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Abstract: Metal-based nanoparticles are widely used to deliver bioactive molecules and drugs to
improve cancer therapy. Several research works have highlighted the synthesis of gold and silver
nanoparticles by green chemistry, using biological entities to minimize the use of solvents and control
their physicochemical and biological properties. Recent advances in evaluating the anticancer effect of
green biogenic Au and Ag nanoparticles are mainly focused on the use of conventional 2D cell culture
and in vivo murine models that allow determination of the half-maximal inhibitory concentration, a
critical parameter to move forward clinical trials. However, the interaction between nanoparticles
and the tumor microenvironment is not yet fully understood. Therefore, it is necessary to develop
more human-like evaluation models or to improve the existing ones for a better understanding of
the molecular bases of cancer. This review provides recent advances in biosynthesized Au and Ag
nanoparticles for seven of the most common and relevant cancers and their biological assessment. In
addition, it provides a general idea of the in silico, in vitro, ex vivo, and in vivo models used for the
anticancer evaluation of green biogenic metal-based nanoparticles.

Keywords: nanomaterials; metal-based nanoparticles; biosynthesis; cancer treatment; in silico;
in vitro; ex vivo; in vivo

1. Introduction

Despite the significant progress in studying, understanding, and treating cancer, the
number of cases continues to rise, thus remaining a leading cause of death worldwide.
Early diagnosis and screening are key aspects in the battle against cancer, which allow
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increases in therapies’ efficiency and reductions in cancer death rates. There are different
modalities to treat cancer: surgery, chemotherapy [1], immunotherapy, phototherapy [2],
radiation therapy [3], and targeted therapy [4], among others. Although conventional
chemotherapy has allowed us to treat several types of cancer, there still are drawbacks in its
use, such as poor bioavailability, high dose requirements, multidrug resistance, side effects,
and lack of selective and specific targeting to tumor tissue [5]. Instead, targeted therapy
uses therapeutic and antineoplastic agents capable of targeting specific genes and proteins
involved in the growth and survival of tumor-forming cancer cells [4]. Their administration
to solid tumors is carried out through the bloodstream, generally using injections of micro
and nanoparticles [6]. Specific targeting of cytotoxic drugs to malignant cells using green
biogenic gold (AuNPs) and silver-based nanoparticles (AgNPs) appears to be a promising
strategy, but until now it has not been well developed.

The nanotechnology applied to cancer diagnosis and treatment emerged as a promis-
ing alternative with the potential of successfully combining the advances made at the
nanoscale with cellular and molecular components that may allow overcoming the physio-
logical and technological limits of conventional cancer treatment modalities. This approach
has facilitated the coupling of nanoparticles (NPs) synthesized via the green biological
pathway with target molecules, allowing an efficient interaction with biological systems [7].
In most cases, NPs are part of a complex multishell cancer cell targeting delivery system
that serves as antineoplastic drug nanocarrier [8]. However, NPs alone are able to work as
cytotoxic agents because, due to their physicochemical properties, they tend to accumulate
passively into the tumoral tissue [1,2]. Cytotoxic agents (drugs, encapsulated drugs, or
NPs) can be released from the carrier to the bloodstream or from the carrier directly into
the tumor. In both cases, adsorption of plasma and interactions with the surrounding
tissues occur until their metabolization and clarification [2]. As expected, NPs must cross
several physiological barriers to reach cancer cells. Many physical, chemical, and biological
phenomena are involved during the NPs and physiological barrier encountering, e.g.,
interactions with proteins, cells, and the dynamics of NPs from the blood to the tumor, etc.,
which significantly modify the behavior and effect of NPs [3].

There are many considerations to contemplate when formulating NPs as carriers or cy-
totoxic agents [1]. The controlled release of drugs in organs, tissues, or cells does not behave
under the laws of diffusion of Fick, so it is necessary to develop intelligent delivery plat-
forms that respond to multiple stimuli [2]. Green Au and AgNPs are promising antitumor
agents gaining specificity towards the cancer cells [4]. These NPs could act as nanocarriers
to passively target the tumor via the enhanced permeability and retention effect (EPR) or to
actively target solid tumors via a ligand–receptor interaction [6]. NPs stability modulates
their biological response [9] modifying their cellular uptake, bioavailability, and toxicity
during their evaluation using in vitro, ex vivo, and in vivo models [10–12]. The main goal is
to improve therapeutic index of current cancer therapies with higher specificity, sensitivity,
and efficacy using green biogenic AuNPs and AgNPs [13]. Indeed, AuNPs are the most
promising platform to diagnose and treat tumors. Its easy surface modification, unique
optical properties, high biocompatibility, and small size favor extravasation and access
to the tumor microenvironment [14,15]. AuNPs have been mainly engineered to serve
as targeting delivery vehicles, molecular probes, and biosensors [16]. Moreover, AgNPs
are well known for their antibacterial activity. The resistance to cationic silver (Ag+) has
been recognized for many years, but it has recently been found that bacterial resistance
to AgNPs is also possible [17]. AgNPs have also been demonstrated to be useful in the
treatment of multiple types of cancer [18]. The anticancer properties of AgNPs are carried
out by various mechanisms, for example, the release of silver ions and the formation of
intracellular free radicals, leading to deregulation of critical cellular mechanisms, cell dam-
age, and death [18]. These properties of AuNPs and AgNPs are interesting and important
because they could allow us to solve the drawbacks that occur with chemotherapy, such as
poor bioavailability, side and adverse effects due to high doses, non-specific targeting, and
the development of resistance to multiple drugs [5].
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This review presents the state-of-the-art progress of AuNPs and AgNPs obtained by
green biological methods and their potential application in cancer therapy. An overview
will be given on the biological routes used to obtain NPs, on the methodologies used to
modify their surface and develop stimulus-responsive smart nanosystems, on the physico-
chemical aspects that impact their behavior in biological systems, and on several models
used to evaluate the antitumor properties of these nanoparticles. Moreover, it will address
how NPs take advantage of the tumor microenvironment to target cancer cells, focusing on
therapies for six types of cancer. Finally, the review describes future perspectives associated
with these techniques as effective strategies to enrich current clinical trends.

2. Overview: Green Biosynthesis of Metallic Nanoparticles
2.1. Nanomaterials Classification: From Geometrical Aspects to Functionality

Nanotechnology covers the applicability of a wide variety of materials with dimen-
sions ranging, according to the International Organization for Standardization (ISO), from
one to one hundred nanometers (1 nm = 10−9 m) [19]. It co-exists with other scientific
and technological fields derived from chemistry, physics, and biology, which allow us to
produce and evaluate this nanosized atom confinement’s unique and enhanced properties.

Typically, nanomaterials (NMs) are classified based on their size, shape, chemical
composition, and other tunable characteristics that define their specific properties and
functionalities. Regarding their size or dimensionality, there are zero-dimensional (0D)
dots, clusters, and particles; one-dimensional (1D) fibers, wires, and rods; two-dimensional
(2D) films, plates, and networks; and three-dimensional (3D) nanocomposites with, e.g.,
embedded clusters or equiaxed crystallites [20]. The sphericity, flatness, and aspect ratio
characterize the morphology of NMs. A low aspect ratio identifies the shape of a spherical,
cubic, prism, or helical nanoparticles, while a big aspect ratio describes zigzag, helice, and
belt morphologies. From the chemical composition point of view, a common classification
groups NMs into (i) carbon-based, (ii) organic, (iii) inorganic, and (iv) hybrid NMs, the
latter being associated with more than one quality to build synergistic multi-modal agents
via intra- or intermolecular forces.

Carbon-based NMs are allotropes with sp2 carbon atoms that show remarkable physic-
ochemical properties for variable sectoral applications. Organic NMs, such as liposomes,
dendrimers, micelles, or polymers are mainly composed of molecular carbon, hydrogen,
oxygen, nitrogen, sulfur, and phosphorus. Inorganic NMs, those with particular intrinsic
optical, magnetic, electronic, mechanical, or thermal properties are a broad group of mate-
rials consisting of specific s, p, d, and f-block elements to form single- or multi-element
NMs [21]. Thus, these NMs may contain alkali metals (Li, K, and Cs), alkaline earth metals
(Mg, Ca, Sr, and Ba), transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Y, Zr, Mo, Tc, Ru,
Ph, Pd, Ag, W, Ir, Pt, and Au), post-transition metals (Al, Zn, Cd, In, Sn, Hg, Pb, and Bi),
metalloids (Si, As, Sb, and Te), non-metals (H, C, N, O, P, S, and Se), lanthanides (La, Ce,
Pr, Nd, Sm, Eu, Gd, and Yb), or an actinide (Ac) [21,22]. Finally, the hybrid NMs can be
sectioned as organic-on-inorganic, i.e., organic matter used to modify inorganic NMs, or
vice versa, inorganic-in-organic, using inorganic constituents to modify organic materials.
This group is particularly attractive for developing enhanced nanoagents for emerging
biomedical applications (sensing, diagnosis, and therapy).

Based on the origin, i.e., their source of generation, NMs are further classified as
natural or synthetic. Natural NMs can be formed by earth/spatial phenomena, biological
species, or incidental human activities. Synthetic NMs are obtained following physical,
chemical, biological, or mixed procedures that (i) use macroscopic materials for their minia-
turization (top-down) or (ii) use basic molecular or atomic units to build up nanostructures
(bottom-up). These approaches allow the control of NM properties for a more convenient
large-scale production.

A remaining challenge in the development of synthetic NMs for innovation is the safe-
by-design. This concept must be regularly implemented to evaluate the life cycle and final
disposition of NMs [23]. At the same time, the use of effective and sustainable methods that
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assure the 12 principles of green chemistry [24], e.g., by applying biological synthesis, or
greener, simple, and reproducible assisted physicochemical procedures, is still challenging.
Hence, safe NMs can be created to play functional activities to benefit living beings,
including humans, and the environment. In emerging medical fields, which combine
conventional protocols with nano-technological tools, NMs can serve as selective agents to
deliver, among others: drugs, vitamins, hormones, and amino acids via their hybridization,
surface chemistry, and bioconjugation. NMs can also be used as radioenhancers or contrast
agents in the perspective of theranostics [25]. In particular, the principles of the biological
synthesis routes, using plants and microorganisms, are described below to introduce
this green approach in developing metallic nanoparticles that are currently evaluated to
improve cancer therapy. The preparation of metal-based nanoparticles (MNPs) using green
approaches provides NPs with well-defined sizes, morphologies, and stability. The factors
that govern the stability of MNPs can be described based on aggregation state, composition,
and surface properties. Two crucial steps occur during the synthesis of MNP: the reduction
and stabilization (capping) of NPs. The combinations of molecules found in the extracts
of plants or microorganisms act as reducing agents and stabilizers, which promote the
formation of nanoparticles and inhibit their agglomeration, thus favoring their stability [9].

2.2. Green Biosynthesis of MNPs

MNPs are promising agents that combine optic, magnetic, electric, and thermal prop-
erties in a single smart (stimuli-responsive) nanosystem to enhance cancer treatment. This
type of MNPs can be synthesized following different bottom-up routes, the biological
strategies being very advantageous as renewable resources and low-cost methods and
equipment are required this is especially important for poor (“third word) countries to
improve their anticancer repeertorie. In addition, biosynthesis is a straightforward eco-
friendly approach capable of producing non-toxic and biodegradable coatings and nuclei
that may positively impact cells and organisms. In this context, derived from plant tissues
(seed, root, stem, leaves, flowers, fruit, and peel) and microorganisms (fungi, bacteria, yeast,
and algae) are used as reducing agents and biocompatible coatings in the development
of potential metallic nano-therapeutics. Figure 1 schematizes the biosynthesis of MNPs
showing the species used to extract the active compounds from plants (phytochemicals)
and microorganisms (e.g., enzymes), which serve as reducing and capping agents. In this
sense, reaction parameters, such as pH, temperature, time, and concentration must be
controlled to obtain well-dispersed, homogeneous, and stable nanoparticles.

Figure 1. Schematic representation of the biosynthesis of MNPs (c) mediated by plants tissues (a) and
microorganism derivatives (b). Illustration created with BioRender.com (accessed on 22 August 2021).

BioRender.com
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2.2.1. Phytochemical Synthesis

In recent years, the phyto- (from the greek phytón, meaning “plant”) chemical produc-
tion of metallic nanoparticles has attracted enormous attention due to its simplicity and
sustainable implementation. Phytochemicals are plant secondary metabolites classified
based on their chemical structure into carbohydrates, lipids, phenolic acids, terpenoids,
alkaloids, and other nitrogen-containing compounds [26]. They are extracted from plant
tissues and purified for specific nano-engineering tasks. Briefly, multiple phytochemicals
or purified compounds can be added, in particular ratios, to aqueous solutions contain-
ing metallic salts (metallic mono- or polyvalent ions) and incubated at light-controlled
conditions to reduce the precursors and form zero-valent MNPs. Several natural extracts
have already been tested to prepare AuNPs and AgNPs with variable size and shape and
used for antibacterial and anticancer applications [27]. Additionally, plant extracts have,
among others, antioxidant, antifungal, anti-inflammatory, antiviral, and antibacterial prop-
erties, making them excellent candidates to modify the surface of inorganic NPs. Hence,
phytochemicals act as reducing, capping, and bioactive molecules.

For instance, Ranoszek-Soliwoda et al. [28] reported the synthesis of monodispersed
AgNPs using plant extracts rich in flavonoids and polyphenols, which provide higher re-
ducing power. The AgNPs were obtained by adding cacao bean and grave seed extracts to
silver nitrate in the absence and presence of sodium citrate. The authors found that sodium
citrate plays a fundamental role in homogenizing the size and shape of the bio-derived Ag-
NPs, suggesting a complexation process for the accurate bio-conjugation. Boomi et al. [29]
used leaf extracts from the Croton sparsiflorus, containing carbonyl, phenolic, and amino
groups capable of reducing auric ions to form AuNPs. These NPs presented, among other
biomedical properties, anticancer activity against human liver cancer cells (HepG2).

2.2.2. Microorganism-Assisted Synthesis

Microorganism-assisted synthesis is another so called environmentally friendly ap-
proach to obtain MNPs for biomedical applications. Microorganisms, such as bacteria,
fungi, yeasts, and microalgae, produce inorganic NMs due to naturally detoxifying pro-
cesses. In particular, the microorganisms’ intra- or extracellular redox potentials, character-
ized by leakage of enzymes, metabolites, and proteins, are critical parameters in reducing
metal precursors.

For instance, Patil et al. [30] evaluated the extracellular biosynthesis of AuNPs using
Paracoccus haeundaensis BC74171T, a marine bacterium. The cell culture supernatant was
treated to obtain these NPs. Authors obtained spherical AuNPs with an average diameter
of 20 nm, which are non-toxic for normal cells but showed an anti-proliferative effect
in cancer cells. Even though microorganisms have enormous capabilities of producing
NMs under mild conditions, i.e., without the necessity of adding reducing agents or
surfactants as their efflux pumps make available what is required, bacteria’s surface
affinity is essential to detonate the intracellular synthesis. Therefore, bacteria-assisted
synthesis is time consuming and shows lower yields compared to other green methods [27].
Additionally, it has been reported that particular fungal enzymes can modulate the shape
of NMs. On the other hand, viruses, which are considered non-living catalysts, can be
used in host cells to generate bio-nanotechnological tools. Few studies have shown the
production of NMs via viruses action [31].

2.3. Development of Stimuli-Responsive MNPs

MNPs can remodel the tumor microenvironment (TME) by changing unfavorable
conditions into therapeutically accessible ones, which may be reached by applying external
stimuli, such as light, heat, ultrasonic radiation, or magnetic fields. Hence, those stimuli
may change the redox potential of biological systems and generate reactive oxygen species
(ROS) that sensitize tissues. Stimuli-triggered cancer therapeutics depends on the modu-
lation of the NMs properties, from the tumor outside or inside. pH, redox potential, and
hypoxia are the internal conditions that lead to tumor sensibilization. The combination of
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MNPs with external and internal stimuli can trigger the on-demand release of therapeutic
molecules, which augments the therapeutic efficacy of anticancer therapies [1,2,8]. The sur-
face functionalization of MNPs with organic molecules or macromolecules is an excellent
tool to stabilize the NP and further manipulate its properties. From a chemistry point of
view, mercapto (R-SH) derivatives are widely used as ligands for NPs surface modification
due to the strong affinity of thiol moieties to transition metal surfaces, which form (polar)
metal-thiolate linkages [32].

Here, we highlight two effective strategies for introducing functional groups. Figure 2
shows: (i) the first method that consists of introducing the functional ligand in a single step
and (ii) the second method that involves adding an intermediate compound to firstly reacts
onto the metal surface. To perform this, bifunctional organic compounds are used. Thus,
one reactive group is attached to the NP surface and the other may be the final functionality
or an anchoring group that is conjugated in the second step [5]. It is noteworthy to point
out that the fewer the steps taken to conjugate certain functionality onto a metal surface,
the shorter the time invested, the more affordable its fabrication, and the higher the yields.

Figure 2. Two approaches are instrumental in producing decorated MNPs by utilizing appropriate
functional ligands in either one-step or two-step processes.

Gold and silver-based NPs are of great interest in medicine. MNPs can be functional-
ized with a variety of functional groups [33]. This review mainly discusses the development
of MNPs functionalized with macromolecules (polymers) or small molecules to render
smart nanosystems. Figure 3 collects a library of compounds commonly used to decorate
the surface of MNPs. Other compounds are instrumental for surface functionalization
(e.g., nucleic acids, antibodies protein, lipids, or peptides) but are outside the scope of this
review. We refer the interested readers to recent and excellent reviews that discuss their
use in great detail [34–36].

2.3.1. Thermo-Responsive Polymers

Temperature is a well-controlled stimulus that can be easily applied and removed
through thermal heating or photo-illumination to trigger a specific therapeutic effect [37].
Thermo-responsive polymers are ideal when the stimulus needs to be applied artificially
rather than exploiting peculiar conditions of a targeted tissue or organ. Figure 3 displays
some thermo-responsive polymers that have been used to coat MNPs.
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Figure 3. Molecules and macromolecules frequently used to coat MNPs resulting in stimuli-sensitive
nanosystems. * Magnetic core NPs (i.e., Fe3O4 NPs) are decorated with silver or gold to obtain
magnetic-responsive nanosystems.

A thermo-responsive polymer exhibits a phase transition temperature that corre-
sponds to that at which a drastic change in solubility occurs. Polymers presenting a low
critical solution temperature (LCST) are more often chosen for biomedical purposes. The
LCST can be adjusted to achieve the desired temperature above the body temperature so
that the drug is administered as soon as it reaches the specific LCST [38]. For instance,
thermo-responsive AuNPs consist of a gold core surrounded by a thermo-responsive
polymer shell that can be either covalently linked or physically adsorbed onto the surface.

Iida et al. [39] reported the synthesis of 3–10 nm thermo-responsive AuNPs coated
with a self-assembled monolayer of thiol-terminated poly(ethylene glycol) (PEG, n = 6)
ligands with ethyl, iso-propyl, and propyl alkyl heads. A ligand exchange reaction was
carried out to coat the AuNPs, which displayed an assembly and disassembly in response
to the temperature change in an aqueous solution. Even if the authors did not report
a proof of concept, i.e., the entrapping and controlled release of a model drug, these
thermo-responsive AuNPs can be considered as potential smart delivery systems for
cancer therapy. On the other hand, poly(2-alkyl-2-oxazoline) (PAOx) derivatives have been
utilized to surrogate PEG as their thermal-responsiveness can be modified by varying the
alkyl substituent at the 2-oxazoline position [40,41]. Poly(N-alkyl-acrylamide) (PNIPAM)
derivatives are widely used for engineering thermo-responsive nanosystems as they show
a LCST around 32 ◦C Li et al. [42] prepared thiol-terminated PNIPAM and a PEG-b-
PNIPAM diblock copolymer to modify AuNPs by forming Au-S bonds. Interestingly, the
authors observed that the LCST could be easily adjusted by increasing the PEG chain
segment. Poly(N-vinyl caprolactam) (PNVCL) is, together with PNIPAM, one of the
most popular temperature-responsive polymers. PNVCL exhibits a LCST behavior in
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water between 30 and 32 ◦C. The main role of PNVCL is to solubilize/stabilize NMs,
providing them a distinct temperature sensitivity [43,44]. Liu et al. [45] described core-
corona gold/poly(vinyl alcohol)-b-poly(N-vinyl caprolactam) (gold@PVOH-b-PNVCL)
NPs fabricated via the in situ reduction of HAuCl4 using NaBH4 and in the presence of
PVOH-b-PNVCL copolymers. Upon temperature variations, the gold@PVOH-b-PNVCL
NPs showed a thermo-induced phase transition and a good reversibility. In addition, this
nanosystem could encapsulate a significant amount of Nadolol (a drug used to treat high
blood pressure), the fast release of which was detected above the LCST.

2.3.2. pH-Responsive Mechanisms

It has been documented that the pH of tumor cells and TME is a relevant factor in
the study and development of effective therapies against cancer. Regularly, cancer cells
have a slightly more acidic extracellular pH than normal cells, with differences varying
from 0.3 to 0.7 pH units. [46]. The engineering of pH-responsive systems has arisen as
the pH differences between normal and pathological tissue encouraged the utilization of
local pH as a natural trigger for drug-controlled release. Two main strategies are involved
for engineering pH-responsive MNPs: (i) the use of organic molecules or polymers that
possess, in their chemical structure or repeating units, ionizable chemical groups, such
as amines, phosphoric acids, and carboxylic acids (protonation/deprotonation process)
and (ii) the use of molecules bearing pH-sensitive bonds that are cleaved under acidic
conditions (bond cleavage) [47].

pH-Sensitive polymers are polyelectrolytes with ionizable groups in their backbone
or in either side or end groups. Figure 3 displays a selection of polymers and organic
molecules that hold ionizable groups and that are commonly used to modify the surface
of MNPs. Smart polymers are ionized when the pH and ionic composition of an aqueous
medium shift, dramatically changing their conformation. Polymers undergo pH-sensitive
conformational changes in three different ways: (a) dissociation, (b) destabilization (via
collapse or swelling), and (c) changes or partition coefficient between the drug and the
vehicle. Among the most commonly used pH-sensitive polymers for decorating AuNPs, we
encounter anionic polymers, such as poly(acrylic acid) (PAA) and poly(methyl methacry-
late) (PMMA) [48,49], and cationic polymers, such as chitosan (CS) [50] and poly(4-vinyl
pyridine) (PVP) [51]. For instance, commercially available organic molecules have been
utilized to decorate and design pH-responsive nanosystems. Fan et al. [52] reported re-
versibly responsive nanovesicles (NVs) by self-assembly of AuNPs with the commercially
available 4-mercaptobenzonic acid (4-MBA) and oleylamine (OL). These self-assembled
NVs dissociated into individual NPs under alkaline conditions and reassembled into NVs
when the solution was brought back to acidic conditions; this event is due to the deprotonation
and protonation of the 4-MBA. As a proof of concept, Rhodamine B (RhB) was loaded in the
water-soluble Au NVs, which rapidly responded to alkali and acid stimuli demonstrating their
pH-responsive release capability. Although authors did not report in vitro or in vivo studies,
such elegant nanosystem showed great potential in the controlled release of active molecules.

The use of pH-sensitive bonds containing molecules is another common strategy to
obtain more precise nanotherapeutics, which, via bond cleavage under acidic conditions,
allows targeting drug release within pathological regions [53]. For instance, pH-sensitive
linkers (Table 1), such as acetal, hydrazine, and ester bonds, can be cleaved by decreasing
pH, serving thus as promising smart ligands for designing pH-responsive NPs [54].
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Table 1. pH-sensitive chemical bonds and release mechanisms in acidic conditions. Adapted
from [55], published by MDPI, 2020.

pH-Sensitive Bonds Chemical Mechanisms

Imine

Hydrazone

Oxime

Amide

Acetals

Orthoester

Zayed et al. [56] exploited the in vitro drug release of doxorubicin hydrochloride
(DOX·HCl) chemically bonded to AuNPs using breast cancer cells. They conjugated
DOX·HCl via a hydrazone bond to the carboxyl functional group of a pre-formed polymer
(undecanethiol-polyethylene glycol hydrazide). The DOX-PEG-undecanethiol conjugate
reacted over the metal surface of NPs to obtain AuNPs functionalized with the exposed
DOX on their surface. As expected, up to 80% of the chemically bound DOX·HCl was
released in acidic acetate buffer (pH 5) after 72 h. Indeed, these results demonstrated the
higher hydrolytic impact of the acidic conditions on the pH-sensitive hydrazone linker that
led to the release of this amount of DOX.

2.3.3. Light-Responsive Groups

The major advantage of light-responsive nanosystems is their temporal and spatial
controllability; the drug-releasing behavior can be precisely controlled by applying spe-
cific light at a specific position. Drug delivery systems can respond to ultraviolet (UV),
visible, and near-infrared (NIR) light. In order to prepare light-responsive inorganic NPs,
their surface needs to be modified with photo-responsive materials, which can be acti-
vated/deactivated as they are subjected to radiation of a specific wavelength [53,57,58]. Re-
curring chemical moieties that render material photoresponsiveness include photochromic
or cleavable groups (Figure 3).

In a photochromic group, a single UV/visible photon induce sufficient energy to
achieve photochemical reactions. This type of group can transit reversibly between two
structures upon irradiation. Among the photochromic groups that have been used to
modify the surface of MNPs, azobenzene (AB) [57,58], spiropyran (SP) [59], and coumarin
(Coum) [60] present a reversible transformation between their isomers (photoisomeriza-
tion), which results in polarity and hydrophobicity changes that can lead to the organization
or disassembly of NPs [61,62]. He et al. [60] reported Coum-functionalized AuNPs capable
of performing reversible self-assembly based on the photolysis of coumarin in response to
light irradiation. The authors demonstrated that this nanosystem could be self-assembled
from the red disperse state to the purple aggregate state by irradiation with λ= 365 nm and
then transformed back to the original disassembly state using UV irradiation.
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On the other hand, photocleaved reactions are often used to affect particles’ integrity
in terms of hydrophilic–hydrophobic balance and the stability of polymers’ building blocks
to cleave linkages between drug molecules and NPs or to remove moieties that prevent
particle binding. There exists an appealing approach based on the concept of photocaging
where a biologically active molecule (e.g., ligand or drug) is temporally inactivated by
protecting it with a photocleavable group (‘photocaged’) [63]. This caged molecule releases
its parent species actively only when its photosensitive protective group is cleaved by
UV irradiation. The 2-nitrobenzyl group (ONB) is widely used in organic synthesis as
a protecting group and cleavable linker due to its high photocleavage efficiency upon
near-UV light irradiation [64]. Although this approach seems to be promising, few reports
have been mentioned. A communication reported by Agasti et al. [65] elegantly used
this strategy. They reported the use of AuNPs for the photo-controlled release of a caged
anticancer drug, 5-fluorouracil (5-FU), by pairing the drug to the NP surface through a
photoresponsive ONB linkage. In such a system, the particle was used to cage and transport
the bioactive cargo for an effective release upon long-wavelength UV irradiation. Another
photocleavable group used is the diazirine (DA) ring that undergoes specific nitrogen
elimination by irradiation at 355–370 nm or even at 405 nm [66].

2.3.4. Magnetic Targeting and Theragnostic

The main problem of drug delivery systems is the lack of tissue selectivity. Magnetic
NPs can overcome this limitation by directing them to the target using an external magnetic
field. However, the benefit of magnetic NPs is also limited by the toxicity of many magnetic
materials. Therefore, the magnetic core can be coated with noble metals to gain biocompati-
bility (Figure 3) [67,68]. Gold and silver stand out since Au has low bioactivity, and Ag has
been largely used in biomedical applications [69]. Thus, the pairing of a superparamagnetic
core with an inert and safe metal coating enriches MNPs properties. Moreover, this coating
provides a chemically active surface ready for functionalization and the engineering of
smart nanodevices [70,71].

For example, iron oxide nanoparticles (IONPs) or Superparamagnetic iron oxide
nanoparticles (SPIONs) and AuNPs are very attractive for developing unique systems with
high potential in cancer theragnostic (diagnosis and treatment with a single nanoagent).
Indeed, even at low concentrations, IONPs are good magnetic hyperthermia and magnetic
resonance imaging (MRI) contrast agents, and AuNPs have unique properties involving
photons absorption, which make them suitable for cancer photothermal treatment and
X-ray computed tomography (CT). The synthesis of magnetic AuNPs involves the iron or
iron oxide core synthesis and the subsequent gold coating. The gold shell can be formed
directly or indirectly onto the magnetic core. In the direct methods, the Au shell is formed
directly on the core surface, while in the indirect methods, a “glue material” is used
between the core and the Au shell [72]. One of the most efficient and simple methods
to functionalize magnetic NPs is the sequential growth of metallic components (e.g., Ag
or Au) onto the surface of IONPs core in a one-pot reaction [73]. Iron-gold NPs can be
synthesized by reducing HAuCl4 [74,75]. For example, Eyvazzadeh et al. [76] synthesized
core-shell gold-coated IONPs (Au@IONPs, 33 nm) to be used as an MRI contrast agent
and a light-responsive agent for cancer photothermal therapy (PTT). A photothermal
treatment, applied to the KB human nasopharyngeal carcinoma cell line in the presence of
this nanosystem, killed approximately 70% of the cells. Au@IONPs alone did not trigger
significant cytotoxicity to KB cells. Thus, the authors demonstrated the potential utility of
these Au@IONPs for cancer PTT.

2.4. The Influence of the Physicochemical Properties of MNPs

The behavior and performance of the MNPs developed for cancer therapy are affected
by several parameters. The size, shape, and surface characteristics greatly influence their
therapeutic efficiency and efficacy [77,78]. In this sense, noble metal NPs, especially gold
and silver, are being extensively used due to their excellent compatibility with biological
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systems [79]. The green biosynthesis of MNPs has an exceptional degree of repeatability,
which supports the controllable self-assembly of NPs, offers efficient target delivery plat-
forms, and provides NPs with many new functions that may have great potential to satisfy
advanced cancer therapy [80].

Fundamentally, nanotechnology is all about size, so one of the most interesting aspects
is how the properties of NPs change with this parameter. Au and AgNPs are plasmonic
nanoparticles which size and shape strongly impact their spectral response Their surface
properties, such as composition, functionalization, and charge will affect size (promoting
aggregation), solubility in aqueous solution, and the ability to penetrate cells [77]. In
general, in aqueous solution, there is a tendency to form aggregates that are much larger
than the primary size of NPs. The trend for MNPs to aggregate depends on several factors,
including surface functionalization, nanoparticle concentration, pH, and ionic strength [81].

MNP surface charge is closely related to many biological performances, such as
biodistribution, stability, cellular uptake, and cytotoxicity. The charge interaction between
particles and cells is an essential basis for their biological effect [77]. Various synthetic
methods can modify the surface properties using reducing and stabilizer (capping) agents.
The most common strategy for stabilizing MNPs is the use of agents that can be adsorbed
onto the NPs surface. Different types of stabilizers have been successfully used, including
surfactants, small ligands, polymers, dendrimers, cyclodextrins, and polysaccharides, etc.
They can induce subtle changes in NPs, favoring notable changes in their physicochemical
and biological characteristics and impacting their therapeutic effects [79,82]. Furthermore,
MNPs could be stabilized by achieving bulky groups (stearic strategy), such as organic
polymers (chitosan). Additionally, their surface can be conjugated with biomolecules, such
as DNA probes, peptides, or antibodies, used to target specific cells or components [83].
The capping agents stabilize the interface where NPs interact with their medium of prepara-
tion [82]. Green biosynthesis of Au and AgNPs involves natural protection agents for their
stabilization [6]. Several eco-friendly processes for the rapid synthesis of MNPs have been
reported using aqueous extracts of plant parts, such as the leaf, bark, roots, seed, flowers,
fruits, and peel [84]. These stabilizing agents play a key role in altering the biological
activities with an environmental perspective [82].

On the other hand, it is possible to synthesize Au and AgNPs in various forms,
including spheres, rods, triangles, stars, rounds octahedral, prisms, and wires for a wide
variety of applications [85,86]. For instance, spherical AuNPs with sizes ranging from
10 to 50 nm absorb light and show their particular plasmon peak around 520 nm. On
the other hand, larger spheres have an increased scattering and peaks located at longer
wavelengths (red-shifting). Big spheres scatter more photons than the small ones because
they have larger optical cross-sections and because their albedo (ratio of change energy
to total extinction) increases with size. When the shape of AuNPs change from spheres to
rods, the surface plasmon resonance (SPR) band is split into two bands: (i) a strong band
in the NIR region that corresponds to electron oscillations along the long axis, referred to
the longitudinal band, and (ii) a weak band in the visible region at a wavelength similar
to that of gold nanospheres [87,88]. In AgNPs, small spheres (10–50 nm) typically have a
small absorbance peak near 400 nm, while larger spheres (100 nm) have a broader peak
with a maximum that shifts toward longer wavelengths around 500 nm. Moreover, the
spectra of larger spheres have a secondary peak at shorter wavelengths, resulting from
quadrupole resonance and the primary dipole resonance [89]. The destabilization and
formation of aggregates can lead to peak broadening or a secondary peak forming at longer
wavelengths. Silver nanoprisms have a specific SPR ranging from 400 to 850 nm [86].
Stabilization of dispersive Au and AgNPs during a green biosynthesis course is essential.
When green routes are used, the most commonly obtained shape is spheres [84,90]. For
instance, Botteon et al. [91] reported the biosynthesis of AuNPs using Brazilian red propolis,
a product of bees that exhibits anti-inflammatory, antitumor, antioxidant, and antimicrobial
activities. The AuNPs average size was in the range of 8 and 15 nm and showed several
geometrical forms, such as spheres, triangles, pentagons, hexagons, and rods. The cytotoxic
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activity of these biosynthetic AuNPs was evaluated in a human urologic cancer cell line.
Oves et al. [92] reported the synthesis of AgNPs at room temperature using AgNO3
and the culture supernatant of Stenotrophomonas maltophilia strain OS4. The cuboid and
homogenous obtained AgNPs showed a characteristic SPR at 428 nm with an average size
of 93 nm.

Hence, this field of research has become a “hot” topic in recent years. However, the
mechanism of NP formation (reduction and stabilization) and physicochemical properties
must be well understood and experimentally validated. In addition, the use of Au and
AgNPs as carriers to achieve passive or active targeting for cancer therapy can significantly
improve the efficacy of the conventional anticancer drugs, reduce the death rate of cancer
patients, and improve the quality of the patient’s life [93].

3. Cancer Evaluation Models

Traditionally, the safety and efficacy of anticancer drugs are evaluated through ex-
ploratory and confirmatory studies. The in vitro, ex vivo, and in silico studies are ex-
ploratory, while in vivo assays are classified as confirmatory [94]. Many questions remain
regarding whether the exploratory results have any bearing on the effectiveness in the
human body, which lead to develop additional and more appropriate methods for MNP
evaluation. The safety and efficacy of Au and AgNPs are generally focused on determining
conventional pharmacokinetic and pharmacodynamic parameters. As shown in Figure 4,
several models have been developed to evaluate the biological performance of MNPs. The
starting point for cancer research is usually two-dimensional (2D) cell cultures, i.e., the
use of adherent standard and commercially available cell lines or primary cultures that
are easily manipulated and rapidly generated. Three-dimensional (3D) cultures, such as
organoids, are more accurate in vitro models, the main goal of which leads to mimic the
TME [95,96]. Organoids are generated by deconstructing human tumors and culturing the
tumor-derived cells in a semisolid extracellular matrix under well-defined conditions [96].
In most cases, the assays are conducted on organoids derived from the primary tumors,
although a few examples of successful cultures derived from metastatic cancer sites exist.
Ex vivo tumor models are generally the representation of the so-called explant models
in which fresh tumors or fractions are surgically obtained and used for anticancer drug
evaluation [97]. In vivo models mostly refer to mouse models and have been extensively
reviewed elsewhere.

3.1. In Silico Analysis

Although in vitro, ex vivo, and in vivo experimental models are widely used to eval-
uate drugs and MNPs, significant challenges remain [98]. For example, NPs must cross
several biophysical barriers to reach cancer tissue and fulfill their role [99]. Furthermore,
the TME itself has its own barriers, which compromise its safety and efficacy. Understand-
ing of the biochemical, biophysical, and mechanical processes taking place during the
selective administration of NPs is complex since they depend on the dose and exposure
time [98,99]. The penetration, distribution, accumulation, and targeting capacity of NPs are
essential aspects that determine the effectiveness of anticancer agents. Generally, the pre-
diction of these mechanisms is obtained from experimental models and, more specifically,
at the in vivo preclinical and clinical stages. However, they might depend on the analyst’s
perception causing failures and errors in predicting those interactions [1,98,99].
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Figure 4. Features of (a) in silico (b) in vitro, (c) ex vivo, and (d) in vivo MNP evaluation models.

A valuable tool for understanding these interactions is the in silico approach [1].
Mathematical and computational modeling allows elucidating these processes that are often
impossible or uneconomical. Kashkooli et al. suggest that mathematical modeling is an
auspicious tool in optimizing the development of nano-scale formulations for the targeted
delivery of anticancer agents, combining in silico and in vivo models to better understand
their efficacy and safety [99]. Furthermore, if the mathematical models include variables
related to the molecular pathways of cancer, genetics, and the possible mechanisms of
interaction of NPs or drugs, personalized drugs and therapies could be developed [1].

3.2. Conventional 2D In Vitro Assays

In vitro 2D cell culture assays have the main objective of determining whether some
treatments or substances cause toxicity, damage, apoptosis, or necrosis to a cell monolayer.
Cell lines isolated from primary tumor tissues are commonly used. Green biosynthetic
MNPs have gained importance in the last years because of their antimicrobial and/or
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anticancer properties. Cytotoxicity assays are generally quantitative and, by metabolizing
specific substances with optical and redox properties, allow the evaluation of the effect
of increasing concentrations of substances or NPs. These tests consider determining the
half maximal inhibitory concentration (IC50), which represents a concentration capable of
reducing the viability of the cell culture by 50% [100–103].

The most commonly used method to evaluate cell viability is the MTT test, which
uses 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The reduction
of the tetrazolium salt indicates some general metabolic or enzymatic activity aspects that
correspond to viable cells [104]. There are other methods based on the same principle, in
which the salts are soluble in water. The MTS assay uses the 3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxyphenyl)-2- (4-sulfophenyl)-2H-tetrazolium salt or soluble tetrazolium
(WST), which has the advantage of no longer requiring the use of a solubilizer such
as dimethyl sulfoxide (DMSO) [105–107]. Cell viability has also been determined with
methods based on evaluating the integrity of the plasmatic membrane. One of these
methods is based on the ability of viable cells to exclude the trypan blue dye (TB) [108,109].
The TB assay allows for direct identification and counting of live (unstained) and dead
(blue) cells, which also has made it possible to determine the toxicity of MNPs on cancer
cells [110,111].

Another recommended cell-based microscopic assay is the neutral red uptake (NRU)
assay used to quantify metabolic activity. The neutral red uptake assay provides a quan-
titative estimation of the number of viable cells. It is based on the ability of viable cells
to incorporate and bind the supravital dye neutral red in lysosomes [112]. Neutral red
uptake has been employed to evaluate the toxicity induced by AgNPs synthesized by a
green route in bladder (5637) and breast (MCF-7) cancer cell lines [113]. One more common
method to determine cytotoxicity measures the activity of cytoplasmic enzymes released by
damaged cells. Lactate dehydrogenase (LDH) is a stable cytoplasmic enzyme found in all
cells. LDH is rapidly released into the cell culture supernatant when the plasma membrane
is damaged. LDH activity can be quantified by using the NADH produced during the
conversion of lactate to pyruvate to reduce a second compound in a coupled reaction [114].
This assay has been used to determine the ability of NPs to induce cytotoxicity in the breast
cancer cell line MDA-MB-231 [102]. Most designs that seek to evaluate the effectiveness of
new selective molecules or treatments against cancer include some controls, which, in most
cases, comprise a cancer model cell line and a non-cancerous control [115–117]. When the
purpose is to demonstrate that the toxic activity results from the association of the biogenic
NP, it is imperative also to test the toxicity of the NP-free plant extract and determine how
much of the effect is attributed solely to the extract [103,105,118].

The study of the cytoskeleton morphology after exposing cells to MNPs is important
since the specific damage triggered to the cell structures can be known. In this sense,
confocal laser scanning microscopy (CLSM) is a powerful technique that can be applied
to analyze the effect of some NPs on cell morphology. This can provide information on
the rearrangement of the cytoskeleton, which may be associated with the cell mobility and
migration capacity, which is also related to metastasis. Proteins of the cytosketon play an
important role in the curling or lamellipodia characteristics observed in cells during the
migration or extension toward other surfaces [103,111]. For instance, green-based AuNPs
inhibit the cytoskeletal rearrangement of the HT-1080 human fibrosarcoma cancer cell
line [111].

Indeed, cell migration is a crucial step in cancer progression, particularly in the tumor
growth and metastasis processes [119]. In cancer progression, invasion and metastasis occur
when tumor cells disseminate from the primary tumor spreading through the circulatory
and lymphatic systems, invade across the basement membranes and endothelial walls, and
colonize distant organs [120]. Metastasis is a very harmful feature of some cancers. The
migration assays are usually performed in transwell systems containing two areas in close
contact, one upper and one lower, separated with a porous membrane. In this experiment,
the cancer cells that can move are seeded in the upper side, and in the lower part, the
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chemoattractant is placed. The amount of cells that migrate from the upper compartment to
the lower compartment is determined, either in the presence or absence of NPs [111]. Cell
migration and invasion are significant components of metastasis. Indeed, it can be inferred
that the cell migration assay is part of a successful antimetastatic therapy design [119,121].
In addition, the effect of MNPs on cell migration could be examined using the scratch
wound healing assay [121].

The smart design of NPs involves a particular effect on a specific target when a physical
or chemical stimulus is applied to a cell culture or organism. One of the most widely used
stimuli is light, which, combined with NPs, triggers the so-called photothermal effect.
In this approach, either cell cultures or laboratory animal tissues exposed to NPs (e.g.,
AgNPs or titanium dioxide) are treated with radiation, usually a 808 nm NIR laser [122].
In nanostructures such as gold nanorods (AuNR) [107], NIR radiation causes a local
temperature increase that damages and kills cells. In addition to the MTT assay, this type of
assay can also use fluorescent stains to demonstrate viability. The method uses Calcein for
viable cells and propidium iodide that penetrates non-viable cells. This method is based on
the calcein-acetoxymethyl ester (calcein-AM) [123].

Determining the internalization of MNPs is a fundamental requirement when a ther-
apy design includes one or more intracellular targets. For this purpose, some methods
allow an estimation of the amount of NPs that have been taken up. Inductively coupled
plasma mass spectrometry (ICP-MS) measures nanograms per liter of metals or metalloids
from biological samples after digestion in, e.g., aqua regia. Its high sensitivity has made
it possible to identify cells with green biosynthesized MNPs [106]. Another assay often
used to quantify the % of cells with internalized NPs is flow cytometry [107]. However, the
nanosystem must involve a fluorescent tag conjugation or an antibody system to specifi-
cally detect the MNPs. It is also possible to determine MNPs’ internalization and location
by CLSM, using a fluorescent marker that reveals the particle’s location. Liu et at. [105]
reported a bacillary nanoparticle conjugated with a molecule capable of absorbing near-
infrared radiation (indocyanine green dye, ICG) for microscopic confocal observation.
This molecule emits infrared light (800 to 860 nm) when irradiated with a laser source
between 740 and 800 nm. It can be used to localize nanoparticles in cells with adequate
resolution. The combination of the Mito-Tracker Green and Hoechst 33258 (to contrast the
cell nucleus) is used to confirm the colocalization of NP in the cell nucleus or organelles
such as mitochondria [105].

One more perturbation that MNPs may cause to cells is oxidative stress, where several
ROS participate. The evaluation of ROS levels is necessary to explain the damage observed
after exposing cells to MNPs. For this purpose, precursors of fluorescent molecules such
as 2′,7′-Dichlorodihydrofluorescein diacetate (DCFH-DA) are used. They are metabolized
and subsequently oxidized by ROS, such as H2O2, and generate fluorescent molecules such
as 2′,7′-dichlorofluorescein (DCF), the emission of which can be detected at 530 nm [124].
Green biosynthesized AgNPs from plant extracts or bacteria cultures have shown the ability
to induce oxidative damage at the expense of ROS [102,106]. Another similar method uses
the 1,3-diphenylisobenzofuran (DPBF) probe, which can emit fluorescence at 450 nm and
reacts with OH radicals to generate the non-fluorescent derivate 1,2-dibenzoylbenzene
(DBB). Thus, a decrease in the fluorescence signal determines the amount of ROS in a
biological sample [125]. This proof has been successfully performed to demonstrate the
ability of certain nanosystems to generate ROS in breast cancer cells after stimulation with
near-infrared radiation (808 nm) [107].

Cancer cells are characterized by no longer being subjected to programmed cell death
or apoptosis, a process that naturally limits the proliferation of cells. Finding alternatives
that induce this process in cancer cells is one of the main objectives in developing anticancer
treatments. Fluorescence-based assays are preliminary tests used to identify whether
apoptosis is the phenomenon that destroys cells exposed to NPs [100,117]. Acridine orange
and ethidium bromide are generally used for apoptotic testing. Cells allow the entry of
ethidium bromide, which has a characteristic emission in the spectral range from 540 to
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700 nm [126], appearing reddish-orange under the microscope. Viable, non-apoptotic cells
show a fluorescent green color. Hoechst is a molecule that intercalates in double-stranded
DNA in the AT-rich regions, emitting its typical blue fluorescence [127], which allows
observation of the characteristic nuclear fragmentation of apoptosis [128]. Induction of
apoptosis is determined mainly by two fluorescence-based tests: annexin V and caspase
activation. Some commercial chemiluminescence kits have been developed. Apoptosis can
also be quantified using flow cytometry. Some kits have been described using annexin-FITC
and propidium iodide, based on detecting cells that externalize phosphatidylserine (PS). A
critical step in this method is that the PS binding with annexin V is highly dependent on the
Ca2+-concentration of the medium. Usually, necrotic cells with compromised membranes
are counter-stained with propidium iodide exhibiting green and red fluorescence. Healthy
cells are not stained. The evaluation is possible either by epifluorescence microscopy or by
flow cytometry [129,130]. Thus, the presence of one or both fluorescence indicates either no
viability, necrosis, or apoptosis, the latter in its early or late phase [130]. These experiments
can be complementary. With these methods, it has been observed that when using AgNPs
synthesized by the green pathway, the main damage is attributed to necrosis rather than
apoptosis [106]. However, some other NPs clearly show that they can induce higher levels
of apoptosis [105,107,131].

On the other hand, the relative expression profile of genes involved in apoptosis
or during proliferative processes has also been evaluated to determine not only if NPs
are capable to induce apoptosis, but also if they are able to enhance cell proliferation
and/or the capacity for tumor progression. For this purpose, mRNA expression has been
evaluated by RT-PCR, as well as the detection of proteins by Western blot. Some of the
markers required to evaluate NPs include the following genes: fbw7a, p53, c-myc, skp2,
bax, bcl2, and the proteins: Caspase 3, Caspase 9, Bcl-2, SRp30a c-myc, p53, Bax, Hsp70,
and PARP-1 [118,131]. The cascades of caspases conduct the apoptotic process and can
be divided into initiator, effector, and proinflammatory caspases. After cleavage of the
peptide, the fluorochrome is separated from its quencher thus can be visualized in the cell
by epifluorescence microscopy or even quantified by flow cytometry [132].

MNPs can also injure the mitochondrial membrane. This triggered damage can be
monitored using the 5,5′, 6,6′-tetrachloro-1,1 ′, 3,3′-tetraethylbenzimidazolylcarbocyanine
iodide (JC-1) dye. When cells are healthy, their mitochondrial membrane potential is high,
but the potential decreases when there is any damage. The JC-1 is added to the cell culture,
and, if the indicator emits reddish-orange fluorescence (590 nm), it means no damage to the
mitochondrial membrane. On the other hand, when cells are damaged, the mitochondrial
membrane will emit a green fluorescent light (515 nm ± 5 nm) [132]. The relationship
between the green/red emissions obtained by flow cytometry indicates harmful effects at
the mitochondrial level when cells are exposed to MNPs and/or photothermal treatments
(taking advantage of the NPs SRP), and the effect caused by molecules sensitive to pH
changes [107,131].

The cell cycle guides the processes of proliferation or quiescence in every kind of
cell. Cancer cells present important alterations, for which it is assumed that substances
that can affect the cell cycle could also have anticancer properties. Therefore, it is also
crucial to consider evaluating the effect of NPs on the cell cycle. It has been shown that
some biogenic AgNPs induce the arrest of the S1 cycle phase, which explains part of its
anticancer effect [106]. Flow cytometry is used with markers for G0/G1, S, and G2/M
phases [133].

Metabolic activity can also be a helpful marker in evaluating the harmful effect of
MNPs on any cells. It could be beneficial if a treatment could decrease the high metabolic
activity that cancer cells usually present. Commercial standardized tests have been used
for this purpose and focus on quantifying ATP as a marker of metabolic activity, which
also allows confirmation of the possible effects of some AuNPs with the ability to decrease
the metabolism of cancer cells [131].
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3.3. Mimetic 3D Cell Culture

Three-dimensional cell culture models have emerged to bridge the gap between 2D
culture systems and animal models for the testing of new anticancer drugs [134]. These
models closely resemble the in vivo TME and show structural and functional similarities
to solid human tumors, such as the cell-to-cell interaction, a developed extracellular matrix
(ECM), pH, oxygen, and metabolic and proliferative gradients [135]. Three-dimensional
cell culture models are divided into scaffold-based, scaffold-free, and hybrids (Figure 4c).
Scaffold-based models include hydrogel-based support, polymeric complex material-based
support, hydrophilic glass fiber, and organoids. In contrast, scaffold-free models are
produced through hanging drop microplates, magnetic levitation, and spheroid microplates
with an ultra-low attachment coating. Hybrid culture systems combine microfluidic devices
and micropatterned plates with ECM components with spheroids embedded inside ECM
scaffolds [95,136,137].

Despite the numerous advantages offered by these models, they have been scarcely
used to evaluate green biogenic MNPs. Recently, Vemuri et al. [138] reported the synthesis
of AuNPs using naturally derived phytochemicals, such as curcumin, turmeric, quercetin,
and paclitaxel, and their evaluation against two breast cancer cell lines (MCF-7 and MDA-
MB 231). The synthesized NPs were found to be spherical and showed an average size
ranging between 3 and 60 nm. These NPs effectively inhibited cell proliferation, angiogen-
esis, colony formation, and spheroid formation of breast cancer cells through apoptosis
induction; HIF-1α, VEGF, Cyclin D1, and STAT-3 gene down-regulation; and Caspase-9
gene up-regulation. Ag-oxide NPs synthesized utilizing an aqueous leaf extract from
Excoecaria agallocha, and with anticancer potential, were evaluated by Banerjee et al. [139].
These Ag-based NPs were spherical shaped and exhibited an average particle size of 228
nm. They induced a growth-inhibitory effect against murine Ehrlich ascites carcinoma
cells, with an IC50 value of 1.1 ± 0.1 µg/mL at 72 h. Their cytotoxic effect was mediated
via apoptosis induction as the number of annexin V-positive cells increased as a function of
time [139].

For 3D models, spheroids’ integrity is very important. Therefore, after treatment,
an enzymatic and mechanical spheroid dissociation is not recommended as it could al-
ter the results and their interpretation. Several assays have been performed to assess
the viability of spheroids treated with non-biogenic NPs, for example, fluorescent sub-
stances, such as Calcein-AM/ethidium homodimer-1 (EthD-1) (Live/Dead) combined with
confocal laser scanning microscopy (CLSM) [140], CellTox® Green dye combined with
inverted fluorescence microscopy [141], fluorescein diacetate (FDA)/propidium iodide
(PI) [142], or luminescent chemistry of CellTiter-Glo 3D® [143]. Spheroid morphology is
usually evaluated by optical microscopy, scanning electron microscopy (SEM), or confocal
microscopy [140,144]. Moreover, several histochemical tests, such as hematoxylin/eosin, al-
kaline phosphatase, alizarin red, Masson’s trichrome, and aniline blue staining, have been
applied to visualize internal biological structures [140,143]. In turn, many studies reporting
gene expression determinations utilized semi-quantitative reverse transcription-polymerase
chain reaction (RT-PCR) or quantitative PCR (qPCR) [142,144,145]. The evaluation of proteins
expression is carried out by Western blot, immunocytochemistry, or bead-based multiplexed
immunoassay tests [140,142,143,145,146]. These, and other methods, can be prospectively used
to characterize in more depth the effects of green biosynthesized MNPs on tumor spheroids.

3.4. Ex Vivo Models

The poor prognosis of some types of cancer is attributed to the complex tumor-tissue
multicellular microenvironment, as it is difficult to completely mimic it in preclinical
models. Therefore, developing and maintaining ex vivo models of cancerous tissues
that preserve the structure, multicellular 3D architecture, and viability of each type of
human cancer signaling remains challenging. Understanding this type of explants and the
impact that external stimuli may have on tumoral tissues could accelerate complementary
therapies and favor personalized medicine [147]. Another approach that provides a better
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in vivo-like environment is the precise cutting of tissue sections, representing an ex vivo
model of the study organ while maintaining the original architecture. The advantage of this
system is that sections from different species, such as rodents and human biopsy material,
can be prepared and compared. Most of these studies have focused on pharma-toxicological
studies [148].

Despite the friendly properties of biosynthesized MNPs, it is also essential to validate
their safety and biological effect in complementary experimental models, as has been
carried out for non-biogenic NMs. Moreover, ex vivo models are necessary to confirm
the essential characteristics of the MNPs. Kokkinos et al. [147] developed a new pre-
clinical model of pancreatic ductal adenocarcinoma that preserves for 12 days the native
3D multicellular architecture of human pancreatic tumors in culture. Furthermore, they
demonstrated that this tissue explant model is susceptible to transfection with gene si-
lencing based on polymeric NPs, delivering siRNA to pancreatic adenocarcinoma cells
in vitro and in vivo. Gokulan et al. [149] reported the performance of an ex vivo model
using human intestinal tissue to evaluate changes in levels of pro-/anti-inflammatory
cytokines/chemokines and mRNA expression of intestinal permeability-related genes
induced by commercially available AgNPs in ileal tissues.

The research group headed by Gonzalez aims to evaluate and elucidate the signaling
pathways that various NMs confer, delineating a physiological profile using ex vivo models.
According to their experience and other research, using ex vivo physiological models in the
study of AgNPs and AuNPs can exert variations in the physiology in similar patterns to
endogenous hormones or mediators [150]. The ex vivo physiological models of isolated tis-
sues and organs that are used to evaluate NMs allow the evaluation of particular functions.
Some examples are ducts related to the cardiovascular, respiratory, and digestive systems
(small or large intestines) or the study of organs, such as heart, kidney, lung, liver, and the
biochemical communications involved between organs and tissues [151,152]. The results
obtained from these investigations have allowed us to elucidate the mechanisms of action
triggered by this type of NM in various biological structures, reorienting future research
to gain knowledge concerning their beneficial or toxicological effects and establishing the
toxic values (maximum permissible dose, MPD) for regulated biomedical applications.

3.4.1. Isolated Tissue System

The isolated tissue system represents a classic method for investigating the physiology
and pharmacology of isolated blood vessels, airways, and intestines by applying isotonic
or isometric measurements using appropriate transducers. The isometric measurement
is used to assess contraction by keeping tissue length constant, whereas, in the isotonic
mode, the dimension of the tissue is decreased by an applied force. For instance, coupled
to isometric transducers, the isolated ring system is used primarily to monitor tension in
small tissue sections and rings in real-time [153,154]. Additionally, in the physiological
solution that contains the ring, under a given treatment, the presence of various mediators
or molecules produced from that treatment can be determined and quantified [155–157].
Indeed, murine models allow the study of the structure and function of various organs,
both under physiological or pathological conditions, and constitute an essential tool in
analyzing NM-induced responses. The experimental models exposed involve rodents, such
as mice, rats, guinea pigs, or rabbits.

3.4.2. Isolated and Perfused Organ System

Isolated organs, such as the heart, kidney, and liver separated from an in vivo system,
e.g., experimental rodents, can maintain their viability, functionality, and metabolic pro-
cesses for a limited time. In this period, the organ under study sustains physiological and
biochemical parameters that provide basic knowledge about the behavior of a substance at
the organic level without having the interference of other structures and mediators from
an in vivo system. The isolated and perfused organ maintains its functionality due to the
physiological solution that passes through the blood vessels and irrigates the organ under
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study, keeping the physiological conditions of oxygenation, pH, and temperature [158].
Langendorff’s isolated and perfused heart model has lead to fundamental insights into
cardiovascular biology and physiology [159]. The basis of Langendorff’s isolated heart
model is to maintain cardiac activity by perfusing the heart through the coronary arteries
using an aortic cannula inserted into the ascending aorta. Thus, the infusion solution enters
retrogradely into the heart through the aortic cannula. The retrograde perfusion is pro-
duced by hydrostatic pressure (constant pressure model) or by using a pump (continuous
flow model) that closes the aortic valve; in this way, the perfusion solution flows through
the aorta contrary to in vivo conditions [160,161].

3.4.3. Integrative Evidence about the Physiological Profile of AgNPs and AuNPs

Information regarding AgNPs, such as their biophysical properties, functions, effects
at different levels of biological organization, and their impact on human health, is still
controversial. In recent years, our laboratory has investigated the biological effects triggered
by AgNPs at different biological levels and their possible toxic or beneficial implications
in the cardiovascular and respiratory systems [162,163]. Gonzalez et al. [164] observed, in
an isolated ring system of the aorta, that AgNPs exhibit a series of events as a function
of concentration, shape, and size. For example, spherical 37.5 nm AgNPs induce two
types of effects: at low concentrations, vasoconstriction is increased in the isolated rings
precontracted or not, while at higher concentrations, a vasodilator effect was observed in
phenylephrine precontracted aortic rings. Therefore, it was suggested that AgNPs might
block the action of powerful vasodilator agents such as the acetylcholine (ACh) produced
in the body. At higher concentrations, AgNPs stimulate vasodilation mediated by the
activation of endothelial nitric oxide synthase (eNOS), which produces low concentrations
of nitric oxide (NO), an important vasodilator and antihypertensive agent [164]. Likewise,
this effect depended on the endothelium (E) (the inner layer surrounding the blood vessels).
NO production was suppressed when this was removed, and the vasodilator effect was
lost [165]. A similar effect occurred in isolated and perfused hearts, similar to those
observed in blood vessels. With these physiological effects, it was possible to evaluate the
responses induced by AgNPs and to study the possible mechanisms of action involved.

The physiological profile of AuNPs is also interesting, as it focuses on biosafety,
biocompatibility, and the design of drug delivery systems. Some evidence displays the
effect of AuNPs in ex vivo models: (i) Silva et al. [156] reported how AuNPs modify
NO release and vasodilation in rat aorta. The authors investigated the role of ruthenium
(NO donor), AuNPs, and an AuNPs–ruthenium composite in isolated rat aortic rings,
demonstrating that it is possible to modify the NO release profile. All these systems favor
relaxation of the aorta, although each system selectively and explicitly activated processes
related to the metabolism of NO and potassium (K) channels. The results provided insights
into the role of AuNPs and their functionalization as a pharmacological strategy to control
NO levels. To improve cancer treatment, one alternative could be to locally increase the NO
concentration that should promote cytotoxic effects and vasodilation, thus contributing
to the involution of tumors. In addition, administration at low concentrations to increase
the normal concentration of NO through the tumor’s blood supply, which may impair
the dilation of the capillaries and restrict blood flow, could be a promising strategy for
tumor growth inhibition. (ii) Mohamed et al. [155] reported AuNPs synthesized by the
Turquevich method without a significant effect on ACh vasodilation. Nonetheless, they
can block the relaxation induced by sodium nitroprusside (SNP), but the PVP-modified
AuNPs attenuated ACh-induced dilation. The incubation with PVP alone promoted
a significant reduction in ACh responses. In comparison, vessel incubation with the
PVP-modified AuNPs induced a significant decrease in SNP responses. When vessels
were incubated in PVP alone, a non-significant effect on SNP responses was noticed,
suggesting that the AuNPs per se may be interfering with the action of SNP. (iii) Maldonado-
Ortega et al. [150] showed that AuNPs at 100 µg/mL induce a contractile action on isolated
rings of rats’ trachea, where NO is a potential mediator. This work contributed to a better
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understanding of the participation and association of NO in contractile processes and
tracheal hyperresponsiveness. In conclusion, even though there is no evidence on the ex
vivo study of NPs synthesized by green biological methods, this type of models can provide
important information for their biological and physiological evaluation and validation.
They offer mensurable knowledge about the possible mechanisms of action for preclinical
evaluation and application. In the biomedical field, the impact of the ex vivo approaches
could substantially impact the development and design of new pharmacological strategies
against cancer.

3.5. In Vivo Evaluation Models

Several studies aim at mimicking the characteristics of the tumor using in vivo models.
Their significance for cancer research lies in the possibility of knowing the biology of cancer
to develop new therapies. Different animal models have been established as notable tools
to study human cancers, providing valuable information on the biology of cancer, the eval-
uation of new antitumor therapies, the discovery of target molecules, and the validation of
biomarkers [166]. Current research continues to look at a broad spectrum of cancers with the
aim of understanding their biological behavior. In this sense, animal models must include
relevant characteristics of the tumor, such as its microenvironment, anatomy, natural history,
angiogenesis, and metastasis. Furthermore, animal models are crucial to understand the phar-
macokinetics, metabolism, and distribution of antineoplastic drugs [166,167]. Technological
advances in genetic and cancer tissue engineering offer enormous potential information from
preclinical models [168]. Therefore, summarizing the most recent advances in in vivo models
using MNPs offers a value platform of preclinical nanomedicine evaluation. This review
focuses on the soil nematode Caenorhabditis elegans (C. elegans), the freshwater fish Danio rerio
(D. rerio) known as Zebrafish, and the murine model.

3.5.1. C. elegans and D. rerio (Zebrafish) Models

C. elegans and zebrafish models have been used to understand fundamental biologi-
cal processes involved in cancer, such as apoptosis, proliferation, angiogenesis, invasion,
metastasis, genome instability, and metabolism. C. elegans offers a powerful platform for
studying carcinogenesis and identifying new cancer drug targets [168]. C. elegans shares a
high homology with human genes. Many biological processes, including apoptosis, cell
signaling, cell cycle, cell polarity, metabolism, and aging are conserved between C. elegans
and mammals [169]. Zebrafish is a valuable model widely used to study developmental
biology and cancer. The evolutionary conservation of cancer-related programs between hu-
mans and zebrafish is surprising and allows the results obtained in fish to be extrapolated
to humans. Zebrafish is a reliable model to study human cancer, as recent xenotransplan-
tation studies in zebrafish have shown to be adequate for evaluating the invasiveness of
patient-derived xenograft cells [170]. These organisms are excellent models due to the
great variety of genetic, molecular, and biochemical tools available for their study and the
significant conservation of their genes [168,170]. Table 2 summarizes some research works
related to this topic.



Pharmaceutics 2021, 13, 1719 21 of 52

Table 2. Evaluation of AuNPs and AgNPs in C. elegans and Zebrafish; type of NP, concentration, specimen, stage of
development, transcriptome profiling method, up or down regulation, and gene ontology.

Type of NP,
Concentration and

Specimen

Stage of Development
at RNA Extraction and

Method of
Transcriptome

Profiling

Up- or
Down-Regulation Gene Ontology Reference

Citrate-coated AuNPs
5.9 mg/L

C. elegans L3 larval
stage exposed for 12 h.

L3 larval stage
Affymetrix C. elegans

gene chip
Up-regulation

Amyloid Processing
Citrate cycle

Clathrin-mediated
endocytosis
Apoptosis

Unfolded protein response
G-protein signalling

[171]

Bare AuNPs
0.1 and 0.2 mg/L
MUA/Au = 0.5
MUA/Au = 3

C. elegans embryos
exposed for 72 h.

Adults
Affymetrix C. elegans

gene chip

Up-regulation
Down-regulation

Defense response
Lipid catabolic processes

Lipid storage
Body morphogenesis
Body shape and size

regulation
Metal

detoxification(homeostasis)
and stress
Lifespan

[172]

Citrate-capped AuNPs
20 mg/L

Liver of adult Zebrafish
fish exposed for 96 h.

Adults
Affymetrix GeneChip

Zebrafish Genome
Array

Up-regulation
Down-regulation

Stress response
Development

The establishment of
localization
Biogenesis

Metabolic process
Locomotion

Biological adhesion
Response to a stimulus

[173]

AgNPs
10 µg/mL

C. elegans L1 larvae
trough adulthood
exposed for 72 h.

Adults
RNA seq/C. elegans

Up-regulation
Down-regulation

Cellular process: cell cycle,
meiosis, apoptosis, etc.

Growth
Metabolic process

Reproduction
Cellular component

organization and biogenesis
Behavior

Cellular process: cell
communication, cell surface
receptor signaling pathway

Developmental process.
Morphogenesis, generation

of neurons
Metabolic process

Response to stimulus
Growth

Locomotion
Reproduction

[174]
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Table 2. Cont.

Type of NP,
Concentration and

Specimen

Stage of Development
at RNA Extraction and

Method of
Transcriptome

Profiling

Up- or
Down-Regulation Gene Ontology Reference

AgNPs
50 µg/L

Gills from adult
zebrafish exposed for

28 days

Adults
Agilent Technologies

4x44 K zebrafish
microarray

Over-represented
ND

Extracellular components
(Matrix)

Mithocondria
Ribonucleoprotein

complexes
DNA damage

DNA/RNA processing
Heat shock proteins

Cell growth and migration
Anatomical, organ and cell

morphogenesis
Embryonic, skeletal and

organ development

[175]

Bare AgNPs
0.01 mg/L

6 dpf larvae exposed
for 15 days

Larvae
Agilent’s zebrafish (V3)

oligonucleotide
microarrays

Up-regulation
Down-regulation

Photoreception
Circadian clock regulation

Cardiovascular disease
Genetic disorder

Hematological disease
Hypersensitivity response

Ophthalmic disease

[176]

Citrate-coated AgNPs
0.4 mg/L

24 hpf embryos
exposed for 24 h

Embryos
Agilent Technologies

4x44 K zebrafish
microarray

Down-regulation

Ligans-gated ion channel
activity

Dopaminergic receptor
signaling and neuro

differentiation
Neuron recognition,

Regulation of neurogenesis

[177]

For instance, studies exposing larval-stage nematodes to AuNPs revealed several
differentially expressed genes. The majority were up-regulated and related to the amyloid
processing, citrate cycle, clathrin-mediated endocytosis, apoptosis, and G-protein signaling.
These findings suggested that the C. elegans AuNPs uptake is achieved by endocytosis via
clathrin coating. AuNP exposure also induced neural damage and changes in the feeding
behavior. Furthermore, mutant animals showed hyper sensibility to AuNPs [171]. Other
studies [167,172] showed that AuNPs triggered changes in the cellular defense response
and lipid catabolic processes of C. elegans. Additionally, changes in lipid storage, body
morphogenesis, shape, and size were observed. The processes of detoxification of metals,
homeostasis, and adaptation to stress were also modified. They also showed morphological
changes in the offspring, locomotion problems, and fertility alterations.

On the other hand, when adult zebrafish were exposed to AuNPs for 96 h, the gene
expression at the lowest concentration was similar to that of the control. The authors
found that down-regulation affects biological processes related to development, biogenesis,
metabolic processes, cellular localization, biological adhesion, and locomotion [173]. A
different study demonstrated that when zebrafish larvae are chronically exposed to AgNPs
until the stage of adulthood, the fish present affections in the locomotion, fertility, cell
growth, and neuroactive interaction, showing lower locomotion and small body lengths.
Chronic exposure (28 days) of adult zebrafish to AgNPs showed changes in the extracellu-
lar components related to the extracellular matrix, mitochondria, and ribonucleoprotein
complexes, also causing damage to DNA. Unexpectedly, the zebrafish gills of treated
animals did not show morphological defects despite changes in the expression of several
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genes [175]. Similarly, zebrafish exposure to AuNPs showed effects on locomotion velocity,
growth, and reproduction [174].

Studies performed in zebrafish larvae, in which the exposure to AgNPs was carried
out during six days post-fertilization, showed no adverse effects on fish survival and
growth. Unexpectedly, AgNP exposure resulted in higher survival rates for zebrafish
larvae, particularly with the highest concentration (1 mg/L) [176]. Other studies identified
a strong accumulation of Ag in the blood vessels of the liver, in the interstitial tissue [178],
and neural changes after AgNPs exposure [173]. The overlapping functions were altered
when nematodes or zebrafish were exposed to MNPs, among these: cell signaling (MAPK
signal or G protein), control of cell growth, apoptosis, stress response, and DNA dam-
age [171–176]. Most of these responses can trigger cancer, demonstrating that these model
organisms are very useful to study the impact of NPs at the level of the whole organism.
Interestingly, MNPs significantly impact the expression of genes related to development
and neurogenesis. Altering the expression of developmental genes could lead to misregu-
lation of pathways that can cause a malignant formation. C. elegans and zebrafish could be
used for future approaches or as a preclinical cancer model alongside mouse use.

3.5.2. Murine Model

The murine model will be briefly described because it is an excellent organism to study
cancer onset, invasion, and metastasis. It represents a significant step between in vitro
systems and clinical studies [179]. The mouse genome is highly homologous to the human
genome, which can simulate a series of biological characteristics, such as the occurrence,
development, and metastasis of human cancer cells in vivo [180]. Moreover, it has the
advantages of convenient feeding, low price, and easy gene modification. It provides a
good tool for cancer research and drug discovery and verification [181]. The most widely
accepted animal models in cancer research are syngeneic, genetically modified mouse
models (GEMMs), chemically induced models, and xenograft models. Xenografts can be
divided based on the source of the tumor: xenografts with conventional cell lines (cell
line-derived xenografts, CDX) or with the use of samples obtained from patients with some
kind of cancer (patient-derived xenografts, PDX). Table 3 describes the advantages and
disadvantages of the main in vivo murine models for cancer research.

In GEMMs, spontaneous tumor initiation occurs within the correct microenvironment
from an otherwise normal tissue cell. These may be simple oncogenic-driven transgenic
mice. One limitation to the conventional GEMM models is that the regulatory sequences
used to drive transgene expression are not well defined in specific lineage/expression
domains. The specific oncogenes may not necessarily reflect those observed in human
tumors. Nonetheless, these models serve a purpose in cancer research [182]. This field
has turned to more specific models emulating the genetics of human disease with spatial
and temporal activation of oncogenes and deletion of tumors suppressors targeting mouse
tissues [183].

A cell line-derived Xenograft or CDX model is widely used to test anticancer therapies.
Human tumor samples are cultured as cell lines and implanted into immunodeficient
nude animals to test the efficacy of antitumor compounds in vivo. CDX is one of the
simplest, easiest, and most commonly used systems based on the engraftment of human
cancer cell lines to immunodeficient animals [184]. CDX has proven to be very useful for
probing cancer genetics, biological processes, and metastatic potential. However, it has
some limitations that include reduced intra-tumoral heterogeneity and low effectiveness in
predicting clinical performances. In addition, the lines used are frequently derived from
highly aggressive malignant tumors, making these less useful for modeling early events
in the evolution of the primary tumor. Moreover, in most of the cases, it is necessary to
use immunosuppressed animals, increasing the cost of the animals’ care. The transplant
site is also a critical issue to consider. Generally, subcutaneous injection (ectopic) and the
implantation of cells in the specific tissue of the mouse (orthotopic) are used [184].
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Table 3. Advantages and disadvantages of different murine models used cancer research. Adapted
from [166], published by The Company of Biologists, 2017.

Model Way of Generation Advantages Disadvantages

Ectopic CDX
Cell line-Derived

Xenograft

Human tumor cells
(fluorescents or not)

Implanted
subcutaneously

Easy, fast, and cheap
Commercial cell lines

or primary cell
cultures

Eeasily measurable

Immunodeficient host
Some cancer types

fail to grow
Not specific tissue

growing

Orthotopic CDX
Cell line-Derived

Xenograft

Implantation on
specific tissue

Microenvironment
similar to the origin

of the tumor
Eeasily measurable

They are more
technically complex

than ectopic
Immunodeficient host
Not all cancer types

grow

Metastatic CDX
By injection of tumor

cells by vein or
intra-cardiac

Tumors can grow in a
variety of tissues or

organs

The model does not
mimic the original

tumor
Technically

demanding to detect
the location of tumor

PDXPatient-Derived
Xenografts

By implantation of
tumor cells or

fragment derived
from human tumors.

(ectopically or
orthotopically)

Tumors generated
maintain the

phenotypic and
genotypic

characteristics of the
original tumor

derived from the
patient

Requires fresh patient
tumor tissue

Immunodeficient host
Relatively expensive
Slow implementation

Technically
demanding

Syngeneic
Mouse tumor tissue

or cells implanted on
same strain mouse

Good growing
tumors

Microenvironment
adequate

Immunocompetent
host

Mouse
microenvironment

Not useful as human
model

Conventional GEMM
Genetically Modified

Mouse Models

Oncogenic-driven
transgenic mice to
develop specific

cancer.

Natural
microenvironment

Intact immune
system

Modelling of
early/late stages of
tumor progression

Mouse
microenvironment
Not truly of human

disease
Not valuable for

certain test therapies

It is worth mentioning the wide acceptance of the PDX models in the pharmaceutical
industry. Indeed, transplanting tumor pieces or primary human cancer cells into host mice
is of clinical relevance. The transplantation of human tumor fragments into immunocom-
promised mice has been reported by Hoffman et al. [184]. PDXs are very attractive models
due to the preservation of many relevant characteristics of the primary human tumor, such
as growth kinetics, histological characteristics, and behavioral characteristics (invasiveness
and metastatic capacity), regardless of the ability to respond to tumor therapy [185–190].
Moreover, these models have had an important industrial impact, and they are the choice
for translational research.

On the other hand, many studies show that AuNPs and AgNPs obtained by green
biosynthesis have cytotoxic or antiproliferative effects on different tumor cells of different
types of cancer. However, most of these studies are carried out with cells grown in vitro.
The evaluations of antitumor activity using in vivo models are relatively scarce. It is
relevant and essential to carry out in vivo evaluations of the potential use of AuNPs and
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AgNPs as soon as possible since these models are closer to cancer in patients. Although
there have been advances in establishing diagnostic and therapeutic applications of AuNPs
and AgNPs synthesized by chemical methods, it is also necessary to evaluate biogenic
nanoparticles. Table 4 summarizes some studies performed to evaluate the antitumor
properties of Au and AgNPs employing murine in vivo models.

Table 4. Murine in vivo models used to evaluate the antitumor activity of green biogenic AuNPs and AgNPs.

In Vivo Model Biological
Source Type of NP Size (nm) and

Shape Cell Line Administration
Route Reference

Subcutaneous
Breast cancer

Mice
Curcuma longa AuNPs 278

Spherical DMBA Oral [185]

Breast cancer
Mice Mangifera indica AuNPs 55.5–65.5

Spherical MDA-MB-231 Oral [186]

Subcutaneous
Cacu
Mice

Peptides AuNPs
100–150

Spherical
Conjugate

HeLa Tail vein [187]

Subcutaneous
Lung cancer

Mice

Dimocarpus
longan AgNPs 13 Spherical H1299 Intraperitoneal [188]

Intravenous
Mice Curcumin AgNPs 50–100 HeLa Intraperitoneal [189]

Mice Nostoc carneum AgNPs 16 Spherical EAC Intraperitoneal [190]

Subcutaneous
C57
Mice

Curcumin AuNPs 16
Spherical C540 (B16/F10) Intratumoral [191]

Intravenous
Mice Camellia sinensis AuNPs 20–30

Spherical HL-60 Intravenous [192]

The design and selection of the exploratory or confirmatory evaluation models are
still challenging, and the influence of the immune system, genetic factors, lifestyle, and
environmental factors must be considered. Figure 5 showed the main goals for using in
silico, in vitro, ex vivo, and in vivo models for MNP evaluation.

Figure 5. Main goals for using in silico, in vitro, ex vivo, and in vivo models for MNP evaluation.
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4. Application of Biosynthetic MNPs in Cancer Therapy

Until now, numerous papers have been published regarding the use of non-biogenic
Au and AgNPs in cancer applications using in vitro, ex vivo, or in vivo models. The green
biosynthesis of AuNPs and AgNPs is an eco-friendly and low-priced process that provides
biocompatible nanoagents with potential anticancer activities. This section aims to provide
an overview of the advances in evaluating the antitumor effect of biosynthesized MNPs,
particularly Au and AgNPs, against different types of cancer: skin, breast, lung, prostate,
colorectal, cervical, and leukemia.

4.1. Skin Cancer

The skin is the largest organ of a mammal’s body. Its exposure to the environment
makes it highly susceptible to physical, chemical, and biological perturbations that fre-
quently trigger cancer development [193]. Skin cancer is the most common type of any
form of cancer. It is classified by the origin of the initial cells, where non-melanoma skin
cancer is the most common form (70% of the total cases), and the melanoma type occurs in
smaller proportion (30% of the cases and represent the fourth form of the worldwide new
cases of cancer) [194]. In the last year, new cases of non-melanoma skin cancer worldwide
affected 1.2 million people, with 2.5% deaths. Melanoma begins as a focalized and limited
lesion [195,196]. However, together with the Merkel cell carcinoma, melanoma could
be metastatic [197,198]. The primary skin cancer treatment is surgery, with or without
radiation. When the surgical procedure is not enough to remove the whole tumor, or when
malignant cells spread out from the dissection zone, chemotherapy is also necessary to
limit or eliminate the tumor [199]. It is necessary to improve drug administration, either for
single chemotherapy or photodynamic therapy (PDT), where the lesion is permeated with a
photosensitizer and then exposed to visible light [200]. After conventional cancer treatment,
and to prevent new lesions in the susceptible skin or beyond, different substances must be
deposited below the epidermal dead cell layers [201].

Many MNPs have been designed and produced with the aim of skin cancer treatment
by binding different drugs or extracts to their surface. For instance, an aqueous extract from
the roots of Siberian ginseng(SG) showed anticancer properties against murine melanoma
B16 cells. It induced apoptosis through Bid, Bad, Casp-3, and Casp-9 gene overexpres-
sion [202]. AgNPs synthesized using Anona muricata and with an average diameter smaller
than 50 nm showed interesting properties in that they destroyed melanoma cancer cells
A-375 at concentrations lower than 3 µg/mL [203]. Safwat et al. [204] prepared AuNPs
loaded with 5-FU as a transdermal delivery system. This cream or gel-based formulation
(5-FU/CTAB-AuNP) was assessed in a mouse skin cancer model, showing a diminished
tumor weight compared to controls. Its effectiveness was vehicle dependent, where cream
significantly reduced the pathological alterations and a near-complete regression of epider-
mal and dermal infiltrations compared to the gel form.

In addition, PDT has been proposed as an effective modality for melanoma therapy be-
cause of its target-specific effects. For example, titanium dioxide nanoparticles (TiO2 NPs),
gold nano-clusters, and graphene can elicit a series of toxicological responses in mouse
B16F1 melanoma cells when stimulated in sunlight. This is due to the depolarization of the
mitochondrial membrane and the generation of superoxide radicals [205]. Furthermore,
AgNPs coupled with 5-aminolevulinic acid (5-ALA) exhibit cytotoxicity in skin melanoma
B16F10 cells and squamous cell carcinoma A431 cells when are briefly exposed to halogen
light. In this case, cell toxicity responds to tumor aggressiveness and ROS production [206].
On the other hand, photothermal therapy kills cancer cells by using the heat generated from
absorbed near-infrared energy with minimum damage between the tumor and the sur-
rounding tissues [207]. AgNPs coated with TiO2, produced by a sol-gel two-step technique,
demonstrated their capability of eliminating subcutaneous melanoma tumor in vitro and
in vivo in B16-F10 cells and C57BL/6J mice, respectively, when exposed to near-infrared
radiation [122]. Recently, bovine serum albumin (BSA)-coated silver NPs (BSA-AgNPs)
have been developed to generate free radicals that were likely derived by oxidative stress to
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B16F10 cells [206]. In a recent work, Liu et al. [206] developed a light-inducible nucleic acid
delivery Ag-based nanosystem. These AgNPs released miR-148b that induced apoptosis in
Ras expressing keratinocytes and murine squamous cell carcinoma cells while avoiding
cytotoxicity in untransformed keratinocytes. In summary, AgNPs and AuNPs have been
efficiently synthesized following green approaches and evaluated for their potential ap-
plication for skin cancer therapy, where the size, shape, and evaluation models have been
validated through different assays (see Table 5).

Table 5. Evaluation of green biogenic Au and AgNPs in skin cancer cells; biological source, NPs characteristics, IC50, and
cell line.

Biological
Source or

Hybridization
Type of NP Size (nm) Shape IC50 (µg/mL) Cell Line/In

Vivo Model Reference

Siberian ginseng AuNPs 200 Spherical 10µg/mL B16 [202]

Fluorouracil AuNPs 16–150 Spherical ND A431 [204]

TiO2 AuNPs 148–333 Spherical ND B16F1 [208]

Bacillus
licheniformis AgNPs 20–80 Triangular 2457.5 B16F10, A431 [209]

TiO2 AgNPs 50 Nanoprism 100 B16F10,
C57BL/6J mice [122]

A. muricata AgNPs 50 Spherical ND A375 [203]

BSA AgNPs 58 Spherical 200 B16F10 [206]

ND: not determined.

4.2. Breast Cancer

Breast cancer is the first in frequency among all types of cancer. Of all breast cancer
cases, 99% occur in women (1% in men). The incidence of breast cancer cases and deaths
has been increasing in the last 20 years. It is significant and relevant, from 1.15 and 0.410
million in 2002 to 2.26 and 0.685 million in 2020, respectively [195,210]. A variety of breast
cancer treatments exist and are available at every development stage. Most patients require
a combination of two or more treatments. After diagnosis, doctors determine the stage of
cancer. They then decide on the best treatment options based on the stage and other factors,
such as age, family history, genetic mutation status, and personal medical history. Breast
cancer can be treated with surgery (mastectomy or breast-conserving surgery, i.e., lumpec-
tomy, quadrantectomy, partial mastectomy, or segmental mastectomy), radiation therapy
(high-energy X-rays), chemotherapy (docetaxel, doxorubicin, and cyclophosphamide),
hormone therapy (hormone-receptor-positive), and targeted therapy [211–213]. In this
sense, monoclonal antibodies (e.g., trastuzumab-Herceptin), antibody-drug conjugates (e.g.,
ado-trastuzumab emtansine, Kadcyla, or TDM-1), and kinase inhibitors (e.g., lapatinib and
other inhibitors) are often used in targeted therapy [214]. The management of breast cancer
in older women is highly individualized and requires collaboration across disciplines
(medical oncology, surgical oncology, and radiation oncology) [212]. In the last 20 years,
treatments have been employed as a key tool in controlling breast cancer, with a 65–80%
sensitivity and specificity [213]. Therapies are not sufficiently developed as they have
certain limitations. The most common is their non-specificity between normal and cancer
cells, resulting in inevitable side effects and poor effects at the III and IV cancer stages [211].
Treatments for early-stage breast cancer may not be effective for advanced-stage breast
cancer. If breast cancer is detected and the therapy applied when the tumor is confined
to the breast, remission can reach nearly 100%. Unfortunately, small breast tumors are
rarely detected by a physical examination in the early stages. Sometimes, they may not
be observed in a mammography analysis, particularly in young women and women with
dense breast tissue [212,215,216].
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Au and AgNPs have shown a very interesting potential for breast cancer therapy
and drug delivery in both in vitro and in vivo systems. Several MNPs obtained by green
bioprocesses have been evaluated for potential application against breast cancer. The MCF7
and MDA-MD-231 in vitro models are commonly used for breast cancer cytotoxicity evalu-
ation, with the MTT assay being the preferential cytotoxicity and viability test (see Table 6).
Plant extracts are mainly used to obtain Au and AgNPs by the biological green route for
breast antitumor activities. Most of the MNPs obtained are spherical with diameters below
100 nm. The cytotoxicity displayed by these NPs is significantly higher for breast cancer
cells than healthy cells. However, the molecular mechanisms involved in the biogenic Au
and AgNP-induced cytotoxicity against breast cancer cells are not fully understood; some
studies proposed ROS generation and apoptosis [217]. Although the data obtained from
in vitro models are promising, further in vivo investigations are required to demonstrate
the reliability and efficacy of these NPs in animal models.

Table 6. Evaluation of green biogenic Au and AgNPs in breast cancer cells; biological source, NPs characteristics, IC50, and
cell line.

Biological Source Type of NP Size (nm) Shape IC50 (µg/mL) Cell Line Reference

Actinobacterial-SF23 AgNPs 3–36 Spherical 16.30 MCF7 [218]

Buchanania axillaris AgNPs 17–80 Spherical 31.20 MCF7 [219]

Black Tea mistry AgNPs 9–15 Spherical 30 MCF7 [220]

Oscillatoria limnetica AgNPs 3–17 Spherical 6.14 MCF7 [221]

Dunaliella salina AuNPs ~22 Spherical 98 MCF7 [222]

Fagonia indica AgNPs 10–60 Spherical 12.35 MCFT [223]

Linum usitatissimum AuNPs ~31 Triangular 5 MCF7 [224]

Chitosan-functionalized AgNPs 13–22 Spherical 6.40
6.56

MCF7
MDA-MB-231 [225]

Polysiphonia algae AgNPs 5–25 Spherical 4.19 MCF7 [226]

Cynara scolymus AgNPs 98 Spherical 10 MDA-MB-231 [227]

Syzygium jambolanum AgNPs 20–25 Spherical ND MCF7 [228]

Tamarindus indica AgNPs 20–52 Spherical 20 MCF7 [229]

Commiphora wightii AuNPs ~28 Spherical 66.11 MCF7 [230]

Sargassum ilicifolium AuNPs 20–25 Spherical 24 MDA-MB-231 [231]

Mentha longifolia AuNPs ~36 Spherical 274 MCF7 [232]

Acacia luciana AgNPs 50 Spherical 4.37 MCF7 [233]

Garcinia atroviridis AgNPs 5–30 Spherical 2.00 MCF7 [234]

Allium saticum AgNPs 20–35 Spherical 89.86 MCF7 [235]

Cladosporium sp AuNPs 5–10 Spherical 38.23 MCF7 [236]

Curcuma mangga AuNPs ~28 Spherical 0.41 MCF7 [237]

Dragon fruit AuNPs 10–20 Spherical ND MCF7
MDA-MB-231 [238]

ND: not determined.

4.3. Lung Cancer

Lung cancer is the most commonly diagnosed cancer. The incidence of lung cancer
cases and deaths has been increasing significantly in the last 20 years, from 1.35 and 1.179
million in 2002 to 2.2 and 1.8 million in 2020, respectively [239]. Tobacco smoking is rec-
ognized as the major cause of lung cancer. Other known risk factors include idiopathic
pulmonary fibrosis, chronic obstructive pulmonary disease (COPD), personal or family
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history of lung cancer, and the exposure to several occupational and environmental carcino-
gens, such as arsenic, radon, asbestos, and polycyclic aromatic hydrocarbons (PAHs) [240].
Current lung cancer treatment modalities include surgical resection, chemotherapy, ra-
diation, and immunotherapy [241]. Several Ag and AuNPs have been synthesized via
green biological approaches, seeking a potential application against lung cancer (Table 7).
Aqueous leaf extracts have been mostly used for NPs synthesis. However, other plant
materials, such as bark, pericarp, stem, needle, root, peel, flower, seed, and gum have
also been used. Moreover, microalgae and bacteria have been useful for this purpose.
Formed NPs are mostly spherical-shaped and exhibit cytotoxic effects with IC50 values
<100 µg/mL. Interestingly, some of them were cytotoxic at low micromolar concentrations.
The most commonly used in vitro model is the human lung epithelial carcinoma cell line
A549. Many reports suggest that biosynthesized NPs exert their cytotoxic effects on lung
cancer cells through apoptosis induction. For example, treatment of A549 cells with AuNPs
synthesized using a Rabdosia rubescens aqueous leaf extract increased the proapoptotic
Beclin-1, Bid, Bax, and caspase expression level 3 proteins, as well as caspase 3 and caspase
9 activity, whereas it decreased the expression of Bcl-2 protein. Moreover, DNA laddering
was also observed [242]. On the other hand, AgNPs synthesized from Pinus roxburghii
needle butanol fraction increased ROS levels, mitochondrial depolarization, nuclear con-
densation, DNA fragmentation, caspase 3 activation, and PARP-1 cleavage on A549 cells as
reported by Kumari et al. [243]. Similarly, AgNPs synthesized from Pleuropterus multiflorus
aqueous root extract induced DNA damage and activated caspase 3, p53, p38, and ERK
expression on lung cancer cells [244].

Table 7. Evaluation of green biogenic Au and AgNPs in lung cancer cells (A549 cell line); biological source, NPs characteris-
tics, and IC50.

Biological Source Type of NP Size (nm) Shape IC50 (µg/mL) Cell Line Reference

Rabdosia rubescens AuNPs 130 Spherical 25 A549 [242]

Millettia pinnata AuNPs 37 Spherical 14.76 A549 [245]

Pinus roxburghii AgNPs 80 Spherical 11.28 A549 [243]

Pleuropterus multiflorus AgNPs
AuNPs

~275
~105 Spherical 35.16 A549 [244]

Matricaria chamomilla AgNPs ~45 Spherical 62.82 A549 [246]

Carpesium cernuum AgNPs 13 Spherical ND A549 [105]

Marsdenia tenacissima AuNPs 50 Spherical 15 A549 [247]

Beta vulgaris AgNPs 5–20 Spherical 48.20 A549 [248]

Garcinia mangostana AgNPs
AuNPs

13–31
15–44

Asymmetric
dumbbell
Spherical

ND A549 [249]

Cratoxylum formosum Mucuna
birdwoodiana AgNPs ~9

~35 Spherical ND A549 [249]

Musa paradisiaca AuNPs 50 Spherical to
triangular 58 A549 [250]

Dendropanax morbifera AgNPs
AuNPs

100–150
10–20

Polygonal
Hexagonal ND A549 [251]

Cymbopogon citratus AgNPs 17–26 Spherical 25 A549 [252]

Indigofera tinctoria AgNPs
AuNPs ~19 Spherical 56.62

59.33 A549 [253]

Coptis chinensis AgNPs 6–45 Spherical 15 A549 [254]

Magnolia officinalis AuNPs 128 Spherical ~18 A549 [255]
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Table 7. Cont.

Biological Source Type of NP Size (nm) Shape IC50 (µg/mL) Cell Line Reference

Garlic,
Green tea, Turmeric AgNPs 8 Spherical

13.26
17.25
11.11

A549 [256]

Rosa damascena AuNPs 8–45 Spherical to
triangular ND A549 [257]

Nannochloropsis sp. AgNPs ~57 Spherical 15 A549 [258]

Borago officinalis AgNPs 30–80 Spherical
Hexagonal ~7 A549 [259]

Moringa oleifera AuNPs 10–20 Spherical 98.46 A549 [260]

Euphrasia officinalis AgNPs
AuNPs

~40
~50

Quasi-
spherical

~2
ND A549 [261]

Curcumae kwangsiensis AgNPs 15–21 Spherical
249
187
152

HLC-1
LC-2/ad

PC-14
[262]

Escherichia coli VM1 AgNPs 10–15 Spherical 40 A549 [263]

ND: Not determined.

4.4. Prostate Cancer

Prostate cancer (PCa) is a gender-specific global disease. It is the most frequently
diagnosed type of cancer and the second cause of cancer deaths (7.1%) among males.
According to the GLOBOCAN statistics, around 1.414 million of new cases and 0.375
million of deaths were attributed to PCa in 2020 [195]. PCa mortality is related to many
factors, including poor early diagnosis, resistance to the treatment, and development of
androgen receptor mutations [264], which is the main molecule used in the fight against PCa.
The most widely used approach to treat PCa is based on reducing the level of androgens. It
promotes the exacerbated growth of prostate cancer cells when it is over-activated. This
therapy involves i) either the partial or total removal of the prostate [265]; ii) chemotherapy
including the use of hormonal or non-hormonal drugs [266] for the androgen deprivation
therapy (ADT), for example, docetaxel (Taxotere), cabazitaxel (Jevtana), and mitoxantrone
(Novantrone) [267]; or iii) immunotherapy with Sipuleucel-T, a new dendritic cell vaccine
designed to enhance the immune system of PCa patients [268,269]. All of these modalities
can be used alone or in combinations and their success depend on factors, such as age,
stage, and cancer progression. Cancer cells usually do not respond to ADT, becoming
resistant and growing even without androgen stimuli.

At present, there is no effective therapy for PCa. Nanotechnology arises as an alterna-
tive to develop and use NMs as carriers or therapeutic agents with enhanced properties
for a safety and effective treatment [270]. There are NMs composed of gold, silver, iron,
zinc, or titanium containing agents with diverse compositions and therapeutic capacities
e.g., natural compounds from plants [261], hydrolyzed peptides from proteins [262], and
bacteria supernatants [263]. In recent years, these NMs have been improved by the use of
green synthesis technology [259,260]. Green biogenic Au and AgNPs are highly versatile
agents against PCa. These NPs present cytotoxic effects against human prostatic carcinoma
cells, such as PC-3, LNCaP, and DU-145, cell lines used as PCa in vitro models. Death
mechanisms triggered by NPs mainly depend on their bioactivity. In some cases, cellular
responses improve ROS generation and promote cell death through apoptosis, activating
caspase-3 and PARP-1 [243].

El Raey et al. [271] reported that AgNPs, synthesized using an extract from Acalypha
Wilkesiana flowers, are cytotoxic to PC-3 cells. This study suggested that the presence
of biapigenin derivatives, such as amentoflavone and cupressuflavone, which display a
unique binding docking score towards the active site of the human DNA topoisomerase
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enzyme, cause DNA damage and cell death via apoptosis. Moreover, AgNPs synthesized
using the Dimocarpus Longan Lou peel aqueous extract showed cytotoxicity against PC-3
through apoptosis by decreasing stat 3, bcl-2, and survival and by increasing caspase-3.
Table 8 summarizes some Au and AgNPs generated by the biological green route and the
cytotoxic effect against PC-3, LNCaP, and DU-145 prostate cancer cells.

Table 8. Evaluation of green biogenic MNPs in prostate cancer cells; biological source, NPs characteristics, IC50, and in vitro models.

Biological Source Type of NP Size (nm) Shape IC50 µg/mL Cell Line Reference

Cyclopia intermedia AuNPs 20 Spherical and
triangular ND PC-3 [272]

Acai berry AuNPs 172 Spherical and
triangular 1000 PC-3 [273]

Casein hydrolytic peptide AuNPs ~20 Hexagonal ND DU-145 [274]

Doxorubicin AuNPs ~75 Spherical ND LN-CaP [275]

Piper Nigrum AgNPs 15-38 Spherical ND PC3 [276]

Salvia miltiorrhiza AgNPs 100
Spherical, oval,
hexagonal, and

triangular
ND LNCaP [277]

Piperlongum AgNPs 5–35 Quasi-spherical 73.41
38.53

PC-3
DU-145 [278]

Salacia chinensis AgNPs 40–80
Rods,

triangular and
hexagonal

7.46 PC-3 [279]

Saraca asoca AgNPs 36 Spherical 50.00 DU-145 [280]

Cornus officinal AgNPs ~12 Quasi-spherical 25.54 PC-3 [281]

Eclipta prostrata AgNPs 50–75 Spherical 9.84 PC-3 [282]

Moringa oleifera AgNPs 44–60 Spherical 25.21 PC-3 [282]

Thespesia populnea AgNPs 47–97 Spherical 31.21 PC-3 [282]

Guiera senegalensis AgNPs 50 Spherical 23.48 PC-3 [283]

Pestalotiopsis microspora AgNPs 2–10 Spherical 27.71 PC-3 [284]

Dimocarpus Longan Lour AgNPs 9–32 Spherical <10.00 PC-3 [285]

Plumbago zeylanica AgNPs 80–98 Spherical and
cuboid 58.61 PC-3 [286]

Semecarpus anacardium AgNPs 60–95 Spherical and
cuboid 42.77 PC-3 [286]

Terminalia arjuna AgNPs 34–70 Spherical and
cuboid 41.78 PC-3 [286]

Gracilaria edulis AgNPs 55–99 Spherical 39.60 PC-3 [287]

Alternanthera sessilis AgNPs 30–50 Spherical 6.85 PC-3 [288]

Cell-free supernatant of
actinobacteria FeNPs 65–87 Spherical 65 PC-3 [289]

Rhus punjabensis FeNPs ~48 Spherical 12.79 DU-145 [290]

Leucaena leucocephala ZnNPs 50–200 spherical 103.72 PC-3 [291]

Cinnamomum tamala TiNPs 23 Irregular ND DU-145 [292]

ND: not determined.
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4.5. Colorectal Cancer

Among all types of cancer, colorectal cancer is the third most common worldwide.
It is found at around 49% in women and 51% in men. The incidence of colorectal cancer
cases and deaths has been increasing in the last 20 years, from 1.02 and 0.529 million in
2002 to 1.89 and 0.91 million in 2020, respectively [195,210]. Colorectal cancer treatment
depends on several factors. These include the size and location of tumors, cancer stage,
whether the cancer is recurrent, and the patient’s overall health. Treatment options include
(i) chemotherapy, destroying cancer cells throughout the body using 5-FU, Capecitabine
(Xeloda), Irinotecan (Camptosar), Oxaliplatin (Eloxatin), Trifluridine, or Tipiracil (Lonsurf);
(ii) targeted therapy using Bevacizumab (Avastin), Cetuximab (Erbitux), or Panitumumab
(Vectibix); (iii) immunotherapy through Pembrolizumab (Keytruda), Nivolumab (Opdivo);
(iv) radiation therapy; and (v) surgery [293]. In general, chemotherapy and radiation
therapy are more severe than targeted therapy, which enhances the selectivity of the
treatment by targeting specific cells. Immunotherapy helps the body to use its immune
system to detect and eliminate cancerous cells; people with advanced colorectal cancer are
suitable candidates for this adjuvant therapy. Radiation therapy uses high-energy radiation
beams to destroy cancer cells and prevent them from multiplying. It can have long- and
short-term adverse effects. Ablation approaches involve the use of light, microwaves,
radiofrequency, or cryosurgery to destroy a tumor without removing it [294].

The use of MNPs obtained by green biosynthesis may be very useful for solving the
limitations of conventional therapies. Several Ag and AuNPs have been biosynthesized
and evaluated for their potential application against colorectal cancer (Table 9). The
HT29 and HTC116 cell lines are the most commonly used in vitro models for NP toxicity
evaluation. Au and AgNPs have shown tumor-suppressive effects followed by DNA
damage, mitochondrial dysfunction, cell-cycle arrest, and aberrant regulation of p53 effector
proteins, which induce apoptosis in a dose-dependent manner [102]. Aqueous plant
extracts, algae, and bacterial lysates have been used to synthesize Au and AgNPs (see
Table 9 examples). The obtained NPs have sizes ranging from 1 to 100 nm, with an average
size of 34 nm. MTT is the most widely employed assay to evaluate the toxicity induced by
Au and AgNPs and thus viability of colorectal cancer cells [295,296]. ROS determination,
protein expression profile, caspase activity, DNA analysis [297–299], and Annexin V [300]
are other common assays.

Table 9. Evaluation of green biogenic Au and AgNPs in colorectal cancer; biological source, NPs characteristics, IC50, and
in vitro models.

Biological Source Type of NP Size (nm) Shape IC50 (µg/mL) Cell Line Reference

Zingiber officinale AgNPs 42–61 Spherical 150.80 HT29 [295]

Albizia lebbeck AuNPs 20–30 Spherical 48 HCT-116 [297]

Pleurotus sajor-caju AgNPs
AuNPs

16–18
4–22 Spherical 50

80 HCT-116 [298]

Trichosanthes kirilowii AuNPs 50 Spherical ND HCT-116 [301]

Aspergillus niger AgNPs 20–25 Spherical 160 HT-29 [302]

Anthemis atropatana AgNPs 38.89 Spherical 4.88 HT29 [303]

Chaetomorpha linum AgNPs 35 Spherical 48.84 HCT-116 [304]

Bergenia ciliata AgNPs 50–100 Spherical ND HT29 [305]

Albizia lebbeck AuNPs 20–30 Spherical 48 HCT116 [297]

Abutilon indicum AuNPs 1–20 Spherical 210 HT-29 [306]

Nostoc sp. AgNPs 14.9 Spherical 150 Caco2 [307]

Annona muricata AgNPs 16–20 Spherical ND HCT116 [203]

Mentha arvensis AgNPs 12–40 Spherical
triangular 1.7 HCT116 [300]
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Table 9. Cont.

Biological Source Type of NP Size (nm) Shape IC50 (µg/mL) Cell Line Reference

Perilla frutescens AgNPs ~26
Spherical
rhombic
triangle

39.28 Colo205 [308]

Ulva lactuca L. AuNPs 6–20 Spherical 98.46 HT29
Caco-2 [260]

Curcuma longa Zingiber officinale AgNPs 20–51 Quasi-
spherical 150.80 HT29 [295]

Artemisa tournefortiana AgNPs 22 Spherical 40.71 HT29 [309]

Wedelia trilobata AuNPs 10–50 Spherical ND HCT15 [310]

ND: not determined.

4.6. Cervical Cancer

In 2002, 493,243 cases and 273,505 deaths caused by cervical cancer were reported.
Worldwide, 604,000 new cases were detected and ~341,800 deaths of cervical cancer were
recorded in 2020. Therefore, after breast, lung, and colorectal cancer, it is the fourth
most common cause of death by cancer in women (7.7%) [195]. Sexually transmitted
infection with Human Papilloma Virus (HPV) is a necessary but not sufficient cause for the
development of cervical cancer. The variants HPV16 and HPV18 count globally for ~70%
of all novel cases. Other risk factors include reproduction, long-term use of contraceptives,
smoking, and obesity [311]. The standard treatments to cure cervical cancer are surgery and
radio- and chemotherapy; the latter are frequently applied post-operatively as adjuvant
therapies. Nevertheless, as those therapies are not specific to malignant cells, they affect
healthy cells and cause adverse side effects.

Nowadays, this is the field where nanomedicine may contribute to the design of more
effective protocols [311]. Until now, apart from composite nanovesicles, MNPs such as Ag
and AuNPs have mainly been studied. Additionally, by being small enough (1–100 nm)
to enter cells or cross biological barriers, NPs have high surface areas (~60 m2/cm3) that
can be activated with specific components to selectively reach tumor cells [311]. In many
human cancer cells, the folate receptor is overexpressed. Hence, much effort has been
spent on developing nanomedicines using folate as a ligand [312]. A globally spread drug
delivery system consists of using composite nanovesicles or nanopolymers that encapsulate
approved cytotoxic agents such as cisplatin, carboplatin, paclitaxel, methotrexate, or topote-
can and are decorated with folate for an active drug release. Their usefulness has been
proven in several in vitro and in vivo studies. For instance, HeLa (cervix adenocarcinoma
cells) internalized ~35% more nanopolymers functionalized with folate compared to those
without the ligand [313]. This explains why nanopolymers containing either CBP (carbo-
platin)/PTX (paclitaxel) or DOX (doxorubicin) and folate as ligand significantly reduced
the viability of HeLa cells by 70–77% compared to those without folate, which reduced their
viability in about 53–55%. However, even without folate, nanopolymers are more effective
than the corresponding free drug that reduced HeLa viability by 30–31% [313,314]. Similar
results were observed in vivo using a mouse xenograft model with a HeLa-induced tumor.
After 24 h, only ~3 µg/g tissue of the free drug reached the tumor. The delivery increased
to ~8–9 and 10.5–12.5 µg/g tissue by using the bare and functionalized nanopolymers,
respectively [313]. Moreover, while free cytotoxic agents cause adverse effects to other
(healthy) internal organs, these side effects were significantly reduced when the cytotoxic
agents were carried by the nanopolymers [313,314]. Nevertheless, in many chemotherapies,
only a single therapeutic agent is used to eradicate cancer cells. The high tissue and genetic
heterogeneity of cancer patients make this single-drug strategy ineffective. Hence, to
enhance the anticancer treatment’s efficacy, different therapeutic agents may be combined.
Pre-clinical and clinical studies still require more research to optimize this approach [315].
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A promising alternative is the use of green biosynthesized NPs, e.g., nanoparticles coated
with herbal extracts. Plant extracts are preferred over bacterial metabolites, which require
additional purification to avoid bacterial contamination or proinflammatory reactions due
to residual components. Gold and silver compounds are widely used to synthesize NPs
because they are chemically inert and nontoxic [316]. Moreover, they have advantageous bi-
ological properties such as antibacterial, anti-inflammatory, and antioxidative effects [317].
Until now, the use of green biogenic Au and AgNPs against cervical uterine cancer has
only been evaluated in vitro using mainly HeLa cells. These reports are summarized in
Table 10. The cytotoxic, or at least the cytostatic, effect of NPs is typically measured in vitro
in a range from 1 to 100 µg/mL. A proposed NPs cytotoxic mechanism consist of necrosis
or apoptosis induced by ROS, and the activation of caspase cascades. Surprisingly, many
studies lack an important control: the effect of the respective plant extract in the absence
of NPs to determine a synergistic effect of green biosynthesized NPs vs. plant extract or
naked nanoparticles.

Table 10. Evaluation of green biogenic Au and AgNPs in HeLa and SiHa cells of cervix adenocarcinoma; biological source,
NPs characteristics, and IC50.

Source of Nanoparticles Type of NP Size
[nm] Shape IC50 (µg/mL) Cell Lines Authors

Allium saralicum AgNPs 20–40 Spherical >1000 HeLa [318]

Lycopene AgNPs 50–100 Spherical ND HeLa [296]

Mangifera indica AgNPs 9–61 ~400 HeLa [319]

Nepeta deflersiana AgNPs 33 Spherical ~3.9 HeLa [320]

Punica granatum AgNPs 41–69 Spherical ND HeLa [321]

Styrax benzoin AgNPs 12–38 Spherical ND HeLa [322]

Ziziphus jujube
+ graphene oxide AgNPs 26

7 Spherical ND HeLa [323]

Curcumine derivative (ST06) AgNPs 50–100 Spherical 1 µM HeLa [189]

Ginkgo biloba AgNPs 40 Spherical 4 (HeLa)
6 (SiHa)

HeLa
SiHa [324]

Leucas aspera AgNPs 35–54 Spherical 36 HeLa [325]

Taxus baccata AgNPs 75–91 Spherical 10 µg/mL HeLa [326]

Alternanthera sessilis AuNPs 30–50 Spherical >5 µg/mL HeLa [327]

Benincasa hispida AuNPs 22 Spherical 2.3 µg/mL HeLa [328]

Catharanthus roseus AuNPs 25–35 Spherical 5 µg/mL HeLa [329]

Celastrus hindsii AuNPs 13–53 Spherical 12.5 HeLa [330]

Zataria multiflora AuNPs 42 Spherical ND HeLa [331]

ND: not determined.

4.7. Leukemia

Leukemia includes cancers characterized by disorders of malignant bone marrow cells
that promote replacement with immature and undifferentiated abnormal hematopoietic
cells so that they do not remove necessary cells, such as red blood cells, healthy platelets,
and mature white blood cells (leukocytes), etc. [332]. Four main subtypes of leukemia
are known: chronic lymphoid leukemia (CLL), chronic myeloid leukemia (CML), acute
lymphoid leukemia (ALL), and acute myeloid leukemia (AML). AML and CLL are rare in
children, while ALL is predominant in them. AML is common in people of all ages but is
more common in adults. These subtypes represent different diseases, which vary in prog-
nostic etiology, frequency of genetic abnormalities, and tolerance to chemotherapy [333].
In 2002, the number of cases was 300,522, and there were 222,142 of deaths [208]. Globally,
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in 2020, leukemia was classified as the fifteenth most frequently diagnosed cancer, with
474,519 cases and 311,594 deaths, constituting the eleventh cause of death from malignant
disorders [193].

Resistance to chemotherapy and targeted therapies is a major problem in current
leukemia treatment [334]. Therefore, nanotechnology has become one of the focal points
of the modern medical research that looks for improving the performance of cancer treat-
ment [335]. Research focused on leukemia therapies using green biogenic MNPs has
reported that these new nanosystems could support leukemia therapy and diagnosis [324].
Leukemia cells are not initially reflected as a solid tumor, which could be of greater rel-
evance in understanding this pathology, highlighting the potential protection of healthy
cells [336]. NPs have provided innovative non-invasive and straightforward platforms
to diagnose and treat liquid tumors. In this sense, the protection of healthy cells by the
antioxidant and antitumoral properties of the MNPs generated by biological synthesis
is crucial for leukemia therapy. In addition, functionalized delivery systems could pos-
itively impact cases with drug resistance [334,337–340]. MNPs inhibit cell proliferation
and clonogenesis, induce apoptosis, and may cause cell cycle arrest, mechanisms that
significantly reduce the IC50 values of conventional drugs. Some reports mention side
effects, possibly due to ROS-dependent up-regulation of leukemic cells. These biogenic
NPs aim to reduce systemic toxicity by protecting healthy cells due to their antioxidant
and antitumoral properties [334,335,341]. Table 11 shows some in vitro studies of Au and
AgNPs developed to improve the treatment of leukemia.

Table 11. Evaluation of green biogenic Au and AgNPs in leukemia cells; biological source, NPs characteristics, IC50, and
in vitro models.

Biological Source Type of NP Size (nm) Shape IC50 (µg/mL) Cell Line Reference

Glycyrrhiza glabra L.
Extract AgNPs 20 Spherical

604
467
445
438

J45.01,
J.Clone E6–1,

J.CaM1.6,
J.RT3-T3.5

[342]

Sargassum muticum water Extract AuNPs 10 Spherical

4.22
5.71
6.55
7.29

K562,
HL-60, Jurkat,

CEM
[343]

Hibiscus sabdariffa
Extract AuNPs 15–45 Spherical

761
803
882

C1498, Human
HL,

32D-FLT3-ITD
[344]

Thymus vulgaris AuNPs 10–30 Spherical 397
C1498, Human

HL,
32D-FLT3-ITD

[345]

Camellia sinensis
Tea PdNPs 6–18 Spherical ND MOLT-4 [346]

Achillea millefolium AgNPs ~22 Spherical 0.011 MOLT-4 [347]

Archaeoglobus fulgidus
chimeric ferritin AgNPs 4.5 Spherical ND NB4 [348]

Verbena officinalis Extract Au/CuO/
ZnONPs 35 Spherical 0.64 µmol Jurkat [349]

Glechoma hederacea L.
Extract

Au/CuO/
ZnONPs 10 Spherical ND Jurkat [350]

Cyanobacterial strains
Leptolyngbya tenuis,

Coleofasciculus chthonoplastes, and
Nostoc ellipsosporum

AuNPs 8–42 Spherical 150 MOLT-4
T-ALL [351]

ND: not determined.
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5. Discussion

In recent years, the development of greener methods to synthesize AuNPs and AgNPs
has shown significant scientific and technological success. It is an area of great interest
and presents excellent growth potential. Green biosynthesis is currently carried out using
extracts of natural products, such as plant leaves, fruits, peels, derived products and waste,
or microorganisms. These natural sources and procedures provide several advantages over
classical chemical and physical methods since they are environmentally friendly and cost
effective. Several AgNPs and AuNPs have been biosynthesized and evaluated due to their
potential application against cancer. They stand out as ideal nanosystems for addressing
current and forthcoming issues in cancer treatment. The robustness of gold and silver as
building blocks to engineer novel functional biomaterials for applications in medicine is
due to their excellent bacteriostatic anticorrosive and antioxidative properties. Significant
advances in preparing these smart nanodevices have been made by either chemical or
biological approaches. Over recent years, green methods to synthesize MNPs for cancer
therapy have largely evolved because of their facile handling in the laboratory. The starting
materials are relatively more affordable than those required in chemical synthesis. In
addition, from an environmental point of view, the preparation of MNPs mediated by
biological intermediates has a positive impact since it makes possible the use of water-
based, rather than solvent-based, systems, which generate huge amounts of toxic waste
each year.

Ag and AuNPs are particularly appealing due to their tunable surface chemistry, which
allows the conjugation of a plethora of functional groups for specific tasks. Herein, we have
shown that thiol linkers can be used to attach a wide range of ligands to MNPs. Therefore,
the selection of a proper molecule (e.g., a small-organic compound), macromolecule (e.g.,
oligomers or polymers), or even therapeutic agents, DNA, amino acid, protein, peptide, or
oligonucleotides may be used to decorate the surface of MNPs. Thus, NP functionalization
and bioconjugation increase treatment efficacy, limiting off-target toxicity. In addition, by
selecting a suitable ligand, it is possible to design stimuli-responsive nanodevices that,
once accumulated in the tumor site, can be activated either intrinsically or extrinsically.
For instance, extracellular pH in tumors is slightly more acidic than normal cells. Indeed,
this difference in the TME is exploited to design effective pH-responsive MNPs, which can
provide significant usefulness in the controlled release of bioactive cargoes.

However, given that the starting biological material is complex in nature, the formed
MNPs are not always fully characterized. In addition, it is difficult to discern between
the damage triggered by the biological molecules or MNPs. In this sense, batch-to-batch
reproducibility may also be compromised. Indeed, biosynthesized green MNPs have
tried to find a place in the field of cancer therapy. They have been extensively evaluated
in different cancer cell lines grown as monolayers. Although these evaluations have
made it possible to determine the cytotoxicity induced by MNPs and determine some
underlying mechanisms, these findings are not easily extrapolated to a whole organism.
Three-dimensional cancer models offer a higher level of complexity, so they could be more
accurate in decreasing the gap between conventional culture studies and in vivo responses.
Surprisingly, they have been scarcely used to evaluate biogenic MNPs, and only a few green
MNPs have been examined for their antitumor activity in vivo. Although it is desirable
that research moves to in vivo models to extend in vitro findings, it is also predictable that
this transition will face novel challenges, such as biosafety, biocompatibility, physiological
effects, stability, biodistribution, circulation time, and specificity of biosynthesized MNPs.

Despite all the therapies developed for cancer therapy, it continues to be an incurable
disease and increases over time. Currently, a targeted therapy using MNPs is an excellent
opportunity to effectively treat cancer since NPs have shown enormous potential in different
cancer types such as all those presented in this review. Nevertheless, more studies must
be carried out. It is very important to encourage collaborative work to better elucidate the
properties and potential application of green biosynthesized NPs in cancer therapy. This
requires enthusiastic chemists, biologists, pharmacists, physicians, and physicists to understand
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the in vitro and in vivo mechanism of action of AgNPs and AuNPs. Such efforts will surely
enhance the safe consumption of NPs in the pharmaceutical industry to design, evaluate, and
make contributions for customized nanotherapeutic medicines. AuNPs and AgNPs obtained
by green synthesis are not extensively used in drug delivery. It could be interesting to accelerate
this research to eliminate concerns in terms of their toxicity, stability, behavior, absorption,
distribution, metabolism, and excretion. In addition, long-term studies of AgNPs and AuNPs
in vivo are necessary to evaluate toxicity and performance.

6. Conclusions

The use of MNPs as drug delivery systems is particularly attractive for both the
development of new strategies and the optimization of existing treatments against cancer.
The green biosynthesis of AuNPs and AgNPs can be a good option to provide NPs with
defined sizes, optimal morphologies, and good stability. However, the use of plant extracts
to decorate the core of MNPs has been little studied. The undefined mixture of compounds
in the natural extracts may be an obstacle to the functionalization of MNPs. The presence
of various functional groups can hinder the selectivity and interaction of the MNPs with
a cellular receptor. It is important to identify the main active principle of the herbal
extract, which provides a way to detect the chemical interaction between functional groups,
both with the MNP core itself and with the target. In addition, green nanoparticles can
be used to combine different anticancer techniques, e.g., magnetic hyperthermia when
made of superparamagnetic iron oxide NPs, PTT when AuNPs are used, and PDT or gene
silencing by siRNA delivery. Moreover, green nanoparticles cannot only be used for therapy
purposes but also for diagnostics (theragnostics), for instance, by doping the inner core with
gadolinium, iron oxide, or manganese acting as MRI contrast agents. Although there are
many studies on the action of MNPs against the biological systems, most of them have been
carried out in vitro, where only effects such as necrosis, apoptosis, or ROS generation have
been studied, but deep knowledge on pharmacokinetics, metabolism, accumulation, and
distribution in different parts of the organism is still lacking. AgNPs and AuNPs combined
with antineoplastic drugs have demonstrated their potential pharmacological effect; thus, it
is important to highlight the necessity of further studies using 3D cell cultures and ex-vivo
and in vivo models to explore the complex multicellular TME, providing essential and
integrative information required for advanced cancer therapy.
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Abbreviations

ACh: Acetylcholine; ADT: Androgen Deprivation Therapy; ALL: Acute Lymphoid Leukemia;
AML: Acute Myeloid Leukemia; AgNPs: silver nanoparticles; AuNPs: gold nanoparticles; AuNR:
gold nanorods; Au@MNPs: Magnetic AuNPs; Calcein-AM: Calcein-Acetoxymethyl ester; CDX: Cell-
line-Derived Xenografts; CLL: Chronic Lymphoid Leukemia; CML: Chronic Myeloid Leukemia; CS:
Chitosan; CLSM; Confocal Laser Scanning Microscopy; COPD: Chronic Obstructive Pulmonary Dis-
ease; DA: Diazirine; DBB: 1,2-dibenzoylbenzene; DCFH-DA: 2′,7′-Dichlorodihydrofluorescein diac-
etate; DCF: 2′,7′-dichlorofluorescein; DNA: Deoxyribonucleic Acid; DPBF: 1,3-diphenylisobenzofuran;
DMSO: dimethylsulfoxide; MTS: 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo
phenyl)-2H-tetrazolium, inner salt; DOX·HCl: Doxorubicin hydrochloride; ECM: Extracelular Ma-
trix; eNOS: Endothelial Nitric Oxide Synthase; EthD-1: Ethidium homodimer-1; FDA: Fluorescein
Diacetate; GEMMs: Genetically Engineered Mouse Models; GR: Graphene; HEG: Hexa(Ethylene
Glycol); HPV: Human Papilloma virus. IC50: Is the concentration of a drug that gives half-maximal
response; ICG: Indocyanine green dye; ICP-MS: inductively coupled plasma mass spectrometry;
IONPs: Iron Oxide Nanoparticles; ISC: International Organization for Standardization; JC-1: 5,5′,
6,6′-tetrachloro-1,1′, 3,3′-tetraethylbenzimidazolyl-carbocyanine iodide; LCST: Lower Critical So-
lution Temperature; LDH: Lactate Dehydrogenase; MNPs: Metal Based Nanoparticles; MMP: Mi-
tochondrial Membrane Potential; MRI: Magnetic Resonance Imaging; mRNA: Messenger RNA;
MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NADH: Nicotamide Adenine
Dinucleotide; NADPH: Nicotinamide adenine dinucleotide phosphate; NIR: Near-Infrared; NM:
Nanomaterials; NMS: Nanostructured Materials; NPs: Nanoparticles; NRU: neutral red uptake; NVs:
Nanovesicles; OL: Oleylamine; ONB: 2-nitrobenzyl group; PAA: Poly(acrylic acid); PAOx: poly(2-
alkyl-2-oxazoline); PCa: Prostate cancer; PEG: Polyethylene Glycol; PDT: photodynamic therapy;
PDXs: Patient-Derived Xenografts; PI: propidium iodide; PMMA: Poly(methyl methacrylate); PNI-
PAM: Poly(N-alkyl-acrylamide); PNVCL: Poly(N-vinyl caprolactam); PS: phosphatidylserine; PTT:
Photothermal Therapy; PVP: Poly(4-vinyl pyridine); qPCR: quantitative PCR; ROS: Reactive Oxy-
gen Species; RT-PCR: Reverse Transcription-Polymerase Chain Reaction; si-RNA; small interfering
RNA; SEM: Scanning Electron Microscopy; SG-GNPs: Siberian ginseng; SNP: Sodium Nitroprus-
side; SPR: Surface Plasmon Resonance; S1: Fase 1 of cellualr cycle; TB: Trypan Blue; TME: Tumor
Microenvironment; UV: Ultraviolet; WST: water soluble tetrazolium; WST-8 or CCK-8: tetrazolium-8-
[2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H- tetrazolium] monosodium
salt; 0D: Zero-Dimensional; 1D: One-Dimensional; 2D: Two-Dimensional; 3D: Three-Dimensional;
4-MBA: 4-mercaptobenzonic acid; 5-ALA: 5-aminolevulinic acid; 5-FU: Fluorouracil.
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