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Abstract: A connected and undirected graph G of size n ≥ 1 is said to be a sum
basic equilibrium iff for every edge uv from G and any node v′ from G, when performing
the swap of the edge uv for the edge uv′ the sum of the distances from u to all the other
nodes is not strictly reduced. This concept comes from the so called Network Creation
Games, a wide subject inside Algorithmic Game Theory that tries to better understand
how Internet-like networks behave. It has been shown that the diameter of sum basic
equilibria is 2O(

√
logn) in general and at most 2 for trees. In this paper we see that the

upper bound of 2 not only holds for trees but for bipartite graphs, too. Specifically, we
show that the only bipartite sum basic equilibrium networks are the complete bipartite
graphs Kr,s with r, s ≥ 1 .

1 Introduction

Definition of the model and context. In the sum basic network creation game,
introduced by Alon et al. in 2010 [3, 2], it is assumed that n ≥ 1 players are the nodes
of an undirected graph of size n. If G is connected and for every edge uv and every
node v′, player u does not strictly reduce the sum of distances to all the other nodes by
performing any single swap of the edge uv for the edge uv′, then such network is said to
be a sum basic equilibrium graph.

Given an undirected graph G and a node u from G, a deviation in u is any swap
of an edge uv from G for any other edge uv′ with v′ 6= u, v any other node from G.
The deviated graph associated to any such deviation is the resulting graph obtained
after applying the swap. Furthermore, the cost difference associated to any deviation
in u is just the difference between the sum of distances from u to all the other nodes
in the original graph minus the sum of the distances from u to all the other nodes in
the deviated graph. Therefore, a connected and undirected graph G is a sum basic
equilibrium iff for every node u in G the cost difference associated to every possible
deviation in u is non-negative.

This network creation game is inspired by the sum classical network creation game
introduced by Fabrikant et al. in 2003 [5] which is a relatively simple yet tractable model
to better understand Internet-like networks. The main contributions of the several au-
thors investigating the sum classical network creation game consist in showing improved
bounds for the price of anarchy for this model, a measure that quantifies the loss of
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efficiency of the system due to the selfish behaviour of its agents. It turns to be that the
price of anarchy in the sum classical network creation game is related to the diameter
of equilibrium networks in the same model [4]. For this reason, one of the main inter-
ests in the sum basic network creation game is the study of the diameter of equilibrium
networks, too.

One of the most important contributions from [3] is an upper bound on the diameter

of any sum basic equilibrium of 2O(
√

logn). However, this bound can be dramatically
reduced if we restrict to the tree topology, in which case the diameter is shown to be
at most 2. Furthermore, in [3] the authors establish a connection between sum basic
equilibria of diameter larger than 2 log n and distance-uniform graphs. The authors
then conjecture that distance-uniform graphs have logarithmic diameter which would
imply, using this connection, that sum basic equilibria have poly-logarithmic diameter.
Unfortunately the conjecture is later refuted in [6]. After some years, in [7], Nikoletseas et
al. use the probability principle to establish structural properties of sum basic equilibria.
As a consequence of some of these properties, in some extremal situations, like when the
maximum degree of equilibrium network is at least n/ logl n with l > 0, it is shown that
the diameter is polylogarithmic.

Our Contribution. In this paper we focus our attention to sum basic equilibria
restricted to bipartite graphs topology. We show that such networks are the complete
bipartite graphs Kr,s with r, s ≥ 1 thus dramatically reducing the diameter to 2 when
restricting to this particular case. Our approach consists in considering any 2−edge-
connected component H of a non-tree sum basic equilibrium G. In section 2 we consider
all the collection of individual swaps uv for uv′ for each u, v, v′ ∈ V (H) and uv, vv′ ∈
E(H). We show that if diam(H) > 2, then the sum of the cost differences off all these
swaps will be < 0, thus contradicting the fact that G is a sum basic equilibrium. In
section 3, we study further properties of any 2−edge-connected component of any non-
tree sum basic equilibrium that work in general and which allow us to reach the main
conclusion.

Notation. In this work we consider mainly undirected graphs G for which we denote
by V (G), E(G) its corresponding sets of vertices and edges, respectively.

Given an undirected graph G and any pair of nodes u, v from G we denote by dG(u, v)
the distance between u, v. In this way, D(u) is the sum of distances from u to all the
other nodes, that is, D(u) =

∑
v 6=u dG(u, v) if G is connected or ∞ otherwise. Given a

subgraph H from G, noted as H ⊆ G, the i−th distance layer in H with respect u is
denoted as Γi,H(u) = {v ∈ V (H) | dG(u, v) = i}. In particular, the neighbourhood of u
in H, the set of nodes from V (H) at distance one with respect u, is Γ1,H(u).

Given an undirected graph G and a property P , we say that H is a maximal subgraph
of G satisfying P when for any other subgraph H ′ of G, if H ′ satisfies P then H 6⊆ H ′.
An edge e ∈ E(G) is said to be a bridge if its removal increases the number of connected
components from G. In this way, a 2−edge-connected component H from G is any
maximal connected subgraph of G not containing any bridge. Moreover, for a given
2-edge-connected component H from G and a vertex u ∈ V (H), W (u) is the connected
component containing u in the subgraph induced by the vertices (V (G) \ V (H)) ∪ {u}.

Finally, remind that a bipartite graph is any graph for which all cycles, that is, closed
paths, have even length.



EUROCOMB 2021 3

H

u
W (u)

2 Local swap deviations

Given a non-tree bipartite sum basic equilibrium graph G, let H be any of its 2−edge-
connected components. In this section we show that diam(H) = 2.

Given u ∈ V (H) and w ∈ V (G), we define δ−w (u) = {v ∈ Γ1,H(u) | dG(w, v) = dG(w, u)− 1}
and δ+

w (u) = {v ∈ Γ1,H(u) | dG(w, v) = dG(w, u) + 1}. Since G is bipartite, for any
u ∈ V (H) and w ∈ V (G), δ−w (u) ∪ δ+

w (u) = Γ1,H(u).
Moreover, given u ∈ V (H) and w ∈ V (G) such that |δ−w (u)| = 1, we define u−w ∈ δ−w (u)

to be the neighbour of u in H closer from w than u. Recall that, for any u ∈ V (H) and
w ∈ V (G), if |δ−w (u)| = 1 then clearly δ+

w (u) 6= ∅ because H is 2−edge-connected.
Now, let u, v be nodes with u ∈ V (H) and v ∈ Γ1,H(u). We define S(u, v) to be the

sum of the cost differences associated to the swaps of the edge uv by the edges uv′ with
v′ ∈ Γ1,H(v)\{u} divided over degH(v)−1. Then we define S =

∑
u∈V (H)

∑
v∈Γ1,H(u) S(u, v).

Let u, v, w be nodes with u ∈ V (H), v ∈ Γ1,H(u) and w ∈ V (G) and define ∆w(u, v)
to be the sum of the distance changes from u to w due to the swaps of the edge uv
by the edges uv′ with v′ ∈ Γ1,H(v) \ {u} divided over degH(v) − 1. Furthermore, let
∆w =

∑
u∈V (H)

∑
v∈Γ1,H(u) ∆w(u, v).

In this way we have that S =
∑

w∈V (G) ∆w.

Before going to the main result of this section we first find a formula to compute the
value of ∆w(u, v) allowing us to obtain an expression for ∆w.

Lemma 1 For any nodes u, v ∈ V (H) and w ∈ V (G) such that v ∈ Γ1,H(u), then:

∆w(u, v) =


(−|δ−w (u−w)|+ |δ+

w (u−w)| − 1) /(degH(v)− 1) If |δ−w (u)| = 1 and v = u−w
−|δ−w (v)|/(degH(v)− 1) If |δ−w (u)| > 1 and v ∈ δ−w (u)

0 Otherwise

Proof. If v is further from w than u, then clearly ∆w(u, v) = 0. Therefore, since G is
bipartite the remaining case is that v is closer from w than u. We can see clearly that
we need to distinguish the cases |δ−w (u)| = 1 with v = u−w and the case |δ−w (u)| > 1 with
v ∈ δ−w (u). In the first case the corresponding sum of distance changes from u to w
could get positive when the set of nodes δ+

w (u−w) has size at least two. In contrast, in the
second case the sum of distance changes is always no greater than zero because having
at least another node distinct than v in the subset δ−w (u) guarantees that when making
the corresponding deviation the distance from u to w does not increase.

�

Now we are ready to show the main result of this section.

Theorem 2 diam(H) ≤ 2.
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Proof. First, we claim that for every w ∈ V (G), ∆w ≤ 0.
Applying Lemma 1 we get:

∆w =
∑

u∈V (H)

∑
v∈Γ1,H(u)

∆w(u, v) =

=

 ∑
{u∈V (H)∧|δ−w (u)|=1}

−|δ−w (u−w)|+ |δ+
w (u−w)| − 1

degH(u−w)− 1
+

∑
{u∈V (H)∧|δ−w (u)|>1}

∑
v∈δ−w (u)

−|δ−w (v)|
degH(v)− 1

 =

=

 ∑
{u∈V (H)∧|δ−w (u)|=1}

|δ+
w (u−w)| − 1

degH(u−w)− 1
+

∑
u∈V (H)

∑
v∈δ−w (u)

−|δ−w (v)|
degH(v)− 1


On the one hand:

∑
u∈V (H)

∑
v∈δ−w (u)

|δ−w (v)|
degH(v)− 1

=
∑

v∈V (H)

∑
u∈δ+w (v)

|δ−w (v)|
degH(v)− 1

=
∑

v∈V (H)

|δ−w (v)||δ+
w (v)|

degH(v)− 1

Now, let Zw be the subset of nodes z from V (H) such that δ−w (z) 6= ∅ and δ+
w (z) 6= ∅.

If z ∈ Zw then clearly |δ−w (z)||δ+
w (z)| ≥ degH(z)− 1. One possible way to see this is the

following. Since H is bipartite, then |δ−w (z)| and |δ+
w (z)| are positive integers that add

up to degH(z). Furthermore, any concave function defined on a closed interval attains
its minimum in one of its extremes. Therefore, the conclusion follows when combining
these two facts to the function f(x) = x(degH(z)−x) defined in [1, degH(z)− 1]. In this
way:

(1)
∑

u∈V (H)

∑
v∈δ−w (u)

|δ−w (v)|
degH(v)− 1

=
∑
v∈Zw

|δ−w (v)||δ+
w (v)|

degH(v)− 1
≥
∑
v∈Zw

1 = |Zw|

On the other hand for any u such that |δ−w (u)| = 1:

(2)
|δ+
w (u−w)| − 1

degH(u−w)− 1
≤ 1

Notice that the equality in (2) holds exactly when δ−w (u−w) = ∅. For any w ∈ V (G)
there exists exactly one node tw ∈ V (H) verifying δ−w (tw) = ∅ which is the unique node
from V (H) such that w ∈ W (tw). Therefore, the equality in (2) holds exactly for the
nodes from Γ1,H(tw).

In this way:

(3)
∑

{u∈V (H)∧|δ−w (u)|=1}

|δ+
w (u−w)| − 1

degH(u−w)− 1
≤ |
{
u ∈ V (H) ∧ |δ−w (u)| = 1

}
|

Notice that since H is bipartite, Γ1,H(tw) ⊆ {u ∈ V (H) | |δ−w (u)| = 1}. Therefore,
the equality in (3) holds only when Γ1,H(tw) = {u ∈ V (H) | |δ−w (u)| = 1}, otherwise, the
inequality in (3) is strict.
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Now, recall that {u ∈ V (H) ∧ |δ−w (u)| = 1} ⊆ Zw because H is 2−edge-connected.
Therefore, combining (1) with (3):

∆w ≤ −|Zw|+ |
{
u ∈ V (H) | |δ−w (u)| = 1

}
| ≤ 0

As we wanted to prove.

Now, suppose that diam(H) > 2 and take any path π = x1 − x2 − x3 − ... of length
diam(H) inside H. Then, pick x ∈ W (x1) any node inside W (x1). Setting w = x we
have that x1 = tw and x3 ∈ Zw but x3 6∈ Γ1,H(tw). If x3 6∈ {u ∈ V (H) | |δ−w (u)| = 1}
then the inclusion {u ∈ V (H) | |δ−w (u)| = 1} ⊆ Zw is strict and then ∆w < 0. Other-
wise, x3 ∈ {u ∈ V (H) | |δ−w (u)| = 1} but x3 6∈ Γ1,H(tw) so that the inclusion Γ1,H(tw) ⊆
{u ∈ V (H) | |δ−w (u)| = 1} is strict and then ∆w < 0, too. Therefore, S =

∑
w∈V (G) ∆w <

0 and this contradicts the fact that G is an equilibrium graph.

x1 x2 x3x

W (x1)

Γ1,H(x1)

�

3 2−edge-connectivity in the sum basic equilibria

In this section, we investigate further topological properties of any 2−edge-connected
component H from any sum basic equilibrium G. These properties help us to derive the
main result of this paper.

Lemma 3 If uv ∈ E(G) is a bridge, then deg(u) = 1 or deg(v) = 1.

Proof. Let u1u2 ∈ E(G) be a bridge between two connected components G1, G2 in such
a way that u1 ∈ V (G1) and u2 ∈ V (G2). Furthermore, assume wlog that |V (G1)| ≤
|V (G2)|. If we suppose the contrary, then we can find a node v ∈ V (G1) such that
vu1 ∈ E(G1). Then, let ∆C be the cost difference associated to the deviation in v that
consists in swapping the edge vu1 for the edge vu2. Clearly, we are getting one unit
closer to every node from V (G2) and getting one unit distance further from at most all
nodes in V (G1) except for the node v itself.

Therefore, using the assumption |V (G1)| ≤ |V (G2)|:

∆C ≤ |V (G1)| − 1− |V (G2)| ≤ −1 < 0

�

Lemma 4 If H is any 2−edge-connected component of G then there exists at most one
node u ∈ V (H) such that W (u) 6= {u}.

Proof. Suppose the contrary and we reach a contradiction. Let u1, u2 be two distinct
nodes such that W (u1) 6= {u1} and W (u2) 6= {u2}. Let v1 6= u1 and v2 6= u2 be two
nodes from W (u1) and W (u2) respectively. By Lemma 3, W (u1) and W (u2) are stars.
Assume wlog that D(u1) ≤ D(u2). When swapping the link v2u2 for the link v2u1 we can
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reach the nodes from V (G) \ {v1} at the distances seen by v1 and, also, we are reducing
in at least one unit distance the distance from v2 to v1. Therefore, if ∆C is the cost
difference associated to such swap, then:

∆C ≤ D(u1)−D(u2)− 1 < 0

�

Therefore, combining these two lemmas with Theorem 2, we deduce that every non-
tree bipartite sum basic equilibrium is the complete bipartite Kr,s with some star Sk (the
star with a central node and k edges) attached to exactly one of the nodes from Kr,s,
let it be x0 ∈ V (Kr,s). Then, if we consider any path x0 − x1 − x2 in H of length 2,
x2 has an incentive to swap the link x2x1 for the link x2x0 unless k = 0, that is, unless
G = Kr,s.

From here we reach the conclusion of this paper:

Corollary 5 The set of bipartite sum basic equilibria is the set of complete bipartite
graphs Kr,s, with r, s ≥ 1 and therefore the diameter of every bipartite sum basic equilib-
rium graph is at most 2.

4 Conclusion

Therefore, the diameter of sum basic equilibria is at most 2 not only when we consider
trees, also when we consider bipartite graphs. However, it is known that there exist
equilibrium networks of diameter 3 [2]. Therefore the open question is whether the

general upper bound 2O(
√

logn) can be substantially decreased in the non-bipartite case.
Furthermore, notice that the crucial results in this paper have been obtained consid-

ering a sum of the cost differences associated to a family of deviations. This is nothing
more than a disguised application of the probability principle, a technique used also in
[7] for the same model. These results show that maybe this technique can be further
explored in order to reach new insights for this model or for related ones.
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