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Clustering and graph mining 
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For many years, a major question in cancer genomics has been the identification of those variations 
that can have a functional role in cancer, and distinguish from the majority of genomic changes 
that have no functional consequences. This is particularly challenging when considering complex 
chromosomal rearrangements, often composed of multiple DNA breaks, resulting in difficulties in 
classifying and interpreting them functionally. Despite recent efforts towards classifying structural 
variants (SVs), more robust statistical frames are needed to better classify these variants and isolate 
those that derive from specific molecular mechanisms. We present a new statistical approach to 
analyze SVs patterns from 2392 tumor samples from the Pan‑Cancer Analysis of Whole Genomes 
(PCAWG) Consortium and identify significant recurrence, which can inform relevant mechanisms 
involved in the biology of tumors. The method is based on recursive KDE clustering of 152,926 
SVs, randomization methods, graph mining techniques and statistical measures. The proposed 
methodology was able not only to identify complex patterns across different cancer types but also to 
prove them as not random occurrences. Furthermore, a new class of pattern that was not previously 
described has been identified.

Cancer is a complex disease that is normally triggered by changes (mutations) in the genome of a given cell. 
Although some cancer types are promoted by germline variants (i.e. those that we inherit from our parents), 
the vast majority of them are caused by somatic changes in the genome that occur during our life and are not 
passed onto the offspring. These somatic changes are triggered by internal cellular processes, as well as by several 
environmental and life-style factors, such as smoking, or nutrition, among others. Understanding which are 
the variants responsible for the development and progression of tumors is key to understanding and designing 
clinical protocols for the prediction or treatment of this complex disease.

For the last few years, several large initiatives have been gathering and analyzing genomic sequences of 
thousands of different tumors (see below). From these analyses, we now know that there are different types of 
somatic variants playing a role in the biology of the tumor, covering from single substitutions, to large chromo-
somal rearrangements. A particularly important class of somatic alterations related to cancer are the structural 
variants (SVs) that consist of the modification of large portions of the genome, in the form of large chromosomal 
rearrangements, which can include deletions, insertions, tandem duplications, inversions, and  translocations1. 
Furthermore, we have also learned that an important fraction of SVs are not independent and random events 
but are acquired through a “single-hit” event involving several DNA breaks, usually resulting in complex genome 
rearrangements, which are normally correlated with the aggressivity of the tumor. Although it is key to under-
stand the mechanisms behind these complex events, there is currently not a standard methodology to identify 
and classify such events, and only a few cases have been so far described.

In 2011, Stephens and co-workers described an SV pattern characterized by multiple (sometimes hundreds) 
rearrangements that occur within a restricted portion of the genome, involving normally one, but also rarely two 
 chromosomes2. In another study, Baca et al. reported another specific pattern of chromosomal rearrangements 
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in prostate tumors called Chromoplexy, which is characterized by a closed chain of translocations involving 
several  chromosomes3. Recently, the PCAWG Consortium collected whole genome sequencing data from 2392 
tumors across 36 cancer types, produced by the International Cancer Genome Consortium (ICGC) and The 
Cancer Genome Atlas (TCGA)  projects4. There, Li and co-workers described a replication-based mechanism of 
structural variation that results in varied chromosomal structures with low-level copy number gains and recur-
ring inverted  rearrangements5. Despite all these efforts to classify and characterize these complex events, a major 
fraction of the identified SVs in the PCAWG study remained “unclassified.”

In order to fulfill this gap, we developed an innovative statistical approach to be able to discriminate between 
stochastic chromosomal rearrangements, probably due to general genome  instability6, from those patterns that 
might have specific and recurrent molecular mechanisms behind them. The generation of such a workflow will 
allow the overall improvement of classification methods for the discrimination of mutations and to identify 
particular SV signatures as markers of tumor formation and progression.

Here, we applied this new statistical frame to 2392 tumor genomes from the PCAWG Consortium, includ-
ing more than 152,926 SVs. These tumor genome samples are classified into 36 different cancer types (sample 
distribution can be found in Table S1), each of them containing the information of their particular SVs. The 
SVs are encoded in Variant Call Format files (VCF files), where each SV is described as a novel adjacency of two 
breakends. These breakends appear when a chromosome is broken at a given locus (breakpoint). The adjacency 
refers to the SV junction that ties together two breakends. A schematic representation can be found in Fig. S1.

The method developed takes into account the local distribution of SVs in every sample and is optimized 
using the global distribution across the dataset, using a Kernel Density Estimation  function7,8. The aim of the 
clustering is to join the rearrangements that are likely derived from the same molecular mechanism, as they 
share some topological properties. We assessed that the clustering approach joins rearrangements not randomly 
by performing a permutation test. Then, we provided a graph mining method to analyze the SV patterns, using 
advanced high-performing technologies to reduce the computational  cost9,10. Finally, we adapted a methodol-
ogy proposed by  Wong11 to obtain the level of significance of the different patterns based on the Abundance, a 
measure that indicates the overrepresentation or underrepresentation of a pattern against a random scenario.

By overcoming currently unsolved challenges of SVs classification in cancer, our results provide insights 
towards the better identification of tumor progression markers that can be used to predict and prevent potential 
situations of bad prognosis.

Methods
Our main strategy for the identification of complex chromosomal rearrangements is summarized in Fig. 1. 
Preceded by a quality check and pre-processing of the PCAWG data, the main workflow is composed of three 
major steps: KDE clustering, graph mining, and motif finding.

Defining clusters to identify the SVs involved in complex rearrangements. The clustering 
method was developed following a mode hunting approach, a modal clustering  strategy12 where every SV is 
assigned to a cluster. It has been based on the Kernel Density Estimation (KDE)7,8, a non-parametric statistical 
method to estimate the probability density function of a random variable.

In this study, the random variable is the position of the SV, which is defined by the breakpoints. Clustering 
those breakpoints that correspond to the same single rearrangement event is crucial to later classify complex pat-
terns of SVs. We chose this clustering method because it uses a density estimation of the breakpoints as a starting 
point, which allowed us to rely both on the closeness of the breakpoints and their density. Using the Gaussian 
Kernel based on normal distribution, the only hyperparameter to be set was the before mention  bandwidth13,14. 
This value defines how the density estimation is going to be: increasing the bandwidth leads to larger (and fewer) 
clusters, whereas low values generate smaller and sparser clusters. The final size of each cluster will depend on 
both the selected bandwidth and the density of the breakpoints for each particular case. Our interest is to find 
clusters small enough to contain breakpoints from only a rearrangement event while they are far apart from 
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Figure 1.  Workflow applied to identify complex rearrangements in PCAWG genomes. Simple data pre-
processing was performed before implementing the recursive clustering. Then, the graph mining method was 
applied to find patterns. Finally, the motif finding strategy was applied to determine the statistically significant 
patterns.
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each other, meaning they are two different events. Having this objective, instead of using a strategy to find the 
optimal bandwidth based on the density (an approach that could also be a valid option,  see15–17), we decided 
to set a bandwidth that provides the lowest intra-cluster distance, defined as the highest distance between two 
breakpoints within the same cluster, and the highest inter-cluster distance, defined as the lowest distance between 
two breakpoints of adjacent clusters, both illustrated in Fig. 2. These distances were obtained for all samples 
at the same time, fixing the same bandwidth value for every sample. Therefore, taking into account the global 
breakpoints distribution across all the samples to set the bandwidth value, we were able to avoid potential biases 
derived from a particular sample distribution and to join together two clusters or not when needed.

Since the human genome is organized into 23 pairs of chromosomes, we performed the clustering locally at 
every chromosome. Figure 2 shows how the method works using different bandwidth values on the same region 
of a given chromosome. Once the clustering was done, the next step was to locate all the peaks of the function and 
assign the breakpoints to the closest peak. These peaks represent the cluster centers to use for all the breakpoints 
assigned to each cluster at the graph mining step (see below).

In order to improve the clustering resolution, a recursive 2-step clustering was carried out: after the first KDE 
clustering process, we performed a second clustering inside every cluster. To avoid already described complex 
patterns, such as Chromothripsis, the breakpoints looping over the same region were discarded after the first 

Figure 2.  Kernel Density Estimation of breakpoint clusters from chromosome 3 setting bandwidth values of 
(a) 3000 and (b) 8000. Blue dots represent the locations of the breakpoints, the blue line is the kernel density 
estimation and red lines the obtained cluster peaks. The inter and intra-cluster distances are shown in green and 
red, respectively.
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clustering round. This process made the mining of motifs computationally more efficient, avoiding noise into 
the second step of the clustering. In the second round of clustering, different bandwidth hyper-parameters were 
set to compare intra-cluster and inter-cluster distances. Notice that after the second round of clustering, original 
clusters are discarded and only the new obtained clusters remain, providing different values of intra-cluster and 
inter-cluster distances inside every chromosome. Since the clustering method was based on a density estimation 
function, we ensured a linear growth of the number of operations with the increase of data. Since both the density 
estimation and the final cluster selection only interact with data from a region of the chromosome at a time, 
the number of operations of the method will always be smaller than n2 , where n is the number of breakpoints, 
avoiding high computational expenses. To provide a better understanding of the method, the pseudocode of the 
full clustering process can be found in Algorithm 1.

We validated that our clustering approach was not joining random SVs by performing two tests. First, we 
generated simulated datasets 100 times by pooling together all the breakpoints of the samples, and creating new 
samples with random rearrangements. We used this method over total randomization to keep the original loca-
tions of the SVs since it has been proven that they tend to occur in the same areas of the  genome18. With these 
simulated datasets we are trying to determine if the chromosomal rearrangements are independent rearrange-
ments that simply tend to happen in the same places or are dependent, meaning that they tend to occur close 
by. Past studies about the whole-genome  analysis6 indicate that they should have some grade of dependency.

In the first test, we estimated the average dispersion of breakpoints in each simulated dataset. We used as 
a dispersion measure the standard deviation of the difference of base pair between adjacent breakpoints in a 
chromosome. Then, we compared the average dispersion distribution from the simulated datasets against the 
average dispersion of breakpoints in the original dataset performing a one sample Z-Test. In the second test, 
we applied the KDE clustering method to each simulated dataset as described for the original dataset. For each 
permutation we calculated the average cluster density defined as the average number of breakpoints per cluster 
and compared to the average number of breakpoints per cluster in the original dataset using a one sample Z-Test. 
Despite the obtained clusters are based on the KDE, since our objective is to evaluate the similitude between 
the clusters and not the density function itself, we decided to implement this method over other strategies that 
focus directly on the comparison between the density  functions19.

Graph mining to search for complex rearrangements. The clustering process set out every sample as 
a graph where the breakpoint clusters are represented as vertices and the edges connecting these vertices corre-
spond to the rearrangements. Since vertices could be composed of several breakpoints from different rearrange-
ments, different graphs could be generated. To narrow down the survey of graphs, we focused only on Hamil-
tonian cycles (mentioned further only as cycles), where every vertex is connected to two other vertices (Fig. 3).

To find and count rearrangement patterns inside each graph, we used a search approach method based on the 
VSIGRAM  method20, following a vertical approach and finding the frequent subgraphs in a depth-first fashion. 
As the subgraph mining problem becomes computationally hard (NP-hard), we performed a pruned search 
with max size = 6. The graph-based data mining for SV pattern searching includes four steps: deduplicate edges, 
generate the graph, subgraph mining, and reduce similar patterns.
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Deduplicate edges. Since every cluster can include more than one breakpoint, it is likely to find clusters with 
more than one edge going to one another cluster. These edges were therefore duplicated and had to be dedupli-
cated, simply removing all of them except one.

Generate the graph. Next, we generated graphs for each sample, considering the cluster centers as the vertices, 
and the unique edges as the connecting edges of the vertices.

Subgraph mining. The used method for subgraph mining visited the graph through depth-first search, allow-
ing parallelism, e.g. by splitting each starting vertex to be processed at the same time. At every vertex, we looked 
for all the possible connected paths of size 1. Then, these subgraphs were the candidates for looking for all the 
possible connected paths of size 2. The process was repeated for the paths of sizes 3, 4, 5, and 6. A graphic repre-
sentation of this process can be found in Fig. 4 and the corresponding pseudocode in Algorithm 2.

a) 3 edges b) 4 edges

c) 5 edges d) 6 edges

Figure 3.  Circular representation of human genome with cycles of different sizes .
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Reduce similar patterns. All of the subgraphs obtained from the vertices from a given sample were stored 
together and duplicated cases were eliminated by matching canonical labels and edge hashes.

Defining statistically significant patterns. In order to discern statistically significant patterns from 
random distributions, we compared frequencies between real observations and random observations from sim-
ulated datasets using a measure called Abundance ( � ), proposed by  Wong11.

Abundance measure. As defined in (1), we computed � for a given cycle, comparing finput , which is defined 
as the frequency of a pattern in the original dataset with f random , the mean of the frequencies of a pattern in N 
simulated random datasets. ε is a pseudo-count (Laplace smoothing) to prevent the ratio from exploding when 
frequencies are small. � can take values between -1, underrepresented and +1, overrepresented, being 0 the value 
for a pattern with the same representation in the original data than in the random datasets.

(1)� =
finput − f random

finput + f random + ε
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Figure 4.  Graphic representation of the subgraph mining process. We performed the search for every vertex of 
the sample until every possible connection of size 6 was found. Since we did not implement any control during 
the algorithm, every pattern was likely to be found more than one time and had to be reduced in the following 
step. This method allowed us to parallelize the search in several machines to reduce computational time.
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Dataset simulation test. In order to keep the same distribution of clusters as the original dataset, we rand-
omized the edges between the clusters (the rearrangements). The randomization of the edges was performed 
using an adaptation of the switching method presented by  Wong11 to the graph abstraction previously described 
above. This method consists of repeatedly selecting two random edges A–B and C–D and exchanging the ends 
to form two new edges, e.g, A–D and B–C. The resulting graph keeps the same vertices and edges count. This 
method has a drawback: we cannot be certain when the graph is adequately randomized, but numerical studies 
have shown that enough random switching samples (100 × E) are adequate to achieve a randomized set, where 
E is the total number of edges across all  samples21. Therefore, we generated 100 simulated datasets as follows: we 
removed the original edges of every sample and randomly assigned the same amount of edges to each sample 
every time.

Results
Clusters of SVs from complex patterns. The purpose of the clustering process is to join the rearrange-
ments that belong to the same mutation event. Therefore, in order to select the optimal bandwidths and carry out 
the 2-step KDE clustering, we ran several experiments with different bandwidth values, observing that the reso-
lution of a 1-step KDE clustering is limited by the size of the chromosomes; the density estimation was exactly 
the same using any bandwidth equal or smaller than 1000. A first inspection of the results showed low resolution, 
as breakpoints were being clustered despite being separated by hundreds of thousands base pairs, indicating the 
need to perform a second clustering to improve the resolution since two SVs can not be considered the same 
event being that far  apart5. This is happening because hundreds of thousand base pairs is considered a small dis-
tance when applying the method to a whole chromosome that contains between 50 and 250 million base pairs.

The final selected values for the method were bandwidth 1 = 1000 for the first step since it ensured the maxi-
mum resolution and bandwidth 2 = 400 for the second step since it showed high inter-cluster distances while 
still having small intra-cluster distances. As seen in Fig. 5, selecting a higher bandwidth the breakpoints were 
clustered with a considerable increase of the intra-cluster distance while almost not increasing the inter-cluster 
distance. Opposite, selecting a lower bandwidth the behavior was smaller intra-cluster distance but with a sig-
nificant decrease in the inter-cluster distance.

To determine whether the obtained clusters were composed by random rearrangements, we first analyzed 
the distribution of the breakpoints in the original dataset. After comparing the dispersion of breakpoints in the 
simulated datasets with the dispersion from the original dataset, we got a p-value smaller than 1−5 , indicating 
that the breakpoint locations were not following a random distribution in the cancer genomes. Furthermore, 
we compared the cluster density in the simulated data and the original dataset finding that the cluster density 
of the original dataset was unlikely obtained in a random simulation (p-value < 1

−5 ). Therefore, the clusters we 
obtained implementing the 2-step KDE clustering contain SVs that are likely mechanically linked and not just 
random occurrences.

Motif finding. Using the graph mining technique allowed us to to convert our pattern search across all the 
genome of every sample in a simpler graph search. Within High Performing Computing environments that are 
based on Apache  HBase22,  HDFS23 and  Spark24 we are able to distribute the computational load across several 
machines. We used three machines with an Intel� Xeon(R) CPU E5-2630 v4 @2.20GHz processor, 128MB of 
RAM, and 20 cores each. Using these technologies, the search across 2392 samples was done in less than a day. 
The use of High Performing Computing methods becomes crucial for the analysis of simulated datasets, where 
we must repeat the methodology for 100 simulations.

Here, we only focused on cycles limited to a size of 6. The cycle with a size of 3, named triangle, was the pattern 
more recurrent across the different cancer samples. Its confidence was almost twice the confidence of the next 
simplest cycle, composed of only 1 edge more (Table 1).

The challenge in the identification of complex patterns is to discern between the distributions of rearrange-
ments that are the sum of random unrelated occurrences from those that are mechanically associated. We meas-
ured the significance of the patterns by calculating the Abundance ( � ). All the cycles evaluated in this study were 
overrepresented as shown in Fig. 6 (all cycles got positive values of Abundance.) However, as the number of rear-
rangements of the cycle increased, the Abundance decreased, being the triangle, the most overrepresented pattern.

Pattern significance across cancer types. Analyzing the behavior of the cycles in each cancer type, the 
abundances differed between tumor types (see Fig. S2). The triangle pattern again predominated over the major-
ity of cancers, with the exceptions of Bone-Osteosarc, Kidney-ChRCC, Lymph-CLL, and Uterus-AdenoCA. Fur-
thermore, there are tumor types that were more similar in terms of abundances of particular cycles. For exam-
ple, Bladder-TCC, Bone-Osteosarc, Breast-AdenoCA, Breast-LobularCA, ColoRect-AdenoCA, Eso-AdenoCA, 
Head-SCC, Kidney-ChRCC, Lung-AdenoCA, Lung-SCC, Ovary-AdenoCA, Panc-AdenoCA, Prost-AdenoCA, 
SoftTissue-Leimyo, Stomach-AdenoCA, Uterus-AdenoCA had high Abundance for most of the cycles. In con-
trast, Breast-DCIS, Cervix-AdenoCA, Myeloid-AML, Myeloid-MPN had Abundance = 0 for every cycle or 
almost every cycle. This group was clearly composed of cancer types without enough samples or complexity. The 
rest of the cancer types lied somewhere in the middle, having Abundance values not as high as the first group but 
not having all of them to 0 either: Biliary-AdenoCA, Bone-Benighm, Bone-Epith, CNS-GBM, CNS-Medullo, 
CNS-Oligo, CNS-PiloAstro, Cervix-SCC, Kidney-RCC, Liver-HCC, Lymph-BNHL, Lymph-CLL, Panc-Endo-
crine, Skin-Melanoma, SoftTissue-Liposarc, Thy-AdenoCA.

Characterization of triangle types. We further characterized the triangle pattern since it was the most 
overrepresented and recurrent across all the samples. Known patterns of structural variants that could coincide 
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with these triangles have been described based on the orientation of chromosomal segments at the breakpoints 
and their associated copy-number alterations. Using these criteria, we subclassified the triangle patterns into 
four different categories: (i) Chromoplexy described by Baca et al.3 where usually there is not DNA gain and 
even, there could be a minimal loss (balanced rearrangements); (ii) Cycles of templated insertions, characterized 
by copy number gains and inverted  rearrangements5; (iii) Non-canonical chromothripsis, a pattern that was 
recently  described25, which can involve different chromosomes with frequently inverted rearrangements with 
oscillating copy-number alterations; (iv) The fourth pattern, that we here have called Chromotrikona (from 
the Greek chromo for chromosome and from the Sanskrit trikona for triangle), do not correspond to any other 
pattern previously described and is characterized by the presence of frequent inverted rearrangements with no 
significant gains or losses of DNA.

Once we set the four classes of triangles, their abundances were estimated (see Fig. S3). Since we already knew 
that triangles were overrepresented, we expected to have a high abundance in all types. However, we noticed that 
Chromoplexy and Chromotrikona patterns were the most overrepresented types. These abundance similarities 
may be generated due to an overlapping of triangles of both types, having one or more clusters in common. Since 
we knew that clusters could have more than one breakpoint, they could be linked to different clusters, forming 
different triangles and therefore, different triangle types. We calculated the number of clusters that had in com-
mon every pair of triangles (see Fig. S4). As expected, Chromoplexy patterns had more common clusters with 
Chromotrikona patterns. Furthermore, this behavior was also maintained for Cycles of templated insertions and 
Non-canonical chromothripsis. These results suggest that these patterns could share some underlying properties 
as they are found in the same genomic regions.

We also performed an analysis of how these triangle types were distributed among the different cancer types. 
We excluded cancer types having less than 10 samples with triangles to avoid possible bias due to the low number 
of samples. The presence of the triangle types were heterogeneous across cancer types (Fig. 7). For instance, Chro-
moplexy was more common than the other triangle types in Kidney-RCC, Uterus-AdenoCA, Panc-AdenoCA, 
Head-SCC, Ovary-AdenoCA, Prost-AdenoCA, and Breast-AdenoCA, while Cycles of Templated Insertions was 
predominant in Bone-Osteosarc or Skin-Melanoma. Chromotrikona predominated only in Kidney-RCC and was 
the less represented pattern in Bone-Osteosarc, Liver-HCC, Head-SCC, Skin-Melanoma and SoftTissue-Liposarc.

Discussion
The identification and classification of complex patterns in cancer genomes are not well explored. The complexity 
of the data and the lack of certainty about the relevant cases claims new strategies that allow us to get insights 
into their underlying role in tumorigenesis.

Here we have proposed a statistical framework to fulfill this gap. First, we used a KDE-based clustering 
method identifying adjacent SVs that are not independent events but belonged to the same single event. The 
KDE clustering has been proven to be fast and simple and very suitable for distribution based-clustering tasks 
without setting a priori number of  clusters26,27. Facing the lack of reference complex patterns of SVs to compare 
with, we presented a statistical approximation to prove that the clusters of SVs were not by chance, indicating 
that they must be related to each  other28,29.

For the detection of motifs to identify the complex chromosomal rearrangements, we adapted a graph min-
ing strategy with a measure of significance for each found  pattern30. Similar motif finding algorithms based on 
randomizations have been already proved successfully such as  FANMODE31,  MODA32, and  NetMode33. All 
these studies agree that the need to apply the methods to both the original and simulated datasets translates 

Figure 5.  Total inter and intra-cluster distances for the whole dataset using the 2-step KDE clustering with 
different bandwidth values.
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into a high computational burden. We used parallelization and HPC tools to decrease the computational cost 
of the  method34, as well as narrow down the search to patterns of size 6. The selected measure for analyzing the 
significance of the motifs, the Abundance, is directly related to the z-score of the pattern but normalized, allow-
ing us to compare among different  patterns35.

Taken together, we here present the development and application of a new methodology for the classifica-
tion of complex SV patterns in tumor genomes. Applying this method to more than 150 thousand SVs from the 
PCAWG cohort we could identify existing known patterns, as well as a new pattern (Chromotrikona) composed 
of three SVs that involves balanced inversions between distinct DNA regions in 2 or 3 chromosomes. This rep-
resents a significant step forward towards the understanding of the role of complex structural rearrangements 
in cancer.

Conclusions
In this study, we presented the development of a new statistical strategy for the classification of complex rear-
rangements in cancer, which is key to understanding the role and the impact of structural variation in the origin 
and evolution of tumors. Considering the current expansion of AI approaches for the analysis of complex bio-
logical data, this study highlights the necessity to establish robust, unbiased, and accurate statistical frames that 
are the foundation of more complex machine learning algorithms.

The new strategy proposed in this study fulfilled this end, being composed of a novel application of a cluster-
ing solution based on the data distribution, a robust motif finding algorithm that can be easily parallelizable to 
decrease the computational cost of such an extensive search and a final statistical measure that accurately ranks 
the obtained patterns in terms of significance.

The results showed the identification of different known patterns in cancer samples as well as a new pattern 
not previously described. This recurrent pattern, called Chromotrikona, is defined by inverted rearrangements 
where there are no significant gains or losses of DNA. The development of methods for studying complex patterns 
of SVs allows us to have insights into new patterns but also understand the genesis of chromosomal rearrange-
ments without limited resolutions. Such genomic rearrangements are the result of subverted biological processes 
by which they contribute to cancer development.

Table 1.  Statistical values for the evaluated cycles. The values obtained are defined as follows. Confidence, 
which provides the number of samples that have at least one cycle occurrence. Average which refers to 
the average of the number of cycles happening in the samples. And finally, frequency, the sum of all the 
occurrences of the cycle across the whole dataset.

Cycle size Confidence Average Frequency

3 814 4.68 3817

4 417 6.75 2817

5 260 4.04 1051

6 188 44.43 8354

Figure 6.  Abundance values for the analyzed cycles. Its value can go from − 1, underrepresented, to + 1, 
overrepresented. The Abundance of a single rearrangement (1 SV) is also shown as a control value. Its value 
is 0 since we fix the rearrangements during the simulation of the random datasets, which means that its 
representation is the same in every dataset.
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All the data analyzed during the current study are available in the data repositories from ICGC data portal.
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