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ABSTRACT: The flood estimates are critical for studies involving flood mapping, hydraulic structure planning 

and design, flood risk assessments, and reservoir operations. Estimates have traditionally been obtained by 

regression equations. QMED is a medium sized flood obtained from the median of annual-maximum (AMAX) 

series – the highest flow observed in each water year. For gauged catchments, techniques involving the annual-

maximum-series (AMS) and peak-over-threshold (POT) are traditionally used. However, for the ungauged sites, 

in order to link the index flood to catchment descriptors, statistical models such as multiple regression are most 

widely used. In this paper, the Flood Estimation Handbook (FEH) statistical methodologies are analysed and 

hence recalibrated using all data available as well as cross validation process, the availability of more flow 

records produced better results. Similarly, using correlation analysis, appropriate catchment descriptors are 

selected, and a new simple non-linear regression model is proposed. Artificial Neural Networks (ANNs) have 

been used for gauged catchments but rarely for ungauged catchments. The use of ANNs is investigated to 

estimate the flood index from the catchment descriptors and are compared to traditional non-linear regression 

models. The National River Flow Archive (NRFA) data has been utilized to estimate the index flood (QMED) 

for 337 ungauged catchments in the UK. The results showed that i) there are several catchment descriptors (e.g. 

catchment area, mean annual rainfall) that are directly correlated to QMED; ii) the recalibrated FEH models 

produce better results than the original models and so it is important to recalibrate this model as new data 

becomes available; iii) the proposed non-linear power-law model produces slightly better results than the FEH 

model;  iv) the QMED estimates obtained from ANNs have shown improved performance as compared to the 

traditional non-linear regression models. In addition to that, given the fact that the number of catchments is not 

large enough to separate the data set in calibration and validation, we used cross validation (where each model is 

trained for n-1 data points, and then tested against the remaining 1 unseen data point demonstrating the real 

performance of model), to test the true performance of the models. The cross-validation results showed that the 

performance of the models decreases, but the ANNs still produces slightly better results compared to the non-

linear regression models.  

 

KEYWORDS: QMED, Ungauged, Flood Estimation Handbook (FEH), Artificial Neural Networks (ANN), 

index flood, regression. 

 
STATEMENT OF ORIGINALITY: In this paper, the QMED estimation model given in Flood Estimation 

Handbook (FEH) published by Institute of Hydrology (IH 1999) and improved FEH (Kjeldsen es al. 2008) 

model are recalibrated with the newer and better parameters making use of all flow records available up until the 

end of September 2019. A new non-linear regression model for the estimation of QMED from flood data is 

constructed using the multiplicative-structure method. Artificial neural networks (ANNs) are used to predict 

QMED at ungauged locations, and the results obtained from ANNs outperformed all previous approaches. 

 
1. INTRODUCTION 

 

Floods are one of the most damaging natural disasters and considered a major natural hazard within the UK, a 

report from Environment Agency (EA, 2012), shows that there are over and above 5 million people just in 

England and Wales that are living in flood prone areas. In the last couple of decades, flooding has not only 

resulted in huge economic damage but also caused loss of life in every corner of globe (Gaume et al., 2009). 

Therefore, the design of extreme hydrological events such as floods is an essential element for understanding 

and mitigating flood risks. It is also required for the planning of variety of water resources systems to reduce the 

vulnerability of people and public and personal property. On the other hand, accurate estimation of flood events 

at ungauged catchments is very complex process and an uneasy one to understand. This paper therefore makes 

an attempt on investigating the reliability of the existing QMED estimation models (IH 1999 and Kjeldsen es 

al.2008) and explores a potential to improve the estimation of QMED using catchment descriptors. 

There are different flood estimation methods available in the literature. These estimates are commonly 

calculated by fitting annual maximum (AMAX) series of peak flow for a catchment or regional combination of 
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catchments to the statistical models (Stedinger et al., 1993). There is a range of regionalization techniques to 

choose from (Cunnane, 1988, 1989). Once the geographical region is selected using regionalization techniques 

implemented by Cunnane (1988) for the derivation of regional flood frequency curves. Floods for a given return 

period can be measured from the index flood values using the developed regional flood frequency curves and 

the steepness of a regional flood frequency curve can be measured fairly well using only two parameters: annual 

average rainfall and the region's median catchment area (Meigh et al., 1997). Dalrymple's (1960) index-flood 

method (IFM) is a conventional and straightforward technique, for the catchments where very less flow data is 

available or that are ungauged. However, in flood risk studies this methodology is still applicable because it 

shows considerably better results than some recent regionalization methods (Malekinezhad et al. 2011). And it is 

a standard procedure in Flood Estimation Handbook (FEH), the FEH is the established criteria used in the 

estimation of flood risks in a given region and to estimate local flood risks and, as a result, designing a flood-

resistant infrastructure, in its application to the UK, it uses median of the annual maximum flood as the index-

flood, QMED, this differs from the more conventional method of using the mean of the annual maxima. 

Because the median is a more stable indicator that is less influenced by the magnitude of a particularly large 

flood event, while the mean will fluctuate significantly. In a study conducted by Sun et al. (2000), it was 

discovered that using radar data in conjunction with rainfall data from nearby gauges, a method known as 

cokriging, improved the efficiency of flood estimates. The uncertainty in the input data used for modelling was 

also quantified in the same analysis. 

For any ungauged catchment, the index flood is estimated using a combination of a multiple regression 

non-linear model, which links the index flood to a set of catchment descriptors. The statistical model given in 

the improved FEH is routinely used to obtain the flood estimates, it is assumed that the index flood or QMED, 

i.e., the median of the set of annual maxima (AMAX) flood data, can be explained by catchment descriptors, 

however, the uncertainty of the results is very high (Kjeldsen, T. R., 2015). This paper attempts to answer the 

research question: Can we improve flood estimates using models based on catchment descriptors? To achieve 

this, the objectives of this paper are: (i) to implement the current FEH method to estimate QMED based on 

catchment descriptors, (ii) to recalibrate the models available in the literature with the availability of more flow 

records, (iii) to carry out analysis of the available catchment descriptors to choose for modelling, the ones seen 

to be highly correlated, (iv) to develop a new non-linear regression model, and (v) to investigate the use of 

artificial neural networks and their efficiency compared with the traditional non-linear methodologies.  

 

2. LITERATURE REVIEW 

 

The Flood Studies Report (FSR) was the primary comprehensive methodology for flood frequency estimation in 

the UK, published by the Natural Environment Research Council (NERC, 1975). This report was derived from 

the Index Flood Method (IFM) developed by United States Geological Survey (Dalrymple, 1960). The IFM is 

based on the assumption that the flood flows in a hydrologically similar region, these regions are standardized 

by index flood and are identically distributed. For the estimation of the parameters for a flood frequency curve 

the data is gathered from the stations within a defined region and then this dimensionless curve is scaled by the 

index flood of the catchment of interest (Grover et al., 2002). Conventionally, these regions are defined by 

political or geographic boundaries. Thomas and Benson (1970) predicted flood quantiles for four different 

regions in the United States using multiple regression. Similarly, Tasker et al. (1996) observed more accurate 

results found that subdivision into smaller geographically based subregions. In the same study, they observed 

that using the “region of influence” method to generate a unique area for each ungauged catchment gave the 

smallest Root Mean Square error in the 50-year flood estimate for the uncalibrated catchments in Arkansas.  

In the same way the Flood Studies Report (FSR) divided the UK into 10 geographical regions. For each 

region, flood frequency curve specific to each catchment can be obtained as the product of a regional 

dimensionless growth factor and index flood, estimate of index flood can be derived from a regression model 

established from the catchment descriptors such as catchment area, annual average rainfall, soil type, etc or 

could be directly obtained from the observation as the mean annual maximum flood. Whereas flood frequency 

curve is a probabilistic model linking a flood magnitude to flood rarity, the inverse of return period.  Residual 

mapping done using geostatistics is an alternate approach to the development of separate models for each 

region. The residual map attempts to eliminate the bias caused by geographic differences that are not considered 

in the model.  

Following the breakthroughs achieved in the estimation of regional flood frequency, and the “region of 

influence” (ROI) method (Burn, 1990) and as the method of L moments was introduced (Hosking and Wallis, 

1993), the Institute of Hydrology (IH) published the Flood Estimation Handbook (FEH) with improved 

procedures for flood estimation. The key developments in flood frequency estimation include: (i) use of 

hydrological similarity for the formation catchment specific growth curve instead of regional values given in 

FSR, (ii) in the ungauged catchments for the estimation of index flood standardised a methodology of data 

transfer from nearby hydrological analogous (donor) sites (iii) the FEH adapted the median annual maximum 
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flood, QMED, as the measure of index flood because for the shorter data series median is found less sensitive to 

the irregularities than mean, and (iv) the catchment descriptors are derived automatically from gridded 

electronic data and it is no longer limited by the need to be able to compute descriptors manually from 1:50000 

paper maps. The review of relevant literature showed that the Index Flood Model and procedures similar to the 

FEH have also been developed for other parts of the world, it was found that the Meigh et al. (1997) method, the 

Görgens (2007) Joint Peak-Volume (JPV) method and the Haile (2011) method are available for application 

such as for: Africa (Mkhandi et al., 2000), and Europe (Castellarin et al., 2012).  

The creation of much improved database of systematically recorded flood data done by HiFlows-UK 

recommended the changes in the FEH methodology. The improved FEH procedures were developed by the 

Environment Agency (2008), it has kept the use of hydrological similarity method and the Index Flood Method 

(IFM). However, the statistical models for the estimation of index flood and dimensionless growth curve were 

improved and these are implemented in the WINFAP-FEH v3 software (WHS, 2009). Due to the flexible 

structure of statistical models, they have better descriptive ability than the physically based models (Brath et al., 

2009). For the calculation of design floods, various procedures are provided in the improved FEH, nevertheless, 

dependent of the availability of data. Although hardly any guidance is provided on how to assess the uncertainty 

of these estimates (Kjeldsen et al., 2008). For example, the 95% or 68% confidence intervals are generally used 

and that are mainly valid for the transfer of data from nearby gauged catchments in order to get accurate 

estimates of QMED, index flood, at the ungauged catchments. While the sites where no flood data is available, 

regression models are used to directly estimate index flood from the catchment descriptors. The studies by 

Pappenberger and Beven (2006); and Hall, (2011) showed that in flood management there is urgent need to give 

crucial importance to risk and uncertainty. For the assessment of uncertainty in the statistical models for design 

flood estimates new methods have been developed by Kjeldsen et al., (2008). It also assessed the accuracy of 

index flood (QMED) estimates at the ungauged sites, used in the improved FEH.  

 

2.1 The Flood Estimation Handbook method (1999) 

The median annual maximum flood (QMED) model described in the Institute of Hydrology's (IH 1999) Flood 

Estimation Handbook (FEH) is a well-known model of this kind in the UK. This model has been widely used in 

the United Kingdom, for example, in flood defence planning, flood risk analysis, new construction planning, 

and determining the rarity of significant rainfalls or floods. 

The recommended method in FEH for the estimation of QMED at the sites where no flood peak data is 

available, or are ungauged, is to transfer data from nearby donor sites or from distant analogue ones. A 

precondition for such transfer is that the donor sites must be hydrologically similar in terms of catchment area, 

soil type and rainfall. However, using basic statistical regression techniques, it is possible to estimate index 

floods based on catchment descriptors such as area, base flow index, and wetness. Distinct algorithms are 

provided in FEH for the QMED estimation in urban sites and rural sites and even for the individual catchments. 

On the other hand, flood estimates obtained solely on the basis of catchment descriptors, according to Reed and 

Robson (1999), are poorer than the ones obtained directly from the flood peak values. Categorization of the sites 

into similar groups can be difficult and hence establishing a sufficient collection of donor sites is not always 

feasible. FEH warns that basic discrepancies between sites could lead to not only the transmission of wrong 

information, but also the establishment of incorrect flood projections. Even though artificial neural networks 

have been used for the classifications of catchments (Thandaveswara and Sajikumar, 2000),  

 

2.2 The improved FEH equation (2008) 

The proposed improvements are prompted in part by the HiFlows-UK (Environmental Agency 2012) initiative, 

which resulted in the construction of a much better database of routinely collected flood data (Kjeldsen et al., 

2008). Not only are the information records significantly longer than before, but the HiFlows-UK project also 

invested a lot of effort on standardizing and assessing the entire dataset. This means that the amount of data 

available for analysis has significantly increased. Feedback from FEH users, both informal and official, has also 

had an impact on the revised procedures. Most technical features of the approach can be changed without 

significantly altering the approach's structure. Most technical specifics of the strategy are revised to improve the 

procedure's performance without significantly modifying the methodology's structure. The theoretical statistical 

underpinning that underpins the technique has been significantly improved as a result of the upgrades. In 

addition, certain novel descriptors of catchment topography and native climate that have been proposed since 

the FEH study have been considered. A replacement descriptor for measuring floodplain extent, in particular, 

has been developed and is now incorporated in the updated processes. Following Kjeldsen et al. (2008)'s study, 

the following important changes have been made: a model for estimating the median using a replacement 

regression model.  
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2.3 Flood estimation using Artificial Neural Networks (ANNs) 

ANNs have been used to perform flood estimation in the past (Dawson, C., et al., 2006). Since the effective 

training techniques for ANNs were developed (Rumelhart and McClelland, 1986), these models have been used 

to solve a variety of hydrological problems, including rainfall-runoff modeling and river discharge forecasts 

(Abrahart et al., 2004). Dastorani et al. (2010) also evaluated the applicability of ANN in the forecasting of 

precipitation amount before its occurrence and reported it to be a reliable model for estimation. A study 

conducted by (Liong et al, 2000) on the river stage prediction and produced results with a high degree of 

accuracy and a short computational time, making ANNs a desirable forecasting tool, a sensitivity research was 

also undertaken, which recommended reducing the number of input neurons (in that case from eight to five), 

despite the estimated accuracy level not being considerably affected. Dawson and Wilby (2001) done research 

on the application of ANNs in hydrological modeling, describing it as an emerging field of research with a wide 

range of methodologies. Two sets of studies conducted by Govindaraju (2000) investigate the function of 

artificial neural networks (ANNs) in hydrology and provide some fundamental criteria for their use, as well as 

their strengths and limitations, and compare them to other hydrology modeling approaches. The ANN model is 

better at detecting non-linear relationships between observed and anticipated data sets (Hsu, K., L., et al, 1995 

and El-Shafie, A., et al, 2011). Lapedes, A., et al. (1987) used ANN models to study non-linear data series and 

discovered that ANN models have superior generalization capabilities than regression-based models. However, 

there are relatively few studies involving the application of ANNs to flood estimation at ungauged sites. For 

example, a regionally trained neural network was equivalent to earlier Q2 regression estimates in the Gulf of 

Texas (Muttiah et al., 1997), another research was conducted for the US river basin to assess the peak storm 

discharge during a two-year period. Hall and Minns (1998) reported that the classification of hydrologically 

similar zones is an important component of regionalization techniques and the use of these techniques on flood 

data from the southwest of England and Wales has shown that groups can be formed by Representative Regional 

Catchments (RRCs), which have hydrologically more sensible qualities than those provided solely by 

geographical closeness. Using data from sites in Sumatra and Java, Hall et al. (2000) used four to twelve input 

catchment descriptors to predict the scale and location parameter of Gumbel distribution for annual floods, 

however Dastorani and Wright (2001) reported that for the index flood estimation, QMED, seven catchment 

descriptors were sufficient for sites in the United Kingdom. This paper discusses the application of ANNs to 

predict the index flood for a much larger sample of selected catchments in the UK. Reason why this research 

was considered essential is because in the most recent study carried out by Dawson, C., et al., (2006) only 

trained the ANNs with the data for the urban regions, in addition to that, the study was also restricted only to the 

locations that had at least ten years of flood data, and the index flood predictions were inevitably over or under-

estimated. Since ANNs rely heavily on data, new flow records have the potential to improve flood estimates. 

 

3. DATASETS 

The dataset used in this paper is obtained from the National River Flow Archive (NRFA). It consists of data for 

935 gauging stations containing annual maximum (AMAX) series, peak over threshold (POT) and catchment 

descriptors (CD). The AMAX series contains the largest observed flow (in cubic metres per second, abbreviated 

to m3s-1 and sometimes also referred to as 'cumecs') in each water year. The Peaks Over Threshold (POT) series 

contains all peak flows that are greater than a given threshold flow, the threshold is generally set to include an 

average of 5 events per year. The Catchment Descriptor (CD) data is a set of properties that determine the 

hydrological characteristics of the catchment. A total of 544 stations are recommended for use in pooling 

groups, 337 stations are suitable for QMED, if QMED is likely to be within 30% of its true value, and 53 

stations are suitable for neither. A group of 337 stations is chosen for the analysis. Figure 1a shows the location 

of all these catchments and their catchment area whereas Figure 1b shows their standard average annual rainfall.  

 

3.1 Data quality 

Out of already very small number of available catchments, data has to be screened for discordancy. For the 

recalibration of parameters of the model a careful selection of data points is very crucial. To avoid the estimates 

to be biased the chosen data points should be considerably consistent and in spite of that there should be enough 

data to appropriately define the model parameters (Grover et al., 2002). Therefore, the data for 337 stations is 

subjected to screening to look for any irregularities and independence. It was observed that three stations, 

25808, 25809 and 25810, have noticeably small catchment areas of 0.75 km2, 0.05 km2, 0.04 km2, respectively. 

Consequently, these stations are discarded from the recalibration and estimation of new parameters. 

The chosen dataset, suitable for QMED estimation, from National River Flow Archive (NRFA) has 22 

catchment descriptors (CDs) available for each catchment, the summary of CDs is shown in the Table 1. First of 

all, a MATLAB script was run to extract the catchment descriptors for each site from the dataset and then all of 

them were compiled in a single file alongside of catchment numbers and their coordinated for the ease of 

analysis. Although, some of these descriptors upon analysis proved to be more crucial in terms of the sensitivity 
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of the models than the others. The annual maximum series (AMS) data from the NRFA folder for each 

catchment was then extracted and compiled into a single file using another MATLAB script. Finally, the median 

of AMS for each catchment was calculated to produce the final value of QMED measured. 

 

(a) (b) 

 

Figure 1: Locations of the catchments used in this study displaying (a) their catchment area (AREA) and 

(b) standard average annual rainfall (SAAR) 
 

Table 1: All the available catchment descriptors (CDs)  

 
Descriptors Unit Summary 

ALTBAR  m Mean catchment altitude above sea level 

AREA  km2 Catchment drainage area 

ASPBAR   Mean direction of all the inter-nodal slopes in the catchment – represents dominant 

aspect of catchment slope 

ASPVAR   Invariability of slope direction  

BFIHOST   Base Flow Index - soil drainage type 

DPLBAR  km Mean drainage path length 

DPSBAR  m/km Mean catchment slopes  

FARL   Flood attenuation due to rivers and lakes 

LDP     km Longest drainage path  

PROPWET  mm  Proportion of time when soil moisture deficit ≤ 6mm 

RMED1D    mm Median annual max 1Day rainfall 

RMED1H    mm Median annual max 1Hour rainfall 

RMED2D    mm Median annual max 2Day rainfall 

SAAR  mm Standard average annual rainfall 1961-90 

SAAR4170  mm Standard average annual rainfall 1941-70  

SPRHOST   Standard Percentage Runoff - soil drainage type 

URBCONC1990   Concentration of sub/urban land cover 1990 

URBCONC2000   Concentration of sub/urban land cover 2000 

URBEXT1990   Extent of urban and suburban cover 1990 

URBEXT2000   Extent of urban and suburban cover 2000 

URBLOC1990   Location of urban and suburban cover 1990 

URBLOC2000   Location of urban and suburban cover 2000 

 

4. METHODS 

 

Due to its flexible structure, the statistical models have a stronger descriptive capacity than the rigidly 

constructed physical models. It is also evident from the literature that the statistical indirect methods, such as 

QMED regression model, are more precise than the conceptual indirect models for the prediction of QMED at 
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the ungauged sites (Brath et al., 2009). The rigid structure of the conceptual approach decreases its dependence 

on the specific knowledge of the individual stations and, consequently, strengthens its stability. Consequently, 

statistical models may not be able to provide physical interpretation or insight into other inter-related factors in 

flooding, leading to possible changes in flooding. 

 

4.1 The Flood Estimation Handbook method (1999) 

Various procedures to estimate QMED were provided in volume 3 of the FEH (Reed and Robson, 1999), some 

of the common ones are; from annual maxima (AM), peaks over threshold (POT) and catchment descriptors 

(CD). Annual maxima method is only used if the flood data is available for more than 14 years. The 

recommended method in FEH for the estimation of QMED at the sites where no flood peak data is available, or 

are ungauged, is to transfer data from nearby donor sites or from distant analogue ones. A precondition for such 

transfer is that the donor sites must be hydrologically similar in terms of catchment area, soil type and rainfall.  

The statistical QMED model given in the FEH (1999) - catchment descriptor method, is advised to be 

used with the transfer of data method from the nearby sites. This way the obtained values for QMED will be 

refined and it also uses a longer flood record. The regression equation can also be used with the catchment 

descriptors only if transfer of data is not possible because of unavailability of suitable sites nearby, and the site 

record is less than two years long. This regression model was applicable to all the ungauged catchments in the 

UK with the area greater than 0.5 km2. The equation 1 is based on the analysis of over 1000 stations, their 

QMED values and catchment descriptors obtained from the FEH CD-ROM 1. These are essentially the 

catchments with 𝑈𝑅𝐵𝐸𝑋𝑇 < 0.025. 

 

𝑄𝑀𝐸𝐷𝑟𝑢𝑟𝑎𝑙 = 1.172 𝐴𝑅𝐸𝐴𝐴𝐸 (
𝑆𝐴𝐴𝑅

1000
)

1.560

𝐹𝐴𝑅𝐿2.642 (
𝑆𝑃𝑅𝐻𝑂𝑆𝑇

100
)

1.211

0.0198𝑅𝐸𝑆𝐻𝑂𝑆𝑇    1. 

where  

𝐴𝐸 = area exponent = 1 − 0.015𝑙𝑛 (
𝐴𝑅𝐸𝐴

0.5
)       2. 

 

with r2 (coefficient of determination) = 0.916 (on log scale), 0.905 (GLS-scale, Generalised Least Square) and 

the fse (factorial standard error) = 1.549.  

The urban adjustment factor, which is calculated using the following formula, describes how an urban 

catchment differs from its rural counterpart. 

 

𝑈𝐴𝐹 =  (1 + 𝑈𝑅𝐵𝐸𝑋𝑇)0.83𝑃𝑅𝑈𝐴𝐹       3. 

where 

𝑃𝑅𝑈𝐴𝐹 = 1 + 0.615 𝑈𝑅𝐵𝐸𝑋𝑇 (
70

𝑆𝑃𝑅𝐻𝑂𝑆𝑇
− 1)      4. 

 

The QMED obtained from equation 1 is then corrected for the unsuccessfully mitigated effect of urbanisation 

using the following formula: 

 

𝑄𝑀𝐸𝐷 = 𝑈𝐴𝐹 𝑄𝑀𝐸𝐷𝑟𝑢𝑟𝑎𝑙         5. 

 

The original FEH model (Equation 1), is also evaluated for RMSE, KGE and BIAS in order to ensure the fair 

comparison of all the models in this paper. In the Figure 5(a) the estimated QMED from this model is plotted 

against the measured QMED from the AMS.  

 

4.2 The improved FEH equation (2008) 

The Centre for Ecology and Hydrology modified the older model released in Flood estimation manual (1999) in 

2008. (CEH), The work of Kjeldsen et al. (2008) on the calculation of floods from minor catchments is not 

without flaws. Although the 602 flood datasets used to generate the revised QMED equation appear to represent 

a sizable sample size, only 46 of the 602 flood datasets drain an area of less than 25 km2. In addition, removing 

repeated entries for three of those catchments decreases the number of minor catchments in the sample to just 

41. Perhaps because the project team was able to quickly get the yearly maximum flood level. Kjeldsen et al. 

(2008) did not attempt to create an equation specially targeted at small catchments to replace the QBAR 

regression equation presented in IH 124, possibly because the research team was able to gather yearly maximum 

flood peak values from just a small sample. Kjeldsen (2010), on the other hand, offers new recommendations for 

altering QMEDrural to account for urbanization. 

 

𝑄𝑀𝐸𝐷𝑟𝑢𝑟𝑎𝑙 = 8.306 𝐴𝑅𝐸𝐴0.8510.154
(

1000

𝑆𝐴𝐴𝑅
)
𝐹𝐴𝑅𝐿3.4450.046(𝐵𝐹𝐼𝐻𝑂𝑆𝑇)2

     6. 
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The results from the modified FEH (Kjeldsen et al. 2008) approach showed considerably smaller errors than the 

previous FEH approach (IH 1999), as shown in Figures 5a and 5b. 

 

(a) (b) 

 

Figure 5: The plots of estimated QMED against QMED measured (a) displaying results of (FEH 1999) 

model (b) displaying results of (FEH 2008) model 
 

4.3 New non-linear model 

A new multiplicative non-linear power-law model (equation 7) is proposed to estimate QMED. The changes in 

catchment descriptors (CDs) have a scaling effect on the QMED and the degree of this effect is influenced by 

the exponent terms b, c, d, …. This form of the equation yields a linear structure that can be used with normal 

multivariate statistical procedures. 

  

𝑄𝑀𝐸𝐷 = 𝐴 𝑋1
𝑏 𝑋2

𝑐 𝑋3
𝑑 …         7. 

 

Where A, b, c … represent the model parameters that have to be estimated, Xi represent a given catchment 

descriptors. Writing the equation in this form gives a linear structure that allows standard multivariate statistical 

procedures to be applied. The substantial research on multiple regression analysis conducted by Thomas and 

Benson (1970) resulted in the mathematical equation of the similar form.  

 

4.4 Artificial Neural Networks (ANNs) 

A neural network's computational capacity is evidently derived from two factors: first, its massively parallel 

distributed structure, and second, its capacity to learn and hence generalize. And it is designed to use a 

computational approach to simulate natural neural networks (Hayek, S., 2009). A neural network consists of a 

number of interconnected nodes called neurons that are linked together by weights between layers. They are 

divided into three fundamental layers: an input layer, does not perform any calculations and just feeds the 

network with information, an intermediate hidden layer, and an output layer that produces results. The 

architecture of a typical ANN is shown in Figure 2, though it varies. The most extensively used among several 

varieties of ANNs is the feed-forward neural network, it gets this name because data goes through the network 

from the input layer to the hidden layer, and then to the output layer. 

 
 

Figure 2: Typical two layered feed-forward neural network 

 

4.5 Performance Indicators  

For an objective evaluation of model performance, goodness-of-fit measures are critical. It is essential to select 

objective performance indicators in order to evaluate the performance of prediction approaches using various 
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estimation methods and model parameters. To compare the estimated QMEDs with the actual QMED values, 

the following objective functions were used. 

 

4.5.1 Kling-Gupta Efficiency (KGE)  

The fundamental assumptions that the data are linear and normal in nature, and that outliers are not present in 

the datasets are inherent in the calculation of KGE. The criterion of KGE is based on a weighted average of the 

three component metrics i.e., correlation, bias, and variability.  

To compute γ and β, the bias between estimated and observed mean QMEDs and the bias between 

estimated and observed standard deviation of QMED was used, respectively. 

 

𝐾𝐺𝐸 = 1 −  √(𝑟 − 1)2 + (𝛾 − 1)2 + (𝛽 − 1)2;  𝛾 =  
𝑐𝑑

𝑟𝑑
;  𝛽 =

𝑐𝑚

𝑟𝑚
   8. 

where r = is the linear Pearson correlation coefficient between estimated and observed values, rm is the average 

of observed values, cm is the average of estimated values, rd is the standard deviation of observed values and cd 

is the standard deviation of estimated values (Gupta, et al. 2009). 

 

4.5.2 Root Mean Square (RMSE) 

The standard deviation of estimation errors is called Root Mean Square Error (RMSE). RMSE is a measure of 

how far the data points are from the regression line. In other words, it indicates how tightly the data is clustered 

around the line of best fit. calculating the average of squared errors Taking the result's square root. 

In order to calculate the RMSE, first of all the error is calculated by subtracting the estimated values 

from observed values. Then the estimation errors are squared, after calculating the mean of squared errors 

finally the square root is computed of the obtained value, that is: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑥𝑖−𝑥𝑖)2𝑛

𝑖=1

𝑁
        9. 

 

where 𝑁 is the total number of data points, �̂�𝑖 represents the estimated values and 𝑥𝑖 the observed values. 

 
4.5.3 Bias 

The Bias indicates whether the model has a tendency to over-or under-predict estimated values. It is simply 

calculated by adding all the observed and estimated values separately and then by dividing estimated values to 

the observed ones. 

 

𝐵𝐼𝐴𝑆 =  ∑
𝑥𝑖

𝑥𝑖

𝑛
𝑖=1          10. 

 

where �̂�𝑖 are the estimated values and 𝑥𝑖 are the observed values. 

 

5. RESULTS AND DISCUSSION 

Correlation analysis was carried out assess the correlation between QMED and catchment descriptors. Figures 3 

and 4 show the top ranked descriptors based on their correlation with QMED after an extensive review. Another 

possible benefit of doing this analysis is that any outliers and non-linear interactions can also be detected by 

plotting descriptors against each other in the form of a matrix. The pattern observed here tends to differ slightly 

from the one reported in Flood Estimation Handbook (IH 1999) which is due to the availability of new flow 

records. Figure 3 shows only the descriptors that were implemented in FEH model (IH 1999) i.e., AREA, SAAR, 

FARL, SPRHOST and BFIHOST. For example, the descriptors that shows high correlation of at least 0.6 or high 

with QMED are AREA, LDP (Longest Drainage Path) and DPLBAR (mean drainage path length). ALTBAR, 

SPRHOST, DPSBAR, and SAAR, on the other hand, exhibit a correlation of 0.3 with QMED. 

 Some cross-correlation can also be seen in the Figures 3 and 4, but it is not desirable. Only variables 

with low cross-correlation would be included in an ideal model. There are two possible reasons, first, it leads to 

a great number of alternative model choices which all have comparable fits and many of which have poorly 

stated parameters. Secondly, it means that a model has favoured a variable rather than another variable and so 

confuses the interpretation (Reed and Robson, 1999). And that is why in the original FEH model certain 

strongly cross-correlated variables were redefined. For example, SPRHOST and BFIHOST had relatively high 

cross-correlation of 0.93 and were both very significant for the model, thus a new variable RESHOST was 

established in place of BFIHOST, and it was reconstructed to have a low correlation with SPRHOST while 

retaining the information from BFIHOST. 
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Figure 3: A correlation matrix of 6 highly correlated variables 
 

 
Figure 4: A correlation matrix of other 6 correlated variables 

 
5.1 Recalibration of non-linear models from the literature using 100% of data. 

All the non-linear regression models mentioned above have been re-calibrated using 100% of the data. This 

means that all accessible datasets were utilized to calibrate the models, and that the same dataset was used for 

the validation of models, resulting in the best possible results for each model. 

 

5.1.1 Recalibrated FEH QMED equation 

The non-linear model provided in Flood Estimation Handbook (Reed and Robson, 1999) was tested with the 

latest available data in the similar manner as it was published in the FEH. The statistical model for the 
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estimation of Index flood, QMED, published in the literature (equation 1), was not performing as expected. The 

QMED estimates were considerably off the mark in terms of the expected results. The error was noted in 

equation (2), the calculation of AE, area exponent, in the literature the given expression was with the natural log 

(base 2) however when the model was tested the by replacing the natural log the common logarithm (base 10) 

the expected behavior of model was observed. 

 Once the normal behavior of model was reestablished, the original FEH model was recalibrated using 

100% with new flow data. The parameters obtained after the re-calibration process are than plugged into the 

same equation (1), so the new equation is given below.  

 

𝑄𝑀𝐸𝐷𝑅99 = 3.4410 𝐴𝑅𝐸𝐴𝐴𝐸 (
𝑆𝐴𝐴𝑅

1000
)

1.7427

𝐹𝐴𝑅𝐿4.4710 (
𝑆𝑃𝑅𝐻𝑂𝑆𝑇

100
)

0.4760

0.0120𝑅𝐸𝑆𝐻𝑂𝑆𝑇     11. 

 

𝐴𝐸 = 1 − (7.94𝑒 − 3) 𝐿𝑂𝐺10 (
𝐴𝑅𝐸𝐴

3.84𝑒−9
)        12. 

 

𝑅𝐸𝑆𝐻𝑂𝑆𝑇 = 𝐵𝐹𝐼𝐻𝑂𝑆𝑇 + 0.5619 (
𝑆𝑃𝑅𝐻𝑂𝑆𝑇

100
) − 0.3332      13. 

 

Where 𝑅𝐸𝑆𝐻𝑂𝑆𝑇 is the relative responsiveness of a catchment, residual from linear regression of two primary 

variables that summarise soil characteristics: 𝑆𝑃𝑅𝐻𝑂𝑆𝑇 and 𝐵𝐹𝐼𝐻𝑂𝑆𝑇.After the evaluation of the performance 

of model the results are displayed on the Figure 6a, where the updated QMED estimates from the recalibrated 

model are plotted against the measured QMED. The RMSE has improved by over 22% than the original FEH, 

and the results are completely unbiased, as it can be observed. In addition, the KGE indicator demonstrates a 

10% improvement in performance over the original FEH model (IH 1999). 

 

5.1.2 Recalibrated Improved FEH QMED equation 

Similar to the previous approach, the model published in the literature is tested with the new dataset. The 

parameters obtained after the re-calibration process are than plugged into the same equation (6), so the new 

equation is given below. The results are plotted against the QMED from the median of annual maximum series 

to get the performance of model and the errors are also plotted on the graph. 

 

𝑄𝑀𝐸𝐷𝑅08 = 12.7471 𝐴𝑅𝐸𝐴0.8571(0.1291)
1000

𝑆𝐴𝐴𝑅 𝐹𝐴𝑅𝐿5.0919 (0.0182)𝐵𝐹𝐼𝐻𝑂𝑆𝑇2
     14. 

 

The RMSE of the re-calibrated model is about 12% lower than the revised FEH model (Kjeldsen et al. 2008), 

and the estimates are 10% less biased, similarly the KGE has improved 10%. 

Another significant behavior that can be noticed following the re-calibration of both of these models is 

that the original FEH model (IH 1999) outscored the revised FEH model (Kjeldsen et al. 2008) in every 

performance evaluation metric. It can be concluded from this that the original FEH model should be recalibrated 

as the new flow data becomes available. 

  

(a) (b) 

 

Figure 6: The plots of recalibrated estimated QMED against QMED measured (a) displaying results of 

recalibrated (FEH 1999) model (b) displaying results of recalibrated (FEH 2008) model 
 
5.1.3 New non-linear model 

In an attempt to improve the QMED estimates a new regression model is proposed. Regression has long been 

used to link a desired flood quantile to physiographic, geomorphologic, and climatic aspects of the catchment. 
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Typically, the analysis is carried out with the power-form equation (15). The selection of the catchment 

descriptors for the model is made on the basis of correlation analysis (Figure 3 and 4). Analysis suggested that 

7-variable model is preferred containing 𝐴𝑅𝐸𝐴, 𝐹𝐴𝑅𝐿, 𝑆𝐴𝐴𝑅, 𝑆𝑃𝑅𝐻𝑂𝑆𝑇, 𝑃𝑅𝑂𝑃𝑊𝐸𝑇, 𝐴𝐿𝑇𝐵𝐴𝑅 

and 𝐵𝐹𝐼𝐻𝑂𝑆𝑇. 

 

𝑄𝑀𝐸𝐷 = 𝐴 𝑋1
𝑏 𝑋2

𝑐 𝑋3
𝑑 …         15. 

 

where Xi represent a given catchment descriptor. Using nonlinear regression equation to directly estimate the 

parameters in power-low model yielded better results than log-linear models for estimates of the 10- and 100-

year floods in Quebec (Pandey and Nguyen 1999). After the re-calibration of equation (15), the parameters that 

are obtained are plugged in resulting in equation (16). 

 

𝑄𝑀𝐸𝐷 = 𝐴 ∗ 𝐴𝑅𝐸𝐴0.899𝐹𝐴𝑅𝐿5.3503𝑆𝐴𝐴𝑅1.65670.003𝐵𝐹𝐼𝐻𝑂𝑆𝑇2
𝑆𝑃𝑅𝐻𝑂𝑆𝑇−0.9337𝑃𝑅𝑂𝑃𝑊𝐸𝑇0.0806𝐴𝐿𝑇𝐵𝐴𝑅0.1469 

         16. 

where 𝐴 = 2.8384𝑒 − 4.  

After incorporating more variables with the correlations value ranging from 0.26 to 0.94, the results 

demonstrated an improvement over earlier non-linear regression models. The RMSE figure shows that the 

estimates from this model have a 23 percent lower error rate than the original FEH and a 16 percent lower error 

rate than the revised FEH model. The KGE and bias factor of the estimations show a similar trend. Both 

exhibited a ten percent improvement.  

All of the re-calibrated models performed better in terms of estimating greater values of QMED, 

indicating that they are suitable for estimating high QMED values. 
 

 
 

Figure 7: The results of new non-linear model obtained using multiplicative structure approach ploted 

estimated QMED agains measured QMED 

 

5.2 Recalibration of non-linear models from the literature using Cross-Validation. 

In addition to that, since the number of catchments is insufficient to separate the data set in calibration and 

validation, we employed cross validation to test the true performance of the models here each model is trained 

for n-1 data points and then evaluated against the remaining 1 unseen data point indicating the true performance 

of the model. The cross-validation analysis indicated that the performance of the models worsens. The statistical 

models are calibrated using catchment descriptors from 333 catchments and are tested against the data from 

remaining one catchment. It shows the real performance of model with the data the model has not seen yet. 

 As can be seen from the Figure 6a, 6b and 7, the estimates for higher QMED values are far off the 

regression line, indicating that it is not suitable for high QMEDs. Meanwhile other thing that can be drawn from 

this is that because the high QMED estimates are so poor, it is evident that the models for smaller QMED 

estimations, ranging from 0-150, can be achieved with reasonable accuracy. Since the error values are almost 

close the ones for the original models. 

Another interesting point to consider is that, in comparison to the more complex FEH models, the new 

non-linear model is extremely simple, yet it still produces reasonable estimates. 
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(a) (b) 

 

Figure 8: The plots of recalibrated estimated QMED against QMED measured using cross validation (a) 

displaying results of recalibrated (FEH 1999) model (b) displaying results of recalibrated (FEH 2008) 

model 

 

 
 

Figure 9: The results of new non-linear model obtained using multiplicative structure approach ploted 

estimated QMED agains measured QMED using cross validation 

 

5.3 Artificial Neural Networks (ANNs) 

In recent years, an alternate technique to flow forecasting based on the ANN has been developed (Govindoraju, 

et al, 2000). In this paper an attempt has been made to estimate QMED, the feed-forward networks are 

implemented here. Using MATLAB Bayesian Regularization training algorithm multiple configurations are 

executed, such as, with single hidden layer with 10 neurons, two hidden layers with 10,15 and 20 neurons, and 

the best two configurations of all are presented here.  

 Similar to the previous methodologies, cross-validation process is implemented here calibrating 333 

data points while keeping one out and then validating the model with that single unseen point. The results 

produced by ANNs are still better compared to the non-linear regression models as shown in Figure 10a and 

10b. The traditional split validation approach was not followed because of significantly small number of data 

points.  

(a) (b) 

 

Figure 10: The plots of estimated QMED against QMED measured using ANNs (a) displaying results of a 

model with 2 hidden layers each with 20 neurons (b) displaying results of a model with 2 hidden layers 

each with 10 neurons  
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DISCUSSION  

 

The traditional FEH model and the revised FEH model are tested with more flow data. The same models are re-

calibrated using 100% of data and then cross-validation, as it could be expected the cross-validation process 

worsened the performance of models. The RMSE was indicative of poor performance but KGE and BIAS still 

showed performance reasonably well. Which indicates that the high QMED values are not to be estimated from 

these models but for the catchments with smaller catchment area (AREA), with small QMED values can be 

estimated really well. 

 

CONCLUSIONS 

 

The research question that we had in the start of this study is answered. The non-linear regression models 

showed reasonably good improvements after re-calibration. The new non-linear model based on the power law 

is the best among the other traditional models, for the 100% data calibration. However, ANNs outperformed 

every other approach that has been made for the estimation of QMED. And the computation was relatively 

faster than the traditional models. 

 

LIMITATIONS OF YOUR WORK 

 

The dataset used for the analysis is mentioned to be ‘suitable for QMED’ however some previous studies 

showed the analysis with almost double the size of data we used. Hence, they did not disregard the dataset 

‘suitable for pooling’ and used both of them collectively making the total data points around 800 catchments. 

 

RECOMMENDATIONS FOR FUTURE WORK 

 

For the thorough study of relationship between catchment descriptors and QMED further work can be done such 

as in addition to the correlation analysis Principle Component Analysis (PCA) can be conducted.  
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