounded auto constraint, these
parameters are min, max and delta set by the user in the @constraint decorator. Whereas
in the case of the unbounded auto constraint, the hyper-parameter is the number of I/O
executor threads per worker node.

To this end, we repeated the experiments of the HMMER application (homogeneous
I/O workload) and the Variants Discovery Pipeline (heterogeneous I/O workload) using
auto constraints with different hyper-parameter values. Figure 4.22 shows the experiment
results for both applications. It can be noted that in both applications, changing the values
of the hyper-parameters impacts the total performance. In the HMMER application (Figure
4.22(a)), the optimal constraint is 8 so setting the constraint to auto(2,256,2) incurs a long
learning phase. Whereas adjusting the min and max values to auto(4,16,2) shortens the learn-
ing phase and results in a better total time. In another run, Setting a big value of delta like
in the constraint auto(4,256,4) to speed up the learning phase resulted in a worse total time
because a big value of delta skipped the optimal constraint, i.e., 8.

Furthermore, continuing with Figure 4.22(a), we can see that the unbounded auto con-
straint achieves better results. Using an unbounded auto constraint with 225 I/O executors
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incurs a longer learning time because the starting constraint is 2. However, the learning
time in this case is not as long as auto(2,256,2) due to the strict learning conditions of the
unbounded auto constraint. Decreasing the number of I/O executors results in a better total
time since it approaches the optimal constraint: 8. With 112 I/O executors, the constraint of
the first learning epoch will be set to 4 whereas it will be set to 8 with 56 I/O executors.

Likewise, a similar behaviour can be seen with the Variants Discovery Pipeline (Figure
4.22(b)). Adjusting the boundaries of the hyper-parameters like in auto(4,16,2) to decrease
the learning phase improves the total time. Also, using a larger value of delta (auto(2,256,4))
may result in an increase in the total time because optimal constraints are skipped. On the
other hand, using unbounded constraints achieve better total time: using 225 I/O executor
achieves better total time than auto(2,256,2) because of the shorter learning phase. Moreover,
using 112 I/O executors achieves better total time because the learning epoch starts with
constraint value 4 which is the optimal constraint for the two checkpointing tasks at the
end of the pipeline (i.e., checkpoint_merged and checkpoint_grouped) and the learning phase is
shorter.

4.6 Discussion

This chapter of the thesis targets enabling I/O awareness in task-based programming
models. I/O aware models are able to exploit I/O intensive applications and provide mech-
anisms for solving I/O performance bottlenecks such as I/O congestion. Such mechanisms
are exposed to users with abstractions that try to express the inherent parallelism of appli-
cations and also maintain the programming complexity at minimum.

In order to take advantage of the I/O awareness capabilities, it is necessary to separate
I/O from computation when programming applications. Hence, an I/O aware runtime
system can take advantage of I/O properties to improve the performance of applications.

I/O awareness increases the amount of parallelism inherent in I/O intensive applica-
tions by taking advantage of the optimization opportunities possible due to I/O workloads
and compute-I/O patterns. With an I/O aware task-based programming model, opportu-
nities for compute-I/O execution overlap can be exploited. In addition to that, I/O per-
formance bottlenecks such as I/O congestion can be mitigated, thus resulting in total time
performance improvements.

Unlike global I/O system schedulers that target minimizing I/O congestion for different
running applications, we presented in this chapter a mechanism for I/O mitigation that
only takes into consideration application-specific parameters such as the number of I/O
tasks and their performance at different levels of parallelism. These information are then
used to calculate a convenient constraint value that targets both I/O performance and total
application performance.

We implemented the I/O awareness capabilities in the PyCOMPSs tasking framework
and evaluated it with different I/O workloads. The evaluation demonstrates that signif-
icant total performance improvement can be achieved compared to the default I/O non-
aware PyCOMPSs implementation. Our experiments show that total performance will not
be achieved only by overlapping the execution of compute and I/O tasks because the nega-
tive effects of increasing I/O congestion. Therefore, mitigating I/O congestion by using the
storage bandwidth constraint is pivotal to get total performance improvement.

As future work, we plan to extend our proposals to address the case when shared re-
sources are used to absorb the I/O of applications. In this scenario, certain assumptions and
modified mechanisms have to be adopted to take into account the I/O performance vari-
ability on shared resources. Furthermore, we aim to extend the auto-tunable constraints to
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support the inference of other constraints such as as memory size and number of processes
in MPI tasks executions.
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Chapter 5

Managing Storage Systems
Heterogeneity

SUMMARY

Task-based programming models have enabled the optimized execution of the compu-
tation workloads of applications. Such models can take advantage of large-scale distributed
infrastructures by allowing the parallel execution of applications in high-level work compo-
nents called tasks. Therefore, greatly improving the computing performance of applications.

Nevertheless, in the era of Big Data and Exascale, the amount of data produced by ap-
plications has already surpassed terabytes and is rapidly increasing. Hence, I/O became the
bottleneck to overcome in order to improve applications performance.

New storage technologies offer higher bandwidth and faster solutions than traditional
Parallel File Systems (PFS). Such storage devices are deployed in modern day infrastructures
to boost I/O performance by absorbing the increasing amounts of data generated by appli-
cations. Hence, it is necessary for any programming model targeting more performance to
manage this heterogeneity and take advantage of it to maximize performance.

This chapter focuses on solving the research question, Q2, concerned with providing
suitable abstractions to address the heterogeneity of modern storage systems. More specif-
ically, this chapter proposes enabling Storage-heterogeneity awareness in task-based systems,
that is, transparently leveraging the underlying heterogeneous storage devices to improve
I/O performance, consequently, optimizing whole application execution.

In this chapter, we describe a set of proposals that should be supported in any storage-
heterogeneity aware programming model. These proposals include: First, abstracting the
underlying heterogeneity of storage systems from application developers and organizing it
in a hierarchy to improve applications performance. Second, supporting dedicated I/O
schedulers with different scheduling policies to optimize the execution of different I/O
workloads. Finally, an automatic data movement flushing technique to maximize the us-
age of faster storage devices.

In addition to that, this chapter describes the design and implementation details of the
aforementioned proposals in the PyCOMPSs task-based programming model.

The evaluation section presents the performance results of different applications on the
MareNostrum CTE-Power cluster. This cluster has heterogeneous storage infrastructure
that contains multiple storage layers. Our experiments demonstrate that such proposals
can achieve up to almost 5x I/O performance speedup and 48% total time improvement
compared to the reference PFS-based usage of the execution infrastructure.
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5.1 Overview

Task-based programming models offer suitable abstractions that allow the exploitation
of large-scale distributed execution environments. Such models are able to take advantage of
distributed heterogeneous computing infrastructures, therefore, delivering increased com-
putational performance.

However, modern applications process and generate huge amounts of data [31]. As
previously discussed in Section 1.1.2, scientific and big data applications produce increasing
amounts of data and aim for resilience (e.g., checkpointing the applications intermediate
data to enable restart after failure) [47]. In addition to that, storage systems that rely on
Parallel File Systems (PFS) (e.g., Lustre [11] or GPFS [96]) face significant challenges in terms
of limited performance [122]. Therefore, applications have gone through a paradigm shift
where improving I/O performance becomes critical for enhancing the whole application
performance [117].

As a response to the need for absorbing large amounts of data and optimizing I/O per-
formance, large-scale systems have incorporated newly emerging storage technologies such
as Non-Volatile RAM (NVRAM) [78] and Solid-State Drivers (SSD) [69] into their underlying
base storage system of the PFS. These storage devices can help reducing the gap between
compute and I/O performance because of their high I/O bandwidth and low latency ca-
pabilities. They act as Burst Buffers [63] that absorb the data produced by applications in
their I/O-dominant phase. This approach can improve applications I/O performance by
providing a fast solution to write data from memory and enhancing applications reliability.

Even though this heterogeneity in the storage systems design would benefit applica-
tions I/O performance, it comes with additional complexity that could prevent achieving
enhanced I/O performance [17]. Each storage device needs to be provisioned according
to its own capabilities in order to achieve maximum performance. For instance, because of
the limited capacity of each device, I/O workload should be distributed in a manner to opti-
mize overall I/O execution. In addition to that, each storage device has to be provisioned for
bandwidth to avoid the problem of I/O congestion that negatively impacts the performance
[36].

Due to the lack of sufficient mechanisms and techniques to optimize I/O performance
in traditional task-based programming models (see Section 5.2), the aforementioned com-
plexities are exposed to application programmers. It becomes their responsibility to carry
the burden of planning and optimizing applications execution on heterogeneous storage
systems. Leading not only to a complex development process, but also to possible under-
utilization of the storage system and wasted I/O performance improvement opportunities.

In this chapter, we address the need for seamlessly and transparently managing hetero-
geneous storage devices and taking advantage of them to optimize I/O performance. To
this end, we propose enabling Storage-Heterogeneity Awareness in task-based programming
models. The main idea herein is to abstract all the details of the storage infrastructure and
expose it as a single storage unit to application programmers. Furthermore, heterogeneity-
aware task-based models should provide execution time support to organize different stor-
age devices into layers to optimize the use of each layer for performance.

Following this approach has twofold advantages:

• First, reducing infrastructure complexities and easing applications development. Ap-
plication code becomes agnostic to the underlying storage system. Hence, no code
modifications are required to adapt to changes in the storage infrastructure.

• Second, maximizing I/O performance given a set of storage layers with different capa-
bilities. This performance improvement can be achieved because task-based program-
ming models have execution time knowledge about the state of each storage layer (e.g.,
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capacity, bandwidth). Thus, optimized scheduling decisions can be made. In addition
to that, task-based models have knowledge about data dependencies between tasks.
Such information can be used to free storage layers capacities. Hence, maximizing the
utilization of storage layers that offer high bandwidth.

Supporting these capabilities at programming model level allows the optimization of
execution based on the characteristic of applications such as their I/O workloads, data re-
quirements of tasks, etc. In addition to performing data management in heterogeneous
storage systems in a completely transparent manner to application developers.

The main contributions of this chapter can be summarized as follows:

• A proposal to enable task-based models to abstract the heterogeneity of storage sys-
tems and expose it as a single resource to optimize I/O performance.

• Dedicated I/O schedulers that provide different scheduling policies. Each policy tar-
gets the optimization of I/O execution for certain scenarios.

• An automatic data movement flushing mechanism to maximize the utilization of the
storage system.

These proposals are implemented in the PyCOMPSs task-based programming model
[100]. We demonstrate the benefits of these proposals by evaluating the implementation pro-
totype with different applications that exhibit different I/O workloads. All the experiments
were run on an execution platform with heterogeneous storage systems: The MareNostrum
CTE-Power Cluster of the Barcelona Supercomputing Center. Our experiments show signif-
icant performance improvements that reached up to 5x I/O performance speedup and 48%
total time improvement compared to the reference PFS-based implementation.

The rest of this chapter is organized as follows: Section 5.2 presents the related work.
Section 5.3 introduces the contributions of the chapter: the I/O schedulers and the data
movement mechanism. Section 5.4 describes the implementation details of the proposals in
the PyCOMPSs framework. The performance results are presented and analyzed in Section
5.5. Finally, Section 5.6 discusses the main conclusions of this chapter.

5.2 Related Work

Task-based programming models offer different interfaces and schedulers that try to ex-
ploit large-scale infrastructures to maximize the performance of applications compute work-
loads. However, they do not provide similar runtime support that specifically targets I/O
performance optimization. Therefore, performance improvement opportunities are wasted.
Examples of such programming models were previously described in Section 2.1 and Sec-
tion 4.2.

Previous research efforts targeted abstracting the heterogeneity of storage and memory
systems to maximize I/O performance. MLBS [3] is a library for optimizing oil exploration
simulation application by maximizing the usage of high bandwidth memories and data
movement between the PFS and faster storage and memory layers. Hermes [52] and UniviS-
tor [114] present a system for I/O buffering and optimizing data movement between differ-
ent storage and memory layers. DataWarp [41] and Data Elevator [25] are burst buffer man-
agement software that enhance applications writes by redirecting them to remote-shared
burst buffers from PFS. Systems such as BurstFS [112] and BurstMem [113] propose to redi-
rect I/O write calls to node-local SSDs.

In contrast to previous work, we propose in this chapter an application-level program-
ming model support to transparently optimize the usage of heterogeneous storage systems.
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Unlike system-level solutions and middleware, our proposals do not require any system ad-
ministration nor configuration knowledge or effort. Users can directly launch heterogeneity-
aware PyCOMPSs applications without requiring to install or setup any filesystem or system
middleware nor link any external libraries nor launch any external processes or daemons.
As the proposals of this chapter are supported by the programming model, it increases ap-
plications portability because there are no prerequisite system installation nor external soft-
ware configuration.

In addition to that, because the proposals of this chapter are programming model exten-
sions, they are application-specific, i.e., they target the optimization of the running applica-
tions based on their execution patterns and performance on the underlying infrastructure,
instead of relying on global system-wide metrics.

5.3 Storage Heterogeneity Awareness

Although the heterogeneous design of storage systems can offer drastic improvements
in terms of I/O performance, programming for performance improvement on such sys-
tems is a major challenge. For instance, it is difficult to find out the optimal scheduling of
the I/O tasks that would maximize the performance gain out of the storage infrastructure.
Application developers have to manually determine which and how much data should be
written to each storage device in the infrastructure. Such an approach can be possible with
applications that exhibit a small number of I/O tasks. However, it is prohibitive in large
applications that have a big number of I/O tasks and produce different amounts of data.

Consequently, the main purpose of our work in this chapter is twofold:

• On the one hand, to maximize the advantage of the heterogeneity of modern storage
infrastructure to alleviate the performance gap between I/O and computation.

• On the other hand, achieve such performance maximization in a transparent manner
without increasing programming difficulty.

We argue that this goal can be achieved by enabling task-based models to be Storage-
heterogeneity Aware. Defining a task-based model as storage heterogeneity-aware means that
it is able to exploit the capabilities of the underlying storage infrastructure to improve I/O
performance in a transparent way to application developers. To achieve such transparency,
programming models should abstract the heterogeneity of the underlying storage system
and expose it as a single pooled resource. Different storage devices can be organized into
layers according to the bandwidth of each device. Such hierarchical arrangement can be
made so that the highest storage layer offers the highest bandwidth, while the bottom layer
offers the least bandwidth. If two storage devices have the same bandwidth, then the device
that has less capacity should precede the device that has more capacity.

The objective of such an arrangement is to increase I/O task parallelism as much as pos-
sible by maximizing the usage of higher layers. As higher storage layers provide higher
bandwidth, they can allow more I/O task parallelism (i.e., more I/O tasks running concur-
rently) without causing I/O congestion.

Figure 5.1 shows the two approaches of handling heterogeneous storage systems. The
traditional heterogeneous non-aware approach (Figure 5.1(a)) exposes all the storage de-
vices to application developers. With this approach, users manually specify the full path
of the storage device to write the data to it. There is no runtime support to control the as-
signment of tasks to different storage devices. Whereas our proposed heterogeneous-aware
approach (Figure 5.1(b)) organizes the storage devices into one pooled resource. In this case,
the heterogeneity of the storage system is hidden from applications. Consequently, there is
no need to modify the applications to adapt to infrastructure changes. In addition to that,
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it is the responsibility of the runtime system to exploit the capabilities of the storage infras-
tructure to optimize applications execution.

End User

PFS

NVRAM

(a) Heterogeneous Non-Aware

End User
PFS

NVRAM

Pool of Storage Devices

(b) Heterogeneous Aware

FIGURE 5.1: Different Views Of Storage Systems Heterogeneity

Figure 5.2 depicts a high-level view of the heterogeneous-aware organization of the stor-
age system of the MareNostrum CTE-Power cluster of the Barcelona Supercomputing Cen-
ter [33]. A storage-heterogeneity aware programming model would organize the storage
infrastructure of the CTE-Power cluster into three hierarchical layers: the top layer contains
two NVRAM devices, each with a maximum bandwidth of ~6 GB/s and capacity of 3 TBs.
In the second layer, there are two SSD storage devices, each with a maximum bandwidth of
~3 GB/s and 1.9 TB capacity. Finally, the PFS resides at the bottom layer with a maximum
bandwidth of ~900 MB/s and total capacity of 8 Petabytes.

In addition to heterogeneity abstraction, heterogeneous-aware task-based systems should
optimize the execution of applications by scheduling I/O tasks in a manner to exploit the
capabilities of the different storage devices. Since higher storage layers offer more band-
width, they allow more task parallelism. The higher the layer, the more I/O tasks that can
be launched concurrently on this layer without exceeding its maximum bandwidth. Hence,
improving performance.

In this chapter, we propose dedicated I/O schedulers. Each scheduler offers a different
policy to optimize I/O tasks execution taking advantage of the heterogeneous-aware view
of storage infrastructures.

Furthermore, in order to maximize the usage of higher storage layers, we propose an au-
tomatic data movement mechanism to flush obsolete data from higher layers to lower levels
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FIGURE 5.2: Heterogeneous-Aware Storage Layers Organization Of The
MareNostrum CTE-Power Cluster

in a transparent manner to application developers. Consequently, continuously freeing the
capacities of higher storage layers so that more tasks can be scheduled to them. Identifying
such data is possible because the runtime system of the task-based programming model al-
ready has information about if any data would be required as inputs by any future successor
tasks.

The remainder of this section is decomposed as follows: First, we describe the program-
ming model abstractions to specify I/O tasks and their bandwidth requirements in Section
5.3.1. Then, Section 5.3.2 describes the scheduling model. Section 5.3.3 introduces two I/O
dedicated schedulers with their different policies. Finally, Section 5.3.4 details the automatic
approach for flushing data.

5.3.1 Programming Model Abstractions

The focus of this thesis, and consequently of this chapter, is to introduce techniques to
optimize I/O performance without increasing the complexity of applications development.
Therefore, we take advantage of the I/O awareness abstractions that were previously de-
scribed in Chapter 4 to implement the proposals of this chapter.

In order to separate I/O from computations, we use the I/O Task abstraction that has
been already discussed in Section 4.4.1. I/O tasks can be handled by the programming
model runtime system to exploit parallelism opportunities to optimize applications execu-
tion. For instance, I/O tasks can be launched for execution even if there are no free com-
puting resources. Since I/O tasks do not consume a lot of CPU time, their execution can
be overlapped with compute tasks. An I/O task can be defined by annotating the target
function with the PyCOMPSs-defined Python decorator: @IO.

In addition to that, in order to specify constraints for I/O tasks execution such as es-
timated storage bandwidth and capacity, we use the @constraint PyCOMPSs decorator
as previously described in Section 4.4.2. The @constraint decorator enables the speci-
fication of the required bandwidth and capacity of a task by the use of storageBW and
storageSize respectively.
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Since the identification of the required bandwidth of tasks may not be simple at appli-
cation design time, we provide an automatic mechanism for setting and auto-tuning tasks
storage bandwidth constraints that is described in Section 4.4.3. Following this manner,
users can rely on the PyCOMPSs runtime system to set a suitable storage bandwidth con-
straint that will not optimize I/O performance, but also total application performance.

In both approaches (i.e., static or auto-tunable constraints), the model assumes that a
certain I/O task will produce the same I/O workload (e.g., write the same amount of data)
over application lifetime. This assumption is useful as it allows to take educated decisions
at scheduling time

Finally, in order to completely hide the storage infrastructure details from the application
code, the type of the target output files of an I/O task has to be specified as FILE_OUT in
the @task decorator. Such a type indicates to the COMPSs runtime that the associated
parameter is going to be an output file. Consequently, the COMPSs runtime redirects all the
I/O that will be done to this file to the device where the task has been scheduled. Hence,
in the task code, users can open a file for writing as if the file is in the current working
directory, i.e., without having to specify the complete path of the storage device. Moreover,
the COMPSs runtime handles data transfers between different storage layers or different
working nodes in a transparent manner.

Figure 5.3 illustrates the use of our proposed programming model abstractions to ab-
stract storage heterogeneity from task implementation and to transparently separate the
handling I/O and computations. The main part of the application code (Line 14) contains
multiple calls to two tasks: (i) A calculate task which is computing a certain value. (ii) A
checkpoint I/O task, which is writing the data that has been produced by the calculate
task. The required storage bandwidth (storageBW) and size (storageSize) are specified
using the @constraint decorator. The storage bandwidth can be explicitly specified or
delegated to the COMPSs runtime by the use of the auto-tunable constraints. When both
task calls arrive to the COMPSs runtime, the task dependency graph is built according to the
data dependencies, in this case every execution of the checkpoint task has a dependency
with a corresponding execution of a calculate compute task. However, at scheduling
time, the calculate task is assigned to the compute scheduler whereas the checkpoint
task is scheduled by the I/O scheduler. Moreover, it should be noted that in Line 7, the
parameter filename is defined as a FILE_OUT parameter. The details of to which storage
device the task has been scheduled and to which storage device the file will been written
does not affect the task implementation (Line 9).

FIGURE 5.3: Programming Model Support For Storage-Heterogeneity Aware-
ness

It should be noted that the available storage devices and their capabilities (e.g., capacity,
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bandwidth) are described in a configuration file and passed to PyCOMPSs at application
launch time. By using the maximum bandwidth that a storage device provides and the
bandwidth required by I/O tasks, the scheduler can control the scheduling of tasks.

5.3.2 Scheduling Model

I/O schedulers can take optimized scheduling decisions based on execution time ob-
jectives. Such objectives can be specified as avoiding I/O congestion and maximizing the
utilization of higher layers in the storage hierarchical organization.

All I/O tasks should be scheduled with the I/O scheduler in a transparent manner.
Hence, application developers do not have to be concerned about how the heterogeneous
storage resources should be used to get the maximum benefit out of the storage infrastruc-
ture.

Before introducing the scheduling model, it is important to arrange the available storage
resources of each worker into the hierarchical view discussed in Section 5.3. After launch-
ing the application, the runtime system loads all available information about the storage
layers and creates a list ranked from the highest bandwidth to the lowest bandwidth in each
worker resource. The scheduling of I/O tasks to the storage layers should be done from
top to bottom across all storage layers, starting from the storage layer that offers the highest
bandwidth until it reaches the bottom storage layer that has the lowest bandwidth.

The scheduling routine is presented in Algorithm 1. It tries to schedule an I/O task t to
the highest possible layer of one of the workers in the workers set W . If the task is scheduled,
it returns True, otherwise, False. Line 2 defines Wcandidates which is the set of workers that
can currently host task t execution. Line 3 retrieves task t storage requirements, i.e., storage
bandwidth BWReq and capacity CReq. In Lines 4 through 12, every storage layer on each
worker is considered. For each layer l on worker w, the storage parameters of the layer
are retrieved, i.e., current available bandwidth BWAvail and capacity CReq (Line 6). Line 7
describes how the decision of whether to schedule the I/O task t to a certain storage layer l
on worker w is made. Such decision depends on two execution time variables:

i Whether the bandwidth requested by the task (BWReq) exceeds the current available
bandwidth of the storage layer (BWAvail).

ii Whether there is enough capacity (CAvail) on this layer to satisfy the task required
capacity (CReq).

If the storage layer l does not have enough capacity, or if launching the task will cause
I/O congestion, then the scheduler considers the next storage layer of worker w. Otherwise,
if the storage and bandwidth conditions are satisfied, then worker w is added to the set
of candidates that can host the task execution Wcandidates. Then, Line 9 skips the rest of
the layers on the current worker because it is guaranteed that the next layers provide less
bandwidth.

After all the workers W are considered, Line 13 checks if the set of candidate workers
Wcandidates contains any worker. On the one hand, if it does not contain any worker then this
means that the requirements of task t cannot be satisfied by any of the storage layers of any
worker. Hence, the scheduler decides not to launch the task and waits to the next scheduling
iteration, so that enough bandwidth becomes available when some of the currently running
tasks finish execution.

On the other hand, if Wcandidates contains candidate workers, then Line 16 retrieves the
best candidate worker wtarget and its storage layer ltarget out of all candidate workers set.
The best worker is the one that has the highest storage layer that can host the task execution.
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Finally, the bandwidth and capacity of the target layer ltarget are updated (Lines 18, 19) and
the target worker wtarget and layer ltarget is set for task t (Lines 20, 21).

The scheduling algorithm in Algorithm 1 is simple but it reflects the motivation of this
work, that is, to improve I/O performance by prioritizing the usage of higher/faster storage
layers while also preventing I/O congestion. This is achieved by monitoring the current
state of the storage resources and controlling I/O tasks scheduling.

Algorithm 1: Scheduling Algorithm
Input : t as I/O task, W as the set of available workers
Output: True if the task can be scheduled, False otherwise

1 Function Schedule(t, W):

2 Wcandidates ←− ∅
3 BWReq, CReq ←− getStorageReqs(t)

4 foreach w ∈W do

5 foreach l ∈ Layersw do

6 BWAvail, CAvail ←− getAvailStorageParams(l)

7 if BWReq ≤ BWAvail and CReq ≤ CAvail then

8 Wcandidates.insert(w)

9 Continue

10 end

11 end

12 end

13 if Wcandidates == ∅ then

14 return False

15 else

16 wtarget, ltarget ←− getBestCandidate(Wcandidates)

17 BWAvail, CAvail ←− getAvailStorageParams(ltarget)

18 BWAvail ←− BWAvail −BWReq

19 CAvail ←− CAvail − CReq

20 t.setTargetWorker(wtarget)

21 t.setTargetStorageLayer(ltarget)

22 return True

23 end

24 End Function

Since each storage layer is a scarce resource with limited capacities, the decision of which
I/O task to be considered for scheduling on a certain storage layer is crucial to our objec-
tive, i.e., maximizing the utilization of higher layers to increase I/O task parallelism and
improve I/O performance. To this goal, in the next sections, we introduce two classes of
I/O schedulers with different scheduling policies. Each scheduler is responsible for taking
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an execution time decision about which tasks should be considered for scheduling on which
storage layer to optimize I/O execution in certain scenarios.

5.3.3 I/O Schedulers

This section introduces two different classes of I/O schedulers:

1. Homogeneous I/O Scheduler (Section 5.3.3.1).

2. Heterogeneous I/O Scheduler (Section 5.3.3.2).

Both schedulers follow the same core behaviour: suppose that an application executes
a number of T I/O tasks, each scheduler has a dependency-free subset of the T tasks to
be launched for execution on a number of worker nodes with heterogeneous storage lay-
ers. Both schedulers use the algorithm described in Section 5.3.2 to check if a task can be
scheduled to a certain layer on a worker. However, each scheduler differs in the strategy of
choosing which I/O task to be considered first for scheduling.

5.3.3.1 Homogeneous I/O Scheduler

We propose this class of schedulers to be used when the I/O workload of applications is
homogeneous, i.e., the amount of data to be written by I/O tasks does not change throughout
the lifetime of the application. Hence, I/O tasks can be scheduled to a suitable storage layer
without worrying about scheduling fairness or not achieving optimal performance. This
is because this class of I/O schedulers assumes that it will not receive a more critical I/O
workload at a later point of the execution, i.e., I/O tasks that write more data and require
more bandwidth.

Under this class of schedulers, we propose a First Come First Served (FCFS) I/O scheduler.
The next section describes this scheduling scheduler in more detail.

5.3.3.1.1 First Come First Served

This scheduler works similarly to a traditional First Come First Served (FCFS) job sched-
uler. It schedules I/O tasks depending on the order in which they arrive. Figure 5.4 illus-
trates the behaviour of this scheduler. Each storage layer is considered in terms of current
available capacity and storage bandwidth, if either properties does not satisfy the task re-
quirements, then the next layer is considered.

The pseudocode in Algorithm 2 describes the details of how the FCFS I/O scheduler
works. For all the tasks in the task set T , try to schedule current task ti on all the workers
W by calling the Schedule routine that is described in Algorithm 1. If the current task ti
can be scheduled, then it is added to the set of scheduled tasks TSched to be launched for
execution. Otherwise, if task ti cannot be scheduled, it waits in the queue until the next
scheduling iteration. Then, the next task is considered.

As previously presented in Algorithm 1, an I/O task will only be scheduled on the target
layer if there is enough capacity in the target layer as well as the execution of this task will
not create a bandwidth contention on the layer.
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FIGURE 5.4: Overview Of The Homogeneous FCFS I/O Scheduler; Tasks are
Scheduled In A Top-Down Fashion In A First Come First Served Manner

Algorithm 2: First Come First Served I/O Scheduler
Input : T as the set of I/O Tasks ready for scheduling, W as the set of available

workers
Output: TSched set of scheduled I/O tasks

1 Function FCFS(T,W):

2 foreach ti ∈ T do

3 if Schedule(ti, W ) then

4 add ti to TSched

5 end

6 end

7 return TSched

8 End Function
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5.3.3.2 Heterogeneous I/O Schedulers

While the FCFS scheduler tries to take advantage of storage layers that offer higher band-
width, it may not be suitable for applications that have multiple I/O tasks, each task produc-
ing a different amount of I/O (i.e., have different storage bandwidth and capacity require-
ments). In such scenario, using a FCFS scheduler may lead to unfair scheduling that results
in sub-optimal performance. This can be explained because the FCFS scheduler processes
the tasks in the order in which they arrive, and it may occur that the first batch of tasks to
arrive to the scheduler requires less bandwidth compared to tasks that arrive afterwards.
Hence, tasks that require higher bandwidth will be scheduled on lower storage layers be-
cause the first batch of tasks have consumed the bandwidth and/or capacity of the higher
storage layers. Therefore, less parallelism will be achieved. In order to overcome this issue,
we propose the heterogeneous I/O schedulers that can be used for optimizing applications
that exhibit heterogeneous I/O workload.

A heterogeneous I/O scheduler takes into consideration the bandwidth requirements of
tasks, such that tasks that have higher bandwidth requirements are given precedence to be
scheduled on higher storage layers. In addition to that, it uses execution time information
about tasks performance on the storage layers to optimize the scheduling decisions (as will
be explained in Sections 5.3.3.2.1 and 5.3.3.2.2).

The rationale behind the heterogeneous I/O scheduler is to maximize the utilization of
storage layers that offer higher bandwidth because they allow more task parallelism, i.e., al-
low a bigger number of higher bandwidth tasks to run concurrently than bottom layers that
offer less bandwidth. Hence, task parallelism is increased and improved I/O performance
can be achieved.

Such behaviour is achieved by sorting the incoming I/O tasks according to their band-
width requirements in a descending order, so that the tasks that require higher bandwidth
would be scheduled before the tasks that require less bandwidth.

Figure 5.5 illustrates an overview of how the heterogeneous I/O schedulers work. Tasks
with higher bandwidth requirements (red tasks then yellow tasks) will be scheduled before
tasks with lower bandwidth requirements (green tasks) even though they have arrived later
than the green tasks. Hence, more critical tasks will run concurrently on the higher storage
layers because such layers provide more bandwidth.

PFS

NVRAM

Pool of Storage Devices

ti+2ti+1

COMPSs Scheduler

Low BW I/O
Task

ti

Medium BW I/O
Task

High BW I/O
Task

ti : task arrived at time i 

FIGURE 5.5: Overview Of Heterogeneous I/O Schedulers; Tasks are Sched-
uled In A Top-Down Fashion According To Their Bandwidth Requirements
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We enable two scheduling policies for this scheduler: Modified Priority (Section 5.3.3.2.1)
and Backfilling (Section 5.3.3.2.2).

5.3.3.2.1 Modified Priority

This scheduler is similar to a traditional priority scheduler. Tasks are scheduled accord-
ing to a certain priority that is determined by a task requirement. In our case, a task has a
higher priority if it has a higher storage bandwidth requirement. Tasks with higher prior-
ity are scheduled before tasks with lower priority, whereas tasks with equal priorities are
scheduled in a first come first served manner.

Figure 5.6 shows the execution trace of a sample application that uses the modified prior-
ity I/O scheduler. This application has 10 I/O tasks launched at the same time: 4 tasks have
a certain bandwidth requirement (in red), while the other tasks have a lower bandwidth
requirement (in blue). The Y-axis of this figure represents the threads that execute the tasks,
while the X-axis represents time. The storage system can host the execution of a maximum
of 2 concurrent red tasks or 4 concurrent blue tasks. Using the Modified Priority scheduler,
blue tasks have to wait for the scheduling and execution of red tasks to be completely fin-
ished. Tasks are strictly scheduled in the order of their bandwidth requirements. If any red
tasks cannot be currently scheduled, the whole scheduling iteration is aborted until there
are enough resources to schedule the waiting task.
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FIGURE 5.6: Execution Trace of An Application That Uses Modified Priority
Scheduler

We modified the behaviour of the priority scheduler to maximize the utilization of higher
storage layers. This modification allows the scheduler to not launch a certain task immedi-
ately and wait until a higher storage layer becomes available on any worker. If a task has
been already scheduled to be executed and has been an assigned storage layer of a certain
worker, this task will not be immediately launched to the assigned layer, instead, it will wait
until its requirements become available on a higher storage layer. The decision of whether
to immediately launch the task or not is based on whether there is an execution time benefit
from waiting until a higher storage layer becomes available. Such benefit is estimated by
checking if the combined time of waiting until a layer becomes ready plus the average task
execution time on that layer is less than the average task execution time on the assigned
layer.

Algorithm 3 depicts the pseudocode for the priority scheduler . The first difference be-
tween this scheduler and the FCFS scheduler is that I/O tasks have to be sorted according
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to their bandwidth before the start of the scheduling process. Hence, while going through
the storage layers of the workers from top to bottom, the scheduler first considers tasks with
higher bandwidth for each layer. Using the priority scheduler , if a task cannot be scheduled
to a certain layer then the scheduler stops and does not consider the next task in the queue
until the next scheduling iteration. This approach tries to avoid that the capacities of the
storage layers get totally consumed by tasks with less bandwidth.

It should be noted that the scheduler starts another scheduling iteration once any task
returns from execution, freeing storage resources that can be re-used such as bandwidth.

Algorithm 3: Priority Scheduler
Input : T as the set of I/O Tasks ready for scheduling, W as the set of available

workers
Output: TSched as the set of scheduled I/O tasks

1 Function PRIORITY(T,W):

2 TSorted ←− sortBWDescending(T )

3 foreach ti ∈ TSorted do

4 if Schedule(ti, W ) then

5 if canMaximize(ti, W ) then

6 Break

7 else

8 add ti to TSched

9 end

10 else

11 Break

12 end

13 end

14 return TSched

15 End Function

Another notable difference in Algorithm 3 is the canMaximize routine (Line 5). The pur-
pose of this routine is to maximize the utilization of higher storage layers. If a task can ben-
efit from waiting until a higher layer can host it, then it should not be immediately launched
for execution to the assigned worker and storage layer.

Algorithm 4 shows the pseudocode of the canMaximize routine. For all available re-
sources, it goes through all the storage layers with higher bandwidth than the task’s as-
signed storage layer lassigned. For each layer, the benefit of making the task wait until a
higher layer becomes available is checked (Line 9). This is done by comparing the time a
task has to wait to be executed on the candidate layer (wl) added to the average execution
time on the candidate layer (el) against the average execution time on the assigned layer
(eassigned). If there is a time benefit from not immediately scheduling the task, then the rou-
tine returns to the main scheduling routine in Algorithm 3. Otherwise, the same check is
repeated to the remaining storage layers on the remaining workers.

The waiting time for a task, i.e., the time a task has to wait to be executed on a certain
storage layer, is calculated by calling the estimateWaitingTime routine (Line 8). It can
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be found by calculating the minimum remaining execution time of all the tasks currently
running on that storage layer. The remaining execution time of a running task on a certain
storage layer l can be calculated using the following formula:

remainingT imet = averageT imet − startT imet

where:
remainingT imet: remaining execution time of task t on the storage layer.
averageT imet: average execution time of task t on the storage layer.
startT imet: start execution time of task t on the storage layer.

Algorithm 4: Storage Layer Maximization
Input : t as I/O task, W as set of available workers
Output: True If it is better to wait for higher layer, False otherwise

1 Function canMaximize(t, W):

2 lassigned ←− getAssignedStorageLayer(t)

3 foreach w ∈W do

4 foreach l ∈ Layersw do

5 if l ≥ lassigned then

6 Continue

7 else

8 waitingT ime←− estimateWaitingT ime(l)

9 if waitingT ime+ el < eassigned then

10 return True

11 end

12 end

13 end

14 end

15 return False

16 End Function

It should be noted that most of the time it is guaranteed that the running task with
minimum remaining execution time will free enough storage bandwidth so that the next
task can be scheduled. This happens because tasks are sorted in descending bandwidth
order, therefore, the task that is about to finish has equal or more bandwidth than the next
task to be scheduled.

5.3.3.2.2 Backfilling

Using the priority scheduler, even though there may be some available storage resources,
the scheduling process stops if these available resources do not satisfy the requirements of
the task in the head of the scheduling queue. Such a strict scheduling approach can lead to
idle resources and increase the waiting time of the other tasks. Hence, wasting performance
improvement opportunities.
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To address the shortcomings of the priority scheduler, we propose a backfilling sched-
uler. Such a scheduler allows other tasks to be scheduled and launched as long as they will
not delay the start of the tasks in the head of the scheduling queue. Unlike the priority
scheduler, if a task cannot run because its storage requirement is not satisfied, then the next
task in the scheduling queue is considered for scheduling. Tasks with less bandwidth are
scheduled and launched if and only if they will not delay the start of the waiting task.

Figure 5.7 illustrates the execution trace of the sample application that was described
at the beginning of Section 5.3.3.2.1, but in this case it uses the backfilling I/O scheduler.
Unlike the execution trace shown in Figure 5.6, if any of the red tasks cannot be scheduled,
blue tasks can be backfilled with the execution of the red tasks if they will not delay the start
of any waiting red task.

Time

Th
re

ad
s High BW Task

Low BW Task

FIGURE 5.7: Execution Trace of An Application That Uses Backfilling Sched-
uler

Algorithm 5 shows the pseudocode of the backfilling scheduling scheduler . Similar to
the priority scheduler , all tasks are sorted according to their bandwidth requirements in a
descending order. However, unlike the priority scheduler , the backfilling scheduler tries to
schedule the next task in the queue if the current task cannot be currently scheduled because
there are no enough resources. The variable waitingTask (Line 3) holds the waiting task and
the variable waitingT ime (Line 4) indicates the minimum time the waitingTask will have
to wait to be launched for execution, i.e., its earliest possible start time.

The pseudocode in Algorithm 5 describes three situations that should be considered
when a task ti is being considered for scheduling:

• If the current task ti can be scheduled and ti is the waiting task from the previous
scheduling iterations, this means that this iteration is a new scheduling iteration and
ti is not a waiting task anymore (Lines 7-11). Therefore, task ti can be added to the
scheduled tasks TSched to be launched for execution and the algorithm proceeds to
schedule the following remaining tasks.

• If there is no waitingTask (Line 13), tasks are scheduled directly. However, if there is
a waitingTask (Line 14), a task ti will only be scheduled if and only if its execution
on the target layer (eestimated) will not delay the waiting task, i.e., the execution time
eestimated is less than the waitingT ime of the waiting task.

• Finally, if a task cannot be scheduled (Lines 18-24), then ti will be marked as the wait-
ing task if there is no previously assigned waiting task at the head of the tasks set. The
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waitingT ime of a task is estimated by the system by a call to the
estimateWaitingTime routine that is similar to the one described in the priority
scheduling scheduler .

It should be noted that when calculating the waiting time of a task, this algorithm
does not check whether the task with the minimum remaining time will free enough
resources to enable the execution of the waiting task. Such an approach may not be
very exact compared to another approach that calculates the exact minimum remain-
ing time of tasks that free enough resources after their execution finishes. Neverthe-
less, our proposed approach avoids spending a lot of time doing computation in a
critical system component such as the scheduler.

The backfilling scheduler performs more work than the priority scheduler because it
considers the scheduling of less critical tasks while more critical ones are waiting for storage
bandwidth resources to become available. Therefore, the backfilling scheduler may achieve
more performance compared to the priority scheduler in some situations. However, it has
a disadvantage that less critical tasks will consume the capacities of higher storage layers.
Hence, it may not become possible to schedule more critical tasks to higher storage layers
when storage bandwidth becomes available. The evaluation section discusses this point
(Section 5.5).
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Algorithm 5: Backfilling Scheduler
Input : T as the set of I/O Tasks ready for scheduling, W as the set of available

workers
Output: TSched as the set of scheduled I/O tasks

1 Function BACKFILLING(T,W):

2 TSorted ←− sortBWDescending(T )

3 waitingTask ←− Null

4 waitingT ime←− 0

5 foreach ti ∈ TSorted do

6 if Schedule(ti, W ) then

7 if waitingTask! = Null and waitingTask == ti then

8 waitingTask ←− Null

9 add ti to TSched

10 Continue

11 end

12 eestimated ←− getEstimatedExecutionT ime(ti)

13 if waitingTask == Null or

14 waitingTask! = Null and eestimated < waitingT ime then

15 add ti to TSched

16 Continue

17 end

18 else

19 if waitingTask == Null then

20 waitingTask ←− ti

21 waitingT ime←− estimateWaitingT ime()

22 Continue

23 end

24 end

25 end

26 return TSched

27 End Function

5.3.4 Automatic Data Flushing

All the I/O schedulers introduced in the previous sections schedule I/O tasks to the stor-
age layers in a top-down manner from the storage layer with the highest bandwidth to the



5.3. Storage Heterogeneity Awareness 81

storage layer with the lowest bandwidth. Every time an I/O task is scheduled to a storage
layer, it consumes a certain amount of the storage layer capacity because it is writing data.
During application execution, the capacities of higher storage layers get consumed until no
more tasks can be scheduled to these layers anymore. As a result, in the next scheduling it-
erations, tasks will be scheduled to the bottom layers that have more free capacity but offer
less bandwidth. Hence, less task parallelism can be achieved.

In order to overcome this issue and maximize the utilization of higher storage layers,
we propose an automatic data flushing mechanism. The main idea is to transparently and
periodically flush obsolete data from higher storage layers to lower storage layers. Conse-
quently, the system continuously frees up capacity in higher storage layers. Hence, in the
next I/O scheduling iterations, higher storage layers would have enough capacity to host
the execution of more critical I/O tasks.

Looking back at Figure 5.4 that illustrates how a FCFS scheduler works, since both the
NVRAM and SSD layers are full, incoming tasks ti and ti+1 will be scheduled to the PFS
layer where there is enough capacity. Therefore, leading to less task parallelism and de-
graded performance because the PFS has lower bandwidth than the NVRAM and SSD. This
problem becomes more apparent when tasks of high bandwidth requirements arrive to the
scheduler. Adopting the automatic flushing mechanism will help mitigate this problem as
depicted in Figure 5.8. Since data on higher layers are flushed to bottom layers (in this case,
the PFS), when future tasks arrive to the scheduler, they can be scheduled to higher storage
layers. Thus, increasing task parallelism and improving I/O performance.

PFS

NVRAM

Pool of Storage Devices

Obsolete Data

FIGURE 5.8: Flushing Mechanism Maximizes Storage Devices Utilization by
Freeing Up Their Capacities

The flushing mechanism hides from the users all the details about deciding which data
should be flushed, to which storage layer and at which point of the execution the flushing
should take place. Such mechanism takes advantage of execution time information that
is difficult to obtain at the development time of complex applications. For instance, data
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dependencies, i.e., which data are not going to be required by any successor tasks in future
executions. In addition to data locations, which will depend on the used I/O scheduler.

Algorithm 6 presents the pseudocode of the flushing data movement mechanism. D is
the set of output data of all executed tasks so far. For each data d, the pseudocode is checking
if there are any tasks that will require d by a call to the hasReaders routine (Line 3). If there
are future task executions that have d as input, then the rest of the routine is skipped and
the next data is considered. Otherwise, if no future tasks require d, then the pseudocode
retrieves the current storage layer on which d is stored (Line 6). Then, each storage layer
gets considered, starting from the bottom/lowest layer (BottomLayerIndex) to the layer
directly below where the data currently resides (currentLayer + 1). Data d will be flushed
if and only if there is enough capacity on the layer i to store it (Lines 9-14).

Algorithm 6: Flushing Mechanism
Input : D as the set of data considered for flushing
Output: Dflush as the set of data that is going to be flushed

1 Function FLUSH(D):

2 foreach d ∈ D do

3 if hasReaders(d) == True then

4 Continue

5 end

6 currentLayer ←− getCurrentLayer(d)

7 foreach i ∈ {BottomLayerIndex · · · currentLayer + 1} do

8 dsize ←− getSize(d)

9 if Ci >= dsize then

10 add d to Dflush

11 Ci ←− Ci − dsize

12 currentLayer ←− currentLayer + dsize

13 Continue

14 end

15 end

16 end

17 return Dflush

18 End Function

Because the flushing mechanism may involve moving large amounts of data, it should
only be started when the applications are in their compute-dominant phase. This can be
detected when there is no I/O activity at any point of application execution, i.e., no I/O tasks
are running nor scheduled to run on any of the storage layers. Therefore, not negatively
impacting applications performance by transparently overlapping computation with data
movement.

Although the flushing mechanism can help achieve more I/O performance by increasing
the available capacity of higher storage layers, it consumes time relative to the amount of the
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data to be flushed. Therefore, using this mechanism should be done only with applications
that alternate between compute and I/O phases to carry out the flushing operation dur-
ing the compute phase and hide its cost. In addition to that, the application should spend
enough time doing computations to hide the cost of flushing the data.

5.4 System Implementation

The runtime of PyCOMPSs, i.e., COMPSs is capable of abstracting the underlying infras-
tructures from applications code by accepting two resource description files at launch time:
resources.xml which describes all the resources of the infrastructure, and a project.xml which
describes the resources that will take part in applications execution. The COMPSs runtime
uses these files to register the resources and builds a runtime resource object that represents
each resource and its state.

During applications’ execution, different components of the COMPSs runtime such as
the Task Scheduler use the resource objects to make scheduling decisions and optimize ap-
plications execution. The next sections describe implementation details in COMPSs for sup-
porting the storage heterogeneity awareness capabilities that were presented in the previous
section.

5.4.1 Storage Devices Management

When PyCOMPSs applications are launched, the COMPSs master process is started. As
shown in Figure 5.9, the master process is responsible, among other things, for loading the
worker machines information from the resource description files and launch the COMPSs
worker component.

Each storage devices described in the resource description files is represented by a Stor-
age object. Storage objects contain all the details about the storage device such as type,
capacity, storage bandwidth, mount directory, etc.

The COMPSs master and worker components take part in the management of the storage
devices. The master component is responsible for taking global system-wide scheduling de-
cisions, whereas the worker is responsible for managing local storage devices and ensuring
correct tasks assignment to the requested storage device.

5.4.1.1 COMPSs Master

Once the COMPSs master process has loaded and registered all the storage devices, each
to a corresponding Storage objects, it pools them into a Storage Devices object. As shown in
Figure 5.10, the Storage Devices object is a list in which all the storage devices are sorted
according the manner described in Section 5.3.2; in a descending order starting from the
storage device with the highest bandwidth to the storage device with the lowest bandwidth.
If there is a tie in bandwidth, then the storage device with less capacity is placed on top of the
storage device with more capacity. Therefore, it is guaranteed that the top storage layer has
the highest bandwidth and least capacity, whereas the bottom layer has the least bandwidth
and highest capacity.

Furthermore, the Storage Devices object is used whenever any information is required
about the storage devices and their states, i.e., remaining capacities, current bandwidth, etc.
Such information are required by different components of the COMPSs master such as the
Task Scheduler and the Resource Optimizer.
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FIGURE 5.9: COMPSs Master And Worker Storage Management
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FIGURE 5.10: Storage Devices Management In COMPSs Master
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5.4.1.2 COMPSs Worker

Storage devices can be bound to different CPUs in the worker machines. In order to
achieve the expected performance out of a certain device, it is important for the task that
requests a device to be bounded to the correct CPU. Otherwise, I/O performance on that
device can greatly deteriorate.

As illustrated in Figure 5.11, once the COMPSs worker has received an I/O task execu-
tion request from the master, it checks to which CPUs the requested storage device is bound,
then it binds the process that is executing the task to the target CPU. When the task finishes
execution, the COMPSs worker unbinds the process that has executed the task.

Execute Task

Shutdown

Execution Result

Worker Machine

......

CPU-1 CPU-N

CPU-N+MCPU-N+1

NVRAM

SSD

.....

.....

Local Machine

FIGURE 5.11: Storage Devices Management In COMPSs Worker

5.4.2 I/O Schedulers

PyCOMPSs allows users to choose the preferred I/O scheduler at application launch
time. This is done through the use of the io_scheduler command-line argument of the Py-
COMPSs launch command. Listing 5.1 shows a snippet of the PyCOMPSs launch command
for executing a Python application on distributed infrastructures. Changing the scheduler
does not require modifying or changing applications code. I/O tasks will be scheduled
according to the policy of the desired scheduler.

1 # IOBackfillingScheduler -> Backfilling Scheduler
2 # IOPriorityScheduler -> Priority Scheduler
3 # FcfsScheduler -> FCFS scheduler
4 enqueue_compss
5 --io_scheduler=IOBackfillingScheduler
6 --num_nodes=10
7 my_app.py

LISTING 5.1: Example PyCOMPSs Launch Command With The Backfilling
I/O Scheduler

All COMPSs schedulers extend the main scheduler component which is the Task Sched-
uler. The Task Scheduler is an abstract class that includes the functions that are common
to all schedulers such as a schedule function responsible for scheduling the tasks and a
calculateScore function which gives a score to all the available workers that can exe-
cute the task. Tasks are scheduled to workers with the highest score. Each worker score has
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many attributes that determine whether a task should be executed on this worker or not. For
instance, data locality score (i.e., whether a data transfer is needed) and storage layer score.
A worker X has a higher storage layer than worker Y if the layer that the task is going to
use in worker X is higher than worker Y. The scheduler determines the storage layer of the
worker by using a scheduling function that implements Algorithm 1 described in Section
5.3.2.

When a task finishes execution, the scheduler gets notified and a new scheduling iter-
ations starts if necessary. The compute scheduler is called to schedule the compute tasks
and the I/O scheduler is called to schedule the I/O tasks. The type of the task that has just
finished execution (i.e., compute or I/O) is not important when starting a new scheduling
iteration. A new scheduling iteration starts for both the compute and I/O tasks whenever
any task finishes execution.

5.4.3 Flushing Mechanism

As previously mentioned in Section 5.3.4, due to the big amounts of data involved in
the flushing operation, it may take a lot of time. Therefore, the flushing mechanism should
be started when no I/O tasks are running so that delays in I/O tasks execution would be
avoided.

Therefore, we implemented the flushing mechanism in COMPSs by the use of helper
processes in the master and worker components. In the master part of COMPSs, the Re-
source Optimizer component carries out, among other things, executing the flushing mecha-
nism. Resource Optimizer is an independent process within the COMPSs framework, there-
fore, it is guaranteed that no other component of the COMPSs runtime would be burdened
or blocked when the flushing mechanism is taking place.

Figure 5.12 illustrates the flushing mechanism. Once a task returns from execution, the
scheduler notifies the Resource Optimizer that a task has finished execution. The Resource
Optimizer implements the algorithm that is discussed in Section 5.3.4. For all the outputs
of the returned task, the Resource Optimizer calls the hasReaders() function of the Task
Analyser component. If there are no future tasks that require the data, and there are a bottom
layer that can store the data, then it is added to a flushCandidates list. Then the Resource
Optimizer checks with the scheduler if there are any running I/O tasks. If no I/O activity
is taking place, then the Resource Optimizer sends the flushCommand to the appropriate
worker. This command contains all the data that should be flushed and to which storage
layer.

Similar to the COMPSs master implementation, in order to not burden the worker part
with the extra work of the flushing mechanism and block other critical functionalities, the
flushing mechanism is done by a helper process. When the worker receives a flushCommand
from the master, it assigns this command to the helper process to handle it. After flushing
all the data, the worker returns an acknowledgement message to the master.

It should be noted that the flushing mechanism is executed per worker. Whenever a task
has finished execution on a certain worker, the flushing mechanism is carried out for that
worker.

From users point of view, the flushing mechanism is enabled by setting the
data_movement argument of the PyCOMPSs command-line launch command to true as
shown in Listing 5.2 without modifying any line in the application code.
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FIGURE 5.12: Flushing Mechanism In COMPSs

1 # default -> data_movement=false
2 enqueue_compss
3 --io_scheduler=IOBackfillingScheduler
4 --data_movement=true
5 --num_nodes=10
6 my_app.py

LISTING 5.2: Enabling The Flushing Mechanism In The PyCOMPSs Launch
Command

5.5 Evaluation

In this section we show the performance improvements that can be achieved by evalu-
ating the storage heterogeneity-aware PyCOMPSs prototype on different applications that
exhibit different I/O workloads.

Section 5.5.1 starts with describing the infrastructure of the execution platform and its
storage infrastructure. Then, we present a brief description of the applications used in
the evaluation, their I/O workload characteristics and their performance results: Section
5.5.2.1 discusses the results with an application that exhibits homogeneous I/O workload.
Whereas Section 5.5.2.2 presents the results of a real application that exhibits heterogeneous
workload, in addition to a synthetic application to demonstrate the differences between the
heterogeneous schedulers.

5.5.1 Infrastructure

We have used the MareNostrum CTE-Power of the Barcelona Supercomputer Center [33]
as an execution platform to run our experiments. The hardware architecture of this system
can be described as follows:
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MareNostrum CTE-Power is composed of 54 nodes that are incorporated into the bigger
MareNostrum 4 supercomputer [66]. Each node has two Witherspoons processors, each
with 20 cores. The MareNostrum CTE-Power cluster has 1 Terabyates of SSD scratch storage
and two local NVMe devices with a total capacity of 6 TeraBytes. All nodes have access to
a shared Hard Disk Drive (HDD) with a total capacity of almost 8 PetaBytes mounted with
the IBM General Parallel File System (GPFS). We used the IOR benchmark [43] to measure
the write bandwidth of the storage devices. At the time of running the experiments, the tool
measured 6026 MB/s and 2743 MB/s of write bandwidth for the NVRAM and SSD devices
respectively. Whereas the PFS measured 900 MB/s of write bandwidth.

It should be noted that we only used one SSD device, and also limited the capacity of
the NVRAM layers to 1 Terabytes to suit the amount of data produced by our uses cases
and to simulate a storage infrastructure where the scheduling decisions impact applications
performance.

Table 5.1 summarizes the storage system capabilities that we used in the experiments.

System NVRAM SSD PFS

MareNostrum CTE-Power 6026 MB/S 2743 MB/S 900 MB/S

TABLE 5.1: MareNostrum CTE-Power Storage Layers Measured Bandwidth

5.5.2 Use Cases And Experiments

We implemented two different I/O intensive real applications with PyCOMPSs. Each
application exhibits a different I/O workload which allows for evaluating the impact of the
storage heterogeneity-aware capabilities in different scenarios. These applications are:

• Checkpointing HMMER Application: an application that produces homogeneous I/O work-
load. For a given input size, the checkpointing task writes the same amount of I/O
every time it is called during the lifetime of the application.

• Multi-References Sequence Alignment: an application that produces heterogeneous I/O
workload. There are different I/O tasks, each task produces different amount of I/O.

In all the experiments, the baseline experiment is the PyCOMPSs implementation that
does not use any of the heterogeneity-awareness capabilities. This implementation uses
only PFS to write applications data. We compare the baseline version against multiple ex-
periments that used the heterogeneity-aware PyCOMPSs prototype. Each experiment is
intended to show how the proposed I/O schedulers behave under certain I/O workloads.
These experiments include:

1. Homogeneous I/O scheduler with FCFS policy.

2. Heterogeneous I/O scheduler with priority policy.

3. Heterogeneous I/O scheduler with backfilling policy.

4. Using the flushing mechanism with the scheduler that achieved highest performance.

At application launch time of the heterogeneity-aware PyCOMPSs experiments, the COMPSs
runtime loaded the information about available storage devices and their capabilities in or-
der to organize them in a hierarchical view from the device with highest bandwidth to the
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device with lowest bandwidth. The top storage layers cluster are used as first-choice fast
buffering layers before scheduling any task to the lowest layer (i.e., the PFS).

In all experiments, constraints are used to specify the required bandwidth and capacity
of the I/O tasks. For the purpose of measuring the impact of our proposals on the I/O and
total performance, we set the required bandwidth to be equal to the required capacity for
all I/O tasks. Indeed, other techniques can be used to determine the required bandwidth
and/or capacity similar to the techniques that are described in Section 4.4.3 of Chapter 4.

All the experiments were run on 12 worker nodes plus one node dedicated as master
node. The master node runs the master component of the PyCOMPSs runtime and manages
the execution without taking part in any computation. In addition to that, all experiments
were run 10 times and the average results are reported.

5.5.2.1 Checkpointing HMMER Application

We use the HMMER application that was previously described in Section 4.5.3.1. The
HMMER application takes as input a sequence database and a sequence file. It splits the se-
quence and database to fragments, then calls the HMMER tool [27] for each combination of
sequence and database fragment, finally it gathers the resulting sequence fragments into one
file. The PyCOMPSs implementation of the application has three phases of computation-
I/O-computation. In the first computation phase, a hmmpfam task is called for each input of
database fragment and sequence fragment. Every hmmpfam task is followed by a checkpoint-
Frag task which checkpoints the resulting fragment. Finally, database fragments are gath-
ered by gatherDB tasks and resulting sequence fragments are gathered by gatherSeq tasks.

The experiments of this application used as inputs a 64.5 GB HMM protein-families
database (pfam) and a sequence file that contains 140,942,208 sequences with a total size
of 50 GB. Databases and sequence files are available for public use in the European Bioinfor-
matics Institute (EMBL-EBI) servers [30] which hosts up-to-date sequences, databases and
software widely used by academics and life science researchers.

Each of the 12 worker nodes used in this experiment processed 48 sequences. The appli-
cation split each sequence file to 96 fragments. Each checkpointFrag writes 400 MB.

The performance results of the application on the CTE-Power cluster is presented in Fig-
ure 5.13. All the experiments that use the heterogeneity-aware capabilities of PyCOMPSs
achieve drastic performance improvement over the baseline experiment in both I/O time
and total time. As the system is able to take advantage of the heterogeneity of the stor-
age infrastructure, improvements can reach up to almost 3x I/O performance speedup and
44% total time improvement with the FCFS scheduler and flushing experiment. This perfor-
mance benefit is possible because I/O tasks are first scheduled to storage layers that provide
high bandwidth, i.e., NVRAM and SSD. Thus, task parallelism increases because more I/O
tasks can run concurrently. Hence, performance improvement is achieved. Once the faster
storage layers does not have enough bandwidth or capacity, tasks are scheduled to the PFS.

Taking a closer look at Figure 5.13, although the priority and backfilling schedulers
achieve I/O time and total time improvement over the baseline experiment, they produce
similar results compared to the FCFS scheduler. As the I/O tasks of this application always
write the same amount of data, the benefit of using the backfilling and priority is not appar-
ent. Moreover, these schedulers produce a slight overhead in the I/O time and total time
due to the extra operations that they perform such as sorting tasks and carrying out the
execution time checks to optimize the usage of the faster storage layers.

Furthermore, continuing with Figure 5.13, it can be noted that enabling the flushing
mechanism with the FCFS scheduler achieves the best I/O performance and total time. This
can be explained because the flushing mechanism continuously frees up capacity in higher
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FIGURE 5.13: Performance Results Of The HMMER Application On The CTE-
Power Cluster

storage layers by flushing the obsolete data to bottom layers. Due to the compute-I/O pat-
tern of this application, the associated overhead is hidden and does not negatively affect the
performance. The flushing process is launched during the compute intensive phases when
no I/O tasks are running, hence, avoiding degrading I/O and total performance.

5.5.2.2 Multi-References Sequence Alignment

In the fields of life sciences and bioinformatics, short sequences (called reads) are often
aligned to multiple reference genomes to identify how much does a reference represent a
species or to find regions of similarities which helps identifying to which species the sam-
ple under investigation belongs. The output of this operation varies in size depending on
how much the sequence file matches a certain reference or chromosome. We developed
a PyCOMPSs application that aligns the input sequences to two genomes and writes the
alignment results to separate files. Figure 5.14 shows the skeleton of the task dependency
graph of the application. It consists of the following tasks: two alignment tasks (align_ref1,
align_ref2); each task aligns the input sequence to a different genome. Each alignment task is
then followed by an I/O task that writes the alignment output to a separate file (write_res1,
write_res2).

Both alignment tasks used the BWA tool for short reads alignment [58]. The used input
files and reference genomes are publicly available on the National Center for Biotechnology
Information (NCBI) servers [76] which is a well-known resource for downloading genomic
sequences. We replicated sequence files to make each worker node process 2400 sequence
files, each file has a size of 79 MB in compressed gzip format. All input sequence files are
aligned against two different builds of the human genome reference: HG19 and HG38 [46],
each of 38 GB of size. The inputs are processed in iterations, an alignment phase followed
by a writing phase. From previous experiments of this application, it is expected that the
amount of data to be written by write_res1 and write_res2 are 200 MB and 800 MB respec-
tively. The total size of data produced by this application is almost 3 Terabytes.
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FIGURE 5.14: Task Graph Skeleton Of The Multi-References Sequence Align-
ment PyCOMPSs Application

Figure 5.15 shows the performance results of the application on the CTE-Power clus-
ter. Similar to the results of the previous application, the heterogeneity-aware experiments
achieve a significant performance improvement that reaches up to 5x I/O performance
speedup and up to 48% total time improvement when using the backfilling scheduler with
flushing. The heterogeneity-Aware PyCOMPSs implementation can take advantage of the
higher bandwidth storage layers of the underlying storage infrastructure to increase I/O
task parallelism. Therefore, increasing the I/O performance and total performance of the
application.

However, unlike the results of the previous application, it can be noted that the priority
and backfilling schedulers achieve better I/O performance speedup compared to the FCFS
scheduler. This can be explained because this application has heterogeneous I/O workloads.
Therefore, the priority and backfilling schedulers are able to exploit the underlying storage
layers to maximize I/O performance by prioritizing the scheduling of critical I/O tasks with
higher bandwidth demands to higher storage layers. On the contrary, the FCFS scheduler
schedules the tasks in order of their arrival to the scheduler. Therefore, less critical I/O tasks
(i.e., with lower bandwidth demands) fill the bandwidth and consume the capacity of the
higher storage layers.

A closer look at Figure 5.15 shows that the backfilling scheduler is achieving better per-
formance than the priority scheduler. This can be explained by the behaviour of each sched-
uler. The priority scheduler stops scheduling when there are no enough resources to sched-
ule the task under consideration. Whereas using the backfilling scheduler, if a task cannot
be scheduled because there are no enough resources, subsequent tasks are scheduled if they
do not delay launching the waiting task. Hence, the backfilling scheduler advances tasks
execution and maximizes resource utilization.

Furthermore, continuing with Figure 5.15, it can be noted that using the flushing mecha-
nism with the priority and backfilling scheduler achieves better I/O performance and total
performance. The flushing mechanism continually frees up the capacity of the storage lay-
ers. Hence, critical I/O tasks can be scheduled to higher storage layers and task parallelism
is increased.
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FIGURE 5.15: Performance Results Of The Multi-References Sequence Align-
ment Application On The CTE-Power Cluster

5.5.2.3 Synthetic Heterogeneous I/O Workload

In order to understand the difference in performance between the priority and back-
filling schedulers, we launched multiple experiments with a synthetic application. This
synthetic application mimics the pattern of the Multi-References Sequence Alignment Ap-
plication as illustrated in Figure 5.14, i.e., interchanging iterations of computations and I/O.
The application launches 2400 compute tasks followed by the same number of I/O tasks.
The compute tasks generate a certain amount of data, whereas the I/O tasks write the data
that has been generated to a separate file. Half of the I/O tasks writes 800 MB of data (the
same amount of data written by write_res2 in use case 5.5.2.2), while the other half of I/O
task writes 500 MB (bigger size than the data written by task write_res1 in use case 5.5.2.2).

Figure 5.16 shows the I/O time and total time of the heterogeneous I/O schedulers (i.e.,
priority and backfilling) on the CTE-Power cluster. Unlike the previous use case (5.5.2.2),
the backfilling scheduler has a worse I/O and total performance than the priority sched-
uler. Such behaviour is the result of increased data sizes. On the one hand, the backfilled
I/O tasks consume more capacity of the higher storage devices. Therefore, the capacities
of higher storage layers become full and critical tasks are scheduled to lower storage lay-
ers. Therefore, task parallelism decreases and performance degrades. On the other hand,
because the priority scheduler schedules tasks strictly according to their bandwidth, the
capacities of higher storage layers are persevered for the execution of more critical tasks.

Also in Figure 5.16, it can be noted that using the flushing mechanism, the backfilling
scheduler returns to outperform the priority scheduler. As data are periodically flushed and
the capacities of higher layers are continuously freed, the application can take advantage of
their high bandwidth to schedule more critical tasks while backfilling less critical tasks.
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FIGURE 5.16: Performance Results Of The Heterogeneous I/O Schedulers On
The CTE-Power Cluster

5.6 Discussion

This chapter presented proposals to take advantage of the heterogeneous design trend of
modern storage systems with storage-heterogeneity aware task-based programming mod-
els. Thus, improving applications I/O performance and total performance.

Storage heterogeneity-aware task-based programming models are capable of optimizing
I/O performance for applications that follow an I/O intensive compute-I/O patterns. A
storage heterogeneity-aware system is defined by the following capabilities:

• First, abstracting the storage system heterogeneity and exposing it as a resource pool
where priority is given to storage devices that provide higher bandwidth.

• Second, supporting dedicated I/O schedulers that offer different policies to optimize
executions of various I/O workloads.

• Third, a data movement flushing mechanism that periodically frees the capacity of
higher storage layers, hence, maximizing their utilization.

We implemented a prototype of these capabilities in the PyCOMPSs programming model.
Our experiments on the MareNostrum CTE-Power cluster showed that the prototype is able
to achieve significant performance improvement for two real-world applications. The First
Come First Served (FCFS) scheduler is able to optimize I/O performance when the I/O
workload is constant throughout applications lifetime. Whereas the priority and backfilling
schedulers achieve better I/O performance in applications that have variable I/O work-
loads.

Applications performance differs when using the priority and backfilling schedulers de-
pending on the input sizes. As input sizes increase, the priority scheduler tend to give more
performance than the backfilling scheduler. This is due to the strict behaviour of the priority
scheduler that helps to preserve the capacity of higher storage layers to schedule a higher
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number of critical I/O tasks. On the other hand, the backfilling scheduler backfills less crit-
ical I/O tasks while more critical tasks are pending resources. Therefore, it outperforms the
priority scheduler when the data sizes of less critical I/O tasks is relatively small. As the
data sizes of these tasks increase, the performance diminishes until it underperforms the
priority scheduler.

With all schedulers, the flushing mechanism has proved to maximize I/O performance.
Such mechanism is launched only when no I/O activity is detected to hide the overhead
of moving the data between storage layers. The time spent during the flushing mechanism
is relative to the sizes of the data to be flushed and how many storage layers exist in the
storage infrastructure.
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Chapter 6

Hybrid Programming Models for
Programmability and Performance

SUMMARY

For many years, the Message Passing Interface library (MPI) has been used to improve
applications performance by taking advantage of fine-grained performance improvement
opportunities. These opportunities have been made possible by many-core architectures of
nowadays computing machines. However, the increasing demand for performance along-
side with the increased complexity in modern computing systems has given rise to hybrid
programming models that aim for maximum performance. Hybrid parallel programming
models combine one or more programming models to try to exploit more performance out
of the underlying execution infrastructures. Nevertheless, the performance gain is accom-
panied by increased programming complexity.

Task-based parallel programming models offer high-level abstractions necessary to de-
velop efficient applications to be executed on distributed infrastructures without sacrificing
programmability nor portability. However, a lot of opportunities for fine-grained paral-
lelism is not addressed. Therefore, wasting performance improvement opportunities.

This chapter focuses on solving and answering research question Q3 that is concerned
with a twofold objective: exploiting different levels of parallelism to achieve more perfor-
mance without increasing the complexity of applications programming. More specifically,
this chapter proposes a hybrid programming model of tasks and MPI executed inside these
tasks. Such programming model can use tasks to achieve coarse-grained parallelism and
MPI to exploit a finer-grained level of parallelism inside the tasks. Therefore, improvement
can be reached at task performance that would be reflected in the total performance. Such a
proposal can be used to enable parallel I/O inside distributed executed tasks. Moreover, it
can be used to parallelize the execution of tasks in compute-intensive applications.

In this chapter, we realize this proposal by introducing a hybrid programming model of
the PyCOMPSs task-based model and MPI. This hybrid programming model enables appli-
cation developers to parallelize the execution of PyCOMPSs tasks using MPI. Throughout
this chapter, we refer to this type of tasks as Native MPI Tasks. These tasks execute part of the
application code (i.e., task code) in parallel with MPI and they are handled in a similar man-
ner to sequential tasks in terms of dependency detection, scheduling and inputs/outputs
handling.

The evaluation section of this chapter shows that without compromising applications
programmability, using Native MPI tasks in PyCOMPSs offers significant performance im-
provement when compared to the sequential implementation of the tasks. This performance
improvement can reach up to 1.9x improvement in total performance for an I/O intensive
application and up to 3x improvement in total performance for a compute intensive appli-
cation.
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6.1 Overview

Current parallel platforms are able to offer unprecedented levels of performance, with
future platforms are projected to offer even more performance. These systems are character-
ized by their many-core architectures that can accommodate an increasing number of cores
on a single chip. This increasing on-chip scaling is accompanied by an increase in the num-
ber of computing nodes. Nowadays systems consist of thousands of processing nodes, with
future systems are expected to have more of them.

For many years, MPI [72] has been the de-facto standard for parallel programming. It
is widely used to parallelize applications to get higher performance out of many-core ar-
chitectures. Both compute intensive and I/O intensive applications use MPI to parallelize
critical parts of their execution. For instance, MPI-I/O [89] is used to improve I/O per-
formance by enabling parallelization and access patterns optimization. In addition to that,
many I/O optimization libraries such as HDF5 [105] and NetCDF [59] leverage MPI-IO to
provide high-level I/O optimization abstractions.

Due to the increased distribution and architectural heterogeneity of modern systems,
hybrid programming models of MPI + X (where X is another parallel programming model)
has been proposed and used by the community to achieve more parallelism (See Section
6.2 for more details). However, due to the low-level APIs provided by these programming
models, the details of the underlying infrastructure is exposed to application developers.
Additionally, in order to achieve the desired performance, experience in performance opti-
mization, parallel programming and distributed computing is required, which may not be
common for inexperienced users such as field experts and domain specific scientists.

The growing complexity and heterogeneity of these programming models and comput-
ing systems hinder the development of parallel applications from fully exploiting the capa-
bilities of the underlying systems. Application developers have to handle the complexity of
performance scalability and the details of the underlying hardware being exposed to appli-
cations.

In recent years, task-based programming models offered developers a high-level abstrac-
tions to execute applications on distributed systems by decomposition of the application into
work units, called tasks. Encapsulating applications work into tasks is of great importance
to cope with the heterogeneity of the underlying infrastructures. Therefore, task-based pro-
gramming models have gained popularity as means of extracting high performance from
complex infrastructures without exposing low-level details to application developers [29].
All the details of resource management, data transfers, monitoring execution, and work dis-
tribution is handled by the task-based programming model.

Even though task-based programming models offered a users-friendly high-level ap-
proach for applications execution on large-scale distributed infrastructures, a lot of finer-
grained performance improvement opportunities are possible through the use of program-
ming libraries such as MPI.

This chapter introduces the novel hybrid programming model of Task-based program-
ming model + MPI. Such programming model offers the necessary abstraction to simplify
applications development for large-scale distributed execution, in addition to exploiting the
performance of fine-grained processing. This hybrid model enables the execution of MPI
code inside tasks as opposed to executing external binaries or scripts with MPI. We refer to
such tasks as: Native MPI tasks.

In this chapter, we describe the implementation details of our proposal in the PyCOMPSs
programming model. Enabling MPI code execution in PyCOMPSs tasks allows the deploy-
ment of large workflows that use MPI code in tasks to exploit different levels of parallelism
in applications. Therefore, improving applications performance.
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The evaluation section of this chapter presents the performance results of our proposal
on I/O and compute intensive applications. Using our proposed programming model en-
ables up to 5x speedup in I/O performance and up to 1.9x improvement in the overall exe-
cution time in an I/O intensive application. Furthermore, it offers up to 3x improvement in
overall execution time in a compute intensive application.

The rest of this chapter is organized as follows: Section 6.2 presents the related work.
Section 6.3 describes the details of the hybrid programming models of tasks and MPI. The
architectural design of this programming model is presented in Section 6.4. Section 6.5 dis-
cusses the evaluation results. Finally, Section 6.6 summarizes our conclusions.

6.2 Related Work

Task-based parallel programming models can be classified according to the level of gran-
ularity they are trying to achieve. Programming models such as OpenMP [19], Cilk [57], and
the Intel TBB framework [92] are characterized by fine-grained parallelism. For instance, a
parallel loop can be implemented as a set of tasks each corresponding to one or more loop
iterations. OmpSs [26] is another fine-grained programming model that allows the specifica-
tion of tasks by annotating the code with data directionality clauses that specify the accessed
data and how it will be used (read, write or read and write).

Other task-based parallel programming models target orchestrating workflows at a higher
level of granularity. Ruffus [38] offers an explicit syntax to define computational pipelines.
COSMOS [55] offers an alternative for implementing workflows using the Map-Reduce
paradigm [20]. Unlike these frameworks and systems, PyCOMPSs allows more flexibility in
expressing parallelism details since it does not enforce a specific paradigm.

In recent years, hybrid parallel programming models have gained popularity for achiev-
ing more performance on modern computing infrastructures. Different combinations were
discussed in previous work [23, 92]. For instance, a widely-used hybrid model is the one
combining MPI and OpenMP. In this model, OpenMP threads perform compute-intensive
work on local data on each node whereas MPI is responsible for the communication between
processes. This model is particularly popular because it takes advantage of the hardware
hierarchy of many-core systems. Indeed, OpenMP can be used to parallelize an applica-
tion into tasks. However, OpenMP creates fine-grained tasks whereas PyCOMPSs creates
coarse-grained tasks that are executed in distributed systems.

Spark-MPI [65] is an attempt to enable the integration of MPI with the Spark framework
[119] by using a middle-ware to interface between Spark and existing MPI libraries. It uses
a process management interface to execute MPI operations among Spark workers. This
platform can execute MPI applications or Spark applications. However, the proposal of this
chapter is to support the specification, interaction and execution of sequential tasks and
tasks executed by MPI, both types of tasks can be in the same application.

Rabenseifner et al. [91] discussed the different ways of using the hybrid parallel pro-
gramming model combining MPI and OpenMP on a hierarchical hardware structure and
their potentials and challenges. Dinan et al. [24] explored a hybrid programming model
that combines MPI and Unified Parallel C (UPC) and demonstrated its improvements on
the scalability of locality-constrained UPC codes. Jacobsen et al. [49] presented MPI-CUDA
implementation to exploit parallelism in multi-GPU clusters and investigated strategies to
improve the efficiency and scalability of the execution on these infrastructures.

Previous attempts were made to improve the interoperability between MPI and Task-
based parallel programming models. Sala et al. [94] presented an API to improve the in-
teroperability between MPI communication primitives with OmpSs. This attempt targeted
fine-grained parallelism in shared memory systems. Also, Marjanović et al. [67] presented
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an approach for overlapping communication and computing by using a hybrid approach
of MPI and a task-based shared memory programming model. However, the proposal of
this chapter targets increasing parallelism levels of coarse-grained tasks in distributed in-
frastructures.

6.3 Native MPI Tasks

A hybrid programming model that is able to combine two different execution contexts,
a coarse-grained task-based execution context and fine-grained MPI execution is possible
through providing the following main abstraction: Native MPI Tasks.

Using Native MPI tasks, tasks can be designed and coded similar to any MPI program.
For instance, MPI semantics and APIs can be used inside tasks such as MPI_Init, MPI_Send
and MPI_Receive, etc. In addition to that, Native MPI tasks are executed by multiple MPI
parallel processes without affecting any the execution of any other task in the application.

The main idea of this programming model is to encapsulate MPI execution inside Na-
tive MPI tasks. Such that the same application source files can have tasks that are executed
sequentially and tasks that use the MPI API and are executed by multiple MPI parallel pro-
cesses.

Figure 6.1 illustrates the concept of Native MPI tasks in a task-based execution. The
nativity aspect of Native MPI tasks is due to a twofold reason:

i Native MPI tasks execute task code, instead of calling and executing an external binary
file that is not part of the application code base. Therefore, Native MPI tasks can use
the libraries that have been imported in the source file, and they have access to shared
and global variables that were created outside the task.

ii Native MPI tasks interact with other tasks (sequential tasks or other Native MPI tasks)
in a transparent manner. In terms of dependencies, Native MPI tasks can have multi-
ple successors or predecessors of sequential tasks or other Native MPI tasks. All data
interactions (i.e., receiving inputs, producing outputs) between different types of tasks
are done transparently similar to sequential-sequential tasks data management.

All inputs to Native MPI tasks are accessible to all the MPI processes launched by this
task. In addition to that, similar to MPI code execution, the output of Native MPI tasks is
a list that contains the return value of all the MPI processes that have participated in the
execution of the tasks.

The next sections describe the details of Native MPI tasks in the PyCOMPSs program-
ming model: defining Native MPI tasks, specifying the number of MPI processes, etc. In
addition to describing the behaviour of Native MPI tasks during application execution.

6.3.1 Programming Model Annotations

As previously discussed in Section 3.1.1 of Chapter 3, the PyCOMPSs programming
model enables the parallelization of sequential code by the means of Python annotations
or decorators. Therefore, following task declaration conventions of the PyCOMPSs pro-
gramming model, a method is declared as a Native MPI task by the means of the @mpi
annotation. This annotation must contain certain parameters to configure the MPI runtime
environment, such as:

• MPI Runner: Path to the MPI executor to use. For instance, mpirun or mpiexec,
specified by the runner argument of the decorator.
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FIGURE 6.1: A Sample Task Execution Graph With Native MPI Task

• The number of MPI processes that are going to execute the task. This number is speci-
fied using the processes argument of the MPI decorator.

Notice that the @mpi annotation should be placed on top of the task annotation (i.e.,
@task) that annotates the target object or class method. Listing 6.1 shows an example Na-
tive MPI task defined in PyCOMPSs.

1 @mpi(runner="mpirun", processes=20)
2 @task()
3 def native_mpi_task(data):
4 # perform parallel operations on data
5 ...

LISTING 6.1: Native MPI Task Annotation

The @mpi annotation also provides other arguments such as scale_by_cpu, which can
be used together with the computing_units argument of the @constraint decorator to
scale the number of MPI processes by the number of computing units. Listing 6.2 shows an
example of using the scale_by_cpu argument. The task in Listing 6.2 will be executed by
6 MPI processes.

1 @constraint(computing_units=2)
2 @mpi(runner="mpirun", processes=3, scale_by_cpu=true)
3 @task()
4 def native_mpi_task(data):
5 # perform parallel operations on data
6 ...

LISTING 6.2: Scaled Native MPI Task Annotation
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The default MPI process placement behaviour is to fill the computing nodes one by one
such that each MPI process uses a single CPU in the computing node. Other process place-
ment policies can be specified by the use of environment variables supported by the MPI
environment.

Listing 6.3 depicts an example PyCOMPSs application. This application contains the
following tasks:

i A generate_seed sequential task that returns a number (Lines 1-4).

ii A return_scaled_rank Native MPI task that launches 4 MPI processes. Each MPI
process returns its rank multiplied by the seed generated by the generate_seed task
(Lines 6-13).

Looking closely at Listing 6.3, it is the same as the sequential version of the application
except for a few additional lines of code that are the PyCOMPSs annotations and the syn-
chronization API (Line 21). The return_scaled_rank task code is the same as a vanilla
Python MPI application. Line 9 loads the Python MPI library necessary for using MPI API.
Line 11 identifies the rank of each MPI process and Line 13 returns each rank multiplied by
the input seed.

1 @task(returns=int)
2 def generate_seed():
3 # return a certain number
4 return 10
5

6 @mpi(runner="mpirun", processes=4)
7 @task(returns=list)
8 def return_scaled_rank(seed):
9 from mpi4py import MPI

10

11 rank = MPI.COMM_WORLD.rank
12

13 return rank * seed
14

15 if __name__ == "__main__":
16

17 arr = generate_seed()
18 scaled_ranks = return_scaled_rank(arr)
19

20 # wait for computation and retrieve scaled_ranks result
21 scaled_ranks = compss_wait_on(scaled_ranks)
22

23 print scaled_ranks

LISTING 6.3: Example PyCOMPSs Application With Native MPI Task

Figure 6.2 shows the execution output of the application in Listing 6.3. The output of the
application is a list that contains the return value of each MPI process. PyCOMPSs applica-
tions are launched using the scripts: runcompss for local executions and enqueue_compss
for large-scale executions.
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FIGURE 6.2: Example PyCOMPSs Application With Native MPI Task: Execu-
tion Log

6.3.2 Execution Time Behaviour

As previously mentioned, Native MPI tasks use the processes argument of the @mpi
PyCOMPSs decorator to specify the number of MPI processes required for task execution.
The scheduler does not launch Native MPI tasks unless there is an enough number of CPUs
to satisfy their requirements. The effect of this behaviour is discussed in more details in the
evaluation section (Section 6.5).

When PyCOMPSs applications are launched, the COMPSs runtime is responsible for
performing many operations such as detecting tasks dependencies, tasks scheduling, ex-
ecution monitoring, data transfer between tasks and retrieving tasks results to the master
node. However, tasks encapsulate their code execution, i.e., once the task is being executed,
the COMPSs runtime is not involved in the task logic that is being executed. The logic of the
task is carried out by a Python process if it is a sequential task or parallel MPI processes if it
is a Native MPI task.

Native MPI tasks of PyCOMPSs allow all MPI operations to be performed inside the task
as if users were designing and programming a vanilla MPI application. For instance, creat-
ing communicators, splitting communicators, message passing between different processes,
collective operations, etc. Nevertheless, Several running Native MPI tasks in a PyCOMPSs
application cannot exchange messages between their MPI processes.

Different Native MPI tasks are completely independent of each other in terms of schedul-
ing, MPI environment configuration and execution. Each Native MPI task has its own MPI
configuration and execution environment. For instance, number of MPI processes, MPI run-
ner type, etc.

Listing 6.4 shows an example PyCOMPSs application that has two Native MPI tasks.
Both tasks perform MPI parallel operations on the input data that they receive from a
predecessor sequential task (i.e., generate_data). Each Native MPI task has its own
processes argument, hence, number of MPI processes. The task graph of this applica-
tion is illustrated by Figure 6.3. At execution time, each Native MPI task has its own MPI
execution environment and communication is not possible between the different MPI pro-
cesses of different Native MPI tasks.



102 Chapter 6. Hybrid Programming Models for Programmability and Performance

1 @task(returns=list)
2 def generate_data():
3 ...
4

5 @mpi(runner="mpirun", processes=4)
6 @task(returns=list)
7 def calculate_mean(data):
8 # Calculate the mean in parallel
9 ...

10

11 @mpi(runner="mpirun", processes=2)
12 @task(returns=list)
13 def calculate_std_dev(data):
14 # Calculate the standard deviation in parallel
15 ...
16

17 if __name__ == "__main__":
18 ...
19 data = generate_data()
20 mean = calculate_mean(data)
21 std_dev = calculate_std_dev(data)
22 ...

LISTING 6.4: Example PyCOMPSs Application With Multiple Native MPI
Tasks

generate_data

calculate_std_dev

MPI Process
MPI Communicator-2MPI Communicator-1

calculate_mean

FIGURE 6.3: Sample PyCOMPSs Task Graph With Two Native MPI Tasks.
Each Native MPI Task Has Its Own MPI Communicator

The design approach of isolating the execution environment of each Native MPI task
enables flexibility in application design. Each Native MPI task has its own number of MPI
processes and its own execution design in terms of number of communicators, rank distribu-
tion, etc. Hence, providing users more liberty in designing each Native MPI task according
to its purpose, workload, criticality and also the heterogeneity of the underlying infrastruc-
ture.
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6.3.3 Native MPI Tasks Execution

Tasks execution in PyCOMPSs is carried out by persistent Python threads called Persis-
tent Workers. These persistent workers are launched after starting the COMPSs worker com-
ponent. They exist throughout the lifetime of the application, i.e., only terminated at the end
of application execution. By default, the number of persistent workers on each worker node
is equal to the number of CPUs on that node, such that, each Python worker uses one CPU.
Indeed, the number of persistent workers or their CPU affinity can be changed by users. If
any of these persistent workers is not executing a task, it is set to a sleep or idle mode.

In order to make the MPI execution of tasks and the separation between Native MPI tasks
execution possible, they are executed by a special temporary workers called MPI Workers.
Unlike the default persistent workers of PyCOMPSs, MPI workers are temporary. Once a
worker receives a Native MPI task for execution, it launches a MPI worker to execute that
task. The MPI worker carries out the necessary pre- and post- execution operations such as
launching the MPI environment with the required number of MPI processes, preparing the
inputs of the tasks, gathering the output of the task into a list, and reporting the execution
status.

Figure 6.4 shows a high-level overview of the execution behavior of different PyCOMPSs
tasks on two nodes, each with 3 CPUs. At application launch time, as many persistent
Python processes as CPUs are launched on each worker. Once a worker receives sequential
task execution, it wakes up one of the idle Python processes to execute the task. However,
Native MPI tasks are executed by MPI temporary workers. MPI workers do not use the
persistent workers, and launch the requested MPI processes to execute the task. As soon as
the Native MPI task execution finishes, the MPI worker is terminated. More details on the
implementation of the MPI worker in the next section.

Sequential
Task

Native
MPI Tasks

Idle Python
Process

Active Python
Process

 Python MPI
Process

FIGURE 6.4: PyCOMPSs Tasks Execution Behaviour. Sequential Tasks Use
PyCOMPSs Persistent Workers. Whereas Native MPI Tasks Use MPI Workers
For Launching The Required Number Of MPI Processes (The First Native MPI
Task Requires 6 MPI Processes, The Second Native MPI Task Requires 3 MPI

processes)
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6.4 Architectural Design

As previously mentioned, executing MPI code in tasks by the use of Native MPI tasks
is completely transparent to application developers. Users only have to add a few lines
of code, that are task decorators and task constraints without worrying about any execution
time management operations such as data transfers, preparing inputs and outputs, etc. Such
chores of task management and execution details are carried out by the PyCOMPSs runtime
system (i.e., COMPSs).

In order to enable such transparency, we have made enhancements and extensions to
both the master and worker components of the COMPSs runtime. The following sections
describe the details of these extensions. Section 6.4.1 describes the enhancements added to
the COMPSs runtime master. Whereas Section 6.4.2 describes the extensions made to the
COMPSs runtime worker.

6.4.1 COMPSs Master

At the master side of COMPSs, the master components work with the Task abstraction
which contains information about task properties such as type, dependencies. The Task
abstraction allows other components such as the Task Analyser and the Task scheduler to be
independent of the actual type of task (i.e., sequential, Native MPI, etc.). Nevertheless, we
enhanced the task detection to support new programming model annotations introduced
by the Native MPI task and also describe the scheduling of Native MPI tasks by the Task
Scheduler.

6.4.1.1 Task Detection and Scheduling

The Python bindings layer registers the annotated tasks to the COMPSs runtime with
no further handling. Tasks are detected by the means of Python decorators on top of the
object or class method or usual method. Hence, our prototype only extends the previous
PyCOMPSs version by adding the new decorator for the Native MPI task (i.e., @mpi). Table
6.1 lists the supported arguments for the Native MPI decorator.

Argument Value Type Use Mandatory?

runner String specifies the MPI runner, e.g. mpirun,
mpiexec

Yes

processes Integer specifies the number of MPI processes Yes

scale_by_cpu Boolean specifies if the number of MPI processes
should be scaled by the number of CPUs
of the @constraint decorator

No

priority Boolean indicates whether the task has priority No

TABLE 6.1: List Of Supported Arguments In The @mpi Decorator

Figure 6.5 illustrates the detection and analysis of Native MPI Tasks. The Python binding
organizes the task information listed in Table 6.1 and other information such as the task
signature, expected number of outputs, their types, etc. The binding sends task registry
requests to the COMPSs runtime master. As soon as the task registry request reaches the
COMPSs runtime master, it encapsulates the task information in a Task object. Then, this
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Task object gets processed by the runtime components such as the Task Analyser and the
Task scheduler. The Task Analyser detects the dependencies between the given Task objects
and previously received Task objects without taking into consideration the task type.

COMPSs Execution
Engine Task Analyser Python Binding

Layer

T1

T1

T2

Sequential
Task

Native MPI
Task

Task Graph

Call Task X(..)

Call Task Y(..)

registerTask(TaskInfo)

registerTask(TaskInfo)

analyseTask(T1)

analyseTask(T2)

Done

Done

FIGURE 6.5: Native MPI Task Detection And Analysis

With regard to Native MPI tasks scheduling, they are launched for execution only if their
number of processes can be satisfied by an equivalent number of free computing units.

6.4.2 COMPSs Worker

The COMPSs master component is able to communicate job execution requests from
and to the COMPSs workers on the worker nodes regardless of the type of the task to be
executed. In addition to that, COMPSs can communicate these messages with different
kinds of infrastructures such as grids or cloud machines. This communications transparency
is possible because the communication layer abstracts the infrastructure details from the
master. Nevertheless, the worker processes that are spawned on each worker depends on
the underlying communications adaptor implementation.

6.4.2.1 Invokers

When a task execution request arrives to the COMPSs worker, it is assigned to one of the
persistent workers. This worker starts the process of invocation the actual task code. Before
executing a Native MPI task, the worker sets a number of environment variables that are
accessible in the task code. For instance, information about the assigned resources. Table 6.2
lists these environment variables.

The persistent worker uses the GenericInvoker class that provides an abstract API for
executing different types of tasks. For instance, sequential tasks, Native MPI tasks, binary
tasks, etc. The GenericInvoker class is extended to different types of invokers, each for
invoking a specific type of tasks. These child classes can be listed as follows:
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Environment Variable Description

COMPSS_HOSTNAMES List of computing nodes names or IPs

COMPSS_NUM_NODES Number of computing nodes

TABLE 6.2: List Of Environment Variables For Native MPI Tasks In The
Worker

• The PipedInvoker class: used for invoking sequential Python tasks. This class uses
Linux Pipes in order to communicate with the persistent Python process that is going
to actually call the task code.

• The BinaryInvoker class: used for invoking external binaries. This class forks, executes
and monitors the execution of the binary command provided in the task. The Binary-
Invoker class forks a ProcessBuilder process with the binary command of the task and
returns the exit value of the executed binary.

In order to execute Native MPI tasks and launch the Python code of the task with multi-
ple MPI processes, we extended the GenericInvoker class to a new sub-class which is called:
PythonMPIInvoker class. This class is similar to both the PipedInvoker class and the Binary-
Invoker class. On the one hand, similar to the PipedInvoker, because it is used to call Python
code, that is the task code of the application. However, it does not use Linux pipes because
it requires the Python code to be executed by N MPI processes requested by the task. On
the other hand, it is similar to the BinaryInvoker class because it follows a similar approach
to calling the Python worker that eventually calls the Python code.

The main idea of the PythonMPIInvoker class is to fork a ProcessBuilder process that
launches the Python worker with the MPI runner provided by the user and the number of
MPI processes. This Python worker is going to call the actual Python task code. Such worker
is called: MPI Worker. Since the MPI worker is launched with N MPI processes, all the
functions that it is going to call will also be executed by the same number of MPI processes.
The next section presents more details about the MPI worker and its characteristics.

6.4.2.2 MPI Worker

The MPI worker is a special worker that is executed by N MPI processes such that N
is the number of MPI processes requested by the task. It performs the same operations as
the sequential persistent Python workers such as deserializing tasks inputs, serializing tasks
outputs, calling the actual task code, monitoring the execution and returning the exist status.

MPI workers are called per Native MPI execution. This allows for flexibility, as the Pro-
cessBuilder process is launching the MPI runner with the number of MPI processes requested
by the tasks.

Figure 6.6 illustrates the process of executing Native MPI tasks in the worker side. The
COMPSs worker receives a task execution request for task t1, the COMPSs worker detects
the type of the task and decides to call the PythonMPIInvoker invoker because task t1 is a
Native MPI task. The PythonMPIInovker invoker forks a new ProcessBuilder process that
launches the MPI worker mpi_worker.py using the MPI runner and number of MPI pro-
cesses specified requested in task t1. The MPI worker performs the necessary pre-execution
operations then call the actual task. Notice that since this MPI worker is being executed
with N MPI processes, the task code will also be executed by N MPI processes. After the
task execution ends, the MPI worker performs the necessary post-execution operation then
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terminates after sending the exit value to the calling ProcessBuilder which in turn returns it
to the invoker that notifies the COMPSs worker of task completion.

PythonMPIInvokerCOMPSs Worker MPI WorkerProcessBuilder

executeTask(t1)

invoke(t1) new
ProcessBuilder(t1) mpirun -n N

mpi_worker.py ... 

Task Code
Execution

Task Code
Execution

executeTask(t2)
invoke(t2) new

ProcessBuilder(t2) mpirun -n M
mpi_worker.py ... 

exitValue

exitValue

exitValue

exitValue

Completed

Completed

Done

Done

FIGURE 6.6: Native MPI Tasks Execution By MPI Workers

Furthermore, continuing with Figure 6.6, at a later point of the execution, another task
t2 arrives at the COMPSs worker for execution. The COMPSs worker uses the PythonMPI-
Invoker to invoke the task because it is a Native MPI task. The PythonMPIInvoker forks a
ProcessBuilder process but this time with M MPI processes that are requested by t2. Hence,
the M MPI processes that executed the MPI worker will propagate and execute the actual
task code in parallel.

It should be noted that all the MPI processes that participate in the task execution dese-
rialize all the inputs of the tasks. This approach may seem redundant, however, it has the
advantage that all the task inputs will be available to all MPI processes. Hence, not limit-
ing the user code by mapping a group of inputs to a group of MPI processes. Therefore,
enabling greater flexibility in task design.

Moreover, Figure 6.7 illustrates the exit value check process in the MPI worker. After Na-
tive MPI task execution end, the MPI process with rank 0 collects the return value of all MPI
processes by using a MPI_Reduce call and performs the necessary checksum operations to
make sure that the execution of each MPI process has finished successfully.
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Raise Error

MPI_Reduce(...,
global_exit_value, OP=SUM,

..)  

TrueFalse

MPI Process 0

MPI Worker

global_exit
_value

> 0

Success

MPI Process NMPI Process 0

FIGURE 6.7: Exit Value Check For Native MPI Tasks

Figure 6.8 shows the process of collecting the return value of the task. Following the
same approach to checking the exit value, MPI process 0 gathers all the return values of
the other processes via a MPI_Gather API call. Therefore all the return values of all the
MPI processes that have participated in the execution are stored in a list owned by MPI
process 0. After preparing the return value of the task, process 0 serializes it to disk in
the appropriate directory specified by the COMPSs worker and received in the MPI launch
command. Finally, MPI process 0 returns the appropriate exit value to the caller process and
all the processes finalize the MPI environment for this execution. It should be noted that
Line 4 in the code snippet of Figure 6.8 shows that calling the task code returns a tuple of
two values: the task returns and the exit value of the task for the calling MPI process. This
is not the actual returns of the task code, instead it is the returns of the post-processing that
is performed by the implementation of the @task decorator, which is carried out after the
task execution has finished. The actual call of the task code only returns the values specified
by the return keyword in the task code.
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MPI_Gather(..,
global_task_returns,..)  

MPI Process 0

MPI Worker

MPI Process NMPI Process 0

FIGURE 6.8: Exit Value Check For Native MPI Tasks

6.5 Evaluation

This section presents an evaluation of the proposed hybrid programming model of Py-
COMPSs and MPI inside tasks through the use of Native MPI tasks. First, Section 6.5.1
evaluates this hybrid programming model based on applications programmability. Then,
Section 6.5.2 presents the impact of using Native MPI tasks on the performance of two
real-world applications and a discussion about the impacts of using Native MPI tasks in
PyCOMPSs.

6.5.1 Programmability Evaluation

Developers productivity can be measured in terms of a function that relates the follow-
ing factors: From the one hand, the effort to write application code expressed by the number
of lines of code. From the other hand, the performance obtained by such code. High pro-
ductivity can be characterized by a low effort in writing or modifying application code that
results in a high performant application. Whereas low productivity can be expressed by a
high effort in writing or changing application code without getting sufficient performance
when executing the application. Indeed, other factors can affect the productivity such as the
working environment, development frameworks, deploying prerequisite software on the
target system, etc. However, we only consider those factors that are related to application
programming and performance when using Native MPI tasks and without using them.

This section demonstrates that Native MPI tasks improves productivity by easing the
coding of the application. Hence, the application that is discussed in this section only serves
to highlight the benefits of using Native MPI tasks at the programming level without fo-
cusing on the performance. Indeed, we discuss only a single application. However, the
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conclusions of this section can be generalized on any application with similar characteris-
tics.

Comparing our approach of enabling Native MPI tasks in the PyCOMPSs task-based
parallel programming models to other approaches that aim at achieving more performance
by exploiting multi-core architectures and distributed computing, our proposal has the po-
tential to achieve better performance without compromising applications programmability
and productivity. Table 6.3 summarizes the main differences between our proposed ap-
proach and other solutions such as MPI programmed pure Python and MPI programmed
pure C.

Approach Parallelism Programming Language

C with MPI MPI Processes C

Pure Python with MPI MPI Processes Python

Vanilla PyCOMPSs Tasks Python

PyCOMPSs with Native MPI support Tasks + MPI Processes Python

TABLE 6.3: Comparison Between Different Approaches For Distributed Com-
puting

Table 6.3 shows different approaches that promise more performance by parallelizing
applications. For instance, a pure Python or C applications in which MPI is used for par-
allel execution. Using the Python programming language for developing applications has
became popular in disciplines such as artificial intelligence, web analysis and life sciences
due to its simplicity and ease of use. On the contrary, The C/C++ programming language
has low-level data structures that can achieve more performance, however it is more com-
plex for users with no programming expertise. In both cases, MPI can be used to parallelize
applications execution. Nevertheless, using only MPI without using any framework that
supports transparent distributed execution pose challenges to non-expert developers:

• First, this approach only relies on MPI parallel processes in order to achieve more
applications performance. Hence, it does not reach the same parallelism level as using
the hybrid model of PyCOMPSs and MPI.

• Second, application developers have to take care of fine parallelism details such as
how many parallel process should execute each part of the application; which parts
of the code will be executed in parallel and which parts will be executed sequentially.
This is usually done by using if-conditionals to check the ranks of the MPI processes
or by spawning child processes from the MPI master process. In addition to that,
managing the data between processes in such a context is a challenging task that can
increase programming complexity.

Continuing with Table 6.3, The PyCOMPSs programming model enables the distributed
execution of Python applications while the maintaining ease of programming. Using Py-
COMPSs, users can taskify their applications simply by adding the PyCOMPSs task dec-
orators before the functions declaration. However, the vanilla PyCOMPSs supports only
task parallelism, leaving a lot of performance improvement opportunities inside tasks unad-
dressed. Therefore, the vanilla PyCOMPSs enables ease of development and performance,
even though this performance can be improved by parallelizing tasks execution.
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Finally, unlike the aforementioned approaches, the hybrid programming model of Py-
COMPSs and MPI promises ease of development and high performance:

• First, it extends the PyCOMPSs programming model, therefore, maintaining the ease
of development. Such programming model allows the same source file to contain
different types of tasks (e.g., Native MPI tasks, sequential tasks, etc.).

• Second, it combines two levels of parallelism, i.e., task parallelism and MPI parallelism
by the use of Native MPI tasks. All PyCOMPSs tasks have their own independent
configuration and execution environment. This execution transparency is possible be-
cause the PyCOMPSs runtime handles tasks execution and manages data transfers
between different tasks in an abstract manner.

Therefore, the hybrid programming model of PyCOMPSs and MPI (i.e., Native MPI
tasks) increases productivity by enabling a higher degree of parallelism with less program-
ming effort and less complexity on the application side.

Listing 6.5 provides a sample sequential application. The main for loop (Lines 16-19)
processes a set of files that contain a list of numbers. Each file is read and its numbers are
returned (Lines 6-9), then the mean is calculated for each numbers list (Lines 1-4). Listings
6.6 and 6.7 shows different parallel implementations with MPI, and PyCOMPSs with Native
MPI tasks respectively.

1 def calculate_mean(data):
2 # Calculate the mean
3 ...
4 return mean
5

6 def read_file(path):
7 # Read the file
8 ...
9 return data

10

11 if __name__ == "__main__":
12 files_paths = sys.argv[1]
13

14 mean_list = []
15

16 for path in files_paths:
17 data = read_file(path)
18 mean = calculate_mean(data)
19 mean_list.append(mean)
20

21 print mean_list

LISTING 6.5: Sample Application For Calculating The Mean Number In Input
Files
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1 def calculate_mean(data):
2 # Calculate the mean in parallel
3 ...
4 return mean
5

6 def read_file(path):
7 # Read the file in parallel
8 ...
9 return data

10

11 if __name__ == "__main__":
12 rank = MPI.COMM_WORLD.rank
13

14 files_paths = sys.argv[1]
15 local_mean_list = []
16

17 For path in files_path:
18 data = None
19 # All the MPI processes, e.g., 40 MPI process \\
20 # execute the read_file function
21 data = read_file(path)
22

23 # Wait until all MPI processes have finished
24 MPI_Barrier()
25

26 local_mean = None
27 # Only 20 MPI processes should execute \\
28 # the calculate_mean function
29 if rank < 21:
30 local_mean = calculate_mean(data)
31 local_mean_list.append(local_mean)
32

33 MPI_Barrier()
34

35 if rank == 0:
36 global_mean_list = []
37

38 MPI.COMM_WORLD.Gather(local_mean_list,
39 global_mean_list,
40 root=0)
41

42 if rank == 0:
43 print global_mean_list

LISTING 6.6: Sample MPI Application For Calculating The Mean Number In
Input Files
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1 @mpi(runner="mpirun", processes=20)
2 @task(returns=list)
3 def calculate_mean(data):
4 # Calculate the mean in parallel
5 ...
6 return mean
7

8 @mpi(runner="mpirun", processes=40)
9 @task(returns=list)

10 def read_file(path):
11 # Read the file in parallel
12 ...
13 return data
14

15 if __name__ == "__main__":
16 files_paths = sys.argv[1]
17

18 mean_list = []
19

20 for path in files_paths:
21 data = read_file(path)
22 mean = calculate_mean(data)
23 mean_list.append(mean)
24

25 mean_list = compss_wait_on(mean_list)
26

27 print mean_list

LISTING 6.7: Sample PyCOMPSs Application With Native MPI Tasks For Cal-
culating The Mean Number In Input Files

The code in Listing 6.6 shows one possible MPI implementation for parallelizing the ap-
plication. The MPI processes read the input files in parallel and do the mean calculation
in parallel. After calculating the mean, all the results are gathered to MPI process 0 to be
displayed. Whereas the code in Listing 6.7 shows a hybrid PyCOMPSs and MPI implemen-
tation. The functions read_file and calculate_mean are defined as Native MPI tasks
by the use of PyCOMPSs annotations. Indeed, the implementation of the read_file and
calculate_mean functions/tasks in the MPI implementation and the PyCOMPSs imple-
mentation can be similar. Therefore, they are not taken into consideration when comparing
both implementations.

Comparing the three implementations: the sequential implementation (Listing 6.5), the
MPI implementation (Listing 6.6), and the PyCOMPSs with Native MPI tasks implementa-
tion (Listing 6.7), one can notice the simplicity of using PyCOMPSs with Native MPI tasks
to parallelize the application as compared to the MPI implementation. On the one hand,
with PyCOMPSs, the code is task-parallelized with minimal additions of 5 lines of code:
Lines 1-2, 8-9 which are functions annotations to declare the tasks and their required num-
ber of MPI processes, in addition to Line 25 which is the PyCOMPSs synchronization API
used to retrieve the results to the master node. On the other hand, the MPI implementation
introduced obvious changes to the code to the logic of the code to confirm with the MPI par-
allelization paradigm. For instance, adding if-conditionals to make different ranks perform
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certain operations. Line 38 in Listing 6.6 is a MPI_Gather call to collect the result to MPI
process 0.

Furthermore, application programming and design flexibility is reduced in the MPI im-
plementation because the entire application is launched with a specific number of MPI pro-
cesses. Therefore, the number of MPI processes that execute the read_file function is the
same as the number of MPI processes that execute the calculate_mean function. Separat-
ing the MPI processes that execute both functions requires tedious design and coding effort
such as controlling the number of MPI processes to enter the task by using if-conditionals
on the ranks then making sure which MPI process has which result, or, spawning a different
MPI communicator and making the necessary pre- and post- operations such as configuring
the new communicator and redistributing the results. In the PyCOMPSs implementation,
controlling the number of MPI processes to execute each function/task is as straight-forward
as changing the values of the processes argument in the @mpi decorator in Listing 6.7. In
addition to that, with fewer lines of code, PyCOMPSs with Native MPI tasks enable task
parallelism and MPI parallelism. The quantitative evaluation of such levels of parallelism is
presented in the next section.

6.5.2 Performance Evaluation

To measure the performance impact of enabling MPI parallelization in Native MPI tasks
of PyCOMPSs, we ran experiments on the following types of applications an I/O intensive
application and a compute intensive application. We studied the performance impact on
task performance and also total application performance. In both applications, we targeted
the MPI parallelization of critical tasks in the application by declaring such tasks as Native
MPI tasks. The baseline is a PyCOMPSs implementation of the applications where these
critical tasks are implemented sequentially.

Section 6.5.2.1 presents the used infrastructure. Section 6.5.2.2 describes the performance
impacts of using MPI in Native MPI tasks to parallelize I/O tasks in a Blocked Matrix Multi-
plication application. Section 6.5.2.3 presents the performance impacts of using Native MPI
tasks to parallelize compute tasks in a Web Archives Analysis application. Finally, Section
6.5.2.4 discusses the performance trade-offs between task parallelism and MPI parallelism.

6.5.2.1 Infrastructure

All experiments of the following sections were run on the MareNostrum 4 supercom-
puter of the Barcelona Supercomputer Center (BSC). This supercomputer was previously
described in Section 4.5.1.

Due to the master-worker deployment architecture of PyCOMPSs, each submission to
the supercomputer queuing system was done with the number of worker nodes plus one
that is dedicated as the master node. In all the experiments of this section, we mentioned
only the number of worker nodes used for each experiment. In this configuration, the master
node only launches and manages the execution on worker nodes and does not perform any
computations.

All the experiments in Sections 6.5.2.2 and 6.5.2.3 were launched on 8 high-memory
nodes of the MareNostrum4 supercomputer. Each experiment was run 10 times and the
average results are reported.

6.5.2.2 Write-Intensive Blocked Matrix Multiplication

For testing the performance impact of parallelizing I/O tasks with MPI using Native MPI
tasks in PyCOMPSs, we implemented a task-parallel PyCOMPSs version of the Blocked
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Matrix Multiplication Algorithm. Matrix multiplication is one of the most important and
recurrent matrix operations that has many uses such as network theory and population
modeling. Our application decomposes the matrices into blocks and multiply the blocks
to each other, then it writes the multiplication result to a file on the General Parallel File
System (GPFS) of the Marenostrum 4 supercomputer. The application wrote the results to
HDF5 formatted-files. HDF5 [105] is a binary data storage format that has a directory-like
structure called HDF5 groups. We used the h5py Python library [104] which provides a
high-level Python API for performing parallel I/O.

Figure 6.9 shows a snippet of the task graph of one of the experiments. It consists of
three main tasks:

• create_block: generates N number of blocks of random floating point numbers.
Each block has a total of M numbers.

• multiply: performs the multiplication of matrix blocks.

• write_result: writes matrix blocks to a HDF5 file, each block is written to a sep-
arate HDF5 group. There are two implementations of this task: (i) in the baseline
experiment, the writes are done sequentially. (ii) in the Native MPI implemention of
the task, each block is written in parallel by X MPI processes.

create_block

multiply

write_result

FIGURE 6.9: Blocked Matrix Multiplication Task Graph Snippet

We used as input a two generated 2D matrices that are decomposed into blocks of ele-
ments. The number of blocks in each matrix is 16 blocks. Each block contains 8192x8192
floating point random numbers. All runs of this application produced 674 GB of data. This
application was run several times, each time with a different implementation or configu-
ration of the write_result task: One time using the sequential implementation for the
baseline experiments, and several times with an increasing number of MPI processes per
Native MPI task. The application has a total number of 1216 tasks: 192 task that generates a
block, 512 multiply block tasks that carries out the multiplication process and corresponding
512 write tasks that writes the result of each multiplication.

Figure 6.10 presents the performance results of the application. Figure 6.10(a) shows the
performance benefits on the write_result task level, whereas Figure 6.10(b) shows the
total performance of the application. The MPI implementation of the task enabled by the
use of Native MPI tasks resulted in a significant performance improvement that reaches up
to about 3x I/O speedup when using 8 MPI processes per task compared to the sequential
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implementation of the task (Figure 6.10(a)). This performance improvement on task-level is
reflected as a performance improvement in the total time of the application that reaches up
to 1.9x total performance speedup (Figure 6.10(b)).

(a) Average Time Per Write Task

(b) Total Execution Time

FIGURE 6.10: Performance Results Of The Blocked Matrix Multiplication Ap-
plication

The performance benefit shown in Figure 6.10 in the task time and total application
time can be explained by the performance benefit gained from increasing the number of
MPI processes per Native MPI tasks. Increasing the number of MPI processes enables the
write_result task to execute faster which advances the execution of tasks in the whole
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application.
Nevertheless, one can notice that the performance results in Figures 6.10(a) and 6.10(b)

is diminishing as the number of MPI processes per Native MPI task increases. This can be
explained due to that the more MPI processes are used, the smaller the size of the data to
write gets and the overhead of the PFS components become more noticeable. Besides, as the
number of MPI processes per Native MPI task increases, the total number of MPI processes
performing I/O operations increase. Therefore, overloading the PFS.

6.5.2.3 Web Archives Analysis

In order to evaluate the performance of Native MPI tasks in a compute-intensive applica-
tions, we developed a PyCOMPSs application that calculates the term frequency (TF-IDF) of
web archives. Web archives are stored in a special file format called WARC (Web ARChive)
[115], which is a file format used for web pages archiving and it is widely used for web
analysis. A WARC file is a container of WARC records that consist of URIs, Dates, lengths
and web page content. Each record in the WARC file can be of different length. Figure 6.11
shows a snippet of the task graph of one of the experiments. The application consists of the
following tasks:

• A read_record reading task that reads a record from the file.

• A calculate_tf_idf compute task that calculates TF-IDF.

read_record

calculate_tf_idf

FIGURE 6.11: Web Analysis Task Graph Snippet

We identified the calculate_tf_idf tasks as the target tasks to be identified as Native
MPI tasks. Several experiments were launched: the baseline experiment with a sequential
implementation of the calculate_tf_idf task, and several other runs with a parallel MPI
implementation of the calculate_tf_idf task with increasing number of MPI processes.
The experiments used a WARC file of a total size of 186 GB from Common Crawl [28]: an
open repository of web crawl data. The total number of tasks for this application is 1440
tasks: 720 read tasks and 720 corresponding compute tasks.

Figure 6.12 shows the performance results of the application. Figure 6.12(a) presents the
performance results at the calculate_tf_idf task level, where as Figure 6.12(b) shows
the total performance results. Similar to the results of the previous application, using Native
MPI tasks to parallelize the calculate_tf_idf task execution results in noticeable perfor-
mance improvement when increasing the number of MPI processes. Using 8 MPI processes
per compute task results in a more than 7x performance speedup at task time compared to
the sequential implementation of the task (Figure 6.12(a)). This performance improvement
at task level is reflected in the total performance of the application that reached 3x perfor-
mance speedup compared to the sequential impelemntation of the compute task (Figure
6.12(b)).
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(a) Average Time Per Compute Task

(b) Total Execution Time

FIGURE 6.12: Performance Results Of The Web Analysis Application

The total time improvement when increasing the number of MPI processes per compute
task can be explained by the benefit gained of parallel task execution. Hence, increasing
the number of MPI processes per decreases the time of dominant compute tasks and thus
shortening the critical path of the application which contributes to the betterment of the total
time performance.

Nevertheless, similar to the performance pattern of the matrix multiplication applica-
tion, the performance improvement in the total time of the application is diminishing when
increasing the number of MPI processes per compute task. The following section discusses
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the causes of such behaviour.

6.5.2.4 Parallelism Trade-off

To further understand the performance and behaviour of Native MPI tasks in our hybrid
programming model prototype, several experiments were conducted on the Blocked Matrix
Multiplication and the Web Analysis applications. Every experiment is launched multiple
times with increasing number of MPI processes per Native MPI tasks (2, 4, 8, 16 and 48). All
All experiments were repeated on increasing number of nodes (4, 8 and 12).

Figure 6.13(a) presents the results of the Blocked Matrix Multiplication application and
Figure 6.13(b) presents the results of the Web Analysis application. It can be noted that in
both figures, as the number of nodes increases, the total execution time of both applications
improves. As the number of executing resources increases, PyCOMPSs is able to launch
more tasks to be executed in parallel, hence, task parallelism increases and applications
total time improves.

Nevertheless, it can be noted in both charts of Figure 6.13 that for a specific number of
nodes, as the number of MPI processes per Native MPI task increases the total execution
time decreases until it reaches a point after which it starts to increase. For the Matrix Mul-
tiplication application (Figure 6.13(a)), this point is 4 MPI processes for 4 nodes and 8 MPI
processes for 8 and 12 node. Whereas, for the Web Archive Analysis application (Figure
6.13(b)) this turning point is 8 MPI processes for 4, 8 nodes and 16 MPI processes for 12
nodes.

As already mentioned in the previous sections (Sections 6.5.2.2 and 6.5.2.3), although
both applications achieve better performance on task level with increased number of MPI
processes per task, this improvement is not reflected in applications total time after a cer-
tain number of MPI processes. Increasing the number MPI processes per Native MPI task
decreases task parallelism. As the number of MPI processes per Native MPI task increases,
the scheduling requirements of the task increases. During the execution time of Native MPI
tasks, all the CPUs that are reserved for the task cannot be reused until the task has finished
its execution. Hence, executing Native MPI tasks occupies more resources and less tasks can
be concurrently launched for execution. Such an effect can result in deteriorating total time
performance at the application level, even though the performance improvement increases
at the task level.

This effect is mitigated as the number of resources increases because there are enough
resources to maintain the same level or allow for more task parallelism. This can be noted
in Figure 6.13(a), for 4 nodes the performance degrades when more than 4 MPI processes
per task are requested. However, when the number of execution worker nodes increase to
8 and 12 nodes, the total execution time starts degrading at a later point when more than 8
MPI processes per task are requested. The same can be noted in Figure 6.13(b) where for 4
and 8 nodes the total execution time degrades at 8 MPI processes but when the number of
nodes is increased to 12, this point shifts to 16 MPI processes.

It should be noted that both applications have different performance turning points, be-
cause performance improvements and degradation depends on application characteristics,
e.g., number of Native MPI tasks compared to sequential tasks, performance gain from in-
creasing the number of MPI processes per Native MPI task, whether Native MPI tasks exist
on the critical path of the application, etc.

6.6 Discussion

This chapter presents a hybrid programming model of high-level task-based program-
ming models and MPI for tasks parallelization. Enabling the execution of MPI code natively
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(a) Blocked Matrix Multiplication Application

(b) Web Analysis Application

FIGURE 6.13: Scalability Results

for parallelizing coarse-grained tasks in task-based models offers great benefits in terms of
both programmability and performance.

Using such hybrid programming models, applications can be designed and programmed
to better exploit the capabilities of modern systems while abstracting their complexity from
applications side. In this chapter, we presented the implementation details of a prototype
version of the PyCOMPSs task-based programming model and Native MPI tasks to execute
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MPI code. Our prototype can be used to parallelize sequential code using minimal addi-
tions to applications code. Tasks implementation can be parallelized with MPI using the
@mpi decorator. By enabling Native MPI tasks, the same application source file can contain
different Native MPI tasks, each has different number of MPI processes, together with dif-
ferent sequential tasks. Our implementation prototype handles all the necessary operations
for transparent managing of tasks execution and data transfer between different types of
tasks.

Our experiments showed that using such a model gives significant improvements over
sequential executions in both I/O intensive applications and compute intensive applica-
tions. This performance improvement is achieved in both Native MPI task level and total
application time. However, a trade-off arises between per task MPI parallelism and total
application task parallelism when increasing the number of MPI processes per Native MPI
tasks. The number of tasks that can run concurrently deceases when increasing the number
of MPI processes per task. Therefore task parallelism decreases, which may negatively affect
the total time of the application.

As future work, we plan to improve the scheduling of tasks taking into account the pro-
gramming model knowledge of the criticality of tasks, also the number of pending tasks and
their computing requirements to better utilize the underlying infrastructure. Furthermore,
we plan to support inter-task MPI processes communication.
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Chapter 7

Optimizing Execution with the
Eager-Release of Dependencies

SUMMARY

Task-based programming models offer a flexible way to express the unstructured par-
allelism patterns of nowadays complex applications by providing high-level abstractions.
This expressive capability is necessary to achieve maximum possible performance for appli-
cations that are executed in distributed large-scale execution infrastructures.

In task-based workflows, tasks are launched for execution when their data dependencies
are satisfied. However, even though the data dependencies of a certain task might have
already been produced, the execution of this task will be delayed until its predecessor tasks
completely finish their execution. As a consequence of this traditional approach of releasing
dependencies, the amount of parallelism inherent in applications is limited and performance
improvement opportunities are wasted.

This chapter tries to solve research question Q4 by proposing an eager approach for
releasing data dependencies. Hence, solving the limitations of traditional task-based pro-
gramming models and optimizing applications execution. Following this approach, the ex-
ecution of tasks will not be delayed until their predecessor tasks completely finish their ex-
ecution, instead, tasks will be launched for execution as soon as their data requirements are
available. Such approach can be used to overlap I/O and computation. Hence, more paral-
lelism is exposed and applications can achieve higher levels of performance by overlapping
the execution of tasks.

Towards achieving this goal, in this chapter we propose applying two conceptual and
design changes to task-based programming models and systems. First, modifying the de-
pendency relationships of tasks to be specified not only in terms of predecessor and succes-
sor tasks but also in terms of the data that caused these dependencies. Second, triggering
the release of dependencies as soon as a predecessor task generates the output data instead
of having to wait until the end of the predecessor execution to release all its dependencies.

As will be shown in this chapter, the proposal of eager-release of dependencies will not
only be useful for I/O intensive applications, but also, compute intensive applications.

Additionally, this chapter presents the implementation details of the proposed changes
in the PyCOMPSs framework and evaluates the performance with different use cases. The
evaluation experiments show that using an eager approach for releasing dependencies can
achieve more than 50% performance improvement in the total execution time as compared
to the default approach of releasing dependencies.
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7.1 Overview

As discussed in Section 1.1.5, task-based programming model decomposes applications
into tasks. These tasks are organized in the form of a Directed Acyclic Graph (DAG) by
detecting data dependencies between them so that each task has predecessor(s) and succes-
sor(s). Data dependencies between tasks control the scheduling of tasks and their execution.
Tasks are launched for execution if they are dependency-free, i.e., all their predecessors have
finished their execution successfully.

A data dependency relationship can occur between two tasks such that a task depends
only on some of the outputs of its predecessor not the whole output set. Throughout this
chapter, such type of dependency will be referred to as Partial Dependency. In this scenario,
regardless of whether the outputs that constitute the dependency relationship are ready,
a task requiring these outputs will not be executed until the predecessor task completely
finishes its execution. In this chapter, such type of releasing dependencies will be referred
to as Lazy Release of dependencies.

A task that periodically produces output data has the potential of creating more par-
allelism by allowing the overlapped execution of tasks. For instance, if a task produced
some data that are required by one of its successors, this successor task can be released for
execution while the predecessor task is still producing the remaining outputs.

Using a task-based programming model with a lazy approach of releasing dependencies
has a drawback that limits the maximum amount of achievable parallelism in applications.
Successor tasks execution will be blocked until their predecessor tasks completely finish
execution even if the data required by the successor tasks have been already produced.

Such scenario where parallelism opportunities are wasted because of applications exe-
cution pattern and lazy release of dependencies is common in parallel I/O and distributed
systems domains [99], [62]. In these domains, a task generates output data by reading from a
file in a parallel manner but the workload of the parallel processes is imbalanced or they ex-
perience performance variability. Therefore, all successor tasks cannot start execution until
the time-consuming processes have returned.

Furthermore, applications can be designed inefficiently because there is no program-
ming model support for the timely release of tasks nor data deletion. All task’s data has to
be kept in memory until the task execution finishes. However, this is not feasible in appli-
cations where tasks read big data that cannot fit as a whole in memory. Thus, avoiding this
problem leads to inefficient application design.

Additionally, this limitation can be also observed in compute-intensive applications in
domains such as physical or geometrical systems simulations or data parallel applications
like text analysis or bioinformatics applications. In these applications, tasks generate multi-
ple output data where each has independent execution pipelines.

The contributions described in this chapter target the problem of the limited parallelism
because of the lazy approach of releasing data dependencies. In this chapter, we propose an
eager approach for releasing data dependencies. Using this approach, a task starts execution
as soon as its data dependencies are ready, even if the predecessor task that produced these
data has not yet finished execution. Adopting this approach accelerates the rate in which
tasks are launched for execution, thus, more parallelism is exploited and higher performance
can be achieved.

We use the PyCOMPSs [100] task-based programming model to demonstrate our con-
tribution and its impact on the performance of applications. However, it should be noted
that our proposal can be adopted by any system that uses data dependencies to manage
executions.

The contribution in this chapter can be summarized in the following points:
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1. Introducing an eager approach for releasing data dependencies in task-based systems.
This approach is achieved by the following proposals:

• A proposal for modifying the management of tasks dependencies. Tasks should
be released for execution if their data requirements have been generated, instead
of according to the execution status of their predecessor tasks.

• A proposal for notifying the runtime system that a task has produced output
data before the executing process reaches the return statement in the task code.
Hence, dependencies can be released and successor tasks can start their execution
as soon as their data requirements are ready even if the predecessor task has not
finished execution.

2. An implementation of the eager approach for releasing dependencies in the PyCOMPSs
framework and the evaluation of its performance with different use cases.

To the best of our knowledge, the aforementioned proposals are not supported by any
of the current task-based programming models (see Section 7.2 for more details).

The rest of this chapter is organized as follows: Section 7.2 lists the related work to this
contribution. Section 7.3 describes the motivation behind this contribution and formally
states the problem. Next, Section 7.4 formally introduces our proposals for achieving the
eager-release of data dependencies. Section 7.5 presents the implementation details of the
eager approach for releasing dependencies in the PyCOMPSs programming model and run-
time. Section 7.6 starts by evaluating the overhead of implementing the eager-release mech-
anism in the PyCOMPSs framework. Also, we present the performance evaluation of this
contribution with different use cases that exhibit real patterns. Two of the use cases have
a different rate of returning data and releasing dependencies which offers an evaluation
of different performance aspects of our proposal. Whereas the other use case shows how
our proposal enables a more efficient design for I/O intensive applications that have larger-
than-memory inputs or exhibit high memory requirements. Finally Section 7.7 concludes
the main points of this chapter.

7.2 Related Work

Examples of Python-based task-based programming models were highlighted in both
Section 2.1 of the state of the art chapter and the related work sections of the previous con-
tributions: Sections 4.2, and 6.2. Those task-based programming model follow a traditional
approach for releasing data dependencies and start successor tasks execution. Successor
tasks are only executed for execution if their predecessor task has completely finished exe-
cution.

In non Python-based task-based programming models, Perez et al. [87] proposed some
techniques to improve task nesting and dependencies in OpenMP. One of the proposals,
similar in spirit to one of our contributions, includes an API for releasing fine-tuned depen-
dencies in a nested tasks scenario. In this work, an API call enables the release of sub-tasks
without waiting for a super-task to finish its execution.

7.3 Problem Statement and Motivation

We define the problem in general Directed Acyclic Graphs (DAGs) with vertices and
edges that model the applications. In this model, a DAG G = (V,E) has vertices v ∈ V rep-
resenting tasks and directed edges e ∈ E representing dependencies. These dependencies
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are input and output data of the tasks. We denote I(v) as the inputs of task v and O(v) as its
outputs.

Two vertices (tasks) p, s ∈ V are said to have a dependency relationship if the task corre-
sponding to the vertex s needs a data produced by the task corresponding to vertex p. More
formally, a directed edge e = (p, s) exists if I(s) ∩O(p) 6= ∅.

In the dependency e = (p, s), task p is a predecessor of s because at least one of its outputs
o ∈ O(p) satisfies o ∈ I(s). Also, task s is a successor task of p because at least one of its
inputs i ∈ I(s) satisfies i ∈ O(p).

In task-based programming models, dependency relationships control when a task will
be executed. Tasks are launched for execution if their data dependencies are met. Current
task-based models specify dependency relationships only in terms of tasks and not the data
that caused these dependencies. Consequently, successor tasks are launched for execution
when all their predecessor tasks produce their entire output set(s) and completely finish
execution.

It is possible that there is a dependency relationship e = (p, s), where the successor task
s does not require the whole set of O(p), instead, it depends only on a partial set of O(p),
such that I(s) ⊂ O(p). We call this type of dependencies Partial Dependency. However,
even though task s is partially dependent on task p, it will not be executed unless task p has
produced all its outputs and finished execution.

Figure 7.1 highlights this point. Task p produces output set: O(p) = {out1, out2} and
tasks s1 and s2 have input sets: I(s1) = {out1} and I(s2) = {out2}. The dependency re-
lationships are defined as e1 = (p, s1) and e2 = (p, s2) where I(s1) ∩ O(p) = {out1} and
I(s2) ∩ O(p) = {out2}. Although s1 and s2 require two different outputs of p: out1 and
out2 respectively, both successors have to wait until all outputs of p are produced and p
completely finishes execution.

P

S2S1
out1 out2

out1 out2

S1P S2P

FIGURE 7.1: Dependency Relationships Identified Only As Task:Task Depen-
dency

We call this default manner of releasing data dependencies: Lazy Release. The lazy release
of data dependencies can be characterized by the inability to release a task for execution as
soon as its data dependencies are satisfied. Therefore, a task is blocked and its execution is
delayed until its predecessor task completely finishes execution, although the data consti-
tuting the dependency might have been ready before this point.

The lazy release of dependencies can be traced back to two reasons:
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1. Data dependency relationships between tasks are identified only as task:task relation-
ships. No information is stored about the data/parameters that resulted in the depen-
dency relationship.

2. No mechanism exists to notify the runtime system that a dependency parameter has
been generated. All the output values/dependency parameters of a task are returned
when the task execution ends and the executing process of the task reaches the return
statement in the application code.

The two reasons mentioned above are intertwined. If data (dependency parameters) are
generated at an early point of task execution, it will be returned after task execution ends.
Similarly, even if the runtime was made aware of the availability of a dependency parameter,
it will not be able to the release the tasks dependent on that parameter.

This approach of releasing dependencies will work fine if a successor task depends on
the whole output set of its predecessor or if the predecessor generates the dependency val-
ues in a fast rate. However, the limitations of this approach will start to appear and affect
applications performance if a successor task has a partial dependency with its predecessor
and this predecessor spends time between the generation of each output/dependency pa-
rameter. This time spent between calculating different values creates a window for more
parallelism opportunities by overlapping the execution of tasks.

An example where the lazy approach of releasing dependencies can hinder the perfor-
mance of applications: a 1:N task dependency graph where successors have a partial de-
pendency relationship with the predecessor (the predecessor task generates N output pa-
rameters, each one feeding one of the successor tasks). In this scenario, the predecessor
task (called generator) generates data and its N successors (called consumers) each partially
depends on some of these data.

Figure 7.2 shows two possible 1:N task graphs. Figure 7.2(a) shows a sequential gener-
ator task which uses a loop to generate a value at each iteration. This generator task has
N successors where successor i depends on a value generated at iteration i. A consumer
depending on a data generated at iteration 0 will not be released for execution until the
generator task completes its N iterations and finishes its execution.

Similarly, Figure 7.2(b) illustrates a MPI parallel task with multiple consumers where
each consumer depends on the output of one of the MPI processes. Regardless of how fast
one MPI process generates its data, the execution of consumer tasks is blocked until the data
generator task completely finishes execution.
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...
{A0}

{A1}
{AN}

      loop {         
....

      out: Ai 
    }              

(a) N Consumers Partially Dependent On A Sequential
Task

...
{A0}

{A1}
{AN}

...
A0 A1 AN

(b) N Consumers Partially Dependent On A Parallel MPI
Task

FIGURE 7.2: Examples Of 1:N Partial Data Dependency Relationships

It should be noted that in some cases the example graph in Figure 7.2(a) can be modified
to remove the 1:N dependency pattern and replace it with task parallel N:N pattern. How-
ever, such modification may introduce overheads due to N tasks creation and management.
In addition to that, workflow modification may not be possible in certain scenarios where
the producer task cannot be split. For instance, if the predecessor task is executing a legacy
code or calling an external binary that cannot be modified. Another case would be if the
predecessor task is a streaming task that receives data from a stream and then distributes
these data to its successors.

7.4 Eager-Release of Dependencies

In this section, we present our proposals for eagerly releasing data dependencies in task-
based models. An eager-release of data dependencies will exploit the parallelism possibil-
ities inherent in applications. Following this approach, tasks are launched for execution as
soon as their data dependencies are produced without having to wait the predecessor task
to completely finish its execution. Hence, the release of tasks for execution is accelerated
and more performance can be achieved.

The mechanism for eagerly releasing data dependencies can be achieved by applying
two conceptual and design modifications to task-based systems. Each modification offers a
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solution to one of the shortcomings in the task-based system design that were addressed in
the previous section. These two modifications are:

• Modifying the specification of dependency relationships to include the parameters
that caused the dependencies (Section 7.4.1).

• Triggering the release of dependencies without having to wait the predecessor task to
finish its execution (Section 7.4.2).

Indeed, these two modifications are intertwined. A task-based system that is aware of
the data that caused a dependency between two tasks, will not be very useful if a successor
task has to wait until its predecessor completely finishes execution. Likewise, notifying a
system that a task has generated an output will not be useful if the system cannot identify
which are the successors that require these data.

7.4.1 Parameter-Aware Dependencies

The first necessary step to achieve the eager-release of dependencies is changing the de-
pendency specification. It is not sufficient that a tasking system only uses the data (i.e.,
inputs and outputs of tasks) to establish dependency relationships between tasks. The sys-
tem needs to be aware of which are the data/parameters that have resulted in dependency
relationships between tasks by defining the dependency relationship in terms of the task and
its required data from the predecessors. This way, successor tasks will depend on whether
the required data has been produced by predecessor tasks instead of depending on whether
the predecessor tasks has finished execution.

The approach of identifying dependency relationships in terms of the tasks and their
input parameters (outputs of predecessors) instead of the tasks themselves will be referred
to as: Parameter-Aware Dependency.

Formally, given a DAG G = (V,E) where i, j ∈ V are vertices representing tasks and
e ∈ E is a directed edge representing a data dependency between the predecessor task i
and the successor task j. A parameter-aware specification of the dependency relationship e
would be expressed as:

e = (i, j, d1, d2, .., dn)

where I(s) ∩O(p) = {d1, d2, .., dn} and n ≤ |O(p)|.
By adopting a parameter-aware approach for specifying dependencies between tasks,

data are not only used by task-models to detect dependencies between tasks, but also, these
data are explicitly included as part of the dependencies specification.

Figure 7.3 depicts the parameter-aware specification of the dependency relationships
in Figure 7.1. In a parameter-aware model, the dependency relationship between the pre-
decessor task p and the successor tasks s1 and s2 can be expressed as: e1 = (p, s1, out1)
and e2 = (p, s2, out2) respectively, as opposed to their previous tasks-only specification
e1 = (p, s1) and e2 = (p, s2). Now that each dependency relationship is identified by the
data that caused it, the system should release tasks s1 and s2 as soon as their data require-
ment is ready (i.e., produced by task p) regardless of the execution state of task p.

7.4.2 Triggering The Release of Dependencies

In traditional task-based systems, the termination of task execution and releasing the
data dependencies are considered as two dependent steps:

• First, a task has to finish its execution, usually identified when the executing process
reaches the return statement in the task code.
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FIGURE 7.3: Parameter-Aware Dependency Relationships

• Then, once the task execution ends, the runtime system receives all the output values
included in the return statement and starts to release the successor tasks that require
them, if these successor tasks do not require more output values from other tasks.

In order to take advantage of modifying the specification of data dependency relation-
ships to be parameter-aware, it is necessary to make task-based systems aware that output
data are ready as soon as they are produced instead of waiting until the end of task exe-
cution. Otherwise, a parameter-aware dependency will have the same behaviour as a tra-
ditional tasks-only dependency specification because all the dependencies will be released
after the task completely finishes the execution.

To this end, we propose extending the programming model of task-based systems to
enable the notification of the runtime system whenever a task produces output data without
having to wait until the return statement is reached in the task code. Thus, triggering the
release of data dependencies and launching successor tasks that require these data without
waiting to the end of the predecessor task execution.

The proposed extension is to include an API that can be used in the task code to allow
users to notify the runtime system that output data are ready. Indeed, other approaches can
be used such as automatically checking the memory addresses of data. However, our pro-
posed approach will allow for more flexibility in designing applications, because it enables
users to plan and optimize the execution of applications by choosing and prioritizing when
the dependencies should be released during tasks execution.

Indeed, the runtime-notification API can be used at any point in the task code before the
return statement. Every time such API call is encountered by the process executing the
task code, the runtime system is made aware that data was produced. Once the runtime
system is notified that a task has produced output data, it releases all successor tasks that
require these data if the rest of their data requirements is satisfied. Meanwhile, the process
that is executing the task will resume task code execution as normal until it encounters the
return statement.

Figure 7.4 shows the changes in the task graph state when releasing output data during
task execution. Given a task graph G = (p, s1, s2) that has a predecessor task p and two
successor tasks s1 and s2. The parameter-aware dependency relationships of this graph can
be specified as: e1 = (p, s1, d1) and e2 = (p, s2, d2) where tasks s1 and s2 require data d1
and d2 from task p respectively. Using parameter-aware dependencies and triggering the
release of data dependencies, s1 and s2 can be released for execution as soon as their data
requirement is produced instead of unnecessarily waiting until the end of task p execution.
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At time T1 of task p execution, data d1 is produced and the runtime is notified that d1 is
ready so it releases task s1. The same behaviour is repeated at time T2, the runtime releases
task s2 because it was notified that task p has produced data d2. The execution of task p
continues until it reaches the return statement in task p code.

p

s1 s2

e1 = (p,s1,d1) e2 = (p,s2,d2)

p

s1 s2

e1 = (p,s1,d1) e2 = (p,s2,d2)

p

s1 s2

e1 = (p,s1,d1) e2 = (p,s2,d2)

T1: release d1 

T2: release d2 

T3: return

Execution Timeline 
of Task p

Task Graph
State

Tstart 

FIGURE 7.4: Releasing Data Dependencies Once Data Are Produced

7.5 System Design

Enabling the eager mechanism for releasing dependencies in the PyCOMPSs framework
involved implementation efforts in both components of the PyCOMPSs runtime: the master
and worker components. Some parts were re-implemented in the master component where
the dependencies are managed and released. Also, a new functionality was implemented in
the worker component to enable the triggering of data releases in the user code and notifying
the master that an output value is ready.

However, it should be noted that it was not necessary to re-implement the complete
PyCOMPSs runtime. For instance, the task scheduler was not re-implemented.
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This section is divided into two parts: Section 7.5.1 describes the modifications made on
dependencies management in the master component to enable parameter-aware dependen-
cies. Section 7.5.2 presents an extension to the PyCOMPSs programming model to enable
the notification of ready output values and trigger the release of data dependencies before
the end of task execution.

7.5.1 Parameter-aware Dependencies

For analysing the dependencies and scheduling a task, the PyCOMPSs runtime uses two
main abstractions:

1. Task: the main abstraction representing a task. It contains task-related information
such as its predecessors and successors, parameters, description and task status.

2. Parameter: represents task parameters; their IDs, types and their direction (i.e., whether
they are inputs or outputs).

3. Execution Action: represents a task instance that is ready for scheduling and execution.

Whenever the COMPSs master receives a task execution request, the Task Analyser first
identifies if this task has any data dependency relationships with the previously received
tasks. The Task Analyser identifies a data dependency relationship between two tasks if
an IN or INOUT parameter of a task has the same Parameter id of an OUT parameter of
another task.

Once the task analysis has been done, the Task Dispatcher instantiates and uses Execution
Action objects for scheduling. In addition to that, Execution Action objects are used to identify
which successors should be released after predecessors finish execution. A task may have
several Execution Actions, for instance, if a task is being called multiple times in a for loop,
the PyCOMPSs runtime will instantiate one Task object representing the task and as many
Execution Actions as the number of times that task is called in the for loop.

Every Execution Action of a task has a Predecessor Set that contains the Execution Action
IDs of all its predecessors and a Successor Set that contains the Execution Action IDs of all
its successors. Listing 7 shows a pseudo code of the process of building the predecessor
set and the successor set of a given Execution Action. Predecessor tasks are fetched using
a Task object. Next, for all the Execution Actions of all the predecessor, the predecessor and
successor sets are updated.

When the predecessor set of a certain successor task becomes empty, this successor is
marked as free of dependencies and released for execution. As noted in Listing 7, data
dependency parameters are not included in managing the dependency relationship thus
making them tasks-only specified relationships.

In order to enable the parameter-aware specification of dependencies, we introduced a
new abstraction: Task Dependency Parameter. This abstraction is an extension of the Param-
eter abstraction. It creates a relationship between task parameters and the Execution Action
objects of the predecessor task. Hence, the runtime can identify which task (i.e., Execution
Action) should be released for execution when it gets notified that certain parameter(s) have
been generated by a running task/Execution Action.

Listing 8 depicts the pseudo code for creating parameter-aware dependency relation-
ships. The ID of the Parameter object that has resulted in the dependency is stored in all
of the Execution Action objects of the predecessor and successor tasks. Given a certain task,
all of its input parameters are retrieved. The producer of each parameter is identified, then
the Execution Actions of this producer are retrieved and the corresponding predecessor and
successor sets are updated.
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Listing 7: Parameter-unaware Dependency Management
Input: t as the task object, e as its execution action

1 for Task p: t.getPredecessors() do

2 for ExecutionAction ePredecessor: p.getExecutionActions() do

3 e.PredecessorSet.add(ePredecessor);

4 ePredecessor.SuccessorSet.add(e);

5 end

6 end

As can be noted in Listing 8, instead of managing dependencies only using the Execution
Action objects that represent running instances of the tasks, the parameter-aware implemen-
tation additionally uses parameters IDs. Predecessor and successor sets are updated with a
pair of the form: <Parameter ID, Execution Action>.

Listing 8: Parameter-Aware Dependency Management
Input: t as the task object, e as its execution action

1 for TaskDependencyParameter param: t.getParameters() do

2 producer = tdp.getProducers();

3 if producer != Null then

4 for ExecutionAction ePredecessor: producer.getExecutionActions() do

5 e.PredecessorSet.add(param.id, ePredecessor);

6 ePredecessor.SuccessorSet.add(param.id, e);

7 end

8 end

9 end

Once the Task Dispatcher gets notified that a task has generated a data/parameter, the cor-
responding ID of that parameter will be used to remove the associated predecessor Execution
Action from all successor Execution Actions. Execution Actions are launched for execution if
they have an empty predecessors set.

7.5.2 Triggering Dependencies Release

We extended the programming model of PyCOMPSs to include a new API to indicate
that data has been generated, hence, triggering the dependency release mechanism in the
master component of COMPSs without having to wait for the task execution to end. This
API has the following form:

compss_ready_value(Data Object, Index)

This notification API requires two parameters as input: Index which is a unique identifier
for the generated data that will be mapped to a parameter ID, and Data Object which is the
actual data to be returned.
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Figure 7.1 illustrates a sample task code that uses compss_ready_value() to return
two outputs at two different times of a task execution.

1 @task(returns=2)
2 def sample_task():
3 # performs lengthy computation on variable a
4 compss_ready_value(a, 0)
5 .....
6 # performs more computation on variable b
7 compss_ready_value(b, 1)
8

9 if __name__ == "__main__":
10 ...
11 outs = sample_task()
12 for out in outs:
13 calculate(out)
14 ...

LISTING 7.1: Sample Task Using compss_ready_value() To Release Output Val-
ues

It should be noted that in Figure 7.1, the number of output values of the task is specified
in the @task decorator. Using this information, the programming model and runtime know
exactly how many outputs to expect from a task. On the one hand, the runtime will be
able to carry out necessary management operations such as instantiating Parameter and Task
Dependency Parameter objects and creating the corresponding dependency relationships. On
the other hand, the programming model will allow iterating and indexing the task outputs
in the application code. Otherwise, if the number of returns is not specified, the returns of
the tasks will be treated as one single object in the runtime and the programming model.

In order to differentiate between different runtime events, we added a readyValue mes-
sage to indicate the event of data value generation. This message is of the following form:

readyValue (JobID, ParamID)

Whereas to indicate the event of task termination, the runtime uses the endTask message
in the following form:

endTask (JobID)

Figure 7.5 presents a high level sequence diagram of the different trigger messages and
how they are handled by the worker several components. Once the Python worker that
executes the task receives a compss_ready_value call, it first maps the index passed in the call
to a parameter ID and then signals its corresponding Java executor thread with a readyValue
message. As soon as the Java executor thread receives a readyValue message it notifies the
Execution Manager that a value was received.

Once the execution of the task code finishes, the control flow goes back the Python
worker that triggers an endTask message to the Java executor thread to indicate that a task
execution has finished. When the Java executor receives an endTask message, it notifies the
Execution Manager that a task execution has finished. Both messages eventually are handled
by the Execution Manager that notifies the COMPSs master that a certain event has occurred.

On one hand, when the Task Dispatcher receives a readyValue message, it fetches the Ex-
ecution Action object corresponding to the task ID provided in the readyValue message. For
a given parameter ID, it releases all the execution actions associated with that parameter
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Task Code Python Worker Java Executor Execution Manager

compss_ready_value (a, 0)

compss_ready_value (b, 1)
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notifyEndTask (0)
endTask (0)

return

FIGURE 7.5: Worker Execution Workflow Using compss_ready_value().

ID. On the other hand, when the Task Dispatcher receives endTask message, it releases the
remaining successors -if any- and carries out postmortem operations related to the task that
has just finished execution.

The serialization of the ready values is done as soon as the Python worker receives the
compss_ready_value() call and not deferred until the task finishes execution. Figure
7.6 shows a timeline for the different operations carried out in a task releasing two values.
Before executing the application code in the task, the python worker process that handles
the execution of the task deserializes the inputs of that task so that they can be used inside
it. In the lazy approach of releasing dependencies, when the task returns (i.e., the execution
of the user code ends), the executing process returns to the Python worker to serialize all
the returns of the task. On the other hand, using compss_ready_value() to trigger the
release of dependencies, the value is serialized as soon as the call is made. Once the value
is serialized, the Python worker process starts the workflow of notifying the runtime that a
return value is available.

Deserialzing Inputs

User Code Execution

Serializing Outputs

Time

A)

B)

FIGURE 7.6: Operations Carried Out During Task Execution. In A Lazy-
release Of Dependencies (A), All The Returns Are Serialized When The Task
Execution Ends. Whereas Using compss_ready_value() (B), Return Values Are

Serialized Once The Call Is Made

7.6 Evaluation

In this section, we evaluate our proposal against the default lazy-release of dependen-
cies. In all the experiments, we use the default dependencies release approach of PyCOMPSs
as the baseline. We start by describing the infrastructure in Section 7.6.1. Section 7.6.2
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presents an evaluation of the overhead associated with using
compss_ready_value to eagerly release data dependencies in PyCOMPSs. Finally, Sec-
tion 7.6.3 presents the impact of using eager-release of dependencies on the performance of
use cases that exhibit real patterns.

7.6.1 Infrastructure Setup

All experiments were run on the MareNostrum 4 supercomputer, located in the Barcelona
Supercomputing Center (BSC). A description of the MareNostrum 4 supercomputer can be
found in Section 4.5.1. The number of used nodes is specified in the following sections for
the overhead experiments and each of the use cases.

7.6.2 Overhead Evaluation

This section examines three overhead aspects of using an eager-release approach in Py-
COMPSs:

• First, it shows the impact of making compss_ready_value calls to return increasing
the number of objects.

• Then, it presents the impact of increasing the sizes of returned objects.

• Finally, it examines the network overhead caused by using compss_ready_value
calls and its effect on the total time.

We developed a benchmark that has a task graph G = (p, s1, s2, .., sn) where p is the
predecessor task and si where i ∈ n are successor tasks. The number of successor tasks is
equal to the number of objects returned by the predecessor task such that each successor
requires only one output of the predecessor task (i.e., I(si) ∩ O(p) = {di}). The predeces-
sor/generator task generates and returns objects whereas successor/consumer tasks do not
perform any computations. Figure 7.7 illustrates the task dependency graph skeleton of this
benchmark. In order to be able to test different aspects of the eager-release mechanism, the
generator task can be tuned to return different number of objects or different sizes of objects.
All the experiments in this section were run two times: one time where the generator eagerly
releases dependencies (i.e., eager generator). The second run has a default lazy generator
that releases all the dependencies when task execution ends (i.e., lazy generator).

P

S1 Sn

d1 dn

FIGURE 7.7: Benchmark Task Dependency Graph
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All results were obtained running on a set of 6 nodes of MareNostrum 4, using one node
as master node and five nodes as worker nodes.

7.6.2.1 Impact of Increasing The Number of Returned Objects

For measuring the impact of returning different number of objects using
compss_ready_value, we ran the benchmark multiple times, each time with different
number of returns. In all the runs, all returns are of the same size. The eager generator
uses compss_ready_value to return an integer each time it is called, whereas the lazy
generator returns all values at the end of task execution.

Figure 7.8 shows the impact of increasing the number of returned objects on task time
and total time with both dependency release approaches. For fewer number of returns
(10 and 100), the task time and total time in both approaches are almost the same. As
the number of returns increases in the eager-release approach, the overhead of making the
compss_ready_value call starts to appear and the task time increases. However, as task
time increases in the eager-release case, the total time decreases for larger number of returns
in comparison to the lazy-release case.

The time increase in the task due to the overhead of making compss_ready_value
calls is compensated by the fact that using an eager-release approach, tasks are released
earlier for execution. The execution of consumer tasks is overlapped with the execution of
the generator task so the total time decreases. Whereas in the lazy-release approach, as the
number of returns increases, the amount of tasks to be executed after the generator task
increases and total time also increases.
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FIGURE 7.8: Impact Of Increasing Number Of Returns On Task And Total
Time

7.6.2.2 Impact of Increasing The Sizes of Returned Objects
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Next, we measure the impact of using compss_ready_value to return multiple Python
objects (of type list) with different sizes. This experiment aims to specifically measure the
effect of data serialization on task time and total time. To this end, we fixed the number
of returns in both the eager generator and lazy generator to 200 returns. We launched five
runs, the size of the returned lists increases by one million integer in each run.

Figure 7.9 shows that as the lists sizes increase, no significant difference can be observed
on the task time and the total time between the lazy-release approach and the eager-release
approach. In addition to that, the gain achieved from using eager-release approach is almost
the same for different return sizes. As the sizes of the lists increase, the average time of the
generator task increases. However, since the successor tasks are dummy tasks that does not
perform any computation, their execution time for different return sizes is almost the same.
Thus, the total time increases but the gain remains the same.

FIGURE 7.9: Impact Of Increasing Sizes Of Returns On Task Time And Total
Time

Figure 7.10 offers a closer look at the time spent in serialization in both release ap-
proaches. In both cases, as the size of return increases, the serialization time increases. How-
ever, in the lazy-release approach (Figure 7.10(a)), the serialization of all the returns is carried
out after the task code ends. After the Python worker serializes all the returns, the endTask
message is triggered. Whereas in the eager-release approach using compss_ready_value
(Figure 7.10(b)), the serialization is done only for the return value that is passed in the
compss_ready_value call. As soon as this return value is serialized, a readyValue message
is triggered for that value.
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FIGURE 7.10: Serialization Time With Increasing Sizes Of Returns In Lazy-
Release Approach And Eager-Release Approach

7.6.2.3 Impact of Network Overhead

Finally, the experiments in this part measure the network overhead of using an eager-
release approach to release dependencies and its impact on the total time. As explained in
Section 7.5.2, every time a compss_ready_value is called, it uses a readyValue message
to notify the runtime that the return value passed in the call has been produced. Whereas
the lazy-release approach uses only one endTask message after the task ends to notify the
availability of all the return values of the task.

Several runs were launched, each run has a different number of generator tasks where
each generator returns 100 integers. Figure 7.11(a) shows that the average time for receiving
a readyValue message in the eager-release case and an endTask message in the lazy-release
case increases as the number of generators increase. It can be noticed that the average time of
receiving a readyValue message is higher than receiving a endTask message. As the number of
generators increases, the number of returns increases and readyValue messages start flooding
the network. This network overhead affects the total time as shown in Figure 7.11(b).
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Nevertheless, the effect of network overhead on the total time could be mitigated in real
applications where successor tasks spend time performing computation as will be demon-
strated in the use cases in the following sections.
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FIGURE 7.11: Impact On Network With Increasing Number Of Generators

7.6.3 Use Cases

In this section, we present performance results that shows the impact of our proposal
on the performance of three different use cases. Each use case exhibits a different rate of
releasing dependencies, thus, showing different performance aspects of the eager-release
mechanism:

• Section 7.6.3.1 discusses a use case that returns data and releases dependencies at a
high rate using a parallel generator task.

• Then, Section 7.6.3.2 presents a use case in which using the eager mechanism for re-
leasing dependencies enables a more efficient application design.
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• Finally, Section 7.6.3.3 presents a use case that features a sequential generator task
where data are returned and dependencies are released in a time interleaving manner.
This use case shows that the eager-release mechanism can be used to optimize the
performance of compute-intensive applications.

7.6.3.1 Web Archives Analysis

Web archives are stored in a special format called WARC (Web ARChive) [115]: a file
format used for archiving web pages that it is widely used for web crawling and text analysis
applications. Each WARC stores several web archives with different sizes.

We developed an application that reads in parallel the records of WARC files and calcu-
lates the term frequency (TF-IDF) of each record. Figure 7.12 shows the PyCOMPSs skeleton
graph of the application. A generator Native MPI task (more details on Native MPI tasks
are discussed in Chapter 6) reads N records in parallel using MPI. For each record, there are
two consuming tasks that will carry out a TF-IDF operation. Since WARC records are of dif-
ferent sizes, MPI processes will spend variable times reading them, hence their successors
are released at different times. To run the experiments of this use case, we used datasets
from CommonCrawl [28], which is a nonprofit website that freely provides web archives
and web crawl data.

.	.	.	

read_records

calculate_tf

.	.	.	

calculate_idf

FIGURE 7.12: Skeleton Graph of WARC Analysis

For running the experiments of this use case, we used dedicated nodes for doing I/O
(called I/O nodes) and dedicated nodes for doing computation (called compute nodes).
By using the ProcessorName propriety of the @constraint decorator in the application
code, PyCOMPSs schedules each task to matching resources. This application is annotated
in such a way that Native MPI I/O tasks will be scheduled to I/O nodes and compute tasks
will be scheduled to compute nodes. This way of organizing the infrastructure mitigates
the interference levels between I/O and compute tasks which leads to better overall perfor-
mance as proven in previous I/O research [2], [63].

To show the impact of using eager-release of dependencies when using a parallel MPI
task, we used 6 I/O nodes and 8 computing nodes. One I/O task launches 288 MPI pro-
cesses across the I/O nodes. Each MPI process reads a chunk of records from a WARC file
that contains 6000 records. The number of records to be read is divided equally across the
MPI processes with the MPI process of last rank reading any remainders. For each record,
TF-IDF computation tasks are scheduled to the computing nodes. Figure 7.13 shows the
distribution of record sizes of the sample WARC file used in this experiment. Records are of
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different sizes so MPI processes will take variable amounts of time reading them and their
dependencies will be released at different times.

FIGURE 7.13: Distribution Of Records Lengths In A WARC File

Figure 7.14 presents the performance results of the application when reading different
number of records. Using the eager dependency release achieves performance improvement
that can reach up to 35% in total time compared to the lazy release run. In the lazy depen-
dency release, all the consumer tasks wait until the generator task ends to be scheduled and
executed. Once the read task ends, consumer tasks overwhelm the computing resources
and hence, most of them spend more time waiting until there is an available execution re-
source. On the other hand, with eager release of dependencies, consumer computation tasks
are released as soon as their data dependency is read and computation overlaps with I/O.
Therefore, better performance is achieved as consumer tasks start execution while the read
task is still running. Hence, avoiding resource and system contention that happens in the
lazy dependency release case when the reading task ends.

Moreover, looking closely at Figure 7.14, the performance gain of the eager-release ap-
proach varies between the read time (which is the maximum achievable performance im-
provement) and the lazy-release time (which is the minimum achievable performance im-
provement). In both scenarios, the performance of an eager-release will never be better than
the reading time and will not be worst than the lazy-release performance.

To better understand the results of Figure 7.14, we refer to Figure 7.15 which shows two
screenshots of the execution traces of one of the experiments using the lazy dependency
release and eager dependency release. To generate execution traces, the runtime of Py-
COMPSs uses the Extrae tool [34] to instrument the start and end of each task. At the end
of the execution, the generated trace file can be viewed using the Paraver tool [85]. Both
screenshots in Figure 7.15 has X-axis that represents time and Y-axis that represents execu-
tion threads; each thread executes one task at a time. The execution traces in Figure 7.15
show a blue MPI read task that spans MPI processes across I/O nodes. Each record is pro-
cessed by a calculate_tf white task then a calculate_idf red task on the compute
nodes.

As it appears in Figure 7.15, in the case of eager-release, records of small and medium
sizes can be executed as soon as they are read without having to wait the read_records
task to read all records. While the MPI processes of the read_records task spend more
time reading larger records, the eager-release execution releases the dependencies of small
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FIGURE 7.14: Performance Results With Increasing Number Of Records

and medium size records and starts their processing. On the contrary, in the case of the
lazy-release execution, the processing of the small and medium size records is blocked un-
til the read_records task reads all the records. After the read_records task finishes
execution, all dependencies are released and calculate_tf and calculate_tf tasks
overwhelm the execution resources, hence, tasks have to wait for available resources to be
start execution.

Since data returns are done in parallel, the amount of performance improvement achieved
in the eager-release execution is proportional to how fast the parallel processes will return
a value and release its dependency. In the WARC analysis application, the performance
improvement depends on the number of small and medium sizes records compared to the
number of larger records. As this number increases, more performance improvement will
be achieved using eager-release of dependencies. Nevertheless, if all records have the same
size, the MPI processes will spend almost equal time reading them and their dependencies
will be released at the same time. Consequently, their execution will not overlap with the
reading task and the eager-release approach will behave like a lazy-release one.

For testing the scalability of using eagerly releasing dependencies in a parallel task, we
tested this application with different number of nodes and different workloads. For the
scalability experiments we used a WARC file which contains 24000 record of different sizes.
For running the strong scalability experiments, the workload is maintained fixed by using
the same number of I/O nodes and increasing the number of compute nodes. Each I/O
node runs one I/O native MPI read task that launches 48 MPI process per node for a total
number of 240 MPI process across all the I/O nodes. Each MPI process reads 100 record
from the WARC file. For each record, TF-IDF compute tasks are launched on any of the
compute nodes.

As for the weak scalability tests, the workload was changed by changing the number
of I/O nodes in each experiment. By changing the number of I/O nodes, the number of
I/O tasks changes and the workload changes because the amount of records to be read
changes. In these experiments, each I/O node hosts a parallel MPI read task that launches
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Release)

48 MPI process per I/O node, each MPI process reads 100 record from the file. In the eager-
release case, once MPI process reads a record, it uses compss_ready_value to release the
successor compute task.

Figure 7.16 presents the scalability results of the application. In Figure 7.16(a), an eager-
release approach achieves better strong scalability than the lazy-release approach. With
eager-release of dependencies, as the number of computing nodes increases, more resources
are available to satisfy the consumer tasks that are eagerly released. Given that the amount
of work for each MPI process is different so that dependencies will be released at different
times allowing overlapping computation, and thus, performance improvement.

Furthermore, Figure 7.16(b) illustrates the weak scalability of the application. An eager-
release approach also achieves better weak scalability than the lazy-release approach. The
more data returned and released in parallel, the more workload the components of the sys-
tem have to handle. It should be noted that as the data are returned in parallel, dependencies
are released at a higher rate and the overhead of the system increases resulting in a similar
trend but better performance compared to the lazy-release case.
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FIGURE 7.16: Scalability Results of WARC Analysis Application

7.6.3.2 Pairwise Sequence Alignment

In the fields of life sciences and bioinformatics, pairwise sequence alignment (or map-
ping) is used to identify regions of similarity between two DNA or RNA sequences. Se-
quence alignment is carried out by mapping tools that take two inputs: an unknown (or
target) sequence and a known sequence (or a reference) with the goal of identifying whether
both sequences have a structural, functional or evolutionary relationship.

Sequence files are usually of big sizes as they contain a large number of DNA or RNA
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fragments, called Reads. Therefore, an out-of-core approach is used to align the target se-
quence files to the reference file since the whole target sequence file is too big to fit in mem-
ory. In this approach, the target file is processed in parts: the application reads a part that
can fit in memory then processes it before reading the next part.

A different solution to this problem is to stream the target sequence file such that the
mapper tool processes streams of reads. This way, the cost associated to keeping large num-
ber of reads in memory is eliminated. Our proposed approach of eagerly releasing data
dependencies makes this solution possible in a task-based execution context: the processing
of reads can start as soon as a read or group of reads are received from the I/O stream. Oth-
erwise, using a streaming solution with lazy dependencies release would not be effective
as the reads would still need to be kept in memory. Indeed, this solution approach can be
generalized to solve any problem that has inputs of sizes bigger than the available memory
or any problem that has a workload that exhibits high memory requirements.

We developed a sequence alignment PyCOMPSs application that has the task skeleton
depicted by Figure 7.17: a get_reads task loads reads from a sequence file and distributes
reads to align successor tasks, each calling a mapper tool on its input reads. In order to
show the capabilities of the eager approach for releasing dependencies, we compared two
versions of the application in the experiments:

• An out-of-core version in which the application follows the pattern: get_reads task
reads part of the target file that can fit in memory, then after it finishes loading that
part, align tasks are released in a default lazy dependencies release fashion. This
pattern gets repeated until the whole target file is processed.

• A streaming version in which the get_reads task opens an I/O stream to load the
reads from the target sequence input file, then eagerly releases an align task when a
read or group of reads has been received from the stream.

.	.	.	

get_reads

align

FIGURE 7.17: Skeleton Graph Of The Pairwise Sequence Alignment Applica-
tion

For running the experiments, we used different target sequence input files of increasing
sizes (55 GB-220 GB). A target sequence file of 55 GB has a total of 685,388,928 reads. No mat-
ter what is the size of the target input file, each align task processes almost 342,694 reads.
The align tasks use the popular Burrows-Wheeler Aligner (BWA) [58] to align their input
reads to a subset of the human genome reference (HG38). The input files and the human
genome reference are publicly available on the FTP servers of the European Bioinformat-
ics Institute [30] (EMBL-EBI) and the Broad Institute [37] which are well-known resources
for providing sequencing data (e.g., sample sequences, genome references, etc.). All experi-
ments used 8 nodes of the MareNostrum 4 supercomputer for tasks execution.

Figure 7.18 shows the significant improvement that can be achieved when streaming
the input and eagerly releasing aligning tasks compared to reading parts of the file then
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releasing all the aligning tasks. As the number of reads is doubled every experiment (file
size is doubled), the number of reads and the number of the align tasks that process each
read also doubles. In the case of the out-of-core version, the number of get_reads tasks
doubles as the file size doubles. For instance, in the case of using an input of 55 GB, one
get_reads tasks is used to load the whole file in memory, whereas with an input of 110
GB, two get_reads tasks are used to read two parts of the file. In order to guarantee the
memory requirements of the get_reads tasks, we constrained their execution using the
memorySize argument in the @constraint decorator of PyCOMPSs. On the contrary,
in the streaming case, only one read_tasks is used regardless of the input file size, also
without specifying any memory constraints for the task execution.
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FIGURE 7.18: Performance Results With Increasing File Sizes/Number Of
Reads

As shown in Figure 7.18(a), as the target file size and the number of reads increases,



148 Chapter 7. Optimizing Execution with the Eager-Release of Dependencies

the performance improvement gained by in the case of input streaming and eagerly releas-
ing successor tasks increases. The performance improvement achieved in the case of input
streaming and eagerly releasing the align tasks is possible because the cost of repeatedly
reading parts of the input file in memory is eliminated. The memory requirements of the
get_reads tasks in the out-of-core version also prevents more align tasks to run in paral-
lel. Moreover, similar to the previous use case, eagerly releasing the align tasks accelerates
the execution as tasks execution is overlapped and less tasks overwhelm the infrastructure
at the end of get_reads task execution. Whereas in the out-of-core and lazy release imple-
mentation, all align tasks are released after the end of get_reads execution. Hence, they
overwhelm the infrastructure and each task has to wait more time for computing resources
to be available.

Figure 7.18(b) shows the performance gain in the application. As the file size (i.e., the
number of reads) increases, the gain achieved by using input streaming and eager release of
dependencies increases.

7.6.3.3 Domain Decomposition of Geometrical Shapes

Due to the time and memory required for solving problems in mechanical and engineer-
ing disciplines, domain decomposition techniques are applied to split a global domain into
sub-domains. Later, a Partial Differential Equation (PDE) is performed on each sub-domain
in a parallel manner. In these problems, sub-domains are not of equal dimensions because
of the irregular geometry of the domain.

Therefore, this problem is a good candidate to study the impact of eager dependencies
release as implemented in PyCOMPSs. We developed an application that decomposes a
2D mesh using an iterative solver into several sub-domains and then it applies a partial
differential equation on each sub-domain. It should be noted that this application and its
workload pattern corresponds to a real workflow used in the field of mechanical engineering
modeling. The iterative solver used for creating sub-domains is called the FETI Method [35],
which is a well-known domain decomposition method in the field of numerical analysis. In
addition to that, the pattern that this application mimics is used in the modeling experiments
of the EXPERTISE project [103], which is a European multidisciplinary project that aims at
the modeling of turbine components.

Figure 7.19 presents the PyCOMPSs task graph skeleton of the application. A domain
decomposition generator task returns N sub-domains. Each sub-domain will be processed
by one consumer successor task, where each consumer will apply a PDE on its input sub-
domain.

.	.	.	

domain_decomposition

apply_pde

FIGURE 7.19: Skeleton Graph Of Domain Decomposition Application

We have measured the performance of the application with eager dependency release
and lazy dependency release implementations on 8 nodes of MareNostrum 4 for executing
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the tasks of the application. Since the number of sub-domains returned by the generator
task has an important effect on the availability of work (and hence performance), we run the
experiments with a variable number of data returns per generator task. In each experiment,
we used 4 domain decomposition tasks. Each task decomposes one domain and returns
several sub-domains. In addition to that, we maintained the number of consumer tasks
equal to the number of sub-domain releases (i.e., in all experiments, one consumer task is
used to process one sub-domain).

Figure 7.20 shows the execution time of running the application with eager dependency
release and lazy dependency release and the performance gain achieved with increased
number of sub-domains. As shown in Figure 7.20(a), as the number of sub-domains re-
turned per generator task increases, the performance improvement obtained by the eager
dependency release mechanism increases. This is because in the lazy-release case, as the
number of sub-domains increases, the number of consumer tasks to be executed after the
generator task ends increases. In this case, all consumer tasks require execution resources at
the same time, thus tasks spend more time waiting for available resources.

Whereas in the eager-release case, as soon as the runtime is made aware of a generated
sub-domain, it releases the consumer task that has a data dependency with that sub-domain.
Hence, consumer tasks that are ready for execution do not spend as much time waiting for
execution resources as they do in the lazy-release case when the generator finishes execution.

Figure 7.20(b) presents the performance gain achieved using eager-release as the number
of returned sub-domains increases over using the default lazy-release of PyCOMPSs. As the
number of returned sub-domains increases, the execution of the eagerly-released consumer
tasks starts earlier and overlaps with the execution of generator task. Therefore, unlike lazy-
release case, less consumer tasks are left to be executed after the generator task ends. Hence,
tasks spend less time waiting for a free resource.

It should be noted that the number of consumer tasks with respect to the number of
available resources have an impact on the performance gain. On one hand, as the number
of returned sub-domain increases, consumer tasks overwhelm the available resources after
the generator task end in the lazy-release case. Consequently, consumer tasks spend more
time waiting for free resource and the execution time increases. On the other hand, when the
number of returned sub-domains decreases with respect to the number available resources,
performance gain of using eager-release decreases over using a lazy-release approach. This
is because there are enough resources to execute tasks so consumer tasks will wait less time
to be executed.

Figure 7.21 presents the scalability results of the application with both dependency re-
lease approaches. For the strong scalability experiments the number of returns is kept fixed
while the amount of worker nodes is increased. On the other hand, for the weak scalabil-
ity experiments, the data set is increased in the same proportion as the amount of worker
nodes.

For the strong scalability experiments, we used 10 domain decomposition generator
tasks, each task returning 800 sub-domains. This workload is fixed for all the number of
nodes. As for the weak scalability experiment, the number of sub-domains increases from
800 sub-domain to 9600 sub-domain as the number of workers increases. For example, for
one worker node, we launched one domain decomposition generator task that returns 800
sub-domains. For two workers, we launched two domain decomposition tasks each returns
800 sub-domains and as the number of nodes increased the workload is increased in the
same pattern so that each worker would perform the same amount of work.

Figure 7.21(a) shows that eager-release approach achieves better strong scalability. With
fewer number of nodes, the performance improvement of both approaches is somehow close
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FIGURE 7.21: Scalability Results Of Domain Decomposition Application
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because there is no enough resources to execute ready consumers. However, as the num-
ber of nodes increases, the eager-release approach achieves more and more performance
improvement since there are more resources to execute ready tasks.

Moreover, in Figure 7.21(b), unlike the lazy-release approach, an eager-release approach
shows a more steady efficiency trend with increasing workloads. As the workload increases
in the lazy-release approach, the load on the runtime components increases since all the
tasks need to be processed at the same time. However, using an eager-release approach,
the workload does not create a bottleneck at any of the runtime components since tasks are
handled (and their successors are dispatched) at interleaving time intervals. It should be
noted that the gain achieved with increasing number of returned sub-domains hides the
overhead of compss_ready_value and the network overhead.

7.7 Discussion

This chapter presented a proposal to improve the performance of task-based executions
by modifying how data dependencies between tasks are perceived and managed in task-
based systems. The proposal is to eagerly releasing data dependencies instead of being
delayed until the predecessor tasks finish execution. Using this approach for releasing de-
pendencies enables higher levels of performance by exploiting the inherent parallelism in
the applications and overlapping tasks execution.

In this chapter, we implemented an eager mechanism for releasing dependencies in the
PyCOMPSs framework. This is achieved by introducing two related modifications to the
design of the system:

1. Changing the management of dependencies to be identified not only in terms of tasks,
but also in terms of the dependency parameters that caused the dependencies. This
approach enables the release of tasks as soon as their data dependencies by making
the dependency parameters part of the dependency relation.

2. Through the use of compss_ready_valueAPI call, dependencies release can be trig-
gered from the application code as soon as a return value is ready instead of waiting to
the end of task execution when the executing process reaches the return statement.

This proposal was evaluated against real and artificial workloads and it has demon-
strated that eagerly releasing dependencies can achieve better performance than using the
default lazy approach of releasing dependencies. In addition to that, under certain con-
ditions, the performance gain increases as the workload increases. Using an eager-release
mechanism, the execution of tasks overlaps as they are released earlier for execution as op-
posed to delaying their execution until their predecessor tasks finish execution.

Moreover, the performance gain achieved in an eager-release approach depends on the
frequency of output returns. Performance gains are guaranteed when data are returned and
dependencies are released in a time interleaving manner allowing overlapping execution.
However, when the rate of returns increases, like in the case of a parallel task that returns
multiple data dependencies, the performance gain diminishes. As the time between return-
ing values decreases, an eager-release approach follows a similar trend to a lazy-release
approach and the overhead of the system starts to affect the performance.

Enabling the eager-release of dependencies allow performance improvement opportuni-
ties through I/O-compute overlap. Successor compute tasks in read-intensive applications
can be released for execution as soon as their data requirement has been read, without hav-
ing to wait for the whole dataset to be read. Moreover, the eager mechanism for releasing
dependencies makes it possible to design I/O streaming applications, for instance reading
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data that cannot fit-in-memory as a stream (e.g., record after a record) and constantly releas-
ing the compute tasks and freeing the memory once a record has been read.

In addition to the performance benefits for I/O intensive use cases, the eager-mechanism
for releasing dependencies has shown performance improvements for compute intensive
applications. For example, applications where a task is constantly generating or distributing
data to successors.

As future work, we plan to investigate approaches to automatically detect the generation
of data instead of manually using an API call in the task code without affecting the flexibility
of applications design. In addition to that, we plan to extend the eager-release mechanism
to support releasing dependencies of nested tasks.
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Chapter 8

Conclusions And Future Work

8.1 Conclusions

This thesis contributes to the optimization of I/O intensive applications. It proposes pro-
gramming model abstractions and techniques that help to mitigate the I/O bottleneck which
prevents achieving more performance in nowadays applications. Throughout this thesis, we
introduced various concepts to task-based programming models in order to achieve more
I/O and total performance on modern heterogeneous and distributed large-scale infrastruc-
tures. Our prototype is capable of significantly improving I/O and total performance of
applications by providing the following capabilities: (i) improving I/O performance by mit-
igating I/O performance problems such as I/O congestion. (ii) exploiting the heterogene-
ity of modern storage systems, (iii) increasing parallelism by supporting hybrid executions
(a combination between tasks and MPI inside tasks), (iv) overlapping I/O and computa-
tions. These capabilities are exposed in a transparent and abstract manner to application
developers by providing simple annotations that enable high performance execution with-
out increasing programming complexity. In the next following paragraphs, we provide an
overview of the conclusions that are discussed at the end of each chapter in the Contribu-
tions part of this thesis (Part II).

Chapter 4 proposes the separation of handling I/O and computations at programming
model level. This separation allows increased levels of parallelism by exploiting applica-
tions compute-I/O patterns to overlap the execution of I/O with computation. In addition
to that, it enables the optimized scheduling and execution of I/O and compute workload.
We refer to such concepts as I/O Awareness. In order to achieve I/O awareness, we intro-
duce the I/O tasks abstraction. I/O tasks are tasks that only perform I/O operations as
opposed to compute tasks that perform computations. I/O tasks are declared by the use of
the @IO annotation. Moreover, we propose different approaches for solving the problem of
I/O congestion that negatively affects I/O performance. Such goal is possible by constrain-
ing tasks execution, hence, the following mechanisms are introduced: (i) using static storage
bandwidth constraints, where users estimate and set storage bandwidth constraints at ap-
plication development time. (ii) using auto-tunable constraints. Auto-tunable constraints
are automatically set and tuned storage bandwidth constraints. To identify a suitable con-
straint, the programming model launches a learning phase where it collects performance
metrics about I/O tasks performance when different numbers of concurrent I/O tasks are
running. Then, it applies these performance metrics to an objective function to estimate
the optimal constraint that results in improved I/O and total performance. The evaluation
section shows that adopting the aforementioned techniques resulted in a significant perfor-
mance improvement of different applications with different I/O workloads. In addition to
that, the evaluation section studies the factors that impact the duration of the learning phase
and its effects on applications total performance.
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Chapter 5 builds on the concepts and abstractions that are introduced in Chapter 4 to
take advantage of the heterogeneity of modern storage systems to improve I/O perfor-
mance. In order to maximize I/O execution in a heterogeneous storage infrastructure, we
describe in this chapter some capabilities that we refer to as Storage heterogeneity Awareness.
A storage-heterogeneity aware programming model supports the following features: (i) ab-
stracting the heterogeneity of the storage devices and exposing them as one hierarchical
storage resource, such that the highest storage device would provide the highest bandwidth
and the lowest storage device in the hierarchy is the one providing the lowest bandwidth.
Therefore I/O tasks would be scheduled first to higher layers, therefore, I/O task paral-
lelism is increased without causing I/O congestion. (ii) supporting dedicated I/O schedul-
ing. We propose two classes of I/O schedulers: homogeneous schedulers that offer a First
Come First Serve scheduling policy and heterogeneous schedulers that offer a modified pri-
ority and backfilling scheduling policies. The homogeneous scheduler can be used when
applications have one kind of I/O tasks, whereas the heterogeneous scheduler is more suit-
able for applications that have different kinds of I/O tasks, each producing a different I/O
workload. (iii) Finally, a storage-heterogeneity aware system should support an automatic
mechanism for maximizing the utilization of faster storage layers. Such mechanism works
by periodically flushing obsolete data from higher storage layers to lower storage layers.
These capabilities are supported in a completely transparent manner to applications. The
evaluation of our prototype implementation of storage-heterogeneity awareness program-
ming model showed the performance improvement that can be gained on applications with
different I/O patterns on an execution platform that has different heterogeneous storage
infrastructure.

Chapter 6 targets performance maximization on distributed many-core architectures by
proposing a hybrid programming model that combines task-based programming models
and MPI. This hybrid programming model uses tasks to achieve coarse-grained task paral-
lelism on large-scale distributed infrastructures, whereas MPI is used to gain fine-grained
parallelism by parallelizing tasks execution. For instance, enabling parallel I/O and high-
level I/O libraries in tasks. We enable such hybrid programming model by supporting
Native MPI Tasks. Native MPI tasks allows application developers to use MPI code to paral-
lelize tasks executions. Unlike executing external MPI binaries or scripts, Native MPI tasks
are native to the programming model, such that the same source file can contain several
Native MPI tasks that are executed by different parallel MPI processes, and sequential tasks
that are executed by a single process. Therefore, easing the design and programming of
applications because Native MPI tasks can use global data structures, imported modules,
call other functions in the main code, etc. Native MPI tasks can be declared by using the
@mpi annotation, and the number of MPI processes per task can be specified by adding the
@constraint annotation on top of the @mpi annotation. The evaluation section of this
chapter demonstrates the benefits that can be reached by using this hybrid programming
model in terms of programmability and performance. These benefits are shown not only in
an I/O intensive application, but also a compute intensive application. Parallelizing tasks
execution by using Native MPI tasks can lead to a notable performance improvement at the
task-level. Moreover, this task-level performance enhancement is reflected as an improve-
ment in the total application performance. The evaluation section concludes with discussing
a performance trade-off that arises between tasks parallelism and MPI parallelism.

Finally, Chapter 7 aims at accelerating applications execution by suggesting modifica-
tions in the definition and management of data dependencies of tasks in task-based pro-
gramming models. We propose an Eager approach for releasing data dependencies, unlike the
traditional approach for releasing them. Eagerly releasing data dependencies allows succes-
sor tasks to be released for execution as soon as their data dependencies are ready, without
having to wait for predecessor task(s) to completely finish execution. Thus, a programming
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model that supports the eager-release of data dependencies can accelerate the execution
of tasks and create opportunities for overlapping computation with I/O. In order to sup-
port the eager-release of data dependencies, we describe the following core requirements:
(i) parameter-aware dependencies, in which the data dependencies between tasks are de-
scribed not only in terms of predecessor and successor tasks, but also in terms of the data
that resulted in the dependency relationships. (ii) a mechanism for notifying the program-
ming model that the data dependencies of a successor task are ready, so that the successor
task can be launched for execution. We realized this mechanism by enabling the use of a
simple API call compss_ready_value that notifies the programming model that a data
has been generated in a task, without waiting until the task reaches the return statement.
Therefore, tasks are released for execution as soon as possible without any delays. Our
prototype implementation is evaluated on different applications that exhibit real-world exe-
cution patterns. The results show that using the eager-approach for releasing dependencies
can achieve significant performance improvements compared to the baseline version that
uses the traditional manner for releasing data dependencies. In addition to that, the eager-
release of dependencies makes it possible to support more optimal application designs for
I/O intensive applications that read large amounts of data that cannot fit in memory.

8.2 Future Work

As the data produced by applications are continuously increasing, I/O performance will
continue to be the issue-to-solve in order to gain more performance on modern day infras-
tructures. In this context, the contributions of this thesis provide a basis on which more
efforts can be built to adapt to the needs and requirements of scientific and data-intensive
applications. In this section, we provide an overview of the future work that can be done
with regard to each of the contributions described in Part II of this thesis.

With regard to Chapter 4, since separating I/O from computations may be difficult in
some applications, we plan to provide a new abstraction that identifies a task that performs
both computation and I/O. Moreover, the programming models should support mecha-
nisms to optimize the execution of such hybrid tasks. These mechanisms should monitor
tasks computation phase and I/O phase, then perform optimization decisions with regard
to the scheduling and resource consumption accordingly. In addition to that, we plan to
develop mechanisms that are able to mitigate I/O congestion when the I/O is done to a
shared storage resource. In this scenario, the programming model needs to be aware that
I/O performance is not deterministic due to the many applications that use the resource.

As for Chapter 5, heterogeneous storage systems design is becoming the de-facto de-
sign option, future systems will include more heterogeneous storage and memory solutions.
Therefore, we plan to extend our work in this part to take into consideration not only the
storage devices, but also the memory systems. Data can be kept in memory and retrieved
whenever they are required by applications. In addition to that, we plan to implement the
automatic data movement mechanism for read-intensive applications, where data should
be pulled/moved to faster storage hierarchies according to certain execution time metrics,
e.g., the frequency of using the data.

In the case of Chapter 6, new programming models emerge every day for getting more
performance out of the hierarchical and heterogeneous architectures of current execution
platforms. Therefore, we plan to extend our hybrid programming model to include other
programming models. Such programming models can be expressed as Tasks + MPI + X
where X is a third programming model that provide a different layer of performance, e.g.,
OpenMP [19] or programming frameworks targeting GPUs such as CUDA [77] or OpenCL
[74]. Moreover, we plan to support scheduling algorithms that take into consideration tasks



160 Chapter 8. Conclusions And Future Work

requirements and their criticality, the used programming model(s) inside tasks and the avail-
able resources in the infrastructure. Also, support inter-task MPI communication.

Finally, for Chapter 7, we plan to support automatic mechanisms to automatically detect
data generation inside tasks without making the users do any code modifications. Such
methods can continuously probe memory addresses to check if they have been recently used
or add hook functions to trigger a certain function call when a memory address is accessed.
In addition to that, we plan to extend the eager-release of dependencies to support releasing
nested tasks. Nested tasks can be implemented as regular functions or can be a completely
separate applications or pipelines.
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