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Abstract. We study the Laplacian spectrum of token graphs, also called
symmetric powers of graphs. The k-token graph Fk(G) of a graph G is
the graph whose vertices are the k-subsets of vertices from G, two of
which being adjacent whenever their symmetric difference is a pair of
adjacent vertices in G. In this work, we give a relationship between the
Laplacian spectra of any two token graphs of a given graph. In particular,
we show that, for any integers h and k such that 1 ≤ h ≤ k ≤ n

2
, the

Laplacian spectrum of Fh(G) is contained in the Laplacian spectrum
of Fk(G). Besides, we obtain a relationship between the spectra of the
k-token graph of G and the k-token graph of its complement G. This
generalizes a well-known property for Laplacian eigenvalues of graphs to
token graphs.
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1 Introduction

Let G be a simple graph with vertex set V (G) = {1, 2, . . . , n} and edge set
E(G). For a given integer k such that 1 ≤ k ≤ n, the k-token graph Fk(G) of G
is the graph whose vertex set V (Fk(G)) consists of the

(
n
k

)
k-subsets of vertices

of G, and two vertices A and B of Fk(G) are adjacent whenever their symmetric
difference A � B is a pair {a, b} such that a ∈ A, b ∈ B, and {a, b} ∈ E(G);
see Fig. 1 for an example. Note that if k = 1, then F1(G) ∼= G; and if G is the
complete graph Kn, then Fk(Kn) ∼= J(n, k), where J(n, k) denotes a Johnson
graph [5]. The naming token graph comes from an observation by Fabila-Monroy,
Flores-Peñaloza, Huemer, Hurtado, Urrutia, and Wood [5], that vertices of Fk(G)
correspond to configurations of k indistinguishable tokens placed at distinct ver-
tices of G, where two configurations are adjacent whenever one configuration can
be reached from the other by moving one token along an edge from its current
position to an unoccupied vertex. Such graphs are also called symmetric k-th
power of a graph by Audenaert, Godsil, Royle, and Rudolph [2]; and n-tuple
vertex graphs in Alavi, Lick, and Liu [1]. The token graphs have some applica-
tions in physics. For instance, a connection between symmetric powers of graphs
and the exchange of Hamiltonian operators in quantum mechanics is given in [2].
They have also been considered in relation to the graph isomorphism problem,
see Rudolph [8].

In this work, we focus on the Laplacian spectrum of Fk(G) for any value
of k. Recall that the Laplacian matrix L(G) of a graph G is L(G) = D(G) −
A(G), where A(G) is the adjacency matrix of G, and D(G) is the diagonal
matrix whose non-zero entries are the vertex degrees of G. For a d-regular graph
G, each eigenvalue λ of L(G) corresponds to an eigenvalue μ of A(G) via the
relation λ = d−μ. In [3], Carballosa, Fabila-Monroy, Leaños, and Rivera proved
that, for 1 < k < n − 1, the k-token graph Fk(G) is regular only if G is the
complete graph Kn or its complement, or if k = n/2 and G is the star graph
K1,n−1 or its complement. Then, for most graphs, we cannot directly infer the
Laplacian spectrum of Fk(G) from the adjacency spectrum of Fk(G). In fact,
when considering the adjacency spectrum, we find graphs G whose spectrum is
not contained in the spectrum of Fk(G); see Rudolph [8]. Surprisingly, for the
Laplacian spectrum, this holds and it is our first result.

This extended abstract is organized as follows. In Sect. 2, we show that the
Laplacian spectrum of a graph G is contained in the Laplacian spectrum of its
k-token graph Fk(G). Besides, with the use of a new (n; k)-binomial matrix, we
give the relationship between the Laplacian spectrum of a graph G and that of
its k-token graph. In Sect. 3, we show that an eigenvalue of a k-token graph is
also an eigenvalue of the (k +1)-token graph for 1 ≤ k < n/2. Besides, we define
another matrix, called (n;h, k)-binomial matrix. With the use of this matrix, it
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Fig. 1. A graph G (left) and its 2-token graph F2(G) (right). The Laplacian spectrum
of G is {0, 2, 3, 4, 5}. The Laplacian spectrum of F2(G) is {0, 2, 32, 4, 53, 7, 8}.

is shown that, for any integers h and k such that 1 ≤ h ≤ k ≤ n
2 , the Laplacian

spectrum of Fh(G) is contained in the spectrum of Fk(G). Finally, in Sect. 4,
we obtain a relationship between the Laplacian spectra of the k-token graph of
G and the k-token graph of its complement G. This generalizes a well-known
property for Laplacian eigenvalues of graphs to token graphs.

For more information, not included in this extended abstract, see [4].

2 The Laplacian Spectra of Token Graphs

Let us first introduce some notation used throughout the paper. Given a graph
G = (V,E), we indicate with a ∼ b that a and b are adjacent in G. As usual, the
transpose of a matrix M is denoted by M�, the identity matrix by I, the all-1
vector (1, . . . , 1)� by 1, the all-1 (universal) matrix by J , and the all-0 vector
and all-0 matrix by 0 and O, respectively. Let [n] := {1, . . . , n}. Let

(
[n]
k

)
denote

the set of k-subsets of [n], the set of vertices of the k-token graph.
Our first theorem deals with the Laplacian spectrum of a graph G and its

k-token graph Fk(G).

Theorem 1. Let G be a graph and Fk(G) its k-token graph. Then, the Laplacian
spectrum (eigenvalues and their multiplicities) of G is contained in the Laplacian
spectrum of Fk(G).

Theorem 1 has a direct proof using token movements, and it can also be
obtained using the (n; k) binomial matrix B, defined in the following. Given
some integers n and k (with k ∈ [n]), we define the (n; k)-binomial matrix B.
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This is a
(
n
k

)×n matrix whose rows are the characteristic vectors of the k-subsets
of [n] in a given order. Thus, if the i-th k-subset is A, then

(B)ij =
{

1 if j ∈ A,
0 otherwise.

Lemma 1. The (n; k)-binomial matrix B satisfies

B�B =
(

n − 2
k − 1

)
I +

(
n − 2
k − 2

)
J .

Let G be a graph with n vertices and, for k ≤ n
2 , let Fk = Fk(G) be its k-token

graph. The following result gives the relationship between the corresponding
Laplacian matrices, L1 and Lk.

Theorem 2. Given a graph G and its k-token graph Fk, with corresponding
Laplacian matrices L1 and Lk, and (n; k)-binomial matrix B, the following
holds:

B�LkB =
(

n − 2
k − 1

)
L1. (1)

Corollary 1. Given a graph G, with G ∼= F1, and its k-token graph Fk, with
corresponding Laplacian matrices L1 and Lk, and (n; k)-binomial matrix B, the
following implications hold:

(i) If v is a λ-eigenvector of L1, then Bv is a λ-eigenvector of Lk.
(ii) If w is a λ-eigenvector of Lk and B�w �= 0, then B�w is a λ-eigenvector

of L1.

Corollary 2. (i) The Laplacian spectrum of L1 is contained in the Laplacian
spectrum of Lk.

(ii) Every eigenvalue λ of Lk, having eigenvector w such that B�w �= 0, is a
λ-eigenvector of L1.

3 A More General Result

In this section, we show a stronger result. Namely, for any 1 ≤ k < n/2, the
Laplacian spectrum of the k-token graph Fk(G) of a graph G is contained in the
Laplacian spectrum of its (k + 1)-token graph Fk+1(G).

A ‘local analysis’, based on token movements, is used to show that every
eigenvalue of Fk(G) is also an eigenvalue of Fk+1(G).

Theorem 3. Let G be a graph on n vertices. Let h, k be integers such that
1 ≤ h ≤ k ≤ n/2. If λ is an eigenvalue of Fh(G), then λ is an eigenvalue of
Fk(G).
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All previous results can be seen as consequences of the following matricial
formulation. First, we define, for some integers n, k1, and k2 (with 1 ≤ k1 <
k2 < n), the (n; k2, k1)-binomial matrix B = B(n; k2, k1). This is a

(
n
k2

) × (
n
k1

)

(0, 1)-matrix, whose rows are indexed by the k2-subsets A ⊂ [n], and its columns
are indexed by the k1-subsets X ⊂ [n]. The entries of B are

(B)AX =
{

1 if X ⊂ A,
0 otherwise.

The transpose of B = B(n; k2, k1) is known as the set-inclusion matrix, denoted
by Wk1,k2(n) (see, for instance, Godsil [7]).

Lemma 2. The matrix B satisfies the following simple properties.

(i) The number of 1’s of each column of B is
(
n−k1
k2−k1

)
.

(ii) The number of common 1’s of any two columns of B, corresponding to k2-
subsets of [n] whose intersection has k1 − 1 elements, is

(
n−k1−1
k2−k1−1

)
.

The new matrix B allows us to give the following result that can be seen as a
generalization of Theorem 2 (see also Corollary 3).

Theorem 4. Let G be a graph on n = |V | vertices, with k1- and k2-token graphs
Fk1(G) and Fk2(G), where 1 ≤ k1 ≤ k2 ≤ n. Let Lk1 and Lk2 be the respective
Laplacian matrices, and B the (n; k2, k1)-binomial matrix. Then, the following
holds:

BLk1 = Lk2B. (2)

Let us now see some consequences of this theorem. First, we get again The-
orem 2.

Corollary 3. With the same notation as before, the following holds.

(i) For every k1, k2 with 1 ≤ k1 ≤ k2 ≤ n,

B�Lk2B = B�BLk1 . (3)

(ii) For k1 = 1 and k2 = k,

B�LkB =
(

n − 2
k − 1

)
L1.

Since Fk(G) ∼= Fn−k(G) assume, without loss of generality, that 1 ≤ k1 ≤
k2 ≤ n

2 . Then, we have a generalization of Corollary 3.

Corollary 4. For any integers h, k such that 1 ≤ h ≤ k ≤ n
2 , let B be the

(n; k, h)-binomial matrix. Then, the eigenvalues and eigenvectors of the Lapla-
cian matrices of the token graphs Fh and Fk are related in the following way.

(i) If v is a λ-eigenvector of Lh, then Bv is a λ-eigenvector of Lk. Moreover,
the linear independence of the different eigenvectors is preserved. (That is,
the spectrum of Lh is contained in the spectrum of Lk.)
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(ii) If w is a λ-eigenvector of Lk and B�w �= 0, then B�w is a λ-eigenvector
of Lh. Moreover, all the eigenvalues, including multiplicities, of Lh are
obtained (that is, one eigenvalue each time that the above non-zero condition
is fulfilled).

In our context, Theorem 4 allows us to obtain the Laplacian matrix of Fh in
terms of the Laplacian matrix of Fk, provided that we know the binomial matrix
B(n; k, h) with its rows and columns in the right order (that is, the same order
as the columns of Lh and Lk, respectively). Indeed, in this case, (3) with k1 = h
and k2 = k leads to

Lh = (B�B)−1B�LkB. (4)

Notice that B�B is a Gram matrix of the columns of B, which are linearly
independent vectors and, hence, B�B is invertible.

Following with the simplified notation k1 = h and k2 = k, the result of
Theorem 4 can also be written in terms of the adjacency matrices Ah and Ak

of Fh and Fk, respectively. Then, we get

AkB − BAh = DkB − BDh, (5)

where Dh and Dk are the diagonal matrices with non-zero entries the degrees of
the vertices of Fh and Fk, respectively. Some consequences of this are obtained
when both Fh and Fk are regular.

Corollary 5. Assume that a graph G ≡ F1 and its k-token graph Fk are
d1-regular and dk-regular graphs, respectively. Let B be the (n; k, 1)-binomial
matrix. Let A and Ak be the respective adjacency matrices of G and Fk. If v is
a λ-eigenvector of A, then Bv is a μ-eigenvector of Ak, where μ = (dk−d1+λ).

4 A Graph, Its Complement, and Their Token Graphs

Let us consider a graph G and its complement G, with respective Laplacian
matrices L and L. We already know that the eigenvalues of G are closely related
to the eigenvalues of G, since L + L = nI − J . Hence, the same relationship
holds for the algebraic connectivity, see Fiedler [6].

Observe that the k-token graph of G is the complement of the k-token graph
of G with respect to the Johnson graph J(n, k) (the k-token graph of Kn), see
Carballosa, Fabila-Monroy, Leaños, and Rivera [3, Prop. 3]. Then, it is natural
to ask whether a similar relationship holds between the Laplacian spectrum of
the k-token graph of G and the Laplacian spectrum of the k-token graph of
G = Kn − G. In this section, we show that, indeed, this is the case.

Our result is a consequence of the following property.

Lemma 3. Given a graph G and its complement G, the Laplacian matrices
L = L(Fk(G)) and L = L(Fk(G)) of their k-token graphs commute: LL = LL.
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Theorem 5. Let G = (V,E) be a graph on n = |V | vertices, and let G be its
complement. For a given k, with 1 ≤ k < n − 1, let us consider the token graphs
Fk(G) and Fk(G). Then, the Laplacian spectrum of Fk(G) is the complement
of the Laplacian spectrum of Fk(G) with respect to the Laplacian spectrum of
the Johnson graph J(n, k) = Fk(Kn). That is, every eigenvalue λJ of J(n, k) is
the sum of one eigenvalue λFk(G) of Fk(G) and one eigenvalue λFk(G) of Fk(G),
where each λFk(G) and each λFk(G) is used once:

λFk(G) + λFk(G) = λJ .

Theorem 5 leads to the following consequence.

Corollary 6. Let G be a graph such that its complement G has c connected
components. Then, for 1 ≤ k ≤ n − 1, the k-token graph Fk(G) has at least c
integer eigenvalues. If each of the c components of G has at least k vertices, then
Fk(G) has at least

(
c+k−1

k

)
integer eigenvalues.
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