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ABSTRACT. We consider bond percolation on random graphs with given degrees and bounded
average degree. In particular, we consider the order of the largest component after the random
deletion of the edges of such a random graph. We give a rough characterisation of those degree
distributions for which bond percolation with high probability leaves a component of linear order,
known usually as a giant component. We show that essentially the critical condition has to do
with the tail of the degree distribution. Our proof makes use of recent technique which is based
on the switching method and avoids the use of the classic configuration model on degree sequences
that have a limiting distribution. Thus our results hold for sparse degree sequences without the
usual restrictions that accompany the configuration model.
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1. INTRODUCTION

Random graphs with a given degree sequence have become an integral part of the theory of
random graphs. Let n > 2 and let D = (dy,...,d,) be a degree sequence of length n; that is, a
vector of non-negative integers which represent the degrees of the set of vertices [n] := {1,...,n}.
In other words, vertex i has degree d; for each i € [n]. Without loss of generality, we assume that
d; < ... <dy,. In fact, our results deal with properties that are closed under automorphisms and
remain valid when relabelling the vertex set. If not stated otherwise, we will assume that dq > 1.
The results for degree sequences containing vertices of degree 0 can be easily deduced from the
analysis of degree sequences without them. We will also assume that D is feasible; that is, there
exists at least one graph with degree sequence D. The main object of our study is G, which is
a graph chosen uniformly at random among all simple graphs on [n] having degree sequence D.

Random graphs with a given degree distribution appear also in the context of graph enumer-
ation. Bender and Canfield [4], as well as Bollobds [6] and Wormald [26], came up with the
now well-known configuration model, which has become a standard tool in the analysis of ran-
dom graphs that are sampled uniformly from the set of all simple graphs with a given degree
sequence. However, the study of such random graphs through the configuration model has some
limitations, as it often requires bounds on the growth of the maximum degree of the degree
sequence. Typically, these are implicitly imposed by bounds on the second (or higher) moment
of the degree sequence.

In 1995, Molloy and Reed [18] investigated the component structure of GP and, more specifi-
cally, the emergence of the giant component (a component containing at least a constant fraction
of the vertices). This is one of the central questions in the theory of random graphs. They pro-
vided a condition on D that characterises the emergence of a giant component in G given that D
satisfies a number of technical conditions. This result has been widely applied to the analysis of a
variety of complex networks [1, 2, 5, 22] and there are several refinements of it [8, 12, 14, 16, 19].
The technical restrictions on D in [18] result from the use of the configuration model. These
restrictions have been weakened in subsequent papers [8, 14]. Recently, Joos, Perarnau, Raut-
enbach, and Reed [15] managed to completely remove all restrictions on D by using an analysis
based on the switching method. This provides a new criterion for the existence of a giant com-
ponent in GP that can be applied to every degree sequence.

In this paper, we follow this novel approach and consider the component sizes of a random
graph with a given degree sequence under the random deletion of its edges. For a graph G and
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a real number p € [0, 1], we denote by G, the random subgraph of G in which every edge of G is
retained independently with probability p. This is commonly known as bond percolation on G.
The theme of this paper is the component structure of G}?. Since GP itself is a random graph,
GE should be understood as follows: first, we choose a graph GP uniformly at random from
the set of all simple graphs with degree sequence D and thereafter each edge of GP is retained
independently with probability p.

The structure of GP has been studied in great detail for the case d; = d for all i € [n] and
some d € N (in this case we also write G(n, d) for GP). The bond percolation of G(n, d) was first
studied by Goerdt [11]. He proved that there exists a critical value perit = 1/(d — 1) such that
the existence of a giant component depends on whether p < pepst or p > perit. Bond percolation
of G(n,d) near the critical probability p..; has been extensively studied [21, 23, 24]. The first
author [10] and Janson [13] considered the bond percolation of GP, proving the existence of a
critical probability, provided that D satisfies some technical conditions, similar to those required
in [18]. These results have been extended to a more general setting by Bollobds and Riordan [8].

In the present work, we determine those conditions on D which ensure that p.-;; is bounded
away from 0. We consider arbitrary degree sequences without restrictions as in [8, 10, 13, 18] and
we only insist that the total number of edges grows linearly with the number of vertices n. We call
those sequences sparse. (We briefly discuss the non-sparse case at the end of the paper.) Besides
the mathematical motivation, sparse graphs are also the main focus in the theory of complex
networks as this is a property that is observed in several networks that arise in applications [2].

Consider a sequence of degree sequences © = (D,,),>2, where D,, = (dg”), e ,d%n)). Let D,
be the random variable that is the degree in D,, of a vertex selected uniformly at random. For
c € N, we define W(¢, D) :={i : d; > c}; that is, W(c, D) is the set of vertices of degree at least
c and set Wy, (c) := W(¢, Dy). The sequence (Dy,)n>2 is uniformly integrable if for every € > 0,
there exist ¢, ng such that for every n > ng, we have

(1) S d <en,

iEW7L(C)

and strongly uniformly integrable if for every € > 0, there exists ¢y such that for any ¢ > ¢ there
exists ng such that for every n > ng, we have

(n) o £
(2) Z d; =< n.

1€Wn(c)

Strong uniform integrability can be seen as a weaker version of bounded second moment condi-
tions.

For a graph G, we denote by Li(G) the number of vertices in the largest component (ties are
resolved following the lexicographic ordering of the vertices).

We now state our main result in the context of sequences of degree sequences that satisfy a
mild convergence condition.

Theorem 1. Suppose that d > 1 and let © = (Dn)n>2 be a sequence of degree sequences such
that for all n > 2 the average degree of D,, is at most d. Suppose that

D eV AW () " (d" — 1)

d=d(®) :=sup lim max

c>1 n—o0

1
2V \Wa(c) "

exists. Let D, be the degree in D,, of a vertexr chosen uniformly at random. Then

(i) if the sequence (Dy)n>2 is strongly uniformly integrable and d < oo, then for every e >0
the following hold:
-if0<p< (1—6)%, then

P[L1(Gp") = o(n)] = 1 —o(1) ;
- if (1+€)2 <p <1, then there exists p = p(e) such that
P[Ly(GD") > pn] =1 —o(1) .
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(ii) otherwise, for all p,0 € (0,1), there exist p > 0 and ng such that for all n > ng, we have
P[Li(GP") > pn] > 1 6.

The proof of this theorem relies on a dichotomy within the class of all sparse degree sequences
D of length n. This dichotomy is expressed through Theorems 2 and 3 below, which are much
stronger, albeit somewhat technical, results. Roughly speaking, if the tail of the degree sequence
D is sufficiently thin (conditions A; and As below are satisfied), then there exists a critical
probability per;; bounded away from 0 (essentially determined by D) such that when p crosses
perit the fraction of vertices that belong to the largest component undergoes a rapid increase
with high probability. On the other hand, if the tail is sufficiently heavy (either A; or Ay are
not satisfied), then for every p € (0, 1], there is a giant component with high probability.

Let us now make these statements precise. For every x > 0 and every ¢ € N, we say that D
satisfies Aj(zx, c) if

(3) > odi<Zon.
1€W (¢, D) ¢
For all x > 0 and ¢1, co € N, we say that D satisfies Ay(z,c1,c2) if
x
€W (c1,D)\W (c2,D)

Note that being strongly uniformly integrable is equivalent to satisfying condition A (e, ¢p)
for every € > 0 and ¢y = ¢o(e). Also observe that these integrability notions naturally extend to
D,,, even if the sequence D,, does not converge in distribution.

The first part of this dichotomy describes which degree sequences have a percolation threshold.

Theorem 2. For all e,y € (0,1), all ¢c1,c2 € N and d > 1, there exist p = p(e,c1), n = n(7,€,¢1)
and ng such that for every n > ng and every degree sequence D = (dy, .. ., d,) with average degree
at most d that satisfies Ai(n,c2), then for

D eV \W (ez) di 1}

(5) Derit *= Derit (02, D) = min ,
DieVAW (cg) dildi — 1)

we have
(1) if 0 <p < (1= €)perit, then
P[L1(G) > 1] = on(1)
(ii) if D satisfies As(€,c1,c2) and (1 + €)perir < p < 1, then
]P’[Ll(GE) >pn] =1—o0,(1).

In order to obtain a meaningful statement we need to apply Theorem 2 as follows: first, choose
¢ (width of the transition window) and ¢y, co, d. This fixes the value of pe, and p. Now, choose v
which might be arbitrarily smaller than p. This fixes n and ng. After these choices, the theorem
then gives a sufficient criterion for degree sequences whose size of the largest component jumps
from at most yn to at least pn in a window of width 2e around pe,;:.

Interestingly, this theorem gives a criterion for the existence of “sudden” jumps in Ll(GI?) that
do not necessarily correspond to the phase transition of the appearance of a linear order compo-
nent. In particular, it applies to cases where the degree sequence is not uniformly integrable. In
Section 1.3 we will see an example of this behaviour.

The other part of the dichotomy settles the case of robust degree sequences.

Theorem 3. For all p,d € (0,1) and all d > 1, there exist K,co € N such that for every
¢ > co, there exist p > 0 and ng € N such that for every n > ng and every degree sequence
D = (di,...,dy,) with average degree at most d that does not satisfy either A1 (K, c) or A2(K,0,c),
then

P[L1(G)) > pn] > 16
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As defined in (5), we have perit > 0 (assuming that 0/0 = 1). Intuitively speaking, Theorem 3
classifies the degree sequences that have a “critical percolation threshold” at p = 0. It is also
worth noticing that if p = p(n) — 0 and d = O(1), then Ly (GZ) is at most the number of edges
in GP', which is O(pdn) = o(n) with probability 1 — o(1).

Theorems 2 and 3 show that the existence of a critical p for the emergence of a giant component
is determined by the shape of the degree sequence for degrees that are bounded by a constant as
well as by the degree sum of vertices of larger degree. For example, whether a degree sequence
contains one vertex of degree n/2 or n/(2logn) vertices of degree logn does not make any
difference.

1.1. Approach to the proof of Theorems 2 and 3. Previous work on bond percolation in GP
relies on the study of the configuration model. Given D = (dy,...,d,), let GP denote the random
(multi)graph obtained using the configuration model (see e.g. [27]). The first author observed
that the percolated random graph éz? has the same distribution as GP» where D, = (d,...,d})
is the random sequence obtained by choosing d? distributed as a binomial random variable
with parameters d; and p, conditional on ¥,c},d} being even (see Lemma 3.1 in [10]). Loosely
speaking, this result states that one could interchange the two random processes, percolating
first the degree sequence conditional on its sum being even) and then choosing a random graph
with the percolated degree sequence. Using this observation one can transfer results for the
configuration model to its percolated instances [8, 10, 13]. These results can be transferred to
the simple random graph GI? provided D satisfies certain technical conditions (see Section 1.2).

Joos et al. [15] established a criterion for the existence of a linear order component for any
degree sequence. Following the previous observation of interchanging the two random processes,
one could hope that the largest component of Gf could be studied directly, applying this criterion.
However, the following example discusses a degree sequence for which the random graphs G’E
and GP» are drastically different.

Example 1. Let n be an even integer, let p = 1/2 and consider the degree sequence D =
(n—1,n—-1,3,3,...,3). By standard concentration inequalities, with high probability, the degree
sequence Dy, satisfies di(v1), d}(v2) = n/2 and B, df = 5n/2. An easy switching argument (see
Section 3.1) shows that, with probability 1—o(1), we have vivy € E(GP?). However, by definition,
the probability that vivy € E(G?) is at most 1/2. Moreover, the order of the largest component

will strongly depend on the existence of vive. So the component structure of GE and GPr is
different.

1.2. Comparison of Theorem 1 to previous results. The strongest statements in our paper
are Theorems 2 and 3. However, as previous results deal with sequences of degree sequences
® = (Dp)n>2, it is more convenient to compare them to Theorem 1. Additionally, we will
assume that D,, converges in distribution to the random variable D, denoted by D,, — D, where
D has finite and positive mean E[D]; that is, there exists a probability distribution (74)r>0 such
that for every k € N
: . gn)
(6) lim fich]:d; =k} =7 .

n— 00 n

and E[D] =) ",~ kri € (0,00). Observe that (6) implies that d(®) exists.

Note that Theorem 1 only requires the existence of d. This is a slightly weaker condition than
the convergence of D,, in distribution, but it is similar in spirit.

In this context, consider the following condition on the convergence of means
(7) lim E[D,] =E[D].

n—oo

Condition (7) can be easily replaced by the slightly weaker condition that D is uniformly inte-
grable (see e.g. Remark 2.2 in [14]). Moreover, given that D, — D, the condition that D, is
(strongly) uniformly integrable as in (1) (and (2)) is equivalent to D being (strongly) uniformly
integrable.
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Additionally, we say that the sequence (Dy,)n>2 has bounded second moment if
(8) E[D;] = 0(1) .
Under the assumption D,, — D, we have following implications:

d(®) < o0 <« Bounded second moment = (Strong) uniform integrability

All the implications are straightforward to check, so we omit their proofs.
We now state the two central results from the literature on bond percolation.

Theorem 4 (Proposition 3.1 in [13]). Suppose ® = (Dy)n>2 is a sequence of degree sequences
such that D,, — D and (Dy)p>2 has bounded second moment. If p > 1/d(®), there exists £ > 0

such that o
Ll(Gpn) ﬁ} é. 7
n

and if p < 1/d(D), then
Ll(GpDn) p

= 0.
n

Now, let p(D) be the survival probability of a Galton-Watson tree with offspring distribution
given by D. Let D, be the p-thinned version of D, defined by

P[D, = i] = ZIP’[D = j] <i>pl<1 —py Tt
Jj>i
Theorem 5 (Theorem 22 in [8]). Suppose © = (Dy,)n>2 is a sequence of degree sequences such
that Dy, — D and (Dy,)n>2 is uniformly integrable. Then for every p € (0,1)

D@D 5y,

The aim of this paper is to obtain results on the existence of a linear order component in
GpD that are as widely applicable as possible, even if some precision is lost due to their gener-
ality. While Theorems 4 and 5 are more precise in their conclusions, they require conditions
on ®© (bounded second moment and uniform integrability, respectively) that are not necessary
in Theorem 1. For instance, the results in Theorem 1 (ii) when ® is not uniformly integrable
are not implied by any of the previous results in the literature. As we will show in the next
sub-section, the case of non-uniformly integrable sequences is particularly interesting, and one
cannot hope for very strong results in this setting. In conclusion, Theorem 1 and the previous
results complement each other, and their use is a compromise between precision and generality.

n

1.3. Non-uniformly integrable sequences. Roughly speaking, a degree sequence is not uni-
formly integrable if the vertices of unbounded degree have non-negligible contribution to the
average degree. Here, we include two illustrative examples.

Example 2. The order of the largest component may not be concentrated. Consider the degree
sequence Dy, = (n/4,n/4,1,1...,1) and p € (0,1). Using switchings, one can show that v and
vy are adjacent in GPr with probability 1 — o(1). Hence, for any fized p € (0,1) the probability
that u,v are adjacent in GE" is (1—o0(1))p, bounded away from 0 and 1. If vi,ve are adjacent in
GE”, the order of the largest component will be distributed as Bin(n/2 — 2,p); otherwise, it will
be distributed as the maximum over two independent copies of Bin(n/4,p).

This example can be generalised to produce degree sequences D, satisfying the following: for
every p > 0, there exists 6 > 0 such that

9) P[L1(G]") < pn] > 6
]P’[Ll(GZ,)”) >(1—p)n]>4.

Thus, one cannot expect that n_lLl(an) converges in probability to a constant as in Theorems 4
and 5. Moreover, (9) shows that the statement of Theorem 1 (ii) cannot hold with probability
1—o(1).
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Example 3. As mentioned above, Theorem 2 can be used to detect sudden changes of the order
of the largest component that do not coincide with the birth of the giant component. Consider
the following degree sequence D, = (¢n,3,3,...,3), for some & > 0. Theorem 3 shows that the
size of the largest component of GI?” is linear for every p > 0, in fact, it stochastically dominates
a Bin(én,p). However, we can also apply Theorem 2 with periy = 1/2.In particular, given e,7, p,
we can choose & sufficiently small so Theorem 2 gives a jump in Ll(GE”) from at most yn to at
least pn in a window of width 2e around perit. Hence the birth of the giant component is at p =0
(by Theorem 3) and there is a boost at p=1/2 (by Theorem 2).

Intuitively, if a sequence is not uniformly integrable, then it has linearly many edges in vertices
of unbounded degree. Under some weak conditions, these vertices will typically form a connected
core, even after percolation. This core contains linearly many edges and it typically creates a
linear order component. However, if perit > 0, then for p > perit, the vertices of bounded degree
will percolate even without the help of unbounded degree vertices, and thus, the growth of the
giant component changes at perir. To our knowledge, this critical point has not been studied in
the literature. It would be interesting to get a better understanding of the size of the largest
component around this point.

Structure of the paper: The paper is structured as follows. In Section 2, we provide the
basic notation and some technical estimates that will be used throughout the proof. Section 3
presents the main combinatorial tool we will use, the switching method, and provides an overview
of the proof of Theorem 2 and 3. In Section 4, we present three important technical propositions.
Assuming them, in Section 5 and 6 we prove Theorem 2 and 3, respectively. In Section 7, 8 and 9
we prove these three propositions. Section 10 is devoted to the proof of Theorem 1. We provide
an application of the results obtained to power-law degree sequences in Section 11. Finally, in
Section 12, we state some remarks of our results and discuss a number of open questions.

2. NOTATION AND SOME PROBABILISTIC TOOLS

We consider labelled graphs G with vertex set V = V(G) = [n] := {1,...,n} and edge set
E(G). If we refer to a graph or degree sequence on the set V', we always implicitly assume that
V = [n] and thus |V| = n. We say that a graph G on V has degree sequence D = (dy,...,dy)
if for every i € [n], the degree of i is d;. We let X7 denote the sum of these degrees; that is,
¥P ="  d;. We denote by |D| the length of the degree sequence.

For an arbitrary vertex v € V, we will often write d(v) = dg(v) for its degree. Let H be a
subgraph of G; if v € V(H), then dy(v) denotes the degree of v in H; if v € V' \ V(H), then
dig(v) = 0. For a graph G, a subset of vertices U C V and v € V, we occasionally use the
notation dg (v, U) to denote the number of neighbours of v in G that are in the subset U. Given
a degree sequence D and a graph G, we denote by A(D) (and 6(D)) and by A(G) (and 6(G))
the maximum (and minimum) degree of the sequence D and of the graph G, respectively.

We denote by N(v) = Ng(v) the set of neighbours of v in G. For S C V, we use N(S) = Ng(S)
for the set of vertices in V'\ S that have a neighbour in S. We also use N[S] = N¢[S] for the set
of vertices that are either in S or in N(S). For S C V', we denote by G[S] the (sub)graph of G
induced by S. For disjoint S,7 C V, we denote by G[S,T] the bipartite graph induced between
S and T.

We will make use of some classical concentration inequalities that can be found in [20].

Lemma 6 (Chernoff’s inequality). Let Xi,...,Xx be a set of independent Bernoulli random
variables with expected value p and let X = Zf\il X;. Then, for every 0 <t < Np

+2

P[|X — E[X]| > t] < 2¢ 385 .

Lemma 7 (McDiarmid’s inequality). Let X1,...,Xs be a set of independent random variables
taking values in [0,1]. Let f : [0,1]° — R be a function of Xi,..., Xy that satisfies for every
1<i<s, every xi,...,zs € [0,1] and every = € [0,1],

|f(z1, . miy ey xs) — floy,.o 2k, xs)| < ¢y,
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for some ¢; > 0. Then, for every t > 0

2t2
Pl f(X1,. .., Xs) = E[f(X1,..., Xs)]| > t] <2 Zimrel |

Many of our results have complicated hierarchies of constants. To be precise, if we say that
a statement holds whenever ¢ < b < ¢ < 1, then this means that there are non-decreasing
functions f, g : (0,1] — (0, 1] such that the result holds for all 0 < a,b,c <1 with a < f(b) and
b < g(c). In particular, such hierarchies need to be read from right to left. We will not calculate
these functions explicitly in order to simplify the presentation. Hierarchies with more terms are
defined in a similar way. Finally, we write 2 = a 4+ b to denote that x € [a — b, a + b], for real
numbers z, a, b.

3. OVERVIEW OF THE PROOFS

In this section we present an overview of the proofs of Theorems 2 and 3 as well as of the main
method used in them.

3.1. The switching method. Let GP be the set of simple graphs with degree sequence D.
Throughout our proofs we want to consider the probability that G?, a uniformly chosen element
of GP, satisfies a certain property. We will slightly abuse notation by indistinctly referring to GP
as a set of graphs and as a probability space equipped with the uniform distribution. Similarly, we
will consider F C GP and talk about the probability of F, thought as an event in the probability
space gP.

The main combinatorial tool that we use to estimate different probabilities in GP is the switch-
ing method. Given a graph G with degree sequence D and two ordered edges uv,zy € E(G) we
can perform the following graph operation, called a {uv, xy}-switch, or simply a switch: obtain
G’ by deleting the edges uv and zy from G and adding the edges ux and vy in G. Observe that
the {uv, zy}-switch is different from the {vu,zy}-switch, but equal to the {vu,yz}-switch. If
either ux or vy are edges of GG, the graph G’ will have multiple edges, and if either v = x or
v =y, the graph G’ will have loops. Since we restrict here to simple graphs, we say that a switch
is valid if none of these occur.

The basic idea of the switching method is the following. In order to determine the probability
of F C GP in terms of the probability of 7' C QD, we use the average number of valid switches
between a graph in F and a graph in F’, denoted by d(F — F'), and vice versa. A simple
double-counting of such switches gives

d(F' — F)
d(F — F')
Although this relation is very simple, the switching method is very powerful. In particular, we
avoid the use of the configuration model and all the technicalities that come with it.

(10) P[F] = -PlF] .

3.2. The emergence of the giant component. In [15], a characterisation is given of those
degree sequences D for which the random graph GP has a giant component with high probability.
Let 5P be the smallest j € N such that
J

Z dz(dl — 2) >0

i=1
if such j exists and else j2 = n. Also, they set R? := Z?:jp d; and MP := Zi:di# d;. Effectively,
GP has a giant component with high probability if and only if R? grows linearly in MP.

As we deal with bond percolation on Gf, we need to consider generalizations of these quanti-

ties.

(i) Let j2 be the minimum between n and the smallest natural number j such that
J
> di(p(di—1)—1)>0.

i=1
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(i) Let RD := > (p(di — 1) = 1).
Observe that if Y7 | di(p(d; — 1) — 1) <0, we have R? = p(d, — 1) — 1.

Note that in the case p = 1, the definition of jpD coincides with the definition of j7. Moreover,
RP < RP < 3RP. In our setting we do not need to define an analogue of MP since vertices of
degree 2 play no special role here (see Section 12 for a detailed discussion). Also note that vertices
of degree 0 have no contribution to these parameters. So, it is useful to assume, and we will do so
if not stated otherwise, that d; > 1 for every i € [n]. The result for degree sequences containing
vertices of degree 0 can be easily deduced from the analysis of degree sequences without them.

Theorem 2 and 3 essentially distinguish between two cases on the tail of the degree sequence.
In Theorem 2, we show that a critical percolation threshold p..;+ exists if the two conditions
Ai(+,c1,¢2) and Aa(+, c2) hold. These conditions bound the number of edges incident to vertices
of large degree. One should note that the two conditions are only required for particular values
of the degrees, namely ¢; and ¢y, and thus, they are much weaker than a domination condition
on the whole tail of the degree sequence. The heart of the proof of Theorem 2 is the analysis
of an exploration process, in which we reveal the components of GE by exposing the neighbours
of each vertex sequentially (cf. Proposition 9). To avoid technical difficulties that arise due to
high degree vertices, we include them together with their neighbours in the initial set of explored
vertices. So during the process, we only reveal the connections of vertices of low or moderately-
growing degree. Let S denote the set of high degree vertices (we will specify the exact magnitude
during the proof). We show that if 3~ oy d(v)(p(d(v) — 1) — 1) is negative and actually decays
linearly with n, then the exploration process is subcritical in the sense that all components it
reveals are sub-linear. If 3 oy d(v)(p(d(v) —1) —1) is positive and grows linearly, then one can

use condition As to ensure that Rz? grows linearly. In that case, it turns out that the exploration
process will reveal a component of linear order with high probability. In Sections 5 and 6, we
show how these two conditions give a critical value p.-;; such that when p goes from less than
(1 = €)perit, to at least (14 €)perit, the fraction of vertices in the largest component undergoes an
abrupt increase.

Regarding Theorem 3, recall that its premises cover degree sequences that have a quite heavy
tail, that is, either Condition A; or Condition As fails. Here, we distinguish between two sub-
cases. The first is that a set S7 of very high (growing) degree vertices have linear total degree.
The boundedness of the average degree implies that S is small (of sub-linear size). Moreover,
we show that with high probability GI?[Sl] is connected and that more than half of the edges
incident to S; in GP, have their other endpoint in ¥\ S1. Deleting each such edge with probability
that is bounded away from 0 leaves with high probability a giant component. This is stated in
Proposition 10. Now, if S7 does not have linear total degree, then we show that its removal leaves
a degree sequence D’ that is super-critical: the quantity Rg/ grows linearly in n. One can then
apply again Proposition 9 to find a giant component, concluding the proof of Theorem 3.

The transition from Rz? to R]? requires a result (Proposition 8) which shows that if RI? grows
linearly in n and we remove a set of vertices of small total degree, then the resulting degree
sequence D’ is such that RI? still grows linearly, albeit with a smaller coefficient.

Finally, the proof of Theorem 1 is a relatively straightforward application of both Theorem 2
and 3 and it is proved in Section 10.

4. THREE TECHNICAL PROPOSITIONS

In this section we introduce three important propositions that will allow us to prove Theorem 2
and 3. We defer their proofs to Sections 7, 8 and 9, respectively.

The first one is a deterministic proposition which proves the following. Suppose G is a graph
with degree sequence D and S C V(G) such that >, g d(u) is small. Suppose D’ is a possible

degree sequence of the graph G — S, then Rz?, is bounded from below by RI? /50.

Proposition 8. Suppose 1/n < v, 400v < pn <1, and p € (0, 1]. Suppose D is a degree sequence
on V with R}? > pn and let S CV be such that ), .gd(v) < vn. Assume that G' is a graph
obtained from a graph G with degree sequence D by deleting all vertices in S and afterwards by
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deleting all vertices of degree 0. Let D' be the degree sequence of G' and assume it has length n'.
Then n' > (1 —2v)n and Rz?/ > &n'.

Moreover, if G = GP and D' is the degree sequence of G', then G' is a uniformly random graph
with degree sequence D', that is G' = GP'.

The key ingredient for the proof of both Theorem 2 and 3 is the following proposition that
gives us the component structure of GE. This proposition can be viewed as the extension of the
main theorem in [15]. It states that if the drift on the bulk of the vertices (that is, excluding
vertices of very high degree and their neighbours) is negative, then the fraction of vertices in the
largest component is a.a.s. bounded by some small constant. On the other hand, if A(D) < nl/4
and R]? > un, then we have a.a.s. a component containing a constant fraction of all vertices.

Proposition 9. Suppose n € N and 1/n < a < v < p, 1/d,p < 1. Let D be a degree sequence
on V with XP < dn.

(i) If there exists a set S C 'V such that d(v) < n'/* for every v ¢ S, and for every graph G
with degree sequence D one has - ¢y 151 A(w) < an, and 3- ey ng 51 A(w) (p(d(u) — 1) —
1) < —pun, then
IP’[Ll(GE) <An]=1-o0,(1).

(ii) If A(D) < n/* and R[? > un, then
P[Ll(G]?) >an]=1-o0,(1).

Our last result is a version of Theorem 3 for degree sequences that have many edges incident
to vertices of unbounded degree. Recall that for ¢ € N, W (¢, D) denotes the set of vertices of
degree at least c.

Proposition 10. For all p,6,¢ € (0,1) and all d > 1, there exist v > 0,mg > 1 such that for
every n > ng and every degree sequence D on V with P < dn that satisfies

Z d; > en

i€eW (log? n,D)

we have
IP’[Ll(G]?) >an]>1-6.

In the next two sections we proceed with the proof of Theorem 2 and 3 assuming these three
propositions.

5. DEGREE SEQUENCES WITH THIN TAILS: PROOF OF THEOREM 2

Proof of Theorem 2. Let D be a degree sequence on V. For convenience, we set W(c) :=
W(e,D) ={i € V :d; > c}. We choose n such that n < €,7,1/c1. Next, let perit := peric(c2, D)
be as in (5). Note that the definition of p..;; excludes the contribution of all the vertices of degree
at least co. Moreover, with this definition we have

(11) Z di(perit(d; —1) —=1) <0

1€eV\W(c2)

and equality holds if pe.;+ < 1.

We first prove Theorem 2 (i). Suppose that p < (1 — €)perie. Our strategy is to apply
Proposition 9 (i) with W (cg), 2n and €/3 playing the role of S, a and p, respectively. In order to
do so, we need to give an upper bound on 3 ;¢ Ny (e, di and 00 Y1 N (e i(P(di — 1) — 1)
for every graph G with degree sequence D.

By assumption, A;(7n, c2) holds; that is,

AP
(12) INW ()| < ) di < o
i€W(c2)
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and therefore
. . N .
1) D A< Y dit+ Y di < -t aINW(e)| < (1+e) - n < 2m.
IEN[W (c2)] iEW (c2) 1EN (W (c2))

We next bound ;v\ niw(ey) di(p(di — 1) — 1) from above. Since d;i(p(d; — 1) — 1) > —d; for
every 1 € V, we obtain

Yo dilp(di—1)—1) = > di(p(di— 1) — > di(p(di — 1) - 1)

iEVAN[W (c2)] ieV\W (c2) ZGN(W(CQ))
< ) dilp(di = 1) = 1) + e N(W(c2))|
1€V\W (c2)
(12)
(14) < ) di(p(di—1) = 1) +nn.
i€V\W (ca)

It follows that

Yo dilpdi—1) -1 <(1-¢ Y dilpealdi—1) =1~ > d;

iEV\W (e2) iEVA\W (c2) iEVAW (c2)
(11)
S —€ Z ClZ .
iEVAW (c2)
Using that d; > 1, we obtain
(15) 3 d_Zd—Zd>n—Zd>ﬁ.
1€EV\W (c2) eV €W (c2) €W (c2)
Therefore,
ST dilp(di— 1)~ 1) < _g ‘n.
iEVAW (c2)
Using (14), it follows that
(16) i dilp(di—1) = 1) < —Z-nt+m < —2-n.
1EVA\N[W (c2)]
As (13) and (16) hold, Proposition 9 (i) completes the proof of Theorem 2 (i).

We proceed with the proof of Theorem 2 (ii). Suppose now that p > (1+ €)perit. Here we may
assume that peiy < 1 as otherwise p > 1 does not satisfy the assumption of part (ii). We will
first show that there exists u = (e, d, c1) such that RZ,) > un.

For k € {1,2}, we define j := min{n + 1,7 € [n] : d; > cx}. Since peri < 1, (11) holds with
equality. Using the definition of jpD , we obtain

J2—1 Jj2—1

> dlpldi=1)=1) = 3 dilaldi =1 Zd (e =1)~1)
i=3P
Jo—1
> Zd (di—1)—1)
j2—1 21
> (1+6)Zdi(pcrit(di_l)_1)+ezdi
; i=1
(11) J21 15)6

(17) = O—i—EZd > —.n.
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It follows from As(e, ¢, c2) that

1 jo—1 jo—1
Ji— ( 7) € J2 J2

1 € 9 _ €
E di(p(d; — 1) )2§-n—‘EAdi(p(di—1)—1) 3 n—‘gdizz-n.
’L]p = =,

We conclude that

n Jji—1 Jji—1
D _ € _.
Rp—‘Z((d—l) > > (p(di—1)—1) >azd - _1)2471.71_.;“1.
i=jP i=3P i=jp
Recall that, by assumption, we have ZzEW( cs) d; -n < nn. Since n < w, we can apply

Proposition 8 with n and W (c2) playing the role of v and S. Let D’ be the random degree
sequence of the subgraph GP[V \ W(cp)]. Let Dg be the set of degree sequences Dy that satisfy
P[D' = Dy| > 0. By Proposition 8, we deduce that if Dy € D, then RI?U > pun/50 and |Do| > 3.
Moreover, conditional on D' = Dy, we have that GP[V\W (c3)] and GP° have the same probability
distribution. Now we select p such that n < p < u,1/d,p. We can apply Proposition 9 (ii) to
the degree sequence Dy with 2p playing the role of ~, from which Theorem 2 (ii) follows:

P[L1(GD) > pn] > P11 (GTV \ W(ea)]) > pn]
> min P[Li(G")) > 2plDol]

=1—-0,(1).

6. ROBUST DEGREE SEQUENCES: PROOF OF THEOREM 3

Proof of Theorem 3. We choose cg and K such that 1/cy < 1/K < 6,p,e,1/d. For any given
¢ > cp, we choose ng such that 1/ng < 1/c. Let n > ny.

Suppose first that ZiGW(logQ nydi 2 K n/c3. We apply Proposition 10 with K /¢ playing the
role of € and obtain a 41 such that P[Ly(GY) > vin] > 1 —4.

Hence we may assume that } ey g2 ) di < Kn/c3. Let S := W(log®?n). We will show
that the (random) subgraph GZ'[V \ 5] has a giant component, and thus also GP has a giant

component. Let us first show that RE > %

Case 1: A; (K, c) does not hold; that is, 3,y () di = Kn/ec.

-n. We consider two cases:

We define j; := min{j € [n] : d; > ¢} and let ja be the smallest integer j such that ZZ _i di >
Kn/(2c). Since A; (K, c) does not hold, j; and ja are well-defined. We have

Zd (dj — 1) ZdQ 1+p) Zd >pZd2 (1+p)d:

i=J1
J2
_ K h
ZcpZdi—anz <2p—2d>n.
i=j1

Therefore, jpD < jo. Since 1/dj, <1/c < 1/cy < p, we conclude that p(d; — 1) —1 > pd;/4 for
all j > jo. By the definition of jo and using A; (K, c) (in fact, its negation), it follows that

Jo—1
RD>Z (di — 1) pZd>§ Zd—zz:d ZTGC"
1=j2 1=j2 €W (c) =71

Case 2: A3 (K, 0,c) does not hold; that is, 3_,cy\ (e d? > Kn/4.
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Now let js be the smallest integer j such that ZZ L2 > Kn/8 Since As (K, 0,c¢) does not
hold, j3 is well-defined and dj; < c. Using the definition of ]p , similarly as before

Js

> di(p(d; —1) = 1) > di(p(d; — 1) — 1)

j=1
Ja -
>pY» di—(1+p)dn

j=1

Kp Kp
> (B2 _oq) > 2P
—<8 > "1

Thus
RD>Z((d—1—1 >f§ d;(p(dj — 1)>@-n.
: — 16¢
J=iP Jj=iP

Let D’ be the random degree sequence of the subgraph GP[V \ S]. Let g be the set of
degree sequences Dy that satisfy P[D’ = Dy] > 0. By Proposition 8 applied to S with K/c3
and Kpn/(16¢) playing the role of v and u (note that 400v < u), we obtain that, for every
Dy € Dy, one has RI?O > Kpn/(800c) and |Dg| > &. Moreover, conditional on D' = Dy, we have
that GP[V \ S] and GP° have the same probability distribution. Using that for every Dy € Do,
A(Dy) < log?n and RI?O > Kpn/(800c), we can apply Proposition 9 (ii) and obtain 75 > 0 such
that

P[L1(G) > yan] > PILi(G[V \ S]) > yen)]
> min ]P’[Ll(GDO» > 272‘@0”

DoeD
>1- on(l) .

We conclude the proof of the theorem by setting v := min{~y1,v2}. O

7. PROOF OF PROPOSITION 8

Although the statement of Proposition 8 may sound very natural and also easy to prove, the
fact that some edge deletions may cause significant reordering in ordered degree sequences makes
the proof technical and complex.

Proof of Proposition 8. For every k € [n], let dj. be the degree of the vertex k in G’ and define
i, := dj, — dj.. Note that 7, = d, for every k € S whereby

ZmﬁQun.

keV

Clearly, by deleting at most ), ¢ dx < vn edges, we have created at most 2vn vertices of degree
0, which we do not consider in D’. Let n’ be the number of vertices with positive degree after
the deletion of S. Thus n’ > (1 — 2v)n.

Note that the statement follows if A(G) > un/(40p), since then a vertex of maximum degree
is not contained in S and has degree at least A(G) — vn in D', whereby

/
RY m((A(G)-@-Q-Q%@%,

where we used that 400v < p. Thus, we may now assume that A(G) < un/(40p).

We define fi, := p(dy — 1) — 1 and f] :=p(d), — 1) — 1 for all i € [n]. Recall that dy <--- <d,
and that jz? is the smallest integer j such that

J
> di(p(dy — 1) — 1) defk>0
k=1
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Let A:={k € [n]: k <jl} and B :=[n]\ A. Let o be a permutation such that d,, <...<d,
where we set dj, := 0 if vertex k is deleted. Note that dj f; = 0 if dj, = 0. Thus R]?/ does not
change if we add isolated vertices to D’. For the sake of simplicity, we consider D’ to be a degree
sequence on [n] with isolated vertices. Let A" := {0}, : k € [n], o < jp, } and B" := [n] \ A".

Let T := {k € B : f| > fr/2}. Observe that if we delete an edge ij from G, then f; and f;
decrease by p, respectively. Thus

Z fr=2 Z (fx—fr)=2p Z ri, < 4dpvn.

keB\T keB\T keB\T
Hence
4
(18) ka:Rf— Z sz,un—élpl/nzg'un.
keT keB\T
Suppose k € T. Then,
dp, 1 1 _ dg
d, > =4+ —4+=-> =
Ryt 2p T35

We define ¢ := dj;:. It follows that,

1 c (18) cp
! pl
(19> dekaszkkaZka > gn
keT keT keT
Let T7 C T be such that
I gl ct
Z difr > 0™
keTy

and max{oy : k € T1} is minimized (choose the set of consecutive vertices in T' smallest with
respect to the order o1, ...,0,). By (19) such a set exists. Let kpqp = argmax{oy : k € T1}. So
the above definition implies that
1 g CH
<—n.
>, dfi<yg

k?ETl \{kmaz}

Observe also that f; < pA(G) < pn/40 and that dj, > dy/2 > ¢/2 for each k € T1 (whereby
%d}C > 1). We conclude that

ko= D> fi— > e

keT\Ty keT keTi\{kmaz}
1 2 ! gl !/
> §ka—g > I .
keT k€T \{kmaz}
(18) 2
S T N P

- 5 10 40 — 4

Let By :={k € B : f{ <0} and note that B; C B\ T and B; C A’
Recall that d}, = dy — i, and that f; = fi —prg. By the definition of A and ¢, we observe that
>wea defw = —c(p(c—1) —1). Thus

SO difi =Y difi = Y ri(fi + pd)

keA keA keA
> —c(plc—1) = 1) = Y _rr(p(2c — 1) = 1)
keA
> —p02 — 4cpun .
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If k € By, then f; > 0 and from f; < 0, we obtain dj, < 1/p+ 1+ 1. Thus

Z di fr. = Z ((dx — 1) fro — pric(di — 1))

keB; keBi
> =Y pri(de — )
ke B,
> — Z T’k(l +p)
keBq

> —2(1+p)vn > —4cpvn ,

where we used that 1/¢ < p in the last line. Since A and Bj are disjoint, we deduce that

Z d. fr. > —pc? — 8evpn .
ke AUB;

Let T5 C T be such that

Z dy fr. > pc? + 8cvpn |
keTsr

and max{oy : k € T} is minimized (choose the set of consecutive vertices in T' smallest with
respect to the order o1,...,0,). As A(G) < un/(40p), we conclude that pc? < cun/40. Since
8cvpn < cun/40, this implies that T5 C T7. Therefore, by using (20), we obtain

(20) > o=t

Since AU By and T3 are disjoint, we conclude that

(21) Yo difi>0.

ke AUBUTs

The previous inequality suggests that the vertices in T\ T might belong to B’ and thus contribute
to RE/. However, in the new ordering o, there might be vertices in A with larger degree than
some of the vertices in T\ Ty. Let P:= (T'\To) N A" If 3, p f, < &, then (20) implies
!/
/ noopun pn _ pn
R > ’>’u7—7:7>7’
vz fi2 4 8 8 7 8
ke(T\T2)NB’

and we are done.
Hence, we may assume ), _p f; > K. Recall that, since P C T, we have dj, > dy/2 > ¢/2 for
every k € P and hence, by (21),

(22) > df> S

ke AUB1UT>UP

Thus a significant amount of vertices in AU B; UT, U P need to be in B’. Note that BiUP C A’.
Let Q := (AUTy) N B'. By our choice of Tb, the degree of a vertex in Th in G’ is at most the
degree of a vertex in P in G’; that is, vertices in Ty are smaller than vertices in P with respect
to the ordering o. Thus if a vertex of T5 is contained in ), then P = () and this a contradiction
to our assumption. Therefore, Q@ = AN B’ and hence dj, < dj, < ¢ for each k € Q. Using (22) we
obtain,

kGQ

This completes the proof. O
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8. PROOF OF PROPOSITION 9

Let GP be a graph chosen according to the uniform distribution on GP. The proof of Propo-
sition 9 will consist of a careful analysis of an exploration of the different components of G]? and
will heavily rely on the switching method. Our proofs are similar in spirit to those in [15], but
the additional level of randomness that is due to bond percolation makes the arguments more
involved and additional arguments are needed.

In order to bound the number of switches it is more convenient to denote by d(u) the degree
of a vertex u € V, instead of using d; for i € V. We will use this notation in this and in the next
section.

8.1. Connection probabilities via the switching method. The following three technical
lemmas provide the necessary tools needed for proving that the random exploration process
follows closely to what we expect it to do. To prove these lemmas we make extensive use of the
switching method and, in particular, of inequality (10).

Lemma 11. Suppose n € N and 1/n < 1 and let Z' C V. Suppose H' is a graph with vertex set
Z" and F' is a bipartite graph with vertex partition (Z',V \ Z'). Suppose u € Z' andv € V' \ Z'
such that uv ¢ E(F"). Suppose D is a degree sequence on V such that

(B1) d(u) <n'/*
(E2) if w € V and d(w) > n'/*, then w € Z' and d(w) = dg(w), and
(E3) >wer\z/(d(w) — dp(w)) = n/20.

Then,
Pluv € E(GP) | GP[2'] = H', F' C GP] < 40n~ /2,

Proof. Let F* be the set of graphs with degree sequence D such that G[Z'] = H', F C G and
wv € E(G), and let F~ be the set of graphs with degree sequence D such that G[Z'] = H’,
F' C G and wv ¢ E(G). We will only perform switches that involve edges that are not contained
in E(H")UE(F"). This ensures that the graph G obtained from a switch also satisfies Go[Z'] = H’
and F' C Gg. As this is the first proof that involves the switching method, we will provide an
extra level of detail.

For every G € F1, let sT(G) be the number of switches that transform G into a graph in
F~. We seek for a lower bound on s(G). Indeed, we will find many edges xy such that the
{uv, zy}-switch leads to a graph in F~. For this, it suffices to select an edge zy such that zy
is at distance at least 2 from wv, we have xy ¢ E(F'), and x € V' \ Z'. By (E3), there are at
least /20 edges that have one endpoint in V'\ Z’ and are not contained in E(F”). Therefore, it
suffices to count how many of them lie at distance at most 1 from uv. Note that d(u), d(v) < n'/%.
Moreover, v has no neighbour with degree larger than n'/4. While u can have neighbours w € Z’
with degree larger than n'/%, all the edges incident to w have both endpoints in Z’ (by (E2)).
It follows, that there are at most 2n!/2 edges at distance at most 1 from wv with at least one
endpoint in V' \ Z’. Note that for any such zy, the {uv, zy}-switch transforms G into a simple
graph G with degree sequence D, Go[Z'| = H', F' C Gy, and uwv ¢ E(Gg). Therefore,

@) > = —onl/2 > L
SOz g 25
For every G € F~, let s7(G) be the number of switches that transform G into a graph in
F*. We bound s~ (G) from above. Clearly, any such switch is of the form {uz,vy} for some
x,y € V. Since d(u),d(v) < n'/%, there are at most d(u)d(v) < n'/? choices for the edges uz and
vy. Therefore,
s7(@) <n'/?.
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Using (10) we obtain

Pluv € E(GP) | GP[Z']= H', F' C GP] < z;gg% ‘Pluwv ¢ E(GP) | GP[Z') = H', F' C GP)
1/2
< 307; -Pluv ¢ E(GP) | GP[Z'] = H', F' C G
<30n"Y2.

O

Lemma 12. Suppose n € N and 1/n < v < 1. Suppose Z' C V. Suppose H' is a graph with
vertex set Z', and F' is a bipartite graph with vertex partition (Z',V \ Z'). Suppose x € V' \ Z'
and z € Z'. Suppose D is a degree sequence on 'V such that

- ifw eV and d(w) > n'/*, then w € Z' and d(w) = dg(w),

- Ywez/(dw) — dp () — dp/(w)) < wvn,

- 2 wev\z(d(w) = dpr(w)) = n/20, and

22 ¢ B(FY,
Then, for every i >0 and Z" .= Z'\ {z},

Pldgo (2, Z2") — dp(z) > |Vv(d(2) — dp(2))] +i | GP[Z'] = H', F' €GP, €] < (22vw)"*1,
where € € {{xz € BE(GP)},{xz ¢ E(GP)}}. Therefore, by averaging, we also have
Pldgo(x, 2") = dp(x) > |V(d(z) — dp ()] +i| GP[Z'] = H', F' C GP] < (22y/v)"*! .

Proof. Let K := |\/v(d(z) — dp/(x))]. For every k > K, let Fj, = Fi(€) be the set of graphs G
with degree sequence D such that G[Z'| = H', F' C G, dg(z,Z") —dp(x) = k, and & is satisfied.
As before, we will only perform switches using edges that are not contained in E(H') U E(F").

Consider a graph in Fj. Then in any of the two possibilities for £, there are at most (d(x) —
dp(x))vn switches that lead to a graph in Fjy .

For every graph in Fj1, arguing similar as in Lemma 11, there are at least (k + 1)(n/20 —
vn — 2n'2) > (k4 1)n/21 switches that lead to a graph in Fi. This is the number of pairs of
edges where one element is among the k+ 1 edges between x and Z” and which are not contained
in E(F’), and the other element is among the edges with both endpoints in V' \ Z’ (at least
n/20 — vn — 2n'/?) which are at distance at least 2 from the endpoints of the first element.

Thus, for £ > K, we obtain

21(d(z) — dpr(x))vn

PlFe] < (k+1)n

P[Fx] < 22V/VP[F] ,

which implies that
Pldgo(x, Z2") — dp(z) > K +i | GP[Z') = H', F' C GP,&] < (22/v)1 .
O

Lemma 13. Supposen € N and1/n < v < 1. Suppose Z C V. Suppose H is a graph with vertex
set Z and F is a bipartite graph with vertex partition (Z,V \ Z). Suppose z € Z and x € V \ Z
such that xz ¢ E(F). Suppose D is a degree sequence on'V (write d(u) = d(u) — dg(u) — dp(u)
for all u € V') such that

- ifw eV and d(w) > n'/*, then w € Z and d(w) = dg(w),

A~

- Dwez d(w) < vn, and

- M =Y ez dw) > n/10,
Then,

Plzz € B(GP) |GP[Z] = H, F C GP] = Mu + 25\/1).

)=

Proof. Let F;, be the set of graphs G with degree sequence D such that G[Z] = H,
and zz € E(G) and F_, the set of graphs with degree sequence D such that G[Z] = H,
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but zz ¢ E(G). As before, we consider only switches using edges that are not contained in
E(H)U E(F).

First, note that if min{d(z),d(z)} = 0, then the statement holds trivially. Therefore, we may
assume that c?(a:),cf(z) > 1. Suppose G € F,.. Applying Lemma 12 with Z' = Z, H' = H,
F' = F and i = 0, we deduce that

Pldg(x, Z) — dp(z) > vd(z) | G[Z) = H,F C G,zz ¢ E(GQ)] < 22v/v .

Let F,, denote the subset of F,, where dg(x,Z) < dr(z) + /vd(z) holds. Then the above
implies that

(23) \Fozl > (1 - 220)|Fp .

In other words, for at least (1—22+/v)|F;,| of the graphs in F,_, the vertex x has at most \/vd(z)
neighbours 2’ € Z \ {z} with 2z’ ¢ E(F).

Since d(z) > 1, the vertex z has at least one neighbour V'\ Z through an edge not in E(F). We
now partition the set ﬁm_z into sets according to the neighbours of z in V'\ Z and the neighbours
of z in Z (through edges that do not belong to E(F')). We will use § to denote sets of vertices
in {y1,...,9} CV\(ZU{z}) and Z to denote sets of vertices in {z1,...,2,} C Z\ {z}. We
define ]:"m_z (y, z) to be the subset of graphs in ]:";Z such that the vertices in ¢ are the neighbours
of z in V'\ Z and the vertices in Z are the neighbours of x in Z. In both cases, we only consider
the neighbours that are connected to either z or z by an edge not in E(F).

Thus, ]:"x_z is the disjoint union of all subsets .73;;2(;(7, Z), ranging over all y and z as specified
above; that is, in particular, |§| = d(z) and |z| < \/vd(z). We will now use Lemma 11 to show
that for most members of ]:';Z (y, Z), the vertex x is not adjacent to any vertex in .

To apply Lemma 11, we set Z' := Z U {z}, V(H') = Z', and E(H') consists of E(H), the
edges that join z and z, and the edges in F that are incident to . The graph F’ is the bipartite
graph with vertex set (Z',V'\ Z’) and edge set E(F)\{xz2: 2 € Z}. Also observe that (E1), (E2),
and (E3) are satisfied; in particular, > ey 7/ (d(w) — dpr(w)) = M — d(x) = n/20 holds. Let
F; (7, %) be the subset of (7, 2) in which z is not adjacent to a vertex in §. Since zy ¢ E(F”)
for each y € ¢y, Lemma 11 implies that

(24) P (3,2)] = (1= 30020 )| Py, 2)] = (1= 300~ V)| FoL (g, 2),

because y contains at most cf(z) < n/* vertices.

Next, we partition the set ]:';Z_ (y, Z) according to the neighbours of z in V'\ Z. We will use w
to denote the set of neighbours of x in V' \ Z. Thus w does not contain any member of g U {x}
and (1 — \/v)d(z) < |w| < d(x). For such a w, we let F,,~(7,%, @) be the subset of F;.~ (7, 2)
where w are the neighbours of x in V'\ Z.

Assume now that g = {y1,...,y-} and w = {wy,...,we}, with r = a?(z) and (1 — ﬁ)d(m) <
¢ < d(z). We fix some i € [r] and j € [¢]. An straightforward switching argument as for example
performed in Lemma 11 shows that for at least (1—n~"/10)|F..~ (g, z,w)| graphs in F,,~ (7, Z, @),
the edge y;w; is not present. In this case, we apply the switch {zy;,zw;}. Thus, in total, the
number of switches from graphs in ]i';[ (g, z,w) to graphs in F,’, is at least

(1= n" 10| Fr (g, 2,@)] > (1= 0710 (1 = Vw)d(2)d(2)| Frr (9, 2,0)].
Hence the number of switches from graphs in .732; (7, Z) to graphs in F; is at least

(1=~ = V)d(@)d(2)| Fy (5 2)] = (1 —2vw)d(2)d(2)| 7, (5, 7).

This in turn implies that the number of switches from graphs in F,, to graphs in F is at least
S e (23) A s
(1 = 2vV)d(x)d(2)| Fpe| = (1= 24v/v)d(x)d(2)|Fy].

Furthermore, since the edges of F are not involved in such switches, there are at most d(z)d(z)

switches transforming a graph in F,, into a graph in F,.



18 NIKOLAOS FOUNTOULAKIS, FELIX JOOS AND GUILLEM PERARNAU

Consider now a graph in F,.. Any switch that transforms it into a graph in F,, must use the
edge xz. It suffices to bound the number of choices for the other edge. On the one hand, it is
easy to see that there are at most M switches leading to a graph in F,,. On the other hand,
since d(z),d(z) < n'/%, there are at least M — vn — 2n'/? edges in distance at least 2 from 2
which belong to G[V'\ Z]. Thus there are at least M — 2vn switches leading to a graph in F_,.

Combining all four bounds, leads to the desired statement. O

8.2. The exploration process. In order to bound the order of the largest component in G’E
we will perform an exploration process on GP that reveals the components of GE. An input is
a pair (G, 6) with the following properties. For a given degree sequence D on the vertex set V,
we let G be a graph on V with degree sequence D and for every vertex v, we arbitrarily assign
the labels 1,...,d(v) to its incident edges. In this way, each edge obtains two labels. Since
each label is associated with one of the endpoints of the corresponding edge, it is convenient to
understand this labelling as a labelling of the semi-edges of the graph in such a way that the
semi-edges incident to v are given the labels 1,...,d(v). Thus, during the exploration process,
G is equipped with an arbitrary labelling of the semi-edges incident to each vertex. The semi-
edge labelling fits well with the switching method: if G’ is obtained from G by switching two
edges, then the semi-edges of G’ naturally inherit the labelling on the semi-edges of G. The set
S = {0, : v € V} is a collection of permutations, one for each vertex v € V, where o, is a
permutation of length d(v). For technical reasons that will become apparent soon, we will need
to consider the exploration process on an input. The labelling on the semi-edges together with
G, will determine the order in which the vertices are explored during the process.

Given an input (G, &) and a subset of vertices Sy C V', we proceed to describe the exploration
of G from Sy. First, for every vertex in v € V', we permute the labels of its incident semi-edges
according to o,. Observe that a uniformly selected set of permutations & leads to a uniformly
selected labelling of the semi-edges incident to each vertex of G. First, we expose the graph
G[So). For every t > 0, let S; be the set of vertices that have been explored up to time ¢, let
H; := G[S;] and let F; be the bipartite subgraph with vertex partition (S, V '\ S;) that contains
those edges of E(G) that have been exposed but have not survived the random deletion — we
will be referring to these edges as the edges that have failed to percolate. For a vertex u € V, we
define its free degree at time t as

dy(u) == d(u) — dg, (u) — dp, (u) .

We may assume that V has some fixed ordering. If at time ¢ there exists at least one vertex
v € Sy with czt(v) > 1, we select! the smallest vertex vy, € Sy such that Cit('l)t+l) > 1. Let w1
be the vertex w € V'\ Sy with v,1w € E(G)\ E(F};) that minimizes oy, , (¢(w)), where £(w) is the
label of the semi-edge incident to v411 that corresponds to virjw. After that, with probability
p, we retain the edge vy 1wi41 in G,. If the edge survives percolation, we proceed as follows:

1. we set Spy1 = Sy U{wit1};
2. we expose all the edges (back edges) from wyy; to S\ {vit1} that are not in Fy; we define
the backward a’egree2 of wyy as

dy(wit1) = d(wis1, Se \ {ver1}) — dry (weg) 5

we retain each of the back edges in G, independently with probability p; and

4. we define Hyyq := G[Si4+1] and let Fy4q be the bipartite subgraph with vertex partition
(St+1,V \ St+1) that contains all the edges between Siy; and V' \ S that have failed
to percolate so far.

If vpp1wiqq fails to percolate, we set Syp1 := Sy, Hypq := Hyy, V(Fiy1) := V(F;) U{wy1}, and
E(Fiy1) = E(Fy) U{vip1weq }-

b

ITo be precise, the selection of a new vertex and the updates of the considered parameters happen between time
tand t+ 1.
2Note that the backward degree does not include the contribution of v¢41.
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Finally, if there is no v € S; with d}(v) > 1, we let wip1 = u, where u € V' \ S; is chosen
with probability proportional to d¢(u), and we set Spp1 := Sy U {wsy1}, Hir1 := G[Si+1] and
Fyy1 := F;. This marks the beginning of a new component.

Note that at time ¢ we have explored at most ¢ new vertices and that G[S] is fully exposed
(as well as Gp[Sy]). Moreover, there is a set of edges E(F}) joining S; and V' \ S; that have also
been exposed but failed to percolate.

Let H; denote the history of the exploration process after ¢ rounds (at time ¢). More precisely,
this is the random object composed of the collection of all the choices that have been made in
the exploration process up to time ¢, and include the choice of Sy, Hy = G[S;] and F;. Observe
that for a fixed input (G, &), the only randomness in this exploration process stems from the
percolation process and the random selection of a new vertex if H; is a union of components in
the percolated graph.

The next two variables will be crucial to control our exploration process at time t:

- M, = ZuGV\St aft(u), which equals the number of ordered edges wv with u € V'\ S; and
w ¢ E(F).

- Xi = ) ues, dy(u), which equals the number of edges uv with u € Sy, v € V'\ Sy and
w ¢ E(F).

The variable X; counts the number of edges that are suitable to be used in the step ¢ + 1
to continue the exploration process. If X; = 0, then we have completed the exploration of a
component of G,.

In order to deduce Proposition 9, we will analyse the exploration procedure on the input
(GP, &), where each permutation in & is chosen uniformly at random among all permutations
of the appropriate length. In order to show that the largest component in GI? is large or small,
we will consider the evolution of the random process {X;}+>¢ conditional on its history ;, that
is, the set of all decisions taken up to step t. More formally, H; is the o-algebra generated
by all random decision taken up to step t. Note that now H; does not only depend on the
indicator random variables associated with whether the edges survive percolation, but also on
the random graph GP. Using the method of the deferred decisions, we can generate each random
permutation while we perform the exploration process. This ensures that, at step ¢, any choice
of w41 satisfying the desired properties is equally possible (see Section 2.2 in [15] for a more
details).

8.3. The expected increase of X;. For every uv € E(G), let I(uv) be the indicator random
variable that the edge uv percolates.
If X; > 0, then the increase of X; can be written as
(25) X1 — Xp = —(1 = I(oprawi)) + T(vrrwen) (i (wegn) — 2) = 2dj(wera))
and if X; =0, as
(26) Xt+1 - Xt == Jt(wtﬂ) .
The next three lemmas use Lemmas 12 and 13, (25), (26), and E(I(vir1wi1)) = p to provide

bounds on E[X;;1 — X; | H;] assuming that ¢ is small, M, is large, and X; is small and for the
first lemma also positive.

Lemma 14. Suppose n € N and 1/n < B,p,1 < X < u,1/d,p < 1. Let So CV and let D be a
degree sequence on 'V such that XP < dn and uen\s, Au)(p(d(u) — 1) = 1) < —pn.

Consider the exploration process described above on (GP, &) with initial set Sy and suppose
t < pn. Conditional on Hy satisfying dp,(w) = d(w) for every w € V with d(w) > n'/*,
M; > (1—-n)2P, and 0 < X; < fn, we have

E[Xp41 — X; | 7] < =
Proof. At time ¢, there are at most ¢ vertices u € V \ S; such that d;(u) = 0. This is the case

since d(u) = dy(u) + dp,(u) for all w € V' \ Sy and at each step s < ¢ there is at most one edge
added to Fs. Observe also that the function h(x) = z(x — 2) is monotone increasing for x > 1



20 NIKOLAOS FOUNTOULAKIS, FELIX JOOS AND GUILLEM PERARNAU

and h(0) = h(2) = 0, h(1) = —1. This implies that d(u)(d;(u) — 2) > d(u)(d(u) — 2) only if
d(u) =1 and d¢(u) = 0. It follows that

(27) > di(u)(de(u) —2) <t+ > d(u)(d(u) —2) .

u€eV\Sy ueV\Sy

The fact that Sy contains all the neighbours in GP of vertices of degree larger than n!/4 and
that Sy C Sy, ensures that for every v € Sy such that dy(v) > 1, we have d(v) < n'/%. Choose
u € V'\Sy. Since My > n/10 and X; < fn, and provided vy11u ¢ E(F}), we can apply Lemma 13
withv =08, 2 =25;, H=H;, F = F}, 2 =vy1, and © = u to conclude that

Plogi1u € B(GP) | Hy) = dt(”ﬁwl)dt(“) (1£25\/5).
t
Observe that every edge incident to vy that is not contained in E(F;) U E(H;) is chosen with
the same probability to continue the exploration process. Thus the probability that u is the
vertex w that minimizes o, , (¢(w)), where £(w) is the label of the semi-edge incident to vs1;
and corresponding to vyy1w, among all w € V \ S; with v, qw € E(GP) \ E(F,), is precisely
1/d;(vi11). Therefore,

Plu = e | el = S (14255).

Note that if v u € E(Fy), then Plu = wiyq | He] = 0.

Let ny denote the number of vertices v € V' \ Sy with dy(v) = 1 and let 4, € V' \ S; denote
the set of vertices u such that v, ju € E(F;). Since d(viy1) < n'/%, we have |4, < n'/%. Also
di(u) < d(u) < n'/* for all u € Ay. Therefore, |37, ¢ 4, di(u)(di(u) — 2)] < /4,

Using (25) and the fact that an edge percolates independently from the underlying graph, we
conclude that

E[Xip1 = X¢ [ Hi) < —(1=p)+p D, Plu=wi1](di(u) - 2)

u€eV\St
< —(1-p+ % (1+25vB) > diw)(di(w) —2) —ni(1 - 25y/B) + 2%/
weV\Sp:ds (u)>2
. . 3/4
< —(1-p+0a+ 25\/6)% S di(u)(di(u) —2) | +100y/3 + 2%
ueV\Sy
(27)’2"@ ~(1—-p)+(1+ 25\/5)% > d(u)(d(u) —2) | +2p+101,/B.

Now, we write

| 2 A —2) ) = |3 ) ~1) = 3 dw)

ueV\So u€V\Sop ueV\Sy
P 1 1

=or | 20 dwdw) =1 = Y dw) | - D dw) 5 Y dw)
¢ ’LLEV\SO UEV\SO ¢ uEV\So t UEV\SO

1—p 1

uEV\So

(28) =
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Hence,

1_
E[Xerr = X | H < =0 | ~Mot (1425v/8) D dlw)
’U,EV\SO

+1+25\/B

i, > dw)(pld(u) — 1) = 1) | +2p+ 101/8.

uGV\So

But since M; > (1 —n)%P > (1 —n) 2_vev\s, 4(v), we have

M) Y dw | < =2 (<0-m 1 25VE) <g+ 8
t ueV\So B

where the previous inequality follows as n < p and § < 1.
Thereby, using that 8, p,n < A\ < u,1/d,

< 1+ 25/

E[Xt+1 — Xt ’ Ht] -~ M
t

> dw)(pld(u) —1) = 1) | +2p+101y/8 + 7+ g'/?
u€V\Sop
g—%+2p+101\/ﬁ+n+61/3
S _)\7

which completes the proof. O

For the following two lemmas we do not require the condition X; > 0.

Lemma 15. Suppose n € N and 1/n < 8,p,m1 < X < p,1/d,p < 1. Let Sy CV and let D be a
degree sequence on 'V such that ¥P < dn and Rz? > un.

Consider the exploration process described above on (GP,&) with initial set Sy and suppose
t < pn. Conditional on H; satisfying dp,(w) = d(w) for every w € V with d(w) > n'/*,
M; > (1 —n)2P and Xy < Bn, we have

- 220+ 1 -

Edy (wi1) — 2 | H] > Tp .

Proof. We will first provide a lower bound on }- g, dy(u)(p(dy(u) — 1) — 1). Consider a
realisation of the degree sequence of GP[V \ S;] which satisfies the conditions on #;, which we
denote by D; = (dj,...,d;,) with d] <--- < d, and n’ = |Dj|. Since M; > (1 — n)XP, we have
that Y, g, d(v) < ndn. By Proposition 8, with § = S; and v = nd, and since RY > un (observe
that v < ), we have R}?ﬁ > &5 . (At this point we want to stress that the previous bound is not
a with-high-probability statement; it holds for every possible realisation of Dj.) Recall that for
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Jj> j%g’ we have p(d; — 1) —1 > 0. It follows that

> diw)(p(deu) = 1) = 1)

ueV\Sy
> Y dgopns, (W (p(dapns,(w) — 1) — 1) — X
uEV\St
i, y
> > dipdj—1)—1)+ Y 4(p(d; = 1) ~ 1) = djp, (pldjp, = 1) = 1) = B
i=1 i=iv, K
t
> Zd’ d;—1)—1)—28n
J jD,/g
> Y (p(df—1)—1) —28n
J:]%/
6<<M n
(20) = Ry'-28n > ko

Let n; denote the number of vertices v € V'\ Sy with a?t( ) =1andlet A; C V\St denote the set
of vertices u such that vi11u € E(Fy). Asin Lemma 14, we have | Y, 4, dy () (dy(u) —2)| < n/4.
If X; > 0 holds®, we can use Lemma 13 to show that

PE[di(wi1) — 2 | He =p Z Plwgy1 = u | Hel(de(u) — 2)
ueV\St

zﬁ (1-25vB) > di(u)(di(u) —2) —na(1+25/B) — n®

w€V\Sy:d(u)>2

2(1—25¢B)% S diw)(di(w) —2) | —1014/5.

ueV\Sy

Therefore, using a similar calculation as in (28), we conclude

(1= p) + pEdywn) —2 | 1] > 2 [+ (1-25VE) D duw)

M,
uGV\St
1—-25 «
(30) FLZBVE S ) pdit) ~ 1) - 1) | — 1011/
t ueV\S;

Note that >, i g, dy(u) > My —t > (1 — p)M;. Similarly as before,

I—p

S +(1-25v8) Y diw) | = (1- )(—1+(1—25\/B)(1—p))

ueV\Sy
(31) > —(p+25v/8).
Using (29), (30), (31), and that 3, p < A < p,1/d, we conclude the proof of the lemma as
R 1—-25
(1 )4l )~ 2 ] 2 TEIYOE a6 /55 0

3Olc»serve that this calculation is also correct if X; = 0.
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Lemma 16. Suppose n € N and 1/n < Bipn <AL p, 1/d,p < 1. Suppose So CV and let D
be a degree sequence on V such that P < dn and RD > un.

Consider the exploration process described above on (GP, &) with initial set Sy and suppose
t < pn. Conditional on H; satisfying dp,(w) = d(w) for every w € V with d(w) > n'/*,
M; > (1 —n)2P and X; < Bn, we have

Eld) (wesr) | Hel < ~=Eldy(wrsn) — 2 | 1,

10

and
E[Xi1 — Xe | He] = N

Proof. Suppose first that X; = 0. Recall that in this case, we start the exploration of a new
component and we select a vertex in V'\ Sy with probability proportional to its free degree. As this
is at least 1, we deduce E[X;41—X; | H;] > p > A. By Lemma 15, we have E[d; (w;11)—2 | H¢] > 0.
As d}(wi41) = 0, the first bound also follows.

Suppose now that X; > 0. In order to bound the expectation of d'(wyi1) it is clear from
Lemma 12 with v = 3, Z = S;, H = Hy, F' = Fy, © = wyy1, 2 = vi41 and € = {2z € E(GP)}
that

Eld;(wi1) | He] < 20/BE[di(wes1) | Hil

(32) —2\/1@ 1) — 2 | He] +44/B

< EE[dt(th) — 2| Hy],

where the previous inequality follows from the fact that E[d(wis1) — 2 | H¢] > 2A by Lemma 15
and f < A.
Using (25), (32), Lemma 15 and 8 < A, we obtain

E[Xt—f—l - X \ Ht] = —(1 - ) ( [Cit(thrl) -2 | Ht] - QE[dl(thrl) ‘ Ht])
—(1— +p- 1—4\/> dtthrl —2|Ht—8pf

> 2(1—4y/B)A = (1 = p)4y/B—8p\/B > A,

which completes the proof. O

8.4. Another concentration inequality. The following lemma will be used to show that sev-
eral parameters of our process do not deviate much from their expected value.

Lemma 17. Suppose a < 0,b > 0, m € {0,1}, t € N, and y € [a,0). Suppose T is a stopping
time with respect to a filtration (Fs)i_y. Suppose Yo,Y1,...,Y; are random wvariables such that
Ys is measurable at time s and Yy — Ys_1 € [a,b]. Suppose that for any s € [t], we have

El ey (=1)"™(Ys = Yso1) | Fom1] < yliecqy
Then

t TS
P(=1)"(Yrat — Yo) + lrsry (t—71)y > % < e 12(b-a)? t.

To this end, we shall use the following lemma which was proved in [25] and is a corollary of a
martingale concentration theorem (Theorem 3.12) from [17].

Proposition 18. Let Wy,..., W, be random variables taking values in [0, 1] such that
E[Ws | Wi, ..., Ws_1] < ws
for each s € [t]. Let A\, := 22:1 ws. Then for any 0 < § <1, we have

%
3.

t
P> W= (140N

s=1
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Proof of Lemma 17. The assumption of the lemma implies that for every s € [t]
E[l{s<r (=1)™(Ys = Yso1) + ylgsory | Fs1] < v

We set Z, = l{SST}(—l)m(YS — Y1) + Ylissry. The history Fs—1 completely determines
Z1,...,2Zs_1, whereby

(33) E[Zs | Z1,...,Z5-1] <.
We now rescale the variables Zs to obtain random variables in [0, 1]. To this end, we set
Zs—a
4 s 1= .
(34) Wi = —
It follows directly from (33) that
—a
E[Wsywl,...,ws_l]gz —w.
—a
By Proposition 18 with ws := w for each s € [t] and A\; := wt, for any § € (0, 1], it follows that
t
P [Z W, > (14 6)tw| < e 0wt/
s=1

Using the definition of Wy in (34), we obtain

62t(y—a)

t
P|Y Z,>(1+6)y—at+at| <e 0o

Recall that @ < y < 0. Choosing 6 = — € (0, 1], we have (1+9)(y—a)t+at = yt+o(y—a)t =

_Yy
2(y—a)
%t. Using that b — a > y — a, we obtain

t 2
> Zs> ty] < ¢ a2
2

s=1

P

Finally, note that
¢

> Z =1y ()™ (Yr = Y0) + (t = 7)y) + Lery (1) (Y; = Y0)
s=1

= (=1)"(Yoat — Yo) + 1gyury (t = 7)y

and the lemma follows. O

8.5. Proof of Proposition 9. In this subsection we will prove the Proposition 9. We first need
three more technical statements.

Lemma 19. Supposen € N and 1/n < o, 3 < & < n,p < p,1/d,p < 1. Suppose Sy CV and
let D be a degree sequence on V' such that ©P < dn and w € Sy for every w € V with d(w) > nl/4
and ), s, d(v) < an. Let T be the smallest t < n such that either Xy > fn or My < (1 — n)xP
- if this does not exist, we set T =n+ 1. Conditional on the event that dy,(w) = d(w) for every
w eV with d(w) > n'/4, then

Plr < én, X, < Bn] = o(n™?).
Proof. Observe that P[r < én, X, < Bn, M, > (1 — n)XP] = 0. Thus

(35) Plr < én, X, < fn] = Plr < én, X, < Bn, M, < (1 —n)%P].
Note first that if M, < (1 —7)XP, then > ves, d(v) > n¥P > nn. Let R; be the set of times
s € {0,...,t} where the edge vsy1wsy1 has percolated and let R} be the set of times where

s €{0,...,t} where Xg = 0. Therefore, we have

(36) Z (de(we1) + dp, (i) Z di(wi11) Z d(v) — Z d(v) > (n—a)n

teER, teR!, VES, vESH
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At each step s € {0,...,t} of the process at most one edge is added to Fs. For every 1 <t <,
it follows that

> dp(wepr) St+1<En+1.
sER:

Since o < £ < 1, using (36) one concludes

(37) > diwe) (Z di(wis1) + dFt(th)) —n—1+ ) di(wi) > % ~

teR-UR.. teR, teR.

From (25) and (26), and using again that £ < n, p, it follows that

X: = Xo—(r—|R:)+ > (di(wi1) =2 = 2dj(wis1)) + Y di(wira)
teR, teR,
1 B 1 N
Z —37' + 5 Z dt(’wt+1) + 5 (Z dt(th) — 4d£(wt+1)>
teR-UR!. teR,
(37) n
> 77 35 + = (Z dt U}t+1 4d;(wt+1)>
teR,
nm 1 -

(38) > Y + 5 (t;{; di(wit1) — 4d£(wt+1)> :

Therefore, we deduce that

Plr < én, X, < fn, M, < (1 —1)2P] <

(39) P [’7‘ S fn,XT S ﬁn,X > —_— —I— (Z dt wt+1 4d2(wt+1)>] .

teR,

Observe that 3 < 7. So in order that X, < fn, it suffices to prove that — >, p_ ( (wip1) —
4d;(wi41)) is not too large.

We define the following sequence Y7,...,Yg, of random variables. Let Yy := 0. Suppose ¢ is
the s-th smallest entry in R,. We set

Yy o= Yoo1 — (di(wig1) — 4dj(wis));
in the case where |R;| < s and s < &n, we set
Yo=Y 1 -1

Observe that |V, —Y,_1| < 4n'/4. Let {F,}$", be the filtration induced by the sequence {V;}%",
Suppose again that t is the s-th smallest entry in R.. We apply Lemma 12 with v = 3, Z/ = S,
H' = GP[Sy], F' = F;, * = wyy1, 2 = vp1 and € = {xz € E(GP)}. The first three conditions of
the lemma are satisfied: the first one is immediate from our hypothesis, the second one follows
from X; < Bn and the third one from the fact that My —3,,ci\ g, dr(w) > (1 —n)¥P —t > n/20.

Moreover, xz ¢ E(F’) holds. Similarly as in (32), we obtain,
1 o
Eld (wer) | He] < 5Eld(wern) | He] -

Let t_1 be defined such that ¢_; —1 is the (s —1)-th smallest entry in R, or —1 if s = 1. Observe
that given H; , we still can apply Lemma 12 to any possible input with history H;. This implies
that

L B ld(we) | #e ).

Eld (we1) | He ] < N

Clearly E[d;(wii1)|[Hs_,] > 1, so

1
ElYi1 - Yol < - -
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We can apply Lemma 17 to the collection Yy, ... Y, with —a = b = 4n1/4,y =-1/2m=0
and t = &n, where 7 is the stopping time 7 = &n, to conclude that

P [—an < 5;] = o(n™?).

Observe that by construction of Y, we have ZteRM@ (dt(wm) — 4d£(wt+1)) > —Ye, — &n.
Hence

. 3&n _
(40) Pl Y () —ddiwn)) <~ = o(n?).
tERT/\§n
So by (39) we can further bound
Plr <én, X, < fBn, M, < (1—n)EP] <
m  3n - 3¢n
P [7' <én, Xr < PBn, X7 > e 8] +P Z (dt(wt+1) - 4d2(wt+1)> <0
tERT/\En
(40)
< P [7’ <&n, X;r < pn, X > % — 35871] +0(n*2)-

We will show that the first term is 0. Indeed,
n 3 n
X, > (22 > n>pn;
(8 8 ) nZqg > on
so this cannot hold simultaneously with X < fn. Finally by (35), we conclude that the proba-
bility that 7 < ¢ and X, < Bn is o(n™2). O

Lemma 20. Supposen € N and 1/n < a < B < n,p< p,1/d,p < 1. Let Sy CV and let D be
a degree sequence on V such that P < dn and w € Sy for every w € V with d(w) > n'/*, and
> ves, Av) < an. Let 7 be the smallest t < n such that either Xy > Bn or My < (1 — n)xP -
if this does not exist, we set T = n+ 1. Conditional on the event that dp,(w) = d(w) for every
w €V with d(w) > n'/*, the following holds:
(1) If Zuens, dw)(p(d(u) — 1) = 1) < —pn and 7y is the smallest t such that X; = 0, then
the probability that 71 > pn is o(1/n).
(i) If Rz? > un, then the probability that T > pn or that X, < n is o(1/n).

Proof. Recall that I(uv) is the indicator random variable that is equal to 1 if and only if uv €
E(GP) survives percolation when it is exposed. Also, recall (25): if X; > 0, then

Xipr = Xi = —(1 = I(oipawign)) + T0rawe) (de(wiga) — 2) — 2dj(wir1)) -

We first prove (i). Consider the sequence Yp, Y1, ... of random variables such that Yy := X
and

Yo =Y, 1+ 1{5§7’/\7'1} (Xs — Xsfl) .
Thus |V — Ys_1| < 2n'/4. Let A be such that 7, p < X < p, 1/d,p. Since X1 >0if s <17 AT,
by Lemma 14, we have
E[YS - }/;—1|H5—1] < _)‘1{sz/\7'1} = yl{sST/\Tl} .
Let v and € be such that o« <K v € f <€ £ < n,p. We now apply Lemma 17 to Y, with
—a=b=2n'* m =0 and t = cn, for some ¢ such that 1/n < ¢ < 1, to conclude that

A _a2
P | (Xrarinen — Xo) = Liensramy(en = 7 AT < 5 en| >1—e "

1/2

(41) >1-—n"2
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Let &(t) denote the event (X;amat — Xo0) = Lgsrary(t = T ATIA < —2 -t. We use Lemma 19
(for the second inequality below) and we write

Pl > pn] Plr > pn, 7 < &n]+Plm > pn, 7 > En|
Plry > pn,7 < &n, X, > Bn] +n"2 + Pl > pn, 7 > &n)

Plry > pn, 7 < &n, X, > Bn, &1 (vn)] + P& (vn)] +n 2 + Plry > pn, T > &n]

IE IA A

) Pl > pn, 7 < &n, X, > Bn, E1(vn)] + 202 + Plry > pn, T > &n).

Suppose that the events 7 > pn, %”n <7 <¢&n,X; > PBnand & (vn) are realised simultaneously.
Recall that o < ¥ < f < € < p < A. Since 71 > pn, we have X, o avn > 0. Then, we reach a
contradiction in the following way

A AV
0< X‘r/\‘rl/\un < *§Vn + XO + 1{un>7’/\7'1}(7/n —TNA 7—1))‘ < 7?” <0.
3v

Suppose that the events 71 > pn, 7 < %¥n, X; > fBn and £ (vn) are realised simultaneously.
Again, we reach a contradiction as follows

A
Bn < Xopraon = X7 < —5vn + Xo+ (vn—7)A <2 vn < fn.

Hence, IP’[Tl >pn, T <En, X, > Bn,é’l(un)] =0.
Thereby,
< Pl > pn,7>E&n]+ 2072
< Pln > pn, 7 > &n, E1(6n)] + P[E(En)] + 2072
41)

Pir > pn]

( Plr; > pn, 7 > &n, E1(€n)] + 3n~2.

But again the event 7 > pn, 7 > {n cannot occur simultaneously with £;(£n), since otherwise,
A
X&n = XT/\n/\{n < —5571 + X0 <0.

We conclude that P[r; > pn] < 3n~2.

We proceed to prove (ii). Let Yy := 0. For s > 1, consider the random variable
Yii=Yo1 — 1 (Xs — Xso1)

By the second part of Lemma 16,
E[Ys|Hs—1] < =Algsery = Ylis<ry -

Let £ and A be such that 3 < &€ < 7,p < A < pu,1/d,p. Similarly as before, we can apply
Lemma 17 to the random variables Yy with —a = b = 2n'/4, m =1 and ¢ = &n to conclude that
A2 ep1/2

A
(42)  P|(Xonen = Xo) + Lgnorp(€n— 1A > 56| 21— e " =1 - o(n72),

Now, let £(&n) denote the event X nen — Xo + Lignsry(§n — T)A > % - &n.
Since, £ < p, we then have

Plr > pn] <Plr>¢&n] < Plr>&n,E(En)] + P& (En)]

(42)
< Plr>én,E(én)] +n2.

But if 7 > £n holds simultaneously with £ (&n), then we have X¢, = X a¢n > Xo + % “n > fn
which contradicts that 7 > &n. So, this event has probability 0.
Similarly, using Lemma 19 (for the first inequality) we obtain

PX, < pn] = PX;<pfn,7<&n]+PX,<pBn,7>¢&n|
n"? +P[X, < fn,T > &n
n? + P[X; < fn, 7 > &n, E(¢n)] + PEa(En))]

n"? 4+ P[X, < Bn,T > &n, E(En)].

e IA IA

)
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As above, 7 > &n and &(&n) are incompatible. Therefore, the second event has probability 0,
whereby we deduce that P[X, < 8n] = o(1/n). O

Lemma 21. Let 1/n < v,p < 1/d,p < 1. Suppose that S C V with |S| < pn + 1 and
U C S. Suppose H is a graph with vertex set S and F is a bipartite graph with vertex partition
(S,V\S) and |E(F)| < pn. Let D be a degree sequence on V such that P < dn and, moreover,
d(w) = dg(w) for every w € V with d(w) > n'/* and Y wer(d(u) —dp(u) — dp(u)) > vn.
Conditional on GP[S] = H and on F C GP being the set of edges between S and V' \ S that
have failed to percolate in Gf, the probability that the union of components of GI? that intersect

U contains at most (vp/(20d))n vertices is o(1).

Proof. We may assume that |U| < (vp/(20d))n. Let GP := GP — E(F). Our aim is to show
that Ngp(U) € Ngo(U) is typically large. Note that for every vertex w € Ngp(U), there is at
least one edge uw € E (GD) with u € U that has not been exposed to percolation. In the second
part of the proof, we will show that many of these edges are preserved in GE, implying that the
union of components of GE that intersect U contains many vertices.

Let K := |(v/5d)n]. For every k < K, let Fj, be the set of graphs G with degree sequence D
such that G[S] = H, F C G and |[N4(U)| = k, where G =G — E(F). In order to estimate the
probability of each Fj, we only use edges not contained in E(H)U E(F) for a switch.

Consider a graph in Fi. There are at least vn — k > 4vn/5 choices for an edge uwv € E(G)

with u € U, v € Ng(U) and such that there exists v/ # v with v’ € U and v'v € E(G). Since
§(G) > 1 and d(w) < n'/* for every w € {u} U Ng(U), there are at least (n — [S U Ng(U)|)/2 —
|E(F)| —2n'/? > n/3 edges zy € E(G) with = ¢ SU Ng(U) and which are in distance at least 2
from wv. Thus, the total number of such switches into a graph in Fj 1 is at least vn?/4.

Given a graph in Fj,1, then there are at most (k + 1)dn switches that transform it into a
graph in Fy.

Thus, for every k < K, we have

A~

M .P[ka] <

PIF] < vn2/4 -

4
Z.Pp

which implies

PlUk<k/2Fk] < P[Fk /o] 2(4/5)_i < (4/5) KPHIPFK] = o(1) -
>0

That is, with probability 1 — o(1), there are at least (v/10d)n vertices that are connected to U
by at least one edge in GP. These edges have still not been exposed for percolation. Chernoft’s
inequality (Lemma 6) now implies that with probability 1 —o(1) a proportion of at least p/2 of
them will be retained in GB. Therefore, with probability o(1), we have ’NGZJD (U)| < (vp/(20d))n.
The conclusion follows. U

Proof of Propostion 9. We start with the first statement. Suppose there exists a set S C V such
that d(v) < nt/4 for every v ¢ S, and for every possible choice of G with degree sequence D, we
have 37 e g1 d(w) < anand 3o, oy g dw) (p(d(u) — 1) = 1) < —pn.

We show that every vertex u € V' is in a component of size at least yn with probability o(1/n).
A union bound over all vertices completes the proof.

Suppose u € V. We prove the desired statement conditional on every possible neighbourhood
of S. Thus let Sy := N[S] U {u} for some choice of N[S]. Hence ) g d(u) < 2an and

2 uen\s, Au)(p(d(u) — 1) —1) < —pn/2. Moreover, for every vertex v € V' with d(v) > nt/4; all
its neighbours belong to Sy. We apply the first part of Lemma 20 with p = /2. Since v < p,
there exists a ¢ < yn/2 such that X; = 0 with probability 1 — o(1/n). Since |S¢| < t + |Sp| <
(7/2 + 2a)n < yn, the union of all components that intersect {u} U N[S] contain less than yn
vertices with probability 1 — o(1/n).

Now we prove the second statement. Recall that now A(D) < nl/% Let Sy := {ug} for

an arbitrary vertex ug € V. Clearly, ) g d(v) < an. Recall that X; counts the number of
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edges between S; and V' \ S; in the graph GP that have not yet been exposed for percolation.
Observe that all the edges counted by X; will belong to the same component of GpD if they survive
percolation. Note that this component may not contain wug.

Let 8 and p be such that v < 8 < p < u. By the second part of Lemma 20, with probability
1 — o(1), there exists a 7 < pn with X; > fn. Recall that H, denotes the history of the
exploration process, with the corresponding choice of S, H; and F; at time 7. Let U be the
set of vertices from the component of GE under exploration at time 7 that have been already
explored; that is, the ones in S;. Then ) ;;(d(u) — du, (u) — dp,(u)) = X; > fn. Moreover,
S/ <7+1<pn+1and |E(F;)| <7 < pn. By Lemma 21 with v =3, S =S;, H= H, and
F = F,, with probability 1—o(1), there exists a component in G}? with at least (8p/(20d))n > yn
vertices. O

9. DEGREE SEQUENCES WITH MANY VERTICES OF HIGH DEGREE

In this section we prove Proposition 10. As in the proof of Theorem 3, we adapt our argu-
mentation according to the structure of the degree sequence. If not stated otherwise, we always
consider a degree sequence D on V with average degree at most d, where V is a set of size n.
Recall that d is assumed to be fixed. In addition, we assume 1/n < 1/d < 1. We start with
some notation, which we use throughout this section. Let

T :={uecV:d(u) < 3d},

Sy :={u €V :d(u)>logn},
Sy :={u eV :d(u)>n'?}, and
Sy :={ueV:du)>n"}.

We say D satisfies (D}) if
(D¢) Y du) = en,

u€eS]

and we say it satisfies (D3) if

(D) > >

u€Ss3

9.1. Degree sequences with vertices of very high degree. In this subsection we consider
degree sequences D that satisfy (D3). We collect several results about such degree sequences,
which we will use in the proof of Proposition 10.

The first lemma shows that GP[S3] is typically a clique.

Lemma 22. Suppose n € N and 1/n<1/d<1. Let V be a set of size n and let D be a degree
sequence on V with ¥P < dn. Then the probability that GD[S3] is a clique is at least 1 —n /11,

Proof. Since P < dn, it follows that |Ss| < dn'/®. If Pluv ¢ F(GP)] < n~'/? for every u,v € S3,
a union bound over all pairs u,v € S3 proves the lemma.

It remains to prove that for each pair u,v € Ss, we have Pluv ¢ F(GP)] < n~Y/2. Let F~ be
the set of graphs G on V with degree sequence D and uv ¢ E(G) and let F* be the set of graphs
G on V with degree sequence D and uv € E(G).

Suppose G € F~. Since d(u),d(v) > n*® and P < dn, there exist at least n%/°/2 ordered
pairs (z,y) with z € N(u), y € N(v) and zy ¢ E(G). Switching uz and vy transforms G into a
graph in FT.

Suppose G € F7, then there are at most dn switches that transform G into a graph in F .
Therefore, by (10), we obtain

2dn
PIFl< 55 PFF] <n7Y2
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Conditional on GP[S3] being a clique, GZ'[S5] is a binomial random graph on |Ss| vertices and
edge probability p. Since p € (0,1), it is an exercise to check that S3 induces a connected graph
in Gz? with probability at least 1 — C|153\’ for some ¢; = ¢1(p) < 1. Together with Lemma 22 we
obtain the following corollary.

Corollary 23. Suppose n € N and 1/n L1l-c<Kp, 1/J < 1. Let V be a set of size n and let
D be a degree sequence on V. with P < dn. Then

P[GE[S;;] is disconnected] < ¢/%3!.

The next lemma shows that, typically, the vertices in Sy \ S3 are connected to a vertex in Ss
in GP if |S3| > 100.

Lemma 24. Suppose n € N and 1/n < 1/d < 1. Let V be a set of size n and let D be a degree
sequence on'V with ¥P < dn. Assume that |S3| > 100. Then, with probability at most 1/n, there
is a vertex uw € Sy \ S3 which is not adjacent to a vertex in Ss.

Proof. 1t suffices to show that every vertex u € Sy is adjacent to a vertex in S3 with probability
at least 1 —n~2. Let u € Sy and let 0 < k < 50. Let F, be the event that u is adjacent to exactly
k vertices in Sj.

Consider a graph G € Fy1. Clearly, there are at most (k+ 1)dn switches transforming G into
a graph in Fy.

Consider a graph G € Fj. Let z be any vertex in S3 which is not adjacent to u (since |S3| > 100
but k < 50 there is such a vertex). Thus there are at least n'/3+4/5> = p17/15 pairs (v,y) such
that v € N(u) and y € N(x). For at most n pairs v = y and for at most 2dn pairs, we have
vy € E(G). Thus at least n'"/ /2 pairs lead to a {uv, zy}-switch transforming G into a graph
in Fiy1. Hence

P[Fi] < n VY Pl Fid].
Moreover, this implies
P[Fo] < n~1 - P[Fs] <77,
which completes the proof. O

Recall that T is the set of vertices of degree at most 3d. As D has average degree at most d,
many vertices belong to T'. More precisely, as every vertex in V' \ T' has degree at least 3d and
the average degree at most d, we conclude |V \ T'| < n/3. Thus

(13) > 2

The next lemma shows that many vertices in T are adjacent to a vertex in Sy if (D2) holds.

Lemma 25. Suppose n € N and 1/n < 1000e < 1/d < 1. Suppose V is a set of size n and D is
a degree sequence on 'V with P < dn that satisfies (D3). Then,

P[N(So)NT| < e?n] <n~t.

Proof. For every 0 < k < 2€%n, let Fj, be the set of graphs with degree sequence D such that
TN N(Sy)| = k.

Suppose 0 < k < 2¢2n. Consider at graph G € Fj41. In order to transform G into a graph in
Fi, we need to select a vertex u € T'N N (S2) which has at exactly one neighbour v in S3. Then
there are at most dn switches involving wv. Thus in total, there are at most 2e2dn? switches
from Fjpyq to Fy.

Suppose G € Fy,. Recall that k < 2e?n. Since ©P < dn, we have |S3| < dn?/3 and |S3] < dnl/®.
As (D3?) holds and as there at most (d)?n?3+1/> < en/40 edges between the vertices of S3 and
S, it turns out that there are at least en/15 edges xy such that x € S5 C Sp and y € N(S2).
More specifically, since k < 2¢2n, there are least en/20 edges xy with = € S3 and such that y
satisfies one of the following: either y € N(S2) \ T or if y € N(S2) NT, then it has at least two
neighbours in Sy. Fix such a choice of an edge xy. Note that if we switch xy with another edge uv
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such that w € T\ N(S2), we can only increase the neighbourhood of Ss. Observe that there are
at most n?/3 edges uv such that u € T\ N(S) and v € N(y). Furthermore, |T'\ N(S2)| > n/2.
Let u € T\ N(S2) and v € N(u) such that v ¢ N(y). Then there are at least n/2 — n?/3 > n/3
choices for the edge uv. Observe that the {uv, xy}-switch yields a graph in Fj; and there are
at least en?/60 switches from Fj to Fpy1. Hence

272
PFy] < M P[Fps1] < 1IP’[]:chrl]-
en 2

In particular,

€2n

S PIF] < 2P[Fe,] <270

k=0
which completes the proof. O

9.2. Lighter degree sequences. In this subsection we consider degree sequences that satisfy
(D}) but not (D3?). The first lemma shows that in this case, typically, the minimum degree of
GP[S4] is large.

Lemma 26. Suppose n € N and 1/n < e < 1/d < 1. Let V be a set of size n and let D be a
degree sequence on V with XP < dn. Assume also D that satisfies (D!), but not (D2). Then,
with probability o(1), there exists a vertex u € Sy such that dgp(g,(u) < min{d(u), n'/%}.€/(16d).

Proof. Let u € S and let K := |min{d(u),n'/6}-€/(16d)]. For every 0 < k < 2K, let F}, be the
set of graphs G with degree sequence D such that dgg,)(u) = k.

Suppose G € Fi. There are at least d(u) — k > d(u)/2 choices for an edge uv with v €
N(u)\ Si. The degree of v is less than log? n and each one of its neighbours has either degree
less than n?/5 (outside S3) or it belongs to S3. The former have total degree less than n*%log? n,
whereas the latter have total degree at most en/10 (since (D32) does not hold). Hence, there
are at most n*/5log?n + en/10 < en/5 edges at distance 2 from v. Similarly, there are at most
n*5k 4 en/10 < en/5 edges with one endpoint in N(u)NS;. Since (D!) holds, there are at least
en —2en/5 > en/2 edges xy with x € S; \ N(u) and y ¢ N(v). Performing a {zy, uv}-switch, we
obtain a graph in Fi,1. We conclude that there are at least ed(u)n/4 switches that transform
G into a graph in Fgq.

If G is in Fyi1, there are at most (k + 1) - dn switches that transform it into a graph in Fy.
Therefore, for every 0 < k < 2K, we obtain

4(k + 1)dn
ed(u)n

Since u € Sy, we have d(u) > log? n and we obtain

P[Fy] < PlFrg] < o - PlFra] -

DN | =

K-1
Y PR <27 KP[Fok] <n .
k=0

A union bound over all vertices u € S1 completes the proof. O

Lemma 27. Suppose n € N and 1/n < p, 1/d < 1. Let V be a set of size n and let D
be a degree sequence on V. with ¥P < dn. For R C V the following holds. Conditional on
§(GP[R]) > 200logn/p, the probability that GT'[R] is connected is 1 — o(1).

Proof. Let N := |R|. Our proof strategy is to show that with high probability for every possible
partition (A, B) of R, there are edges between A and B in Gz?'

Let (A, B) be a partition of R such that o := |A|/N and o < 1/2. Let K := |2aN logn/p]|.
For every 0 < k < 2K, let Fj, be the set of graphs G with degree sequence D such that §(G[R]) >
200logn/p and there are exactly k edges between A and B. In order to give an upper bound on
P[Fk], we will consider switches between Fj, and Fio.

Let G € Fj. We claim that there exist two subsets A’ C A and B’ C B with |A’| > |A|/2
and |B’| > |B|/2 such that for every u € A" (and every y € B’), there are at least 100logn/p
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edges from u to A (and from y to B). We prove this claim for A, because the latter case is
similar. Our assumption is that 0 < k¥ < 2K < 4aNlogn/p and §(G[R]) > 200logn/p. Let
A" C A be the subset that consists of all those vertices u such that dgpa(u) < 100logn/p. If
|A”| > |A|/2 = aN /2, then

ﬂ 100logn S 4aN logn
2 p P

which is a contradiction. Therefore |A”| < |A|/2, and setting A" = A\ A” we have |A'| =
|A\ A”| > |A|/2. Similarly, we set B’ = B\ B”.

Next we claim that the edges of G[A] can be oriented in such a way so that every vertex in A’
has out-degree at least 48logn/p in A. To obtain such an orientation, start consistently orienting
the edges of undirected cycles in G[A] until the undirected graph induces a forest. Afterwards
iteratively and consistently orient maximal undirected paths in this forest. If so, the out-degree
of a vertex in A is at least the in-degree minus 1. Since dg4(u) > 100logn/p for every vertex
u € A, the vertex u has at least 50logn/p — 1 > 48logn/p out-neighbours. Similarly, one
can also orient the edges of G[B] in such a way that every vertex in B’ has out-degree at least
48logn/p in B.

For each vertex in u € A’, select a set E(u) of exactly 48logn/p directed edges from u to a
vertex in A, and analogously select E(y), for each y € B’. We will only count the (possible)
{uv, zy}-switches with u € A’, y € B, wv € E(u) and yx € E(y). For the switch to be valid,
we insist on uz,vy ¢ E(G). Each edge ab with a € A,b € B can only invalidate switches of the
form {av, by} with (a,v) € E(a) and of the form {ua,xb} with (b, z) € E(b); that is, one edge ab
invalidates at most

e(A,B) >

> 2K >k,

_ 48Nlogn

(@) (L= )N + [E(@®)]-oN = ==

switches. Hence in total the edges between A and B block at most

48Nlogn _ 192aN?log?n
P p?
possible switches. Recall that |A’| > |A|/2, |B’| > |B|/2. Thus, by using 1 — «a > 1/2, there are
at least

2K

aN 48logn (1 —a)N 48logn  192aN? log?n S 96aN2log?n
2 p 2 p p? - p? ’
switches that transform the graph G into a graph in Fj19. Since we only switch edges with both
endpoints in R, the minimum degree in the graph induced by R stays the same.
Consider a graph in Fj, . Clearly, there are at most (k + 2)? switches that transform G into
a graph in Fj. Therefore, for every 0 < k < 2K — 2, we conclude

P[F] < M
~ 96aN2log?n

PlFryo] < 5 - PlFhya] -

1
4
We conclude that the probability there are less than K edges in GP between A and B is small,
namely

=

—1
(44) P[Fi] < 2- 4~ 52(P[For] + P[Fax_1]) < 27K+,

il
o

If k > K, then Ple(Gp[A, B]) = 0 | Fi] < (1 —p)X. Therefore, provided §(G[R]) > 200logn/p,
the probability that e(GE[A, B]) = 0 is at most (1 — p)& 4 27K+ < e_%aNlog", where we
used (44) and that 1 —p <e™P.

To conclude the proof of the lemma, we use a union bound over all partitions (A, B) of R.
Since for every 1 < a < N/2, there are (];[) < 198 N partitions with |A| = a. Conditional on
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d(G[R]) > 200logn/p, the probability that GE [R] is disconnected is at most

N/2 N/2 N/2

Z Z P[e(GE[A, B]) _ 0] < ZealogNe—%alogn < Ze—%alogn _ 0(1) ]
a=1 a=1

a=1 R=AUB
|Al=a

O

9.3. Proof of Proposition 10. In this section we use the results from the two previous subsec-
tions to conclude the proof of Proposition 10. Let p, d, € and d be as in the statement. Let n be
large enough in terms of these parameters. Let V be a set of size n. Let D be a degree sequence
on V with ¥P < dn. Recall that S; = {u € V : d(u) >log’n}, So ={u eV : d(u) >n'/3}
and S3 = {u €V : d(u) > n*°}. Proposition 10 assumes that D satisfies (D}).

Case 1: Suppose D also satisfies (D3), that is, > uess d(u) > en/10. Let s > 100 be the smallest
integer such that § > 2¢®, where ¢ is the constant given by Corollary 23 for our choice of p and d.
Set v1 := ep/(20s). If |S3] < s, then there exists a vertex u € S3 with d(u) > 2y1n/p, because D
satisfies (D3). This implies, by a simple application of Chernoff’s inequality, that GE contains a
star of order v;n with centre u, in particular, GE contains a component of order at least yin.

Suppose now that |S3| > s. Let A; be the event that GZ[Ss] is connected. Then, by definition
of s and by Corollary 23,

— 0

(45) P < 5.
Let Ay be the event that every vertex in Sy \ S3 has a neighbour in S3 and let A3z be the event
that |N(S2) N T| < €2n. Then by Lemmas 24 and 25,

PlAy U A3) < 2n~ L.

Let vo := p%e2n /3. We will show that ]P’[Ll(GI?) > yon | Az, Ag] > 1 — 6.

If IN(S3) NT| > €2n/2, then a straightforward application of Chernoff’s inequality combined
with (45) shows that there is a component of order at least pe?n/3 > von in GZZ,) with probability
at least 1 — 4.

If [IN(S3) NT| < €2n/2, then |N(Sy\ S3) N T| > €2n/2. Let F be a forest in GP such that
F contains N(S3 \ S3) NT, for every vertex x1 € N(S2 \ S3) NT, there is a path z1zex3 in F
such that zo € Sy \ S3 and z3 € S3, and among all such forests, F' contains as few as edges as
possible. To complete the case when D satisfies (D?), we will show that GE[Sg] U F), contains
a component of order at least yon with probability at least 1 — 6. Consider a realisation of GP
that satisfies Ap N A3. Observe first that whether a certain edge in F is present in Fj, changes
the number of vertices in N(Sy \ S3) N T that are connected via Fj, to S3 by at most n*/®. Thus
assuming A; holds, a straightforward application of McDiarmid’s inequality (Lemma 7) shows
that there is a component of order at least p? - €2n/3 = von in GE [S3] U F), with probability at
least 1 — n~!. This together with (45), completes the case when D satisfies (D2).

Case 2: Now, suppose that D does not satisfy Condition (D2). Since it satisfies (D), by
Lemma 26, we obtain

P [5(01’[51]) > %JlogQ n] —1-0(1).

Together with Lemma 27 where S plays the role of R, we conclude that
(46) ]P’[GE[Sl] is connected] = 1 — o(1).

In order to show that GZ contains a giant component, we will show that [N (S1) N T] is large.

Let K := |en/(128d)]|. For every 0 < k < 2K, let F}, be the set of graphs with degree sequence
D such that [N(S1)NT| = k.
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Let G € Fj. Using (43) and 6(G) > 1, there are at least |T'| — k > 2n/3 — k > n/2 choices
for an edge zy with € T\ N(S;). Observe that d(y) < log?n, since z ¢ N(S1). Also, since
z,y ¢ S and D does not satisfy (D2), we claim that there are at most

3dlog®n +n*®log’n + en/10 < %

edges incident to a neighbour of either = or y. Indeed, the number of edges incident to a neighbour
of z is bounded by 3dlog?n, as z has no neighbours inside S;. Now, the neighbours of y are
classified either as the neighbours that belong to S3 or those that do not. Since property (D3?)
does not hold, and there are at most en/10 edges incident to any vertex in Ss3, there are at most
en/10 edges incident to the first class of neighbours. Regarding the latter class of neighbours,
there are at most log?n of them (as y € S1) and each has degree at most n*®. Thereby, there
at most n%/5 - log? n such edges. Hence our claim holds.

Let uv be an edge such that u € S1, v ¢ N(y), and either v ¢ T or if v € T, then there exists
au' € S with u'v € E(G). Since )7, g d(u) > en, there are at least en —k —en/5 > en/2 such
edges. Hence, the total number of {xy, uv}-switches that transform G into a graph in Fj11UFk o
is at least en?/4 (we transform G into a graph satisfying Fj,o if v € S; and y € T'\ N(S1)).

If G € Fjy1 U Fpyo, then there are at most (k + 2)dn switches that transform G into a graph
in Fi. As before, for every 0 < k < 2K — 2, this implies

pi7) < D (piE )+ BlF)) < | - max(BlFi] L)
Therefore,
K-1
P[F] < 27 5P[Fk] <278 =0(1) .
k=0
Hence

P[N(S1)NT| > [en/(128d)|] =1 —o(1) .
Let 3 := ep/(130d). The Chernoff bound (Lemma 6) implies that

B[[Ngp(S1) N T| > pen/(130d)] = 1 —o(1) .

Together with (46), this implies P[Ll(GE) > q3n] > 1 — 4. Setting v := min{vyi,y2,73}, we
obtain
P[Ll(G]?) >an]>1-94.

10. SEQUENCES OF DEGREE SEQUENCES: PROOF OF THEOREM 1

Let ® = (Dy,)n>1 be a sequence of degree sequences with D,, = (dgn), . ,dﬁ{‘)). For the sake
of simplicity, we write D,, = (d1,...,d,) and W(c) := W (¢, D,,). Set

, di(d; — 1
de,n = max { ZzEV\W(C) ( ), 1} .

Diev\w(c) b
We assume that d. := lim,,_,« d.,, exists for every ¢ > 1 and that d is such that

d =supd. =sup lim d., € [1,00) .
c>1 c>1 o0

We define the critical probability as in (5) by
D iev\w(e) di A1
Piev\w(e) dildi = 1) d

We start with the proof of part (i) and begin with a claim which states that for every large ¢ we
can replace 1/d by perit(c, Dy,) provided n is large enough in terms of c.

Perit (C, Dn) = min {

c,n

Claim 1. For every € € (0,1/2), there exists c. such that for every c > c, there exists ne. such
that for every n > ne ., we have

-ifp<(1-— e)é, then p < (1 — i)pmt(c, D).
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-ifp> (14 e)é, then p > (1 + i) Perit(¢, D).

Proof. Note first that d., is non-decreasing with respect to c; that is, dc, , > dc, n for ca > c;.
This implies that de, = limy, 00 dey p, > limy, 00 de, , = de,. Hence (d¢)e>1 is a monotone non-
decreasing sequence and it converges to d. Furthermore, d < oo by Condition (a). Thus, for any
€ > 0, there exists ¢, such that for any ¢ > ¢, we have

(1—€2/2)d < d. < d.
In turn, given c, there exists ne . such that for any n > n.., we have
(1—€2/2)de < depp < (14 €*)d..
Therefore, for every ¢ > c. and every n > ne . we directly obtain
(47) (1—e)d < dep < (1+€%)d.
Moreover, if € < 1/2 and p < (1 — €)%, then
1

p< (1—6)(1+62)di < (1-¢/)

c,n c,n
Similarly, if e < 1/2 and p > (1+ €)%, then

1
>(1+6/4)d .

)

1
p>(1+€)(1—62)d

)

O

In what follows we will select ¢, co and 7 such that the hypotheses of Theorem 2 are satisfied.
By Condition (b), for any € > 0, there exists a ¢, € N such that for every ¢ > ¢, there exists n’E’C
with

(48) S d<S o,

!/

We may assume that for fixed € and all ¢; < cg, we have nec, < nec, and ng .,

< Nee, aS WE
simply can replace nec, by maxey<e,{nee,n, o} We may also assume that € < (64dd)~t. We
choose ¢; := max{ce, c.}. Suppose ¢ > ¢; and n > n.. Next we prove that As(e/4,cq,c) holds
for a suitable c. Note that this condition is only needed in Theorem 2 (ii). If d¢, , < (1 +€/5),

then p > (1 + €)/d implies (by Claim 1 and ¢; > c.) that -

€ 1
p > (1 + —> > 1,
47 dey

and there is nothing to prove. Thus, we may assume that d., , > (1 + ¢/5). Hence, d.,, =
2ieviw(e) di(di—1)
ZiGV\W(c) d;

< ¢ for any ¢ > ¢; and n sufficiently large in terms of c¢. It follows that

Yooodidi—1) = Y di(di—D— Y di(d;—1)

FEW (c1)\W (©) JEVAW (©) JEVAW (1)
= den Y. di—den > d
FEVAW () FEVAW (c1)
= (dc,n - dcl,n) Z dj + dc,n Z dj
JEVA\W (1) FEW (e1)\W (©)
(48) _
< (dem — dey n)dn + €2dn
(47)

3e2ddn .
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This in turn implies that

oo o= Sooodidi -+ > d

JEW (e1)\W (c) JEW (e1)\W(c) JEW (c1)\W(c)
< 3éddn+ ) d,
JjEW (1)
48 _
(<) 4€ddn
4

Thus As(e/4, c1,¢) holds for all ¢ > ¢ and n > n.. Note that ¢; only depends on e.

Let n =n(v,€/4,d) be as in Theorem 2. Using again Condition (b), for n > n, ., we have
> A<,
C2

and thus A;(n, c2) is satisfied (even if d., ,, < (14 €/5)).
Also let p = p(€e/4, c1) be the constant provided by Theorem 2, which in this case only depends
on € that is, we can choose v < p. Let n be larger than max{ny c,,nec,} and the ng given by

Theorem 2 for the parameters €/4,7, c1, c2,d. By Claim 1, we can apply Theorem 2 with €/4 to
D,, to conclude that

if p<(1—e€)d, then P[L1(GE") > yn] = 0,(1),

if p> (1+4¢€)2, then IP)[Ll(GE") > pn] =1 —o,(1).
We proceed to the proof of Theorem 1 (ii). Our aim is to apply Theorem 3. Let us check that
the hypothesis are satisfied. Given §,p and d, let K be the constant provided by Theorem 3.

Suppose first that Condition (c) holds. Since sup.>; de = lim, o de = d = o0, there exists cx
such that for every ¢ > cx, we have

lim de.,, =d. > 2K .
n—oo

Similarly, there exists ng . such that d., > K for every n > ng .. For ¢ > max{cg, 2J} and
n > Nk, we obtain

JEVAW (¢) JeEVAW (c) JjeEVAW (¢)

and so Aa(K,0,c) does not hold. Thus Theorem 3 leads to the desired conclusion.

Suppose now that Condition (d) holds. Let ¢y be such that f(c) > K for every ¢ > cy. As
f(¢) — o0 as ¢ — oo such a ¢y exists. This in turn immediately implies that A;(K,c) does
not hold provided n is large enough. Again, Theorem 3 leads to the desired conclusion and this
completes the proof.

We close this section with the following remark. Suppose that lim,_ o n;/n =: A; < oo for all
i > 1, that 3,51 A =1, and that 3,5, i\ < co. Then
Dm0 — 1A

2121 iA;
This recovers the results obtained by the first author [10], Janson [13], and Bollobas and Rior-
dan [8].

d=

11. APPLICATION: POWER-LAW DEGREE DISTRIBUTIONS

Power law degree distributions have attracted considerable interest as they are one of the usual
characteristics of complex networks [2]. Roughly speaking, in such degree sequences the fraction
of vertices that have degree equal to k (when k is large) scales like k=7, for some v > 0.

A variety of random graph models which exhibit a power law degree distribution have been
introduced in the last 15 years, mainly, in search for a sound model for complex networks. Among
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other properties, robustness is a central property that has been considered in this context; that
is, how robust a random network is if several of its edges or its vertices fail.

In several random graph models with a power law degree distribution, it has been observed that
if v > 3, then there exists a critical value per;; (which is bounded away from 0) for the appearance
of a giant component in the bond percolation process. However, if v < 3, for any fixed p > 0
(that is, independent of the order of the random graph), a giant component survives the random
deletions with high probability. This behaviour has been observed in diverse random graph
models that give rise to power-law degree distributions such as the configuration model ([3],
Corollary 2.5), the preferential attachment model [7] and random graphs on the hyperbolic
plane [9].

We now apply Theorem 1 in this context. This recovers a known result for power law sequences
but also exemplifies how our results can be used for particular degree sequences. Consider a
sequence of degree sequences (Dy,)nen, where D,, is a feasible degree sequence on [n] and assume
that it satisfies the following: for k > 1, let n; denote the number of vertices of degree k in D,,
then there exist positive constants v, A1, Aa, kg > 0 such that for every k > kg, we have

Mok A
KV T on T kY
If so, we say that D,, follows a power law distribution with exponent ~.

In this section we show that power law distributions, as defined here, show the same behaviour
around v = 3. As before, we write D,, = (dy,...,dy) and W(c) := W(c,Dp,) = {i : d; > ¢} for
every c > 1.

Let D,, follow a power law distribution with v > 3. Then, there exists A, > 0 such that for
every co > ko, we have

Y .n
Y odi= ankgAQnZk1*V§Tg-n:Agc§ 7-;,
€W (c2) k>cs k>es €2 2

and thus, D, satisfies Al()\'zcg_v, c2).
Moreover, there exists A > 0 such that for all ¢a > ¢1 > kg, we have

co—1 co—1
oo A= Knp<don Y KT <M,
iGW(q)\W(Cg) k=c1 k=c1

that is, D,, satisfies A2(4X2’c;f_7, c1,C2).

Provided that ¢; and ¢y are large enough and v > 3 (so the first parameters in conditions A;
and Ay are arbitrarily small), we can apply Theorem 2 to determine a quantity perix > 0 that is
bounded away from 0, such that bond percolation in GP» has a threshold at peri.

Now, let D,, follow a power law distribution with 2 < v < 3. Then, there exists \] > 0 such
that for every ¢ > kg, we have

n
Sodi=> kng=Mnd BT =M n =X =
€W (c) k>c k>c ¢

that is, D,, does not satisfy A;(\;c377,¢).
Provided that ¢; is large enough (so the first parameter in condition A; is arbitrarily large), we
can apply Theorem 3 to show that bond percolation in GP» does not have a positive threshold.
Note that if v < 2, then the average degree of GP» is unbounded and our results do not apply.
We finally state the “limit” version of the result for D,, that follows a power law distribution.
Suppose that there exists ¢ > 0 such that for all £ > 1, we have
lim % = ek .
n—oo N
If v > 3, then d < oo, while if v < 3, then d = co. So, Theorem 1 implies that in the former case
we have periy = 1/d > 0, whereas in the latter case peri = 0.
It is worth to stress that our results do not provide any meaningful information at v = 3.
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12. CONCLUDING REMARKS

We finish the paper with some remarks on our results.

1) Theorem 3 provides a statement that holds only with probability at least 1 —d. The only
part of its proof that does not hold with high probability is Corollary 23. This makes it
easy to construct degree sequences that show that this cannot be improved. For a given
p > 0, let us consider the following degree sequence on n vertices (large enough in terms
of p). Let a := [2/p| and suppose a divides n — a. Consider the degree sequence with a
vertices of degree (n —a)/a+ a — 1, and n — a vertices of degree 1. This degree sequence
is feasible and the only graph (up to isomorphism) with this degree sequence consists of
a clique of size a where each of its vertices is adjacent to n/a — 1 vertices of degree 1.
With positive probability independently of n all (‘2‘) edges inside the clique of size a fail
to percolate in GI?. If so, Ll(GE) < pn/2. Thus for every p € [0,1), we have

P[L1(GF) < pn] > 6(p,p) -

Observe that these degree sequences also do not satisfy A;(K,c) for all ¢ > 2K.

2) In [15], a special role is given to vertices of degree 2. However, by considering bond
percolation this special situation never appears. If most of the edges are incident to
vertices of degree 2 after the bond percolation, then p ~ 1 and almost all vertices have
degree 2 already before the percolation. In this case set per+ := 1. Let W be the set of
vertices with degree different from 2. If 3, y;, d; = o(n), then |[N[W]| = o(n). For every
e > 0 and every p < 1 — ¢, it follows that,

> dilp(di—1) 1) = (n— [N[W]])2(p — 1) < —en..
iEV\N[W]

Using the first part of Proposition 9 we obtain that GI? has no giant component with
high probability, and thus p.i = 1.

3) The previous remark is a particular case of the case P /n — oco. While it might seem
natural that pe.it(D) — 0, here we provide an example for which X7 /n — oo and pe; is
bounded away from O.

Consider the degree sequence D formed by n?/3 vertices of degree n%3 and n —n
vertices of degree 1. The critical condition in [15] shows that GP has a giant component
with high probability. However, it is easy to see that, with high probability, GE has at
least (1 — 2p)n isolated vertices and thus we cannot expect to have a component of order
larger than 2pn. If p — 0 (as n — o0), then GE does not have a giant component with
high probability.

2/3
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