
Design and implementation of reference
software for MPEG-G genomic information

protection

Master Thesis
submitted to the Faculty of the

Escola Tècnica d’Enginyeria de Telecomunicació de Barcelona
Universitat Politècnica de Catalunya

by

Èric Monné Mesalles

In partial fulfillment
of the requirements for the master in

Cybersecurity ENGINEERING

Advisor: Jaime Delgado Merce
Barcelona, 22th October 2021

Contents

List of Figures 3

1 Introduction 8
1.1 Objectives . 9

2 State of the Art 10
2.1 MPEG-G . 10

2.1.1 Part 1 . 11
2.1.2 Part 3 . 13

2.2 Crypt4GH . 15
2.2.1 Cipher suite and used keys . 16
2.2.2 File Structure . 17

2.3 Access Control Policies . 19
2.3.1 eXtensible Access Control Markup Language 20

3 Methodology 22
3.1 Software architecture . 22
3.2 Authentication and Authorization . 23
3.3 Access policy management . 24
3.4 Rest API . 25
3.5 Use case and RefSW use Environment . 26

4 Results 27
4.1 Integration of Crypt4GH on MPEG-G . 27

4.1.1 File comparison . 27
4.1.2 Ciphers . 27
4.1.3 Proposal . 28

4.2 Reference Software . 29
4.2.1 Overview . 30
4.2.2 How to install it . 33
4.2.3 How to deploy it . 33
4.2.4 How to improve it . 34

4.3 Use case validation . 34
4.3.1 Use Case 1 . 35
4.3.2 Use Case 2 . 39
4.3.3 Use Case 3 . 42
4.3.4 Use Case 4 . 45

5 Conclusions and Future Work 47

References 48

Appendices 50

2

List of Figures

1 MPEG-G file format [16] . 12
2 MPEG-G file transport format [14] . 13
3 Top-level Policy Elements . 14
4 Crypt4GH encryption and decryption. [10] 16
5 Crypt4GH file structure graphical representation [10] 18
6 XACML system overview . 20
7 System overview . 22
8 XACML Overview diagram . 24
9 Balana as PDP: overview [35] . 25
10 HTTP permitted methods . 25
11 File service using the decryption and encryption service HTTP endpoints . 26
12 Crypt4gh file structure . 28
13 MPEG-G file transport format [14] . 29
14 Service Mesh . 30
15 Swagger API documentation screenshot . 32
16 QR to GitLab repository with the MPEG-G Referent Software 33
17 Second use case, signature error response, screenshot from Postman 41
18 Fourth use case, error: not authorised action response, screenshot from

Postman . 46

Listings
1 MPEG-G KLV Structure . 12
2 XML Signature . 14
3 Header of the JWT . 23
4 Payload of the JWT . 23
5 Command to execute MPEG-G software reference 34
6 XML input to the first use case . 35
7 Add policy request . 36
8 XML output to the first use case . 37
9 Second use case encryption request . 39
10 Second use case encryption response . 39
11 Second use case signature verification request 40
12 Request to encrypt data . 42
13 Response to encrypt data . 42
14 Decryption request . 43
15 Result of the third use case . 44
16 Value of JWT to access the server . 45
17 Fourth use case read response . 45

3

Acronyms

ABAC Attribute-based access control

ACL Access Control List

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

API Application programming interface

BAM Binary Alignment Map

CTR Counter Mode

DNA Deoxyribonucleic acid

GA4GH Global aliance of genomic and health

GCM Gallois Counter Mode

HTTP Hypertext Transfer Protocol

IEFT Internet Engineering Task Force

JSON JavaScript Object Notation

JWT JSON Web Token

KVL Key length Value

MAC Message authentication code

MPEG Moving Picture Experts Group

PAP Policy administration point

PDP Policy decision point

PEP Policy enforcement point

PIP Policy information point

PRP Policy retrival point

RBAC Role-Based Access Control

REST Representational state transfer

RuBAC Rule-Based Acces Control

SAM Sequence Alignment Map

UDL Universitat de Lleida

UPC Universitat Politècnica de Catalunya

URL Uniform resource locator

4

XACML eXtensible Access Control Markup Language

XML Extensible Markup Language

XSD XML Schema Definition

YAML YAML Ain’t Markup Language

5

Revision history and approval record

Revision Date Purpose
0 15/10/2021 Document revision
1 20/10/2021 Document revision
2 22/10/2021 Document revision

DOCUMENT DISTRIBUTION LIST

Name e-mail

Èric Monné Mesalles eric.monne@estudiantat.upc.edu

Jaime Delgado jaime.delgado@upc.edu

Written by: Reviewed and approved by:
Date 22/10/2021 Date 22/10/2021

Name Èric Monné Mesalles Name Jaime Delgado Merce

Position Project Author Position Project Supervisor

6

Abstract

Genetic data is the most accurate definition of a human being, giving a complete image
of a body. It is a very critical information which offers a new field of study, a great
opportunity to improve our knowledge in the health arena. This sensitive data can be
exchanged between researches and doing it in a secured and protected way is a must.

There are different available standards to help protecting genomic data and enabling it
to be securely transmitted and exchanged. Examples include MPEG-G and Crypt4GH.

The project aims to implement a reference software for the MPEG-G standard, with a fo-
cus on the security part of the standard. The software is implemented using a microservice
architecture, that enables: scalability, improvement and the addition of new functionali-
ties. The resulting service mesh consists on four core services: the authentication service to
manage the users, the protection box service to manage the access rules of the resources,
the service to encrypt and decrypt the files and the Balana service which acts as a checker
of the permissions to the resource.

During the software development will be generated a proposal to insert the Crypt4GH
standard inside the MPEG-G. From this process a guide explaining how to install, improve
and deploy the reference software will be defined.

7

1 Introduction

The genome is all the genetic material of an organism [8]. If we focus on human genetics,
it is composed of 23 pairs of chromosomes. Counting all of them, we obtain 3200 million
pairs of Deoxyribonucleic acid (DNA) bases.

Certain parts of the DNA sequence are traduced to amino acids that will compose the
proteins, and these proteins will execute all the functions of the human organism: human
development, system correct functioning, among others. In other words, they allow us to
be ourselves.

The genetic code is replicated every time a cell is duplicated. The replication machine is
not perfect and may sometimes introduce some errors, making each human different from
each other. There are some errors which require special attention as they can produce a
faulty sequence of the DNA that is translated into a dysfunctional protein which in turn
may result in the onset of a disease. By understanding this process details we could tackle
or fight against some of these diseases.

The current level of knowledge in the field of biotechnology allows us to carry out a
complete reading and subsequent reconstruction of human DNA, enabling to read and
process it faster than ever. Thanks to these capabilities, since a few years ago, we have
been able to identify a greater number of diseases linked to erroneous DNA mutation. A
disease will disrupt the expected functioning of the system and will consequently produce
a bad function of the organism.

All these genetic data can be considered as the most accurate, low-level representation of
a human being, resulting in critical information which needs to be stored and distributed
safely. Any misuse of this information can have serious consequences on multiple levels, be
it privacy or even patient health. The amount of genetic data currently available is very
large, and in many cases, for various reasons, a single team or institution does not have
all the data necessary for its studies. In these situations, the missing data is requested
from other teams or institutions. To enable this transmission of critical data, we need
some protocol that ensures the security of the transaction and its later storage.

At the time being, to solve part of this security issue, there exist two standards, the
MPEG-G and the Crypt4GH. The first one was developed by the working group of Moving
Picture Experts Group (MPEG). The second one is defined by the Global aliance of
genomic and health (GA4GH). MPEG-G defines a complete standard to solve a group
of problems, such as encrypting, storing, sending or compressing the data. Crypt4GH is
mainly focused on the encryption of the data.

This thesis is organized into 5 chapters, starting with the current one, used to present
the project. This structure aims to facilitate the understanding of the content and the
objective we want to approach. Thus, it starts with an introduction of the theoretical
concepts, moving towards the project methodology and ending with the results and the
conclusions.

The second chapter presents the two standards commented above, MPEG-G and Crypt4GH.
They are presented following this guideline: the file structure they use and the cypher ap-

8

plied in each case. Within this second chapter it is also presented a set of access policies
methodologies with particular emphasis on the eXtensible Access Control Markup Lan-
guage (XACML). This specific focus on the XACML is driven by the fact that is the
methodology used in the MPEG-G standard.

The third chapter introduces the methodology used during the development process. The
project consists of the implementation of a reference software of the MPEG-G standard. It
presents the components and the implemented architecture used to achieve the objective
together with some use cases used to test and evaluate the obtained results.

Next, chapter four details the results achieved. It is composed of three subsections, the
first one will present a proposal to insert the Crypt4GH standard inside the MPEG-G.
Then a second subsection devoted to the reference software with an introduction to it
and a later dive in to explain how it works. Hereafter, an installation and first steps guide
will be provided to enable the deployment and improvement of the referent software. The
last part of the chapter is the test and validation of all the use cases presented in the
methodology section. Those use cases are used for testing purposes. If the software passes
all of them, it is considered to have worked correctly. Otherwise, it indicates that it needs
to be further improved.

The last chapter presents the conclusions of the thesis as well as an analytic overview
of the development process realized. It is also shown a brief analysis of the fulfilment or
not of the objectives set. Based on the obtained results a line of future line of work is
introduced.

1.1 Objectives

This chapter presents the objectives that are the main focus of the project:

• Define and implement a proposal to integrate the Crypt4GH standard inside the
MPEG-G.

• Build a reference software of the MPEG-G standard.

• Define a guide on how to deploy, install and improve the reference software

9

2 State of the Art

This chapter reviews the two core standards which enable medical record sharing and
collaboration between scientific teams in an encrypted and secure way. The two standards
specified are MPEG-G and Crypt4GH.

On one hand, MPEG-G is a standard that defines how to encrypt one or more than one
medical study in a single file. Is defined as a tree structure grouping the medical data 1,
the study data 2 and the raw data3, in an ordered way to enable the random access.

On the other hand, Crypt4GH is more focused to store the raw data of a study, more than
one study can be stored on the file, but just the raw data sections one after the other.

The MPEG-G standard is composed of six parts, all parts except part six have a first
published version, the sixth is not published yet. The Subchapter of the standard have a
main focus on parts one and three, they are the ones that are relevant to the development
of this project and to avoid adding extra complexity by explaining unused parts.

Concerning the Crypt4GH side, the cypher suite and the document structure are going
to be defined to offer a better understanding of the standard.

After the subchapters of the standards will be introduced the concept of Access control
policies. Offering an overview, and explaining the different existing approaches. The eX-
tensible Access Control Markup Language (XACML) protocol will be the core approach
and will be presented more in deep due to is the one used by the MPEG-G standard to
define the protection rules.

2.1 MPEG-G

The MPEG-G standard is developed by the Moving Picture Experts Group (MPEG).
MPEG is WG11 of ISO/IEC JTC1/SC29, developing standards for media coding, MPEG
has been re-structured into several WGs, being WG8 the one in charge of further devel-
opment of MPEG-G.

This MPEG-G standard is registered under ISO/IEC 23092. It focuses on the storage of
genomic data in a hierarchical structure.

The standard presents many benefits [16]. Among these benefits, we can highlight, for
example, the functionality ofselective access, which enables embedded tools to jump
directly to the desired information and data streaming, which allows the receiver to
start reading the data before all the file is transmitted.

Concerning data storage, the standard defines the capability of genomic study’s ag-
gregation, enabling the storing of multiple genomic data in the same MPEG-G file. This
feature is so important because it permits the execution of queries over the file and ob-
taining data of differents genic records, offering a transversal vision of the information.

1Data extracted from any medical area, can contain a group of medical studies
2Group of data which composes an entirely medical study.
3Primary data, those extracted directly from the source.

10

The MPEG-G has a strong enforcement of privacy rules, the standard contains a spe-
cific section for this purpose called rules.In this section, a set of rules are stored, within
the so-called protection box, defining which users can access the file and what actions,
permissions or privileges they have over the concerned resource.

From an encryption point of view, it is permitted the selective encryption of sequenc-
ing data and metadata, which defines a way to encrypt the different file levels of the
hierarchy.

Many other benefits are defined, for example, the interoperability. That property en-
ables the conversion to other medical data structures as FASTQ, SAM or BAM. All the
other benefits can be consulted on the MPEG-G white paper, but are not going to be
related because are not used during the project.

To achieve all the explained benefits and so many others, the standard is defined by six
parts. Each part is aimed at solving one or more than one property and adding extra
functions to the MPEG-G those are:

1. File structure

2. Codification

3. Metadata and protection Box

4. Reference software

5. Conformance

6. Coding of genomic annotations

All the parts, except the sixth, have a stable and published version and are on revision
and continuous improvement, but part six is still in development.

2.1.1 Part 1

Part one is registered under the code ISO/IEC 23092-1:2019. This part is focused on
defining the document structure for storage and transport.

The storage format is used to validate and consequently save the document on the machine
or resource server. The transport structure is dedicated to the sending of the document
allowing data streaming.

Concerning the storage format, an overview of how data is structured within a MPEG-G
file can be seen in figure 1. The file is organized in a hierarchical structure consisting of
the next encapsulation levels: File format, dataset group, dataset, access unit and blocks.

The file format is the first box in the hierarchical level, and must always be placed be-
fore any variable-length box [14]. All the boxes need to follow the hierarchical structure
represented in the figure 1, so, starting by the dataset group, it is allocated inside the file
format parent section.

The dataset group is used to store a collection of datasets of a particular study. But the
data is not set as raw data inside the dataset, it is stored on a layer under the dataset called

11

https://www.iso.org/standard/57795.html

Figure 1: MPEG-G file format [16]

access unit. The access unit is composed of blocks. This block contains the genomic data,
and the aggregation of the blocks enables the access and the inspection of the genomic
records separately.

The format to transport the document still uses the hierarchical format but with a little
variation, as can be seen on the figure 2.

The transport mode encapsulates, inside one or more packets, the MPEG-G file. If we
compare the structures, we see that the transport mode deletes encapsulation levels de-
fined on the storage mode.

On the definition of the ISOIEC standard, it is explicitly recommended the decoding of
the transport mode started by the dataset mapping table list to organize the document
as in the storage mode.

To read the data correctly, the encapsulation levels or the type of the file is represented
by a Key length Value (KVL) data structure. Is used to advise the reader which data is
stored on it. The KVL syntax is defined by the structure presented on listing 1

Listing 1: MPEG-G KLV Structure

1 struct gen_info

2 {

3 c(4) Key;

4 u(64) Length;

5 u(8) Value[];

12

Figure 2: MPEG-G file transport format [14]

6 }

This structure is found in the first bytes of the file. Is used to inform the type of the file,
the length and the data. The content type is encoded on key field. This field is composed
of four chars. The list of possible values can be found on the ISO document. The content
is used to mark which kind of file is going to be analized. Also, help to find the hierarchy
level on the document.

The length is used to set how many bytes can be found on the value field, to parse
correctly the document. Is encoded in little-endian. All the files, except the file format,
have this variable.

Finally, can be found the value, on this field is where goes the data. The data will be
encoded in an Extensible Markup Language (XML) file, following the schemas defined by
the protocol.

2.1.2 Part 3

As seen before, part one defines how the data is stored and transported. Part three is
related to some components inside the file, which is the protection box and metadata.
The part three is defined in the standard ISO/IEC 23092:3. This part also defines how to
set the backwards compatibly with other formats for example SAM files. The metadata
is used to add extra information on every hierarchy level to improve the comprehension
of the data.

The protection box is a XML file which defines all the elements related to the security
and privacy of the content. This XML stores the required data to decrypt the file, defines
a policy section to set the rules and the actions permitted, and also contains the signature

13

https://www.iso.org/standard/75625.html

Figure 3: Top-level Policy Elements

section used to implement a digital signature to verify the document integrity and prove
that the file was written by a true user.

The policy section is used to store all the rules to define which actions are permitted
and which users can perform them. The policies are defined to be very grained rules,
for example, a rule can define which role can access the resource, but just the role with
determinate email domain, and just from a determinate IP range.

The structure of these polices are defined on the eXtensible Access Control Markup Lan-
guage (XACML)[7] standard, because is the architecture used to verify the permissions
over the resources, the XACML structure is going to be reviewed on next chapters.

The policies, which are encapsulated within a XML file, define a hierarchical structure,
composed by three elements (figure 3). :

• <Rule> , this tag defines a boolean expression to be evaluated, the result of this
expression defines if the users can perform the wanted action.

• <Policy> contains the group of rules to be evaluated, is the element used by the
XACML system is the one which can be defined as the element which contains the
bases of the authorization process.

• <PolicySet>, this tag can contain another policy set, or a group of <Policy> ele-
ments

The signature section stores the values of the digital signature applied over the all the
document, and it is used to prove the authenticity of the file and demonstrate that the
file was generated by a true user.

Listing 2: XML Signature

14

1 <Signature

2 xmlns="http://www.w3.org/2000/09/xmldsig#">

3 <SignedInfo>

4 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/

REC-xml-c14n-20010315"/>

5 <SignatureMethod Algorithm="http://www.w3.org/2009/xmldsig11#

dsa-sha256"/>

6 <Reference URI="">

7 <Transforms>

8 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig

#enveloped-signature"/>

9 </Transforms>

10 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#

sha256"/>

11 <DigestValue>bjolcVqOKaLWbqfLdV9vfV979ntUQUur4dKLInPuD/Y=</

DigestValue>

12 </Reference>

13 </SignedInfo>

14 <SignatureValue>hlhZhm/

gEYAz0ZUXDp5HRoERhKlgjCZJ7QOuHxcSGaBJ0cqJzsn5YLExR58C0gQ9Gozy7+

WfIHc=</SignatureValue>

15 <KeyInfo>

16 <X509Data>

17 <X509SubjectName>CN=Eric Monne,OU=Cybersecurity,O=UPC,L=

Barcelona,ST=Barcelona,C=ES</X509SubjectName>

18 </X509Certificate>

19 ...

20 </X509Certificate>

21 </X509Data>

22 </KeyInfo>

23 </Signature>

On the code section 2, is presented an example of the signature section. It contains the
certificate of the person who signs the document and the fingerprint to certificate the
validity.

To check the document integrity, the receiver of the document needs to compute the
signature of the full document with the certificate defined on the section.

The last section is the Encryption section, this section stores the values used during the
encryption process which are required to decrypt it.

2.2 Crypt4GH

The Crypt4GH protocol is defined as a secure way to store and transport genomic records.
Due to the increase of genomic data, the Global aliance of genomic and health (Global

15

aliance of genomic and health, developed the standard to ensure security during the
exchange and storage process.

The Crypt4GH standard defines that the data will be decrypted just during the use,
meanwhile the data it is stored on the disk remains encrypted [11]. The standard enables
the multi-sharing, this mean that the key used to encrypt the data it is encrypted as many
times as people will receive the document, with each person’s public key.

Figure 4: Crypt4GH encryption and decryption. [10]

On the figure 4 it can be seen schematically how a genomic record file is encrypted and
decrypted. The file is encrypted using asymmetric encryption. Imagine two researchers,
Bob and Alice, both of them own a private-public key pair, and the other one knows the
public key of the college. Bob wants to send Alice a particular record of the current study,
Bob, will encrypt the genomic record using a data key (Kdata). The data Key encrypted
using the public key of Alice and stored in the headers of the file. Alice will receive the
document, decrypt the data key using her private key, and finally decrypt the data.

The data key (Kdata) is encrypted with a Diffie-Hellman key derived from a shared key
(Kshared). The definition of the keys will be explained in the following subchapter.

2.2.1 Cipher suite and used keys

To achieve the security mentioned before, the protocol is composed of two groups of keys:
an asymmetric key and a symmetric key.

The asymmetric ones are used to enable the exchange between researchers, which on the
protocol definition are defined like that [11]:

• Reader secret key (Ksr)

• Reader public key (Kpr)

• Writer secret key (Ksw)

• Writer public key (Kpw)

16

On the symmetric side, three types of keys are defined, the first one is Diffie-Hellman
key (Kdh), which will be generated from the derivation of a shared key (Kshared), which
is the second key. The shared key is the key that will encrypt the headers, where the
symmetric key is stored to decrypt the data. That Kshared can be derived from: Ksw and
Kpr or from Ksr and Kpw. The last key is the data key (Kdata). The data key is a unique
key for each file and is generated by a cryptographically secure random number. This key
will be the one used to encrypt the file inside the file, and stored on the headers of the
document. The header will be securely encrypted with the shared key.

As the shared key is derived from the key pair of the reader and the writer, this system
enables the multiple sharing to be secure, if the writer wants to send the file to X number
of people, will generate X number of sections of the header, where inside all of them will
be the encrypted data key, using the shared key generated by the pairing of the keys with
all the colleges’ public data.

The symmetric cypher used is the ChaCha20 ietf poly1305, this cypher suite is defined
by the RFC8439. The Cha-cha cypher suite is a stream cypher, used to encrypt the data,
and the Poly1305 is used as the authenticator, both are used as “combined mode” to
Authenticated Encryption with Associated Data (AEAD) algorithm. [22].

The ChaCha20 uses a 12B nonce4 to encrypt the data, and the Message authentication
code (MAC) is generated by the Poly1305 Algorithm. As defined in the cryptographic
description of the protocol, [11], The cypher ChaCha20 ietf poly1305 was chosen because
enables to encrypt larger messages and with the nonce, it can be encrypted a lot of
different messages with the same key, the maximum message able to be encrypted with
this cypher is 64 ∗ 232 − 64bytes, but it is not a problem for this kind of files because it is
calculated that the maximum file size is 64Kbytes.

On the asymmetric side was chosen the Elliptic Curve Diffie-Hellman cypher, using the
X25519 curve. This cypher was chosen due to the encryption speed, and because it al-
lows the same security level as RSA, but with smaller keys. The generated key is stored
along with the public keys and passed through the Blake2b hash function to generate the
signature.

The hash function Blake2b [3] is used due to the speed and the higher security. it is faster
than SHA-256 and has similar security to SHA-3.

2.2.2 File Structure

A Crypt4GH file is composed of two main classes, inside them, we find groups of other
subclasses. These two main classes are the header and the data block. The header is the
one that contains the data of the file, with the instructions for decryption and the version
of the file. Data block contains: the groups of registries, the MAC of the encryption, the
encrypted data and a nonce to be used to achieve semantically secure encryption

On the figure 5 it is shown a graphical representation of the Crypt4GH document. On the
top of the image, it is represented the two main classes defined before, the Header and

4Number once: Random number that can be used just once

17

https://datatracker.ietf.org/doc/html/rfc8439

Figure 5: Crypt4GH file structure graphical representation [10]

18

the data block.

In the header class, we find the following elements and sub-elements in the order stipulated
below:

• Magic ”Crypt4GH”, the string to identify the file type

• The version number

• The packet header counter within which are defined all the header packets which
contains the multiple encryptions of the data key, each one for one of the readers
with it is shared the document.

In the packer counter, it is found the N numbers of packer headers are in the file. Each
packet header consists of the following values:

• Packet length, where it is set the length of the current packet header

• The encryption method, to tell the decrypt method which instructions must follow.

• The writer public key which in conjunction with the reader public key will allow
obtaining the data key

• Random nonce to decrypt

• The encrypted data, which to be decrypted is used the Kdata

• The MAC to verify the encrypted data

2.3 Access Control Policies

The access control policies are mechanisms to determine if a user is allowed to execute
some action over another resource. There exist many mechanisms to achieve this kind of
protection. All of them have a different approach to solving the problem or are used for
different purposes.

The access control policies can be found in many areas for example in a computer system,
a user can just access her files or determinate files which other users share with him, but
the root user has access over all the system files. This is a hierarchy based access control
system. The higher role the user has, the more are the actions that can perform.

There are many access control policies methodologies, the most common ones are [12]:

• Access Control List (ACL), a system based on a list of rules associated to an
object. The list contains the users and the actions permitted to a specific resource.

• Role-Based Access Control (RBAC), this access policy approach is not based
on rules, is based on roles. Are defined a list of roles, and the actions enabled to
each, and the user just can perform determinate action based on the role.

• Rule-Based Acces Control (RuBAC), an approach focused on restricting or
able actions based on a list of rules, an example can be, that to access a resource

19

you must have an IP from Catalonia. All requests that do not validate this rule will
be discarded.

• Attribute-based access control (ABAC), this mechanism is based on policies
and attributes. Also, defines the architecture and how to process the requests. The
attributes to perform the evaluation can be obtained from many parts. For example
can be from the user, the environment, or the resource.

The MPEG-G file defines the policies using an ABAC approach, particularly the XACML
implementation. To better understand this standard, the following subchapter will get
deeper into it. Will be explained the main components. Will be given a brief explanation
of them and will be defined the request flow when someone demand permissions to perform
an action.

2.3.1 eXtensible Access Control Markup Language

The eXtensible Access Control Markup Language (XACML) protocol is an Attribute-
based access control implementation defined to obtain atomic rules to define very accu-
rately who have privileges to execute an action to a resource.

The XACML standard defines how to build the full architecture and its components, on
the figure 6, is presented a graphical overview of all the components and how they interact
to each other.

Figure 6: XACML system overview

Figure 6 presents the components involved in the permission request. Not all of them are
part of the architecture, some of them are external components that will interact with
the system. The ones which belong to the protocol are:

20

• Policy enforcement point (PEP), it’s the point which will receive the request
for access to any resource and will derivate it to the PDP, to evaluate if the user
has permission to perform the action

• Policy decision point (PDP), this element is the one that will receive the evalu-
ation request of the PEP, and will return if the final user has permissions or not to
perform the action. To evaluate the request it will use two other components, the
PAP, to evaluate the stored policies, and the PIP to get extra information about
the attributes and evaluate more accurately.

• Policy administration point (PAP) this point will request to the PRP the
access rules and will be the one in charge of managing them. During the verification
process, when the PDP requires the access rules to be evaluated, then PAP will be
the one that will send it to be verified.

• Policy information point (PIP), will manage the achievement of additional
attributes like, for example, some environment data or extra resources to return a
more accurate response.

• Policy retrival point (PRP), this point will be the one which will store the
XACML policies. Those policies can be on a database or in a file. In this project,
those rules will be on the MPEG-G, inside the protection box.

21

3 Methodology

3.1 Software architecture

The MPEG-G standard is composed of many parts, five of them are already stable and
in continuous development, and there is a sixth part that is still in the development
stage. Due to this six-part division, the architecture on which this standard is based is
microservices oriented, as it allows to add and remove parts without affecting the other
components of the system.

The project will be structured in four main components: The authentication service,
the one which will manage the user login, which will return a JSON Web Token (JWT)
to manage the session. Before the authentication barrier, the file service will be found.
This service will manage the file requests when a user wants access to a file, the file server
will ask to Balana 5 to check if the user has the right permissions to read or write the file.
If the service returns a true, the file server will send a message to encrypt and decrypt
service. This component is the one that will return the file decrypted. If the user doesn’t
have permission to access the file, the server will return a 402 to block the user and warn
him that he doesn’t have the right to access the file.

The last component on the mesh is the Policy management service, this component
manages the policies, this service is the one that creates, deletes or edits the access rules
from a file.

Figure 7: System overview

The microservices approach is used to enable the growth of the reference software, if some
developer wants to increase the functionalities by adding new features developed by the
working group, it will just need to add the service on the mesh. Also, must adapt the file
service to use the new feature, update the service code, adding the requests to the new
functionality.

This approach is also used to enable future developers the capability to change any com-
ponent. In case someone wants to modify only the authentication service, with the mi-

5Open source XACML implementation, will be explained in section 3.3

22

croservices architecture, nothing more needs to be done than to directly replace the service
in question. The Balana is also a separate service, for the same reason, if another team
prefers another policy verifier, it just needs to change the Balana service.

3.2 Authentication and Authorization

As was defined in the previous subchapter, a component of the service mesh, is the authen-
tication and authorization service. This component takes care of the user login process
and the management of the session. To manage the sessions a JWT is used to achieve
a RESTful API and help the PDP to obtain data related to the user who is sending a
request to the server.

The authentication and authorization is an endpoint that will manage the login and sing
up process, the service will manage three scenarios:

• Sign up process, the process to create new users. The service will receive a POST
request, with the user email and password, and will generate a new entry on the
user’s database.

• Login process is the process to enable user access to the server.

• Validate sessions, in this scenario, the service will receive a request with a token on
the header and will return if the token is still valid.

The login endpoint will check if the request payload which contains the user email and
password which matches with any entry of the database, if a match is found a JWT will
be returned. The JWT will encode the next data:

Listing 3: Header of the JWT

1 {
2 "alg": "HS256",

3 "typ": "JWT"

4 }

Listing 4: Payload of the JWT

1 {
2 "sub": "mpegg_reference_software",

3 "email": <user_email>,

4 "iat": <timestamp_issue>,

5 "exp": <timestamp_issue + 30days>

6 }

The token must be inserted on the header of any request to the file service. The file server
will decode the token and take the user data. Then pass it to the Balana to check if the
user can perform the wanted action to the desired resource.

23

3.3 Access policy management

On the previously defined service mesh, it can be seen a component called Balana, is an
XACML open-source implementation of the protocol registered under an Apache2 license.
This framework will be the one used to check the access policies.

The eXtensible Access Control Markup Language (XACML) protocol helps with the def-
inition and verification of certain attributes related to the access policy. Helps on the
relation between the subject, the resource, the action, and the environment. It enables
the definition of the policies on a very low level, and it returns the resolution of an access
request. [13]

The protocol doesn’t just check if a list of attributes has the access to a determinate
resource, but also enables the creation of them. The system management of the rules can
be published into an external resource, this permits the modification of the rules from an
independent point. These rules can be stored in a database or a file [7]. In the context of
the project, it will be in a file, because it will come defined in the MPEG-G file, in the
protection box.

Figure 8: XACML Overview diagram

On the figure 8 it can be seen the flow of a request of a resource over a system that imple-
ments access control based on XACML, Balana, as it is an open-source implementation
of the XACML follows the same structure (figure 9)

Balana works as the PDP (figure 9), which is the component placed after the PEP whose
function is to check if the user can access the resource. On the figure 7, it can be seen
that the one which will act as PEP will be a file management service, this one when it
receives a read/write request it will ask Balana if the current user has rights to access to
the server.

Once the file service receives the request, this one will generate a XACML request, which
will be sent to the Balana. The Balana will execute the verification process. To do this

24

Figure 9: Balana as PDP: overview [35]

task it will read the policies from the protection box of the file and will get the user data
from the token, with this data it will process the request, and return the result to the file
service.

3.4 Rest API

A REST API, Is a collection of architectural parameters which must be followed dur-
ing software development. The RESTful services enables the creation of web API’s us-
ing methods defined on the Hypertext Transfer Protocol (HTTP): GET, POST, PUT,
DELETE

Figure 10: HTTP permitted methods

The web APIs are usually exposed through and URL, and enables an entry point opened
to everybody.

To send data to the server, it’s used the HTTP packet payload is followed by one of the
methods defined to insert data: PUT or POST. The main purpose of the RESTful API
is the increase of the performance, scalability, visibility, portability and resistance of a
server. [27]

25

Figure 11: File service using the decryption and encryption service HTTP endpoints

Taking the encryption and decryption service as an example, in figure 11, can be a
schematic representation of how the file server takes advantage of the HTTP endpoint
exposed by the decrypt and encrypt service to work with the data stored on the file server.

If the decrypt and encrypt service is modified, but not changed the HTTP path, the file
server will never know about the change.

This decoupling approach is used on all the composes, and all the services are exposed
through an HTTP endpoint.

On the previous subchapter, was defined the PEP and PDP elements. The PEP, as was
defined the element which will receive the request, on the project will be the file server,
and the Balana, as was defined previously, the PDP. To enable the use of other PDP, the
Balana service will be exposed through an endpoint too.

3.5 Use case and RefSW use Environment

In the previous subchapter of this chapter, it was defined the methodology used to develop
the software, were defined the architecture, the approach, and the internal components.
On this one it will be defined how the software is going to be tested and to do so, there
will be defined a series of cases to analyze if the objectives were achieved or not.

The defined cases are the following:

• As a covid researcher, I want to enable my college in another university access to
the medical study data securely .

• As a security researcher, I want to verify the signatures of encrypted documents to
prevent impersonations.

• As a medical researcher, I want to decrypt and verify documents signatures with no
knowledge of cryptography.

• As a researcher from an external institution collaborating with the local research
team, I want to access the data from the team.

Those use cases would be used to define some scenarios which the reference software must
pass to define the objectives as achieved.

26

4 Results

Results will be split into three subchapters, The first one will present the purpose to
integrate the Crypt4GH protocol inside the MPEG-G standard.

Then will be presented the reference software developed, a section focused on giving a
tour over the reference software, after that, it will be explained how to install it, how to
deploy it and how to improve it. Finally, there will be found a section called use case
validation, on this chapter, which will be executed the software over each use case defined
in the methodology chapter.

4.1 Integration of Crypt4GH on MPEG-G

Crypt4GH is a cryptographic standard developed by the GA4GH. This standard enables
the exchange of genomic data between researchers securely. [10]

The other standard is the MPEG-G. This standard is developed by the Moving Picture
Experts Group (MPEG). MPEG is WG11 of ISO/IEC JTC1/SC29, developing standards
for media coding, MPEG has been re-structured into several WGs, being WG8 the one
in charge of further development of MPEG-G.

4.1.1 File comparison

If we compare the standard’s purpose, we find the same objective, share genomic records
with a big focus on security, prevent data leaks, and achieve the information exchange
between researchers. The main difference is in the file structure and some additional
features. MPEG-G, not just able of the encryption, also adds the option to explore the
data and execute some search operations over the file. Due to the hierarchical structure,
and the metadata.

4.1.2 Ciphers

In our context, a good point to compare is the able cypher suite on both files. We are going
to talk about the cypher’s that are considered on each standard. Will be compared the
cypher suite used for encrypting the genomic records and encrypting the key. MPEG-G,
not just able of the encryption, also adds the option to explore the data and execute some
search operations over the file. Due to the hierarchical structure, and the metadata.

Genomic Data Encryption, On the MPEG-G side, we find other type of encryption stan-
dards, the working group decided to implement the AES standard, using CTR and GCM
mode [15]. The key size can be, 128, 192 or 256 bits. For genomic data encryption, both
use symmetric encryption algorithms, but they use completely different standards. On
the side of Crypt4GH, it’s used the ChaCha20-IETF-Poly1305 [11] They affirm that this
algorithm was chosen due to the capability to encrypt larger files than other encryption
standards.

The ChaCha20-IETF-Poly1305, variant was chosen because having the support of the
IEFT. This support grants better library support. Key Encryption After encrypting the

27

Figure 12: Crypt4gh file structure

genomic data, both of them encrypts the key to share it with the other researchers.
MPEG-G uses asymmetric and symmetric encryption to store the key. Both standards
able the multi sharing option, which consists in encrypting the key many times with
different public keys, to send the file to many researchers or institutions. Crypt4GH uses
asymmetric encryption to encrypt the key and send it to many. The ciphered key will store
on the header, to encrypt the key it’s used Elliptic Curve Diffie-Hellman uses X25519.

The encryption of the key to decrypt the data on the side of MPEG-G it’s permitted with
two different standards. One is the RFC 3394, these standards define a way to encrypt
the key to decrypt the data with symmetric encryption over the key with an encryption
key to decrypt it. The other permitted standard is PKCS1 OAEP [19]

4.1.3 Proposal

After the comparison of the type of standards, it is proposed to integrate Crypt4GH inside
the MPEG-G standard. Both standards are structured differently, MPEG-G, offers an

28

Figure 13: MPEG-G file transport format [14]

option to organize multiple studies on a single file, and Crypt4GH just able the encryption
of genomic records. With this difference to the approach of this proposal, it inserts the
Crypt4GH on the access unit level, MPEG-G. The access unit layer is the one with the
genomic records, so there can be stored the genomic records. The idea builds an XSD
adapting the crypt4gh serial structure to an XSD to insert it on the encryption box of
MPEG-G. About the difference on the Cipher suits, it’s solved just integrating the cyphers
of crypt4gh on the MPEG-G standard just for this case.

The modification over the base protection box of an access unit it’s the addition of an
attribute on the protection type header, to set the file type, which can be Crypt4GH, to
advise that the data inside it Crypt4gh standard, or empty to use the standard MPEG-G.
The resulting schema can be checked on the annexes.

4.2 Reference Software

This section presents the software developed during the project. The software is built
over a microservice architecture which exposes a API through an HTTP gateway. The
results will be presented and discussed in the first subchapter. After the presentation and
a little tour over it, there will come three subsections which are focused on showing how
to install it, how to deploy it and how to improve it. These last three parts will be a little
introduction on those topics but extended on the appended git repository.

29

Figure 14: Service Mesh

4.2.1 Overview

The presented software as was commented before is built in over a microservice archi-
tecture. On the figure 14, it can be seen the service mesh diagram. The final result is
composed of the API gateway, the auth service and the file service. The file service at the
same time is composed of to encrypt and decrypt service, the protection box service and
the Balana.

All the components and subcomponents operate as unique software, and the internal mesh
it is hidden to the final user. The components which compose the architecture are:

API gateway, this element, is the door to the external world. it is exposed by and
HTTP endpoint. This element will be the one that will redirect the traffic between the
auth service, or the file server. Also, the API gateway will operate as an authentication
guard, as all the services need that the user must be logged, every request which goes to
the file server, first will be redirected to the auth service, which will return if the user is
correctly logged or not.

Authorization and Authentication, on this service will be found the user’s manage-
ment. This service will manage the login and sign up process, also it will be controlling
the token generation, and the user data checking. The login and sign up will be done just
with the email and the password, if the user sends a valid user and password, this service
will return the session token, this token must be inserted on all the requests over the file
server due to not existing any public request. Another important task of this service is

30

the checking of the valid user data, on every request to the file server, the API gateway
first will redirect the request to this service. The service will take the token and parse it
to analyze and verify if it is correct. If all is correct will return a status 200 which will
advise the API gateway that the request can continue to the file service. But if the token
is wrong, will return a status 401 which will block the flow and return an error to the
user.

File service, is the last main component, and it is the main focus of this project. The
API gateway is aimed at offering the door to the world and managing the requests, the
Authorization and Authentication service will manage the users, and the file server is
the one that will manage the files. This server is where it is found the implementation
of the MPEG-G protocol, using the subcomponents: Encryption, Decrypt, Balana and
protection box, will perform all the operations of part three. The service will receive a
valid operation, which will be processed using the submodules. The Encryption and
Decryption service, will be the one that will manage the operation of encrypting and
decrypting, this service will receive a request with the MPEG-G file and will perform the
wanted action over it. If the action is decrypted, first will check the signature searching
if it is valid, but if the desired action is the encryption of a file, the service will encrypt
the file and sign it.

The other submodule is the protection box. That service will manage the generation
and extraction of data of the protection box of a MPEG-G file. On this service, it can be
created a protection box, and it can be deleted or added it new rules. The last one is the
Balana, which is the implementation of the Balana framework over a rest API, to open
an endpoint to verify if the user has access to the desired resource. The flow of a read
operation over an encryption file, will follow the next flow:

1. The request will get into the server through the API gateway, which will send it to
the auth server.

2. The auth service will check if the token set on the request header is correct and will
return a response to the gateway.

3. If the auth service returns a 401 means that the user is unauthorized. That status
will be propagated and returned to the user closing the request flow. But if a 200
is returned, the auth service the gateway will send the request to the file server to
be processed.

4. The file server will receive the request and before decrypting the file and sending
it to the user, will check if the user had the privileges to act. So will send to the
protection box service a request to extract the policies from the wanted file.

5. The protection box service will receive a MPEG-G file, from which will extract
the policies and send it in JSON format back to the file server service.

6. The file server will take the user data from the token, the MPEG-G file and the
policies, and will send it to the Balana.

7. The Balana will perform a verification to check if the user has the right to perform
the action and send the response to the file server.

31

8. Again on the file server if the Balana returns a false, the service will return a 401
to the user, but if a true is returned, will take the password and the file and send it
to the decryption service.

9. The decryption service will receive a MPEG-G file and the password. Will take that
data and perform a decryption operation and return the data decrypted.

10. The file server will receive the data decrypted and return it to the user.

It also exists another service, which is not presented on the mesh because doesn’t perform
any operation, but it is important to be explained because is the one that contains the
API documentation. This service can be found under the path /docs and it is a static
service that will return the list of endpoints, how to use them and interactive execution.
This documentation is built using the Swagger software. This is a software developed by
the open API organization focused on defining a standardized way to present Rest API’s
documentations(figure 15).

Figure 15: Swagger API documentation screenshot

The endpoints can be grouped into four blocks, two are the main ones, which will be the
ones used on a relay deployment, those are the authentication and authorization endpoints,
which belongs to the user operations. And the file server block, which is focused on the
management of the MPEG-G files, the operations are read and written. Also enables the
option to get the file list and the navigation into the files, getting into the subgroups of
the MPEG-G files.

Finally, the other two blocks are defined to test the application, those are the encryption
and decryption endpoints and the ones from the protection box. These two blocks enable
the communication directly to those endpoints bypassing the system guards, which are
defined because during the testing process was required direct access to those services and

32

can be useful to understand the under the layer of the app. It will also be useful to test
the use cases defined in the previous chapters.

Now will be presented in a summed up way how to install, deploy and improve the
software. The next chapters will be just a presentation and a little introduction on how
to do it, the full documentation is on the Annexes, also with the user manual to enable
anyone the use that software.

4.2.2 How to install it

As was presented in the methodology chapter, the software is built on top of a microservice
architecture. To wake all the service mesh, it was defined and a docker-compose file, which
will operate as orchestrator and service name resolver. (figure16)

To install the software is required to have installed the docker-compose and git, the
appended document has a special chapter to solve the installation of those components.

To obtain the source code must be cloned from the next GitLab repository: MPEG-G
Source code

Figure 16: QR to GitLab repository with the MPEG-G Referent Software

Once the code is cloned to the machine, it is time to deploy it, no extra resources are
needed for it, due to all the libraries and programming languages being encapsulated
inside the docker containers.

4.2.3 How to deploy it

After the code clone, the next step is to deploy the software. For that, the docker-compose
engine is used. The docker-compose is the one that will create a private virtual network
inside the machine, to hide the container IP’s inside, and enable the network connection
between them.

Also, docker-compose will set the service name as the domain name, this helps the devel-
oper enable the use of the service name to call another API service, and the engine will
manage the redirection to the correct service. To wake up the container mesh with the

33

https://gitlab.com/treball-final-master/mpeg-g-reference-software
https://gitlab.com/treball-final-master/mpeg-g-reference-software

docker container, a terminal on the cloned project is need it. Once the terminal is ready,
docker-compose can call it to start the process:

Listing 5: Command to execute MPEG-G software reference

1 $ docker-compose up

That instruction will start the stack. the container will be pulled from their registries,
and after that, it will be run. After the waking up process is done, a browser can be
opened and search: localhost:8080 a white page or non-found page will be shown, but
that’s normal due to the root of the domain being empty, but that means that the reverse
proxy is working.

4.2.4 How to improve it

The presented software contains the implementation of parts 1 and 3. But not it is the
completed standard, this is because the protocol also contains other parts, and it is still
under development. For this reason, the software is licensed under an open-source project
to enable anyone to improve, modify and use it.

But as an open-source project, collaboration rules are defined to improve the quality of
code, create a wealthy development environment, and keep clean the working tree. Also,
the definition of collaborating code of conduct is proposed to encourage participation in
the project defining a transparent decision-making process creating a clarifying way on
how to participate in the decision making process.

• To add any improvement a pull request must be done

• Any branch can be merged without at least 1 approval

• To add any new service must be created a new repository and just add the container
on the main deployment YAML file

4.3 Use case validation

This subchapter will iterate over the uses cases to test the presented reference software.
The

• As a covid researcher, I want to enable my college in another university access to
the medical study data securely

• As a security researcher, I want to verify the signatures of encrypted documents to
prevent impersonations

• As a medical researcher, I want to decrypt and verify documents signatures with no
knowledge of cryptography.

• As a researcher from an external institution collaborating with the local research
team, I want to access the data from the team.

34

To execute those scenarios will be used, Postman, software built to test Web API’s, all
the use cases will be explained and contextualized, after that will be presented the initial
data, the expected return and the result.

4.3.1 Use Case 1

The first use case is As a covid researcher, I want to enable my college in another university
access to the medical study data securely the objective of that use case is to use the software
from the point of view of a researcher. The described scenario is composed of a researcher
who works in a university, for example, at the UPC. The researcher from UPC collaborates
with other researchers in the Universitat de Lleida (UDL). The UPC wants to enable to
their colleges from UDL the access to the medical study data.

To build this scenario we need some extra information:

• Researcher 1, from UPC, email: upc.cat

• Researcher 2, from UDL. email: udl.cat

The data generated is stored in an encrypted file, and the protection box associated with
this element is the next one:

Listing 6: XML input to the first use case

1 <?xml version="1.0" encoding="UTF-8"?>

2 <DatasetProtection

3 xmlns="mpg-access-prot:DatasetProtectionType">

4 <EncryptionParameters configurationID="0" encryptedLocations="0">

5 ...

6 </EncryptionParameters>

7 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

8 ...

9 </Signature>

10
11 <Policy>

12 <Target>

13 <AnyOf>

14 <AllOf>

15 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-regex-match">

16 <AttributeValue DataType="https://www.w3.org/2001/

XMLSchema#string">da</AttributeValue>

17 <AttributeDesignator AttributeId="urn:oasis:names:tc:

xacml:1.0:resource:resource-id" Category="urn:oasis:

names:tc:xacml:3.0:attribute-category:resource"

DataType="https://www.w3.org/2001/XMLSchema#string"/

>

18 </Match>

19 </AllOf>

35

20 </AnyOf>

21 </Target>

22 <Rule Effect="Permit" RuleId="Rule-1">

23 <Condition>

24 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:and">

25 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-bag">

26 <AttributeValue DataType="https://www.w3.org/2001/

XMLSchema#string">modify</AttributeValue>

27 <AttributeDesignator AttributeId="urn:oasis:names:tc:

xacml:1.0:action:action-id" Category="urn:oasis:

names:tc:xacml:1.0:action" DataType="https://www.w3.

org/2001/XMLSchema#string"/>

28 </Apply>

29 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

string-bag">

30 <AttributeValue DataType="urn:oasis:names:tc:xacml:1.0:

data-type:rfc822Name">upc.cat</AttributeValue>

31 <AttributeDesignator AttributeId="urn:oasis:names:tc:

xacml:1.0:subject:subject-id" Category="urn:oasis:

names:tc:xacml:1.0:subject-category:access-subject"

DataType="urn:oasis:names:tc:xacml:1.0:data-type:

rfc822Name"/>

32 </Apply>

33 </Apply>

34 </Condition>

35 </Rule>

36 <Rule Effect="Deny" RuleId="Deny-Rule"/>

37 </Policy>

38 </DatasetProtection>

The previous XML block, shows the input protection box, on the section of the rule can
be seen the attribute Effect=”Permit” this means that if the boolean expression defined
inside it is true, the action defined on it will be executed. The action is on the first Apply
section, the value is Modify, and the next section on the field AttributeValue appears an
email value: upc.cat.

That means any user with UPC email can modify the file. So the researcher with this
email also can add a new rule to enable the college to access the document. To do enable
this access will be executed a request to generate a new access rule. This request would
be sent to the endpoint /policy/add with the data of the listing 7.

Listing 7: Add policy request

1 {
2 "matchValue": "dthd",

3 "ruleId": "Rule-2",

36

4 "action": "ACCESS",

5 "email": "udl.cat",

6 "xmlFile": "<?xml version="1.0" encoding="UTF-8" standalone="no"?><

DatasetProtection xmlns="mpg-access-prot:DatasetProtectionType">

... </DatasetProtection>"

7 }

Listing 8: XML output to the first use case

1 <?xml version="1.0" encoding="UTF-8" standalone="no"?>

2 <DatasetProtection

3 xmlns="mpg-access-prot:DatasetProtectionType">

4 <EncryptionParameters configurationID="0" encryptedLocations="0">

5 ...

6 </EncryptionParameters>

7 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">

8 ...

9 </Signature>

10 <Policy>

11 <Target>

12 <AnyOf>

13 <AllOf>

14 <Match MatchId="urn:oasis:names:tc:xacml:1.0:function:

string-regex-match">

15 <AttributeValue DataType="https://www.w3.org/2001/

XMLSchema#string">dthd</AttributeValue>

16 <AttributeDesignator AttributeId="urn:oasis:names:tc

:xacml:1.0:resource:resource-id" Category="urn:

oasis:names:tc:xacml:3.0:attribute-category:

resource" DataType="https://www.w3.org/2001/

XMLSchema#string"/>

17 </Match>

18 </AllOf>

19 </AnyOf>

20 </Target>

21 <Rule Effect="Permit" RuleId="Rule-1">

22 <Condition>

23 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

and">

24 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-bag">

25 <AttributeValue DataType="https://www.w3.org/2001/

XMLSchema#string">modify</AttributeValue>

26 <AttributeDesignator AttributeId="urn:oasis:names:tc

:xacml:1.0:action:action-id" Category="urn:oasis

:names:tc:xacml:1.0:action" DataType="https://

37

www.w3.org/2001/XMLSchema#string"/>

27 </Apply>

28 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-bag">

29 <AttributeValue DataType="urn:oasis:names:tc:xacml

:1.0:data-type:rfc822Name">upc.cat</

AttributeValue>

30 <AttributeDesignator AttributeId="urn:oasis:names:tc

:xacml:1.0:subject:subject-id" Category="urn:

oasis:names:tc:xacml:1.0:subject-category:access

-subject" DataType="urn:oasis:names:tc:xacml

:1.0:data-type:rfc822Name"/>

31 </Apply>

32 </Apply>

33 </Condition>

34 </Rule>

35 <Rule Effect="Permit" RuleId="Rule-2">

36 <Condition>

37 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:function:

and">

38 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-bag">

39 <AttributeValue DataType="https://www.w3.org/2001/

XMLSchema#string">access</AttributeValue>

40 <AttributeDesignator AttributeId="urn:oasis:names:tc

:xacml:1.0:action:action-id" Category="urn:oasis

:names:tc:xacml:1.0:action" DataType="https://

www.w3.org/2001/XMLSchema#string"/>

41 </Apply>

42 <Apply FunctionId="urn:oasis:names:tc:xacml:1.0:

function:string-bag">

43 <AttributeValue DataType="urn:oasis:names:tc:xacml

:1.0:data-type:rfc822Name">udl.cat</

AttributeValue>

44 <AttributeDesignator AttributeId="urn:oasis:names:tc

:xacml:1.0:subject:subject-id" Category="urn:

oasis:names:tc:xacml:1.0:subject-category:access

-subject" DataType="urn:oasis:names:tc:xacml

:1.0:data-type:rfc822Name"/>

45 </Apply>

46 </Apply>

47 </Condition>

48 </Rule>

49 <Rule Effect="Deny" RuleId="Deny-Rule"/>

50 </Policy>

38

51 </DatasetProtection>

On the answer from the server can be seen a new rule with the ID Rule-2, which is the id
defined on the request. This rule enables the read of any user with an email from udl.cat.

4.3.2 Use Case 2

The second use case to be achieved is as a security researcher, I want to verify the signa-
tures of encrypted documents to prevent impersonations, to test this use case, first will be
encrypted the string: Use case number two, the returned protection box will be modified
the signature value and the server must return an error.

The first step is to encrypt the defined string, to do it will be generated a request to the
encryption endpoint, the access unit encryption endpoint will be used /encrypt/accessunit.

Listing 9: Second use case encryption request

1 {
2 "data": "Use case number two"

3 }

Listing 10: Second use case encryption response

1 {
2 "encryptedData": "sRShpn7Rbgi6D49AUEvxRQ4QWQ==",

3 "protectionBox": "<?xml version=\"1.0\" encoding=\"UTF-8\"?>

4 <AccessUnitProtection

5 xmlns=\"mpg-access-prot:AccessUnitProtectionType\">

6 <AccessUnitEncryptionParameters>

7 ...

8 </AccessUnitEncryptionParameters>

9 <Signature

10 xmlns=\"http://www.w3.org/2000/09/xmldsig#\">

11 <SignedInfo>

12 <CanonicalizationMethod Algorithm=\"http://www.w3.org/TR/2001/

REC-xml-c14n-20010315\"/>

13 <SignatureMethod Algorithm=\"http://www.w3.org/2009/xmldsig11#

dsa-sha256\"/>

14 <Reference URI=\"\">

15 <Transforms>

16 <Transform Algorithm=\"http://www.w3.org/2000/09/

xmldsig#enveloped-signature\"/>

17 </Transforms>

18 <DigestMethod Algorithm=\"http://www.w3.org/2001/04/xmlenc#

sha256\"/>

19 <DigestValue>U+zvFXYVy0aqX5QJELtX65wopSP2/4m4m5TiBDXbvEw=</

DigestValue>

20 </Reference>

39

21 </SignedInfo>

22 <SignatureValue>

23 UoLV/qKNG0u3FKdp5ZMoiRCLHZ/ReHK6lnJ72nrbPPUJAIE7/J9aK5k5Sm0

eSNQxsSDHqTqAi5E=

24 </SignatureValue>

25 <KeyInfo>

26 <X509Data>

27 <X509SubjectName>CN=Eric Monne,OU=Cybersecurity,O=UPC,L=

Barcelona,ST=Barcelona,C=ES</X509SubjectName>

28 <X509Certificate>

29 ...

30 </X509Certificate>

31 </X509Data>

32 </KeyInfo>

33 </Signature>

34 </AccessUnitProtection>",

35 "key": "Vz1neOqBAsSRp18q9hNEcA=="

36 }

To verify the signature verification will be taken the encryption response and modify the
value of the signature, the server must return an error.

Listing 11: Second use case signature verification request

1 {
2 "encryptedData": "sRShpn7Rbgi6D49AUEvxRQ4QWQ==",

3 "protectionBox": "<?xml version=\"1.0\" encoding=\"UTF-8\"?>

4 <AccessUnitProtection

5 xmlns=\"mpg-access-prot:AccessUnitProtectionType\">

6 <AccessUnitEncryptionParameters>

7 ...

8 </AccessUnitEncryptionParameters>

9 <Signature

10 xmlns=\"http://www.w3.org/2000/09/xmldsig#\">

11 <SignedInfo>

12 <CanonicalizationMethod Algorithm=\"http://www.w3.org/TR/2001/

REC-xml-c14n-20010315\"/>

13 <SignatureMethod Algorithm=\"http://www.w3.org/2009/xmldsig11#

dsa-sha256\"/>

14 <Reference URI=\"\">

15 <Transforms>

16 <Transform Algorithm=\"http://www.w3.org/2000/09/

xmldsig#enveloped-signature\"/>

17 </Transforms>

18 <DigestMethod Algorithm=\"http://www.w3.org/2001/04/xmlenc#

sha256\"/>

19 <DigestValue>U+zvFXYVy0aqX5QJELtX65wopSP2/4m4m5TiBDXbvEw=</

40

DigestValue>

20 </Reference>

21 </SignedInfo>

22 <SignatureValue>

23 WrongSignatureValue

24 </SignatureValue>

25 <KeyInfo>

26 <X509Data>

27 <X509SubjectName>CN=Eric Monne,OU=Cybersecurity,O=UPC,L=

Barcelona,ST=Barcelona,C=ES</X509SubjectName>

28 <X509Certificate>

29 ...

30 </X509Certificate>

31 </X509Data>

32 </KeyInfo>

33 </Signature>

34 </AccessUnitProtection>",

35 "key": "Vz1neOqBAsSRp18q9hNEcA=="

36 }

The figure 17, shows the response of the file with the wrong signature, the response from
the server is a status 400, because the data is wrong.

Figure 17: Second use case, signature error response, screenshot from Postman

The verification when a signature is valid will be done on the use case number 3. But
with the returned error this use case can be defined as achieved.

41

4.3.3 Use Case 3

The third of the uses cases is the As a medical researcher, I want to decrypt and verify
documents signatures with no knowledge of cryptography, the presented use case defines a
context where a researcher connects to the system and wants to download a file. The file
is stored encrypted on the server, but the users want it decrypted. The server must verify
the user data and check if the user accomplishes the rules to read the document. If it is
all correct, the server will decrypt the document, and send it back to the user.

To build this scenario will be generated an encrypted file. That file will be a raw string, in
a real deployment, the string must be a valid MPEG-G document. The request to encrypt
the file is defined on the listing 12.

Listing 12: Request to encrypt data

1 {
2 "data": "Encryption Test"

3 }

The data field contains the elements to be encrypted, there goes a full MPEG-G document,
but to test the software is sent a random string.

The endpoint called is /encrypt/accessunit, this endpoint is which will call the file server
to encrypt the uploads, but for testing objectives we are going to bypass the file server
and send it directly to the encryption service, to test the output.

Listing 13: Response to encrypt data

1 {
2 "encryptedData": "tdSvwrvpahj4oKCQZZHl",

3 "protectionBox": "

4 <?xml version="1.0" encoding="UTF-8"?>

5 <AccessUnitProtection

6 xmlns="mpg-access-prot:AccessUnitProtectionType">

7 <AccessUnitEncryptionParameters>

8 <cipher>urn:mpeg:mpeg-g:protection:aes128-ctr</cipher>

9 <auinIV>/2xLPA7KUiREL+P4Kv7zlQ==</auinIV>

10 <auinTAG>ayFXtBL30SEfbbibNHoTCw==</auinTAG>

11 <aublockIV>TlIi7VuAGWiNoOr9l69diA==</aublockIV>

12 </AccessUnitEncryptionParameters>

13 <Signature

14 xmlns="http://www.w3.org/2000/09/xmldsig#">

15 <SignedInfo>

16 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/

REC-xml-c14n-20010315"/>

17 <SignatureMethod Algorithm="http://www.w3.org/2009/xmldsig11#

dsa-sha256"/>

18 <Reference URI="">

19 <Transforms>

42

20 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig

#enveloped-signature"/>

21 </Transforms>

22 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#

sha256"/>

23 <DigestValue>bjolcVqOKaLWbqfLdV9vfV979ntUQUur4dKLInPuD/Y=</

DigestValue>

24 </Reference>

25 </SignedInfo>

26 <SignatureValue>hlhZhm/gEYAz0ZUXDp5HRoERhKlgjCZJ7QOuHxcSGaBJ0

cqJzsn5YLExR58C0gQ9Gozy7+WfIHc=</SignatureValue>

27 <KeyInfo>

28 <X509Data>

29 <X509SubjectName>CN=Eric Monne,OU=Cybersecurity,O=UPC,L=

Barcelona,ST=Barcelona,C=ES</X509SubjectName>

30 </X509Certificate>

31 ...

32 </X509Certificate>

33 </X509Data>

34 </KeyInfo>

35 </Signature>

36 </AccessUnitProtection> ",

37 "key": "L6P5wwoc7T5WdIc8a/SMzQ=="

38 }

As the key was not sent to the server, the service creates and returns a random encryption
key. This random key will be stored by the file server. Also, the server returns a field called
encryptedData where goes the data is encrypted. The data returned is the protection box,
where comes the data signature.

The focus of this use case is the decryption testing, so the returned protection box and
the key will be sent to the decryption service:

Listing 14: Decryption request

1 {
2 "encryptedData": "fcRXcW4tWlEGiQf2VdCizvbqfF+YEtik",

3 "protectionBox": "<?xml version="1.0" encoding="UTF-8"?>

4 <?xml version="1.0" encoding="UTF-8"?>

5 <AccessUnitProtection

6 xmlns="mpg-access-prot:AccessUnitProtectionType">

7 <AccessUnitEncryptionParameters>

8 <cipher>urn:mpeg:mpeg-g:protection:aes128-ctr</cipher>

9 <auinIV>/2xLPA7KUiREL+P4Kv7zlQ==</auinIV>

10 <auinTAG>ayFXtBL30SEfbbibNHoTCw==</auinTAG>

11 <aublockIV>TlIi7VuAGWiNoOr9l69diA==</aublockIV>

12 </AccessUnitEncryptionParameters>

43

13 <Signature

14 xmlns="http://www.w3.org/2000/09/xmldsig#">

15 <SignedInfo>

16 <CanonicalizationMethod Algorithm="http://www.w3.org/TR/2001/

REC-xml-c14n-20010315"/>

17 <SignatureMethod Algorithm="http://www.w3.org/2009/xmldsig11#

dsa-sha256"/>

18 <Reference URI="">

19 <Transforms>

20 <Transform Algorithm="http://www.w3.org/2000/09/xmldsig

#enveloped-signature"/>

21 </Transforms>

22 <DigestMethod Algorithm="http://www.w3.org/2001/04/xmlenc#

sha256"/>

23 <DigestValue>bjolcVqOKaLWbqfLdV9vfV979ntUQUur4dKLInPuD/Y=</

DigestValue>

24 </Reference>

25 </SignedInfo>

26 <SignatureValue>hlhZhm/gEYAz0ZUXDp5HRoERhKlgjCZJ7QOuHxcSGaBJ0

cqJzsn5YLExR58C0gQ9Gozy7+WfIHc=</SignatureValue>

27 <KeyInfo>

28 <X509Data>

29 <X509SubjectName>CN=Eric Monne,OU=Cybersecurity,O=UPC,L=

Barcelona,ST=Barcelona,C=ES</X509SubjectName>

30 </X509Certificate>

31 ...

32 </X509Certificate>

33 </X509Data>

34 </KeyInfo>

35 </Signature>

36 </AccessUnitProtection>",

37 "key": "tBTQQ463tq2/MUdXJ3pS48xpBXfc0eLk1zIY9K/n2wo="

38 }

The Server verifies the Signature of the element and if it is correct returns the decrypted
data.

Listing 15: Result of the third use case

1 {
2 "decryptedData": "Encryption Test"

3 }

The returned decrypted data is the one that was encrypted before, so this use case can
be set as achieved.

44

4.3.4 Use Case 4

The last use case is the number four: As a researcher from an external institution collabo-
rating with the local research team, I want to access the data from the team., this use case
defines a scenario where a researcher from an external organization wants to access the
data from another university, can be defined as the continuation of the first use case.

So if in the first use case, the UPC researchers enable the access to the file to a UDL
researcher. Now the UDL researcher will get into the data. Before the request goes directly
to the policy management service, now the request will go through the file server. The
first request will be to read the data, and the server must return the decrypted data. Then
will be a request to add a policy and the server must return an error because the user
doesn’t have the privileges to write on the file.

Listing 16: Value of JWT to access the server

1 {
2 "sub": "mpegg_reference_software",

3 "email": "udl.cat"

4 }

The listing 16 shows the JWT send it to the server, on it can be seen the email of the user
required to verify if the user has access to the wanted resource with the wanted action.

Listing 17: Fourth use case read response

1 {
2 "data": "Use case number one"

3 }

The response contains the encrypted string on use case number 1, so the server grants
access to the resource. The request tries to add a new policy, the server must return an
error because a user with UDL email can not edit the file.

On the figure 18 can be seen that the server returns a status 402, because the user can’t
modify the file. So with this screen and the previous response, this use case can be defined
as passing and validating all the use cases.

45

Figure 18: Fourth use case, error: not authorised action response, screenshot from
Postman

46

5 Conclusions and Future Work

This chapter presents the conclusions of the project resulting from studying the MPEG-G
and Crypt4GH standards, and the consequent implementation of the reference software.
An overview presenting the results and the content generated is done. From the work
presented so far and as a closing step, some possible future lines of work will be introduced.

The first objective of the project was to define a proposal for inserting Crypt4GH in
MPEG-G. In the search to achieve this objective and based on the proposal made, we
obtain the following conclusion: MPEG-G standard enables the classification in the hier-
archical level of a medical record, permitting the navigation between levels. This enables
the search of information in an ordered way. If we look at the encryption differences,
the MPEG-G standard encrypts every level of the hierarchy, meanwhile, the Crypt4GH
standard just encrypts the raw data without any hierarchy. Due to that difference in the
storing format, the presented proposal defines an approach where the Crypt4GH can be
inserted on the access unit level of the MPEG-G standard as an encryption method.

The second objective was to implement a software reference for the MPEG-G standard.
The software has been validated against four use cases presented in the chapter 3.5. Every
use case defines a scenario where the MPEG-G standard can be used. The use cases were
reviewed one by one and all successfully pass the tests. So, we can consider that the second
objective was also achieved.

In order for the reference software obtained from the second objective to be considered
as such, a guide needs to be included in conjunction with the software implementation.
The last objective of this thesis sought to meet this requirement and that is why we have
defined a set of guidelines, making future collaboration on the project and adding new
features more accessible. To achieve this objective a guide has been created and deployed
on a GitLab page. With this user interface page being accessible we can consider the
objective as achieved.

At the time of writing these conclusions, the presented software correctly implements
parts one and three of the MPEG-G standard. As we have stated in the first chapters of
this thesis, the standard is composed of a total of six parts which means that a future
line of work could be to include the remaining parts into our software. Pointing in this
direction and taking advantage of the microservices architecture used, adding new parts
should be as direct as adding new microservices to the service mesh.

Another issue that could be really interesting to implement in the near future and that
would be really helpful to increase the robustness of our system is to increment the number
of rules that a policy service can create (being, at the present time, email access the only
policy available).

Finally, like any software, it is important to keep in mind that a bug revision should be
periodically or continuously applied while new features are being added, thus making the
software less error-prone.

47

References

[1] Claudio Albert, Tom Paridaens, Jan Voges, Daniel Naro, Junaid J. Ahmad, Massimo
Ravasi, Daniele Renzi, Giorgio Zoia, Paolo Ribeca, Idoia Ochoa, Marco Mattavelli,
Jaime Delgado, and Mikel Hernaez. An introduction to MPEG-G, the new ISO
standard for genomic information representation. Preprint, bioRxiv, September 2018.

[2] API Documentation & Design Tools for Teams — Swagger. https://swagger.io/.

[3] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-O’Hearn, and Christian Win-
nerlein. BLAKE2: Simpler, Smaller, Fast as MD5. In David Hutchison, Takeo
Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern, John C. Mitchell,
Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan,
Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard Weikum, Michael Ja-
cobson, Michael Locasto, Payman Mohassel, and Reihaneh Safavi-Naini, editors,
Applied Cryptography and Network Security, volume 7954, pages 119–135. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2013.

[4] Peter J. A. Cock, James K Bonfield, Bastien Chevreux, and Heng Li. SAM/BAM
format v1.5 extensions for de novo assemblies. Preprint, Bioinformatics, May 2015.

[5] Information Technology Laboratory Computer Security Division. Ac-
cess Control Policy and Implementation Guides — CSRC — CSRC.
https://csrc.nist.gov/projects/access-control-policy-and-implementation-guides,
September 2016.

[6] Empowering App Development for Developers — Docker.

[7] eXtensible Access Control Markup Language (XACML) Version 3.0 Plus Errata 01.
page 154, 2017.

[8] Genome. Wikipedia, September 2021.

[9] GitLab. Iterate faster, innovate together — GitLab. https://about.gitlab.com/.

[10] Global Alliance for Genomics and Health. Crypt4GH: A secure method for sharing
human genetic data. https://www.ga4gh.org/news/crypt4gh-a-secure-method-for-
sharing-human-genetic-data/.

[11] Global Alliance for Genomics and Health. GA4GH File Encryption Standard.

[12] Vincent C Hu, David F Ferraiolo, and D Rick Kuhn. Assessment of access con-
trol systems. Technical Report NIST IR 7316, National Institute of Standards and
Technology, Gaithersburg, MD, 2006.

[13] IAM Concept of the Week: XACML, March 2017.

[14] ISO/IEC JTC1/SC29/WG11. Information technology — Genomic information rep-
resentation — Part 3: Metadata and application programming interfaces (APIs).

[15] ISO/IEC JTC1/SC29/WG11. Information technology — Genomic information rep-
resentation — Part 1: Transport and storage of genomic information.

48

[16] ISO/IEC JTC1/SC29/WG11, N17468. White paper on the objectives and benefits
of the MPEG-G standard. page 10, January 2018.

[17] D Naro J Delgado, S Llorente. Adding security and privacy to genomic information
representation. Studies in health technology and informatics, (258):75–79.

[18] Julie Olenski. Elliptic Curve Cryptography. https://www.globalsign.com/en/blog/elliptic-
curve-cryptography, May 2015.

[19] B. Kaliski and J. Staddon. PKCS #1: RSA Cryptography Specifications Version 2.0.
Technical Report RFC2437, RFC Editor, October 1998.

[20] Moving Picture Experts Group. MPEG-G. https://mpeg.chiariglione.org/standards/mpeg-
g.

[21] Moving Picture Experts Group. MPEG-G Genomic Information Representation and
Transport. https://mpeg-g.org/.

[22] Yoav Nir and Adam Langley. ChaCha20 and Poly1305 for IETF Protocols. Request
for Comments RFC 8439, Internet Engineering Task Force, June 2018.

[23] Node.js. Node.Js a JavaScript runtime. https://nodejs.org/en/download/.

[24] Oracle. Java Software. Oracle.

[25] PostgreSQL Global Development Group. PostgreSQL, 2021-10-03T14:11:46.372062.

[26] Postman. Postman Inc.

[27] Representational state transfer. Wikipedia, August 2021.

[28] J. Schaad and R. Housley. Advanced Encryption Standard (AES) Key Wrap Algo-
rithm. Technical Report RFC3394, RFC Editor, September 2002.

[29] Spring Boot. https://spring.io/projects/spring-boot.

[30] Sun’s XACML Implementation. http://sunxacml.sourceforge.net/.

[31] Fatih Turkmen and Bruno Crispo. Performance evaluation of XACML PDP imple-
mentations. In Proceedings of the 2008 ACM Workshop on Secure Web Services -
SWS ’08, page 37, Alexandria, Virginia, USA, 2008. ACM Press.

[32] Pamoda Wimalasiri. A beginner’s guide to XACML, April 2021.

[33] Working with BAM Files. https://www.ncbi.nlm.nih.gov/tools/gbench/tutorial6/.

[34] WSO2 Balana Implementation. WSO2, July 2021.

[35] XACML Architecture - Identity Server 5.1.0 - WSO2 Documentation.
https://docs.wso2.com/display/IS510/XACML+Architecture.

[36] XML Signature Syntax and Processing Version 1.1.
https://www.w3.org/TR/xmldsig-core1/.

49

Appendices

• GitLab repository with MPEG-G implementation: https://gitlab.com/treball-final-
master/mpeg-g-reference-software

50

https://gitlab.com/treball-final-master/mpeg-g-reference-software
https://gitlab.com/treball-final-master/mpeg-g-reference-software

	List of Figures
	Introduction
	Objectives

	State of the Art
	MPEG-G
	Part 1
	Part 3

	Crypt4GH
	Cipher suite and used keys
	File Structure

	Access Control Policies
	eXtensible Access Control Markup Language

	Methodology
	Software architecture
	Authentication and Authorization
	Access policy management
	Rest API
	Use case and RefSW use Environment

	Results
	Integration of Crypt4GH on MPEG-G
	File comparison
	Ciphers
	Proposal

	Reference Software
	Overview
	How to install it
	How to deploy it
	How to improve it

	Use case validation
	Use Case 1
	Use Case 2
	Use Case 3
	Use Case 4

	Conclusions and Future Work
	References
	Appendices

