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Abstract 16 

 17 

Point of care testing (PoCT) devices permit precise and rapid detection of disease-related 18 

biomarkers contributing to an early disease diagnosis and administration of an appropriate 19 

treatment. The enzyme myeloperoxidase (MPO) is a relevant biomarker for infection and 20 

inflammation events assessment, however its direct electrochemical quantification is 21 

hindered by the limited accessibility to the iron atom in its active center. Herein, such 22 

hindrance of the MPO biomolecule is overcome using the redox mediator 2,2'-azino-23 

bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS). The charge involved in the 24 

electrochemical reduction of the MPO-oxidized ABTS is correlated with the 25 

concentration of MPO. The use of ABTS allowed for the electrochemical assessment of 26 

a wide range of MPO concentrations (10-1000 nM) including those reported for wound 27 

infections, chronic obstructive pulmonary disease and early adverse cardiac events. The 28 

developed electroanalytical approach is rapid and inexpensive, and thus suitable for 29 

implementation in PoCT devices. 30 

  31 
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1. Introduction 32 

Early diagnosis of infections or internal injuries are key for an accurate treatment.[1] 33 

However, conventional diagnostic protocols are time consuming and require trained 34 

personnel to use complex instruments. The development of analytical methods for 35 

disease-related biomarkers implementable into point of care testing (PoCT) devices will 36 

contribute to cost-effective, precise and rapid diagnosis and appropriate treatment. 37 

Moreover, it will facilitate the implementation of affordable screening programs among 38 

the population with a high risk for developing these diseases. 39 

Myeloperoxidase (MPO) is a heme peroxidase enzyme released by activated neutrophils 40 

that catalyzes the oxidation of chloride ions to hypochlorous acid (HClO) using hydrogen 41 

peroxide as co-substrate.[2] MPO have been detected in wounds (200 to 1100 nM)[3] 42 

with bacterial infection, where HClO acts as a strong bactericidal agent, being specially 43 

abundant in non-healing chronic wounds with persistent bacterial colonization.[4,5] MPO 44 

has also been linked to other diseases related to inflammatory processes. Chronic 45 

obstructive pulmonary disease (COPD), characterized by chronic lung inflammation 46 

leading to progressive and irreversible airflow obstruction with periodic acute episodes 47 

of worsening exacerbations, can be early diagnosed by the presence in sputum of MPO 48 

(115-772 nM), interleukin-8 and leukotriene B4.[6] MPO is also overproduced in case of 49 

eroded arterial lesions due to neutrophil infiltration and activation into the inflamed and 50 

fissured blood vessels[7] thus, high levels of MPO in plasma (20-40 nM) are indicative 51 

of adverse cardiac events in patients with chest pain.[8] Consequently, MPO has been 52 

established as a relevant biomarker for assessment of infection, COPD and early adverse 53 

cardiac events. The rapid detection of MPO in body fluids will result in a drastic reduction 54 

of the morbidity and mortality caused by the abovementioned diseases and the related 55 

healthcare and economic burden.[9] 56 
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An ideal PoCT should be low-cost and easily operated such as an electrochemical readout 57 

system.[10] Electrochemical detection approaches are an attractive technology for 58 

microfluidic devices due to their inherent small size, low cost, high sensitivity, and 59 

portability for on-site analysis. Electrochemistry is a versatile and fast technique that has 60 

been widely used for a variety of applications such as permeability of membranes,[11,12] 61 

presence of metals in nanoparticles[13,14] and synthesis of metal nanoparticles.[15,16] 62 

In particular, electrochemistry has been successfully used for biomolecules, to assess their 63 

position in membranes,[17,18] quantify their presence in body fluids[19,20] and 64 

determine enzyme redox potentials.[21,22] PoCT devices based on electrochemistry of 65 

biomolecules have been presented for several purposes such as a non-invasive glucose 66 

level detector,[23] protein[24] and uric acid[25] detection. PoCT devices have also been 67 

developed for the MPO detection, but the tedious sample and electrode preparation, and 68 

the use of complex protocols requiring incubation with magnetic beads[26] and 69 

antibodies[27] limit their use.  70 

The direct electrochemistry of MPO in solution is hindered due to the difficult access of 71 

the electrons from and to the heme group iron atom placed at the bottom of a deep crevice 72 

of the MPO structure.[28] Therefore, we propose the use of a redox mediator to facilitate 73 

the electron transfer, as has been previously reported for polymerization processes using 74 

other enzymes such horseradish peroxidases[29] or lignin oxidases (laccases).[30] In this 75 

context, we selected the mediator 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic 76 

acid) (ABTS) for the electrochemical detection of MPO. Our approach consists in the 77 

electrochemical reduction of the MPO-oxidized ABTS generating a measurable current 78 

(Fig 1) correlated to the MPO concentration in the sample. The current work establishes 79 

an electroanalytical approach based on the use of ABTS to quantify the presence of MPO 80 
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in liquid samples, which due to its simplicity, low cost and minimal set up requirements 81 

could be easily implemented in PoCT devices. 82 

 83 

84 

 85 

Figure 1. Scheme of the electrochemical quantification of MPO using redox mediator 86 
ABTS 87 

 88 

 89 

  90 



6 
 

2. Materials and Methods 91 

2.1. Materials 92 

Human myeloperoxidase (MPO) > 98 % purity was purchased from Planta Natural 93 

Products (ref: 700-03-001) as lyophilized powder, ABTS (98 %) and hydrogen peroxide 94 

were purchased from Sigma-Aldrich, and phosphate buffer saline (PBS) tablets were 95 

purchased from Fischer scientific. Disposable screen-printed gold electrodes (ref: DRP-96 

C220AT) were purchased from Metrohm DropSens having working and auxiliary gold 97 

electrodes and a silver reference electrode and water was ultrapure MilliQ® (18.2 98 

MΩ·cm).  99 

 100 
2.2. Electrochemical cell 101 

The screen-printed electrodes were rinsed successively with ethanol and water prior 102 

drying with N2 and placing in a home-made electrochemical cell of 200 µL that uses an 103 

o-ring to avoid liquid leakage. The electrochemical experiments were performed using a 104 

µAutolab Potentiostat (Ecochemie, NL) in a conventional three-electrode configuration.  105 

 106 

2.3 Electrochemical experiments 107 

Fresh ABTS solution was prepared dissolving the appropriate ABTS powder in PBS 108 

solution (pH 7.4) in milliQ grade water. Electrochemically oxidized (EC) ABTS stock 109 

solution was obtained by applying a constant potential (0.7 V) to fresh ABTS solution in 110 

the electrochemical cell until no color and current changes were registered. Fresh and EC-111 

oxidized ABTS solutions at the desired concentrations were obtained by the appropriate 112 

dilution in PBS of the corresponding stock solutions. Lyophilized MPO was reconstituted 113 

in PBS and the appropriate amount of MPO stock was added to a PBS solution containing 114 

fresh ABTS (1 mM) and hydrogen peroxide (1 mM) to initiate an oxidation reaction 115 

incubated at room temperature (23 ± 1 ºC) for 5 min to ensure the oxidation of ABTS by 116 
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the MPO. Cyclic voltammograms (CV) were performed at 10 mV·s-1 and room 117 

temperature, scanning towards negative potentials. Chronoamperometric experiments 118 

were performed at 0.2 V and room temperature during 5 min. 119 

 120 

  121 
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Results and Discussion 122 

ABTS has been used as a substrate for MPO quantification in spectrophotometric 123 

techniques,[31] however, its suitability as a redox mediator for electrochemical 124 

quantification of MPO has not been demonstrated yet. The CV of ABTS (Fig 2) revealed 125 

a reversible redox behavior observing both the oxidation and reduction peaks without 126 

evidences of undesired reactions on the electrode surface. Therefore, the observed 127 

reversibility indicated the suitability of this molecule to be electrochemically detected 128 

after its oxidation by MPO.  129 

130 

Fig 2. Cyclic voltammograms of fresh ABTS and MPO-oxidized ABTS (MPO: 250nM, 131 

H2O2: 1mM, ABTS: 1mM). Inset: Fresh ABTS (left) and MPO-oxidized ABTS (right) 132 

solutions.  133 

 134 
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Despite MPO oxidizes ABTS, achieving the characteristic color change from transparent 135 

to intensive green[32] (Fig. 2), the differences in the cyclic voltammograms were not 136 

conclusive. The obtained electrochemical reduction scan produced a reduction current of 137 

equal magnitude than the control without enzyme. The presence of the reduction current 138 

peak may be related to the oxidation of ABTS during the electrochemical scan that starts 139 

in an oxidative potential. This process would occur at the surface of the electrode 140 

independently of the solution context, thus, obtaining similar electrochemical response 141 

for both fresh ABTS (control) and the sample with MPO-oxidized ABTS. To further 142 

confirm this phenomenon, dilutions from EC-oxidized ABTS stock and from fresh ABTS 143 

stock solutions were prepared and analyzed using cyclic voltammetry (Fig. 3). Similar 144 

CVs were obtained for both fresh ABTS and EC-oxidized ABTS at high concentrations 145 

(Fig. 3 A and B), while at low concentration, the EC-oxidized ABTS presented higher 146 

intensity current peaks than the fresh ABTS (Fig. 3C). This observation confirms that 147 

ABTS is electrochemically oxidized at high potentials during the reduction scan. The 148 

reduction current observed for ABTS has two contributions - from the initial EC-oxidized 149 

ABTS dilution and from the in situ ABTS oxidized during the reduction scan. Upon 150 

dilution of the ABTS samples, the contribution of the in situ ABTS oxidized is minor than 151 

the contribution from the initial EC-oxidized ABTS. A similar behavior is expected in 152 

case of using MPO to oxidize ABTS instead of EC. Therefore, cyclic voltammetry can 153 

only be applied to a low and narrow range of MPO concentrations and is not suitable for 154 

a PoCT electrochemical device. 155 

 156 

 157 

 158 
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159 

Fig 3: Cyclic voltammograms of EC-oxidized and fresh ABTS solutions at several ABTS 160 

concentrations: A) 500 µM, B) 125 µM and C) 25 µM  161 
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Alternatively, a chronoamperometric electrochemical method was employed, applying a 162 

constant reduction potential of 0.2V, according to the performed CVs (Fig. 3). This 163 

potential is out of the ABTS oxidation zone, thus decreasing the presence of EC-oxidized 164 

ABTS and its consequent contribution to the overall ABTS electrochemical reduction 165 

current. To assess the suitability of this method, the aforementioned reduction potential 166 

was applied to different dilutions of EC-oxidized ABTS and freshly prepared ABTS (Fig. 167 

4). The registered reduction currents analysis for both the fresh ABTS (Fig. 4A) and EC-168 

oxidized ABTS (Fig. 4B) revealed a linear relationship according to the concentration of 169 

each redox specie (Fig. 4C). The large current difference between EC-oxidized ABTS 170 

and fresh ABTS coupled to the linear relationship indicate the suitability of the 171 

chronoamperometric method with the redox mediator ABTS for the electrochemical 172 

quantification of MPO. 173 

To validate this method, freshly prepared ABTS was oxidized by MPO in concentrations 174 

found in exudates of infected wounds,[3] in blood from patients with coronary plaque 175 

erosion[8] and in sputum from patients with COPD.[6,33] The oxidation of fresh ABTS 176 

by different MPO concentrations resulted in green colored solutions electrochemically 177 

reduced at 0.2V (Fig 5A). Upon increasing the applied MPO concentration, a higher 178 

reduction charge was required to reduce the MPO-oxidized ABTS establishing a clear 179 

parabolic relationship (Fig. 5B). Therefore, the chronoamperometry of the redox mediator 180 

ABTS has been demonstrated as a promising electrochemical method for quantitative 181 

assessment of clinically relevant MPO concentration.  182 

The simplicity and minimal electrode setup requirements of the developed approach pave 183 

the way for its implementation into PoCT devices for MPO detection. In these 184 

forthcoming sensors, the presented MPO electrochemical quantification can be combined 185 

with sample preparation steps according to the nature of the sample (blood, sputum, 186 
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wound fluid) to avoid the risk of interfering substances. For instance, immunocapture 187 

with magnetic beads can separate MPO from other substances and concentrate it at the 188 

electrode surface[34] or paper-based microfluidics for sample fractionation.[35]   189 

 190 
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191 

Fig 4: Chronoamperometry of A) fresh ABTS solutions, B) EC-oxidized ABTS and C) 192 

reduction charge vs. ABTS concentration. 193 
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194 

Fig 5: A) Chronoamperometry of ABTS oxidized (1 mM) by different MPO 195 

concentrations in the presence of H2O2 (1mM) and B) reduction charge vs. MPO 196 

concentration. 197 

 198 

 199 

 200 
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4. Conclusions 201 

 202 

The electrochemical reduction of the MPO-oxidized ABTS has been demonstrated as an 203 

analytical method to quantify the presence of MPO. ABTS has shown its capability to be 204 

used as a redox mediator for MPO, overcoming the access limitations to the MPO iron 205 

atom. Cyclic voltammetry was discarded as an electrochemical analytical method due to 206 

the high contribution of undesired processes to the peak intensity. Contrarily, the 207 

chronoamperometry technique at 0.2 V permitted the rapid (< 10 min) quantification of 208 

disease relevant MPO levels (10-1000 nM). Therefore, the developed simple and rapid 209 

electrochemical method represents a suitable analytical technique that could be 210 

implemented in PoCT devices for assessment of bacterial infection, COPD or adverse 211 

cardiac events. 212 

 213 

  214 
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