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Summary

We present a formulation for the weak enforcement of continuity conditions at
material interfaces in high-order problems by means of Nitsche’s method, which is
particularly suited for unfitted discretizations. This formulation is extended to impose
generalized periodicity conditions at the unit cell boundaries of periodic struc-
tures. The formulation is derived for flexoelectricity, a high-order electromechanical
coupling between strain gradient and electric field, mathematically modelled as a
coupled system of fourth-order PDEs. The design of flexoelectric devices requires the
solution of high-order boundary value problems on complex material architectures,
including general multimaterial arrangements. This can be efficiently achieved with
an immersed boundary B-splines approach. Furthermore, the design of flexoelec-
tric metamaterials also involves the analysis of periodic unit cells with generalized
periodicity conditions. Optimal high-order convergence rates are obtained with
an unfitted B-spline approximation, confirming the reliability of the method. The
numerical simulations illustrate the usefulness of the proposed approach towards
the design of functional electromechanical multi-material devices and metamaterials
harnessing the flexoelectric effect.
KEYWORDS:
Nitsche’s method, material interfaces, periodicity, high-order PDEs, flexoelectricity, unfitted discretiza-
tion, immersed boundary

1 INTRODUCTION

The numerical solution of boundary value problems involving systems of high-order partial differential equations (PDE) requires
either (1) specialized finite elements compatible withC0 approximations, such asmixedmethods1 and interior penaltymethods2,
or (2) approximations based on smooth basis functions. In mixed finite elements, the primal field variables and their deriva-
tives are interpolated as independent variables with C0 basis functions. Mixed finite elements have been successfully used in
strain-gradient elasticity3 or Cahn-Hilliard equation4. They suffer however from stability issues and from cumbersome model-
dependent implementations, as well as from a higher computational cost due to the large number of additional unknowns. C0
penalty methods also consider standard C0 finite element approximations and impose the required continuity across elements
weakly.
The approach to high-order PDE based on smooth basis functions is much more direct and only requires the approximation

of the primal fields. The drawback is that it is, in general, more difficult to define smooth approximation spaces. One option is to
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use meshfree methods, which easily enable local refinement5,6. However, these methods are very expensive due to quadrature
and to the large sparsity pattern resulting from the significant overlap of basis functions required in higher-order problems.
Furthermore, the treatment of boundary conditions on curved and non-convex geometries can be cumbersome. Another option
is Isogeometric analysis (IGA) based on B-splines or NURBS7. Isogeometric methods describe boundary geometry with high
fidelity and can deal with high-order PDE, but are too rigid in the bulk, e.g. to model composites. B-spline approximations
in higher dimensions are constructed from tensor products and thus rely on cartesian meshes, incompatible in principle with
general boundary geometries. This limitation can be circumvented by combining B-Splines with immersed boundary methods,
which use meshes non-conforming to the boundary of the domain. This boundary is defined independently of the background
mesh, and thus immersed boundary methods overcome the rigidity of tensor product B-Spline approximates8. In immersed
boundary methods, essential boundary conditions cannot be enforced strongly since the basis functions are not interpolant at the
boundary, and are often enforced weakly through Nitsche’s method9,10. Similarly, continuity conditions at material interfaces or
generalized periodic conditions at fictitious boundaries cannot be imposed strongly. Although continuity conditions for classic
elasticity at material interfaces with Isogeometric analysis (IGA) have been developed11,12, high-order interfaces in unfitted
discretizations have not been addressed in the literature to the best of our knowledge.
Here, we present a formulation for the weak imposition of high-order interface conditions by means of Nitsche’s method.

We focus on flexoelectricity, a high-order electromechanical coupling that has received increasing attention in the last
decades13,14,15,16,17. It refers to a universal property of all dielectrics, by which they produce an electric signal when subject to
largemechanical field gradients, e.g. under bending at microscopic scales, and conversely they deform under the application of an
inhomogeneous electric field. Mathematically, the governing equations of flexoelectricity form a coupled system of fourth-order
PDEs for the mechanical displacement and the electric potential. Being a universal property, flexoelectricity provides a route to
broaden the class of materials that can be used for electromechanical transduction beyond the limited class of piezoelectric mate-
rials. Nevertheless, harnessing flexoelectricity as a functional property in metamaterials and devices requires strain-gradient and
polarization-gradient engineering, in particular through material inhomogeneities and complex material architectures. For this,
the ability to solve flexoelectricity boundary value problems in general geometries and with general multi-material arrangements
is crucial. Furthermore, the ability to study periodic lattice architectures is essential towards the design of flexoelectric metama-
terials18,19. Several numerical methods for the solution of the flexoelectricity fourth-order system of PDEs have been proposed,
including finite element solutions based on mixed formulations20,21, finite differences22,23, 0 interior penalty finite element
methods24, and methods based on smooth approximations, such as maximum entropy meshless methods25,26,27,28 and isogeo-
metric approaches29. None of these methods, however, are capable of solving flexoelectric boundary value problems on complex
geometries with high geometric fidelity. We recently proposed an immersed boundary hierarchical B-Spline-based method for
the efficient solution of flexoelectricity and strain-gradient elasticity boundary value problem on arbitrarily shaped domains and
electrode configurations8. Here, we extend this framework to flexoelectric problems with general physical or fictitious interfaces,
with applications to material interfaces and generalized periodicity conditions.
Although the formulation is derived in the context of a B-spline immersed boundary method for flexoelectricity and strain-

gradient elasticity boundary value problems, the formulation is general to all discretization methods based on at least C1
approximations requiring weak enforcement of interface conditions. The proposed methodology can also be easily extended to
other flexoelectricity models explicitly accounting for converse flexoelectricity and gradient dielectricity30,31,32, as well as finite
deformations33,34. Generalization to other high-order problems is also straightforward.
The paper is organized as follows. Section 2 first briefly describes for completeness the flexoelectricity model and its varia-

tional formulation for a body with continuous material properties in an unfitted approach presented in Codony et al.8, and states
next the interface conditions and the variational formulation in the presence of material interfaces, as well as the corresponding
weak form. The proposed formulation is then particularized in Section 3 to the weak imposition of generalized periodicity con-
ditions at the fictitious boundaries of periodic unit cells. Section 4 presents the numerical approach for the discretization of the
weak form, based on a B-spline approximation with an embedded domain. Numerical experiments in Section 5 demonstrate the
applicability and optimal convergence of the proposed technique, including convergence tests with synthetic solutions in 2D and
3D domains with material interfaces, a comb-shaped flexoelectric harvester, and examples of application for the computational
modeling of unit cells for flexoelectricity-based metamaterials.
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2 VARIATIONAL FORMULATION FOR COMPOSITE FLEXOELECTRIC MATERIALS

2.1 Preliminaries
The enthalpy density of a volumeΩ ∈ ℝd , with d = {2, 3}, of linear flexoelectric material is stated in terms of the displacement
u and the electric potential � as33,35,25,27,8

Ω[u, �] = 1
2
"ijℂijkl"kl +

1
2
"ij,kℎijklmn"lm,n −

1
2
El�lmEm − Elelij"ij − El�lijk"ij,k, (1)

with the strain and the electric field defined as

["(u)]ij = ["(u)]ji =
[

∇s(u)
]

ij =
1
2
(ui,j + uj,i), (2)

[E(�)]l = −[∇�]l = −�,l, (3)
and being ℂijkl the elasticity tensor, ℎijklmn the strain-gradient elasticity tensor, �lm the dielectricity tensor, elij the piezoelec-
tric tensor and �lijk the flexoelectric tensor. Einstein’s summation notation is used, i.e. repeated indices sum over the spatial
dimensions. Indexes after a comma denote spatial derivatives; for instance, ui,j = )ui∕)xj . The work of external loads is

Ω[u, �] = −biui + q�, (4)
where b are body force and q are free charges. The total bulk enthalpy of a flexoelectric material is then

ΠΩ[u, �] = ∫
Ω

(

Ω[u, �] +Ω[u, �]
)

dΩ. (5)

Taking also into account the enthalpies associated to the boundary conditions leads to the following functional:

Π[u, �] = ΠΩ[u, �] + ΠDirichlet[u, �] + ΠNeumann[u, �], (6)
where ΠDirichlet[u, �] acts on the Dirichlet boundaries and ΠNeumann[u, �] acts on the Neumann boundaries. The enthalpy associ-
ated to Dirichlet boundaries vanishes in body-fitted approaches because the approximation space satisfies the Dirichlet boundary
conditions. Otherwise, Dirichlet conditions are imposed in weak sense, here by means of Nitsche’s method10,9. Following8, the
definition of ΠDirichlet[u, �] and ΠNeumann[u, �] is

ΠDirichlet[u, �] = ∫
)Ωu

(

1
2
�u
(

ui − ūi
)2
−
(

ui − ūi
)

ti(u, �)
)

dΓ + ∫
)Ωv

(

1
2
�v
(

)nui − vi
)2
−
(

)nui − vi
)

ri(u, �)
)

dΓ +

+ ∫
)Ω�

(

−1
2
��

(

� − �̄
)2
+
(

� − �̄
)

w(u, �)
)

dΓ + ∫
Cu

(

1
2
�Cu

(

ui − ūi
)2
−
(

ui − ūi
)

ji(u, �)
)

ds, (7)

ΠNeumann[u, �] = ∫
)Ωt

−ui t̄i dΓ + ∫
)Ωr

−)nuir̄i dΓ + ∫
)Ωw

�w̄ dΓ + ∫
Cj

−uij̄i ds, (8)

with the normal derivative operator )n(A) ∶= )A∕)n, and the unitary exterior normal vector n. In Eqs. (7) and (8), ū is the
prescribed displacement on the first order Dirichlet boundary, )Ωu; t̄ is the traction on the first order Neumann boundary, )Ωt
with )Ω = )Ωt∪)Ωu, )Ω being the boundary of the domainΩ; v is the normal derivative of the displacement )nu on the second
order Dirichlet boundary, )Ωv, and r̄ is the double traction on the second order Neumann boundary, )Ωr with )Ω = )Ωr ∪ )Ωv.
The domain boundary is assumed to be composed of smooth surfaces (curves in 2D) that are joined on sharp boundary edges
(corners in 2D).Cj denotes the union of the boundary edges that are shared by two surfaces with first order Neumann conditions,
i.e. the edges of )Ωt, where a line (punctual in 2D) force j̄ is set. Cu denotes the union of all other edges, i.e. those shared
by at least one Dirichlet surface, where the value of u is assumed to be that of the adjacent Dirichlet surface, i.e. u = ū on
Cu ⊂ )Ωu. Finally, �̄ is the prescribed potential on the Dirichlet boundary )Ω�, and w̄ is the surface charge density on the
Neumann boundary )Ωw, with )Ω = )Ω� ∪ )Ωw. Integrals on edges, as the ones on Cu and Cj in Eqs. (7) and (8), reduce to a
sum of the values at the corners in 2D.
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FIGURE 1 Normal vector n and conormal vector m for 2D and 3D domains, respectively, for the definition (9d) of the forces
on CΩ.

The Nitsche’s numerical parameters, �u, �v, �� and �Cu , are positive and large enough to ensure a positive definition of the
mechanical problem and a negative definition of the electrical problem, respectively8. The traction ti(u, �), double traction
ri(u, �), electric charge density w(u, �), and edge forces ji(u, �) are

ti(u, �) =
(

�̂ij(u, �) − �̃ijk,k(u, �) − �̃ikj,l(u, �)
(

�lk − nlnk
))

nj + �̃ijk(u, �)Ñjk on )Ω, (9a)
ri(u, �) = �̃ijk(u, �)njnk on )Ω, (9b)
w(u, �) = −D̂l(u, �)nl on )Ω, (9c)
ji(u, �) = �̃ijk(u, �)(mLj n

L
k + m

R
j n

R
k ) on CΩ, (9d)

where Ñij = −ni,l(�lj − nlnj) + nf,g(�fg − nfng)ninj , CΩ = Cu ∪ Cj is the set of all edges (corners) of the boundary, the
superscriptsL andR refer to the first and second surface sharing the edge, andm is the conormal vector on each surface, tangent
to the surface, normal to the edge and pointing outward to the surface. In 2D,m is just the vector tangent to the side and pointing
outward on the corner, see Fig. 1.
The stress �̂ij , double stress �̃ijk and electric displacement D̂l in Eq. (9) are derived from the bulk enthalpy density as

�̂ij(u, �) =
)Ω[",∇",E]

)"ij

|

|

|

|

|

∇"
E

= ℂijkl"kl(u) − elijEl(�), (10)

�̃ijk(u, �) =
)Ω[",∇",E]

)"ij,k

|

|

|

|

|

"
E

= ℎijklmn"lm,n(u) − �lijkEl(�), (11)

D̂l(u, �) = −)
Ω[",∇",E]
)El

|

|

|

|

"
∇"

= �lmEm(�) + elij"ij(u) + �lijk"ij,k(u). (12)

The physical stress is �ij = �̂ij − �̃ijk,k and the physical electric displacement is Di = D̂i.

2.2 Variational formulation in the presence of material interfaces
Let us consider now a physical domain Ω conformed by several non-overlapping subdomains as Ω = ⋃N

i=1Ω
i. The boundary of

Ω is composed of the exterior boundary, )Ω, and the interior boundary or interface,  = [⋃N
i=1 )Ω

i]∖)Ω, as illustrated in Fig. 2.
The interface is split in several parts k, each one corresponding to the interface shared by two subdomains, i.e.  = ⋃nf

k=1 
k,

with k = )ΩL(k) ∩ )ΩR(k), being ΩL(k) and ΩR(k) the adjacent subdomains. The weighted mean operator and jump operator for
a generic function A that may be discontinuous across , are defined as

{A} = L(k)AL(k) + R(k)AR(k), JAK = AL(k) + AR(k) on k, (13)
with scalar values L(k), R(k) ∈ (0, 1) such that L(k) + R(k) = 1, and denoting as Ai the value of A in subdomain Ωi. Although
the arithmetic mean is usually enough, ill-conditioning can appear in the presence of cut elements with small area ratio. For that
reason, a weightedmean operator is considered. Criteria for the selection of values for L and R are given in Section 4, following
a simplified version of parameters reported in Annavarapu et al.36. We also define the edges (corners in 2D) of the interface ,
which are the boundary of the interfaces except the edges on the Dirichlet boundary, that is C = {Ck}nCk=1 =

⋃nf
f=1 )

f∖Cu. For
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Ω

Ω1

Ω2

Ω3

Ω4

Ω6Ω5

Interface∂Ω

 

C7

C6C5

C4

C3

C2
C1

C9

C8

FIGURE 2 Physical domain composed by 6 subdomains with external boundary )Ω (in black) and interface  (in green). An
example to illustrate the relative notation around one side and corner is depicted on the right. The interface 3 is shared by the
subdomainsΩR(3) andΩL(3) withR(3) = 3 and L(3) = 2. The corner C2 is shared by 3 subdomains {ΩP (2,k)}m(3)k=1 with m(3) = 3,
P (2, 1) = 2, P (2, 2) = 3 and P (2, 3) = 4.

each edge Ck, there are m(k) subdomains {ΩP (k,1),ΩP (k,2), ...,ΩP (k,m(k))} adjacent to it, see Fig. 2. The weighted mean operator
is then also defined on Ck as

⟨A⟩̂ =
m(k)
∑

i=1
̂P (k,i)AP (k,i) on Ck ⊂ C , (14)

with ̂P (k,i) ∈ (0, 1) such that∑m(k)
i=1 ̂

P (k,i) = 1. It represents a weighted average of the value of A in all the subdomains sharing
the edge. The definition of the weighted average in Eq. (14) is a generalization of the one in Eq. (13). Criteria for the selection
of ̂ are also given in Section 4.
The interface conditions that must be fulfilled at the interface and edges (corners in 2D) enforce continuity of the solution

and equilibrium. That is,
r
u⊗ n

z
= 0,

r
)nu

z
= 0,

r
�n

z
= 0,

r
t(u, �)

z
= t̂,

r
r(u, �)⊗ n

z
= r̂⊗ nL,

r
w(u, �)

z
= ŵ on , (15)

and
uP (k,i) − ⟨u⟩̂ = 0 i = 1 ... m(k),

m(k)
∑

i=1
jP (k,i)(u, �) = ĵ on Ck ⊂ C (16)

where j�(u, �) denotes the line force on the edge (punctual force at corners in 2D) coming from the subdomain Ω� sharing the
edge. The data is ĵ = j̄ on edges on the boundary, and ĵ = 0 on edges in the interior of the domain. Thus, Eq. (16) enforces that
the sum of the forces from each subdomain sharing an edgeCk is in internal equilibrium or in equilibriumwith external boundary
forces. The values of t̂, r̂ and ŵ in Eq. (15) are also zero for physical problems and conveniently set for synthetic solutions.
The enthalpy associated to Eqs. (15) and (16) is analogous to that of Dirichlet boundary conditions, Eq. (7), and Neumann

boundary conditions, Eq. (8) Thus, the total enthalpy associated to interfaces is
ΠInterface[u, �] =∫



[

1
2
�u

q
uinj

y2 −
q
uinj

y{
ti(u, �)nj

}


− t̂i

{

ui
}

1−

]

dΓ +

+∫


[

1
2
�v

r
)nui

z2
−

r
)nui

z{
ri(u, �)

}


− r̂inLj

{

ui,j
}

1−

]

dΓ +

+∫


[

− 1
2
��

r
�ni

z2
+

r
�ni

z{
w(u, �)ni

}


+ ŵ

{

�
}

1−

]

dΓ +

+
nC
∑

k=1
∫
Ck

[

∑

�∈P (k,∶)

(1
2
�Cu(u�i − ⟨ui⟩̂ )2 − (u�i − ⟨ui⟩̂ )j�i (u, �)

)

− ⟨ui⟩̂ ĵi

]

ds. (17)

where P (k, ∶) = {P (k, 1), ..., P (k, m(k))}.
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The penalty parameters �u , �v , �� and �Cu in Eq. (17) must be large enough to ensure concave up enthalpy with respect to
the displacement u, and concave down enthalpy with respect to the electric potential �. Practical lower bounds and the scaling
with the mesh size and material parameters are commented in Section 4.
The total enthalpy of the domain Ω with material interfaces is then

Π[u, �] = ΠΩ[u, �] + ΠDirichlet[u, �] + ΠNeumann[u, �] + ΠInterface[u, �]. (18)
The variational principle is

(u*, �*) = argmin
u∈

max
�∈1(Ω)

Π[u, �], (19)
where  is the space of functions belonging to [2(Ω)]d with 2-integrable third derivative on the Dirichlet boundary )Ωu.

2.3 Weak form of the boundary value problem
The weak form of the problem is derived from the first-order stationarity condition

�Π[u, �; �u, ��] = 0, ∀�u ∈  , �� ∈ 1(Ω), (20)
where

�Π[u, �; �u, ��] = �ΠΩ[u, �; �u, ��] + �ΠDirichlet[u, �; �u, ��] + �ΠNeumann[�u, ��] + �ΠInterface[u, �; �u, ��], (21)
with

�ΠΩ[u, �; �u, ��] =∫
Ω

(

�̂ij(u, �)"ij(�u) + �̃ijk(u, �)"ij,k(�u) − D̂l(u, �)El(��) − bi�ui + q��
)

dΩ, (22)

�ΠDirichlet[u, �; �u, ��] = ∫
)Ωu

(

�u
(

ui − ūi
)

�ui − ti(u, �)�ui −
(

ui − ūi
)

ti(�u, ��)
)

dΓ +

+ ∫
)Ωv

(

�v
(

)nui − vi
)

)n�ui − ri(u, �))n�ui −
(

)nui − vi
)

ri(�u, ��)
)

dΓ +

+ ∫
)Ω�

(

− ��
(

� − �̄
)

�� +w(u, �)�� +
(

� − �̄
)

w(�u, ��)
)

dΓ +

+∫
Cu

(

�Cu
(

ui − ūi
)

�ui − ji(u, �)�ui −
(

ui − ūi
)

ji(�u, ��)
)

ds, (23)

�ΠNeumann[�u, ��] =∫
)Ωt

−t̄i�ui dΓ + ∫
)Ωr

−r̄i)n�ui dΓ + ∫
)Ωw

w̄�� dΓ∫
Cj

−j̄i�ui ds, (24)
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�ΠInterface[u, �, �u, ��] =∫


[

�u
q
�uinj

y q
uinj

y
−

q
�uinj

y{
ti(u, �)nj

}


−

q
uinj

y{
ti(�u, ��)nj

}


− t̂i

{

�ui
}

1−

]

dΓ +

+∫


[

�v
r
)n�ui

zr
)nui

z
−

r
)n�ui

z{
ri(u, �)

}


−

r
)nui

z{
ri(�u, ��)

}


− r̂inLj

{

�ui,j
}

1−

]

dΓ +

+∫


[

− ��
r
��ni

zr
�ni

z
+

r
��ni

z{
w(u, �)ni

}


+

r
�ni

z{
w(�u, ��)nj

}


+ ŵ

{

��
}

1−

]

dΓ +

+
nC
∑

k=1
∫
Ck

[

∑

�∈P (k,∶)

(

�Cu
(

u�i − ⟨ui⟩̂
)(

�u�i − ⟨�ui⟩̂
)

−
(

u�i − ⟨ui⟩̂
)

j�i (�u, ��)−

− j�i (u, �)�u
�
i dΓ − ̂

�
(

ĵi −
∑

�∈P (k;∶)
j�i (u, �)

)

�u�i

)]

ds. (25)

In addition, the following conditions ensure a well-posed saddle point problem:
�2uΠ[u, �; �u] > 0, �2�Π[u, �; ��] < 0, ∀�u, ��. (26)

Finally, the weak form of the problem is

Find (u, �) ∈  ⊗1(Ω) such that �Π[u, �; �u, ��] = 0,∀(�u, ��) ∈  ⊗1(Ω). (27)

3 VARIATIONAL FORMULATION FOR GENERALIZED PERIODIC UNIT CELLS

Periodic structures are obtained by periodically replicating a structural unit cell in 1, 2 or 3 spatial dimensions. Boundary value
problems on periodic structures can be efficiently solved by reducing them to the unit cell with so-called generalized periodic
conditions in the direction of periodicity37,38. These conditions aim at replicating the macroscopic loading conditions of a unit
cell in an infinitely periodic structure, and are thus devoid of sample’s finite-size effects. These macroscopic loading conditions
can be mapped to jumps of the primary variables u and � between the unit cell fictitious periodic boundaries. Since flexoelec-
tricity governing equations are a system of 4th-order PDEs, generalized periodicity needs to be supplemented with appropriate
periodicity conditions for the high-order fields, enforcing 1 continuity of the primary fields. In unfitted discretizations, high-
order generalized periodicity conditions can be enforced weakly using the formalism for physical interfaces presented in Section
2, as described next.

3.1 Generalized periodicity conditions
For the sake of simplicity, let us restrict ourselves to a 2D lattice that is periodically replicated along x− and y− spatial directions.
The unit cell Ω is embedded in a rectangle R = [0, Lx] × [0, Ly], as shown in the example in Fig. 3. The boundary of the
domain Ω is composed of generalized periodic boundaries, y = {(x, 0) ∈ )Ω} ≡ {(x, Ly) ∈ )Ω} and x = {(0, y) ∈ )Ω} ≡
{(Lx, y) ∈ )Ω}, and physical boundaries in the interior of the rectangle, )Ω∖[x ∪ y].
We define Cx as the set of values of y-component of the corners in x and Cy as the set of values of x-component of the

corners in y, see Fig. 3. The generalized periodicity conditions of the unit cell are then
JuKy = ǔy,

s
)u
)y

{y
= 0, J�Ky = �̌y,

t(u, �)|y=Ly + t(u, �)|y=0 = 0, Jr(u, �)Ky = 0, w(u, �)|y=Ly +w(u, �)|y=0 = 0 on y,
JuKy = ǔy, j(u, �)|y=Ly + j(u, �)|y=0 = 0 for x ∈ y,

JuKx = ǔx,
s
)u
)x

{x
= 0, J�Kx = �̌x,

t(u, �)|x=Lx + t(u, �)|x=0 = 0, Jr(u, �)Kx = 0, w(u, �)|x=Lx +w(u, �)|x=0 = 0 on x,
JuKx = ǔx, j(u, �)|x=Lx + j(u, �)|x=0 = 0 for y ∈ x, (28)
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FIGURE 3 Example of one unit cell of a periodic structure, Cx = {Ly∕4, 3Ly∕4} and Cy = {Lx∕4, 3Lx∕4}.

where the jump on the periodic boundaries is defined as
JAKy = A(x, Ly) − A(x, 0), JAKx = A(Lx, y) − A(0, y), (29)

for convenience. The jumps ǔy, ǔx, �̌y and �̌x can be either given constants (mapped from the applied load at the macroscopic
level) or unknown constants that have to be determined assuming a prescribed value of their macroscopic work-conjugate (gen-
erally – but not necessarily – null). For the case of a vertical displacement sensor, where a vertical macroscopic strain is applied,
ǔy = (0, ǔy), with ǔy a known constant, and the displacement jump ǔx, and electric potential jumps, �̌y and �̌x, are unknowns
to be computed assuming vanishing macrotractions on the vertical unit cell boundaries and that no surface charges accumulate
on unit cell boundaries, i.e.D ⋅ n = 0 on x and y,D being the macroscopic physical electric displacement39. Other boundary
value problems on the generalized periodic unit cell can also be defined analogously. For instance, for the case of a displacement
actuator, an electric potential difference is applied macroscopically, which can be mapped to known electric potential jumps
in the unit cell, �̌y and �̌x, and the unknown displacement jumps ǔy and ǔx, are then computed assuming that the unit cell is
unconfined39.
Remark 1. Generalized periodicity conditions at the corners of R. If the corners of the rectangle lie inside the material domain,
then generalized periodicity conditions for both x and y must be enforced simultaneously. For instance, the definition in
Eq. (29) becomes

JAKy = A(Lx, Ly) − A(Lx, 0) + A(0, Ly) − A(0, 0), JAKx = A(Lx, Ly) − A(0, Ly) + A(Lx, 0) − A(0, 0), (30)
at the vertex. This situation can be avoided in general by a suitable choice of unit cell.
The total enthalpy of the system is

Π[u, �, ǔ, �̌] = ΠΩ[u, �] + ΠDirichlet[u, �] + ΠNeumann[u, �] + ΠP,y[u, �, ǔ, �̌] + ΠP,x[u, �, ǔ, �̌], (31)
with Eqs. (5), (7), (8) and the enthalpy associated to periodic boundaries

ΠP,y[u, �, ǔ, �̌] =∫
y

[

1
2
�uy

(

JuiK
y − ǔyi

)2
−
(

JuiK
y − ǔyi

)

Jti(u, �)K
y


]

dΓ

+∫
y

[

1
2
�vy

(

s
)ui
)y

{y
)2
−

s
)ui
)y

{y
{

ri(u, �)
}y



]

dΓ +

+∫
y

[

− 1
2
��y

(

J�Ky − �̌y
)2
+
(

J�Ky − �̌y
)

Jw(u, �)Ky

]

dΓ +

+
∑

x∈Cy

[

1
2
�Cuy

(

JuiK
y − ǔyi

)2
−
(

JuiK
y − ǔyi

)

Jji(u, �)K
y


]

, (32)
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ΠP,x[u, �, ǔ, �̌] =∫
x

[

1
2
�ux

(

JuiK
x − ǔxi

)2
−
(

JuiK
x − ǔxi

)

Jti(u, �)K
x


]

dΓ

+∫
x

[

1
2
�vx

(

s
)ui
)x

{x
)2
−

s
)ui
)x

{x
{

ri(u, �)
}x



]

dΓ +

+∫
x

[

− 1
2
��x

(

J�Kx − �̌x
)2
+
(

J�Kx − �̌x
)

Jw(u, �)Kx

]

dΓ +

+
∑

y∈Cx

[

1
2
�Cux

(

JuiK
x − ǔxi

)2
−
(

JuiK
x − ǔxi

)

Jji(u, �)K
x


]

, (33)

where ǔ = {ǔx, ǔy}, �̌ = {�̌x, �̌y} and the weighted means and jumps on the periodic boundaries are defined as
{A}y = A(x, Ly) + (1 − )A(x, 0) {A}x = A(Lx, y) + (1 − )A(0, y)

JAKy = A(x, Ly) − (1 − )A(x, 0) JAKx = A(Lx, y) − (1 − )A(0, y) (34)
with  ∈ (0, 1).
In Eqs. (32) and (33), it is important to distinguish the cases where the jumps ǔ(⋅) or �̌(⋅) are prescribed or unknown. For

prescribed values of ǔ(⋅) or �̌(⋅), we directly substitute ǔ(⋅) or �̌(⋅) by its prescribed value û(⋅) or �̂(⋅) so that Eqs. (32) and (33) are
analogous to Eq. (25). For unknown values of ǔ(⋅) or �̌(⋅), Eqs. (32) and (33) weakly enforce a constraint between state variables,
and therefore do not admit penalty terms, i.e. the corresponding �(⋅) must be set to zero.

3.2 Variational formulation and weak form
For the sake of simplicity, we restrict now to the case of a vertical displacement sensor, where a uniform vertical strain is applied
at themacroscopic level, allowing freemacroscopic transversal deformation of thematerial, and assuming that no surface charges
accumulate macroscopically. This case is considered in the example in Section 5.4. The particularization to other generalized
periodic boundary value problems is straightforward.
The condition to be imposed weakly is ǔy = ûy, with a prescribed vertical displacement jump ûy mapped from the applied

vertical macroscopic strain. The horizontal jump of the displacement ǔx and the electric potential jump �̌ are unknown constants.
Hence, in Eqs. (32) and (33), the penalty parameters �ux, �Cux, ��x and ��y must be set to 0, and ǔy = ûy. The solution of the
associated boundary value problem then follows from the variational principle

(u*, �*, ǔx*, �̌*) = argmin
u∈

max
�∈1(Ω)

max
ǔx∈ℝ2

min
�̌∈ℝ2

Π[u, �, ǔx, �̌]. (35)
The weak form of the problem follows from stationarity of the enthalpy functional in Eq. (31)

�Π[u, �, ǔx, �̌; �u, ��, �ǔx, ��̌] = 0; ∀�u, ��, �ǔx, ��̌, (36)
together with the second order stationarity conditions

�2uΠ[u, �, ǔ
x, �̌; �u] > 0, �2�Π[u, �, ǔ

x, �̌; ��] < 0,

�2ûxΠ[u, �, ǔ
x, �̌; �ǔx] < 0, �2

�̌
Π[u, �, ǔx, �̌; ��̌] > 0, (37)

where

�Π[u, �,ǔx, �̌; �u, ��, �ǔx, ��̌] = �ΠΩ[u, �; �u, ��] + �ΠDirichlet[u, �; �u, ��] + �ΠNeumann[�u, ��]
+ �ΠP,y[u, �, ǔx, �̌; �u, ��, �ǔx, ��̌] + �ΠP,x[u, �, ǔx, �̌; �u, ��, �ǔx, ��̌], (38)

�ΠΩ, �ΠDirichlet and �ΠNeumann are defined in Eqs. (22), (23) and (24), and
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�ΠP,y[u, �, ǔx, �̌; �u, ��, �ǔx, ��̌] =

∫
y

[

�uy J�uiK
y
(

JuiK
y − ûyi

)

− J�uiK
y Jti(u, �)K

y
 −

(

JuiK
y − ûyi

)

Jti(�u, ��)K
y


]

dΓ

+∫
y

[

�vy
s
)ui
)y

{y s
)�ui
)y

{y
−

s
)�ui
)y

{y
{

ri(u, �)
}y


−

s
)ui
)y

{y
{

ri(�u, ��)
}y



]

dΓ +

+∫
y

[

(

J��Ky − ��̌y
)

Jw(u, �)Ky +
(

J�Ky − �̌y
)

Jw(�u, ��)Ky

]

dΓ

+
∑

x∈Cy

[

�Cuy J�uiK
y
(

JuiK
y − ûyi

)

− J�uiK
y Jji(u, �)K

y
 −

(

JuiK
y − ûyi

)

Jji(�u, ��)K
y


]

, (39)

�ΠP,x[u, �, ǔx, �̌; �u, ��, �ǔx, ��̌] =

∫
x

[

−
(

J�uiK
x − �ǔxi

)

Jti(u, �)K
x
 −

(

JuiK
x − ǔxi

)

Jti(�u, ��)K
x


]

dΓ

+∫
x

[

�vx
s
)ui
)x

{x s
)�ui
)x

{x
−

s
)�ui
)x

{x
{

ri(u, �)
}x


−

s
)ui
)x

{x
{

ri(�u, ��)
}x



]

dΓ +

+∫
x

[

(

J��Kx − ��̌x
)

Jw(u, �)Kx +
(

J�Kx − �̌x
)

Jw(�u, ��)Kx

]

dΓ

+
∑

y∈Cx

[

−
(

J�uiK
x − �ǔxi

)

Jji(u, �)K
x
 −

(

JuiK
x − ǔxi

)

Jji(�u, ��)K
x


]

, (40)

being �ǔ and ��̌ admissible variations of ǔ and �̌, respectively. Finally the weak form associated to the boundary value problem
reads

Find (u, �, ǔx, �̌) ∈  ⊗1(Ω)⊗ℝ2 ⊗ℝ2 such that �Π[u, �, ǔx, �̌; �u, ��, �ǔx, ��̌] = 0,

∀(�u, ��, �ǔx, ��̌) ∈  ⊗1(Ω)⊗ℝ2 ⊗ℝ2. (41)

4 NUMERICAL APPROXIMATION AND CHOICE OF NUMERICAL PARAMETERS

The discretization of the weak form, Eq. (27) or (41), requires an approximation space for the displacement in [2(Ω)]d and
with well-defined third derivatives on Dirichlet and periodicity boundaries. Here, following8, we consider B-spline functions40.
More precisely, we consider piecewise polynomial functions with Cp−1 continuity, being p ≥ 3 the degree of approximation.
The uniform univariate B-splines basis is {Bpi }n�−1i=0 and it is defined in a parametric space � ∈ [0, n� + p] with the following
recursive formula:

B0i (�) =

{

1 �i ≤ � < �i+1
0 otherwise ; Bki (�) =

� − �i
�i+k − �i

Bk−1i (�) +
�i+k+1 − �
�i+k+1 − �i+1

Bk−1i+1 (�);
k = 1,… , p
i = 0,… , n� + p − k − 1,

(42)

where {�i}n�−1i=0 are the so-called knot points, here assumed to be not repeated and equispaced. An example of the unidimensional
B-spline space is shown in Figure 4a. B-splines are defined in a multivariate by the tensor product of univariate ones, i.e.,

Bp[i� ,i�]([�, �]) = B
p
i�
(�)Bpi� (�); i� = 0,… , n� − 1; i� = 0,… , n� − 1. (43)
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We consider a uniform Cartesian mesh embedding the domain Ω. Each cell of the mesh is classified in one of three disjoint
groups: inner cells ΩI , completely contained in the domain Ω, outer cells ΩO, with null intersection with Ω, and cut cells ΩC ,
that are cells intersected by the boundary )Ω; as illustrated in the example in Figure 4b. Cut cells are divided into subdomains
to perform the numerical integration using the algorithm described in Marco et al.41,42
Cut cells with very little intersection with Ω lead to ill-conditioned algebraic systems of equations8 due to basis functions

having a small contribution to the integral, and to basis functions being almost linearly dependent on those cells43. To alleviate
this problem several strategies can be considered, such as the ghost-penalty method44, the Extended B-spline method45,46,47,48
or the artificial stiffness approach49 among others. We use the extended B-spline method in this work. It consists on binding
basis functions whose support is mostly outside of the geometry with adjacent basis functions. A detailed explanation about
mesh creation and the numerical approach can be found in Codony et al.8

(a) Basis functions for p = 3 and p = 4

0

0.2

0.4

0.6

0.8

0.8

0.6

0.4

0.2

0
0 1 2 3 4 5

543210

(b) Mesh

h

FIGURE 4 a) Unidimensional B-spline basis for degrees p = 3 and p = 4 , b) Example of a mesh with inner cells in ΩI , outer
cells in ΩO and cut cells in ΩC .

The choice of the penalty parameters in Eqs. (7) and (17) follows50,51,52,48,8. We define the penalty parameters
�u, �v, �Cu , ��, �u , �v , �Cu , �� ∈ ℝ+ in terms of a dimensionless parameter � ∈ ℝ+ as

�u = E
ℎ
�, �v = l2E

ℎ
�, �Cu = l2E

ℎ2
�, �� = �

ℎ
�, (44)

�u =
max(E(1), E(2))

ℎ
�, �v =

l2max(E(1), E(2))
ℎ

�, �Cu =
l2max(E(1), E(2), ..., E(n))

ℎ2
�, �� =

max(�(1), �(2))
ℎ

�,
(45)

where ℎ denotes the physical cell size of the mesh, and E, � and l denote the Young’s modulus, the dielectric permittivity and
the internal length scale arising from strain gradient elasticity, A. Thanks to the Extended B-splines stabilization, the penalty
parameters do not depend on how the boundary intersects the mesh47. In any case, the value of � must be large enough for a well-
defined system. Lower bounds can be derived by solving an eigenvalue problem53,11,54. A numerical study of the dependency
of the condition number on the value of � can be found in Codony et al.8. A large value of � gives a poorly conditioned system
that can deteriorate the performance of iterative solvers. Since we are using a direct solver for all numerical experiments, taking
the optimal value of � is not critical.
Finally, we comment on the choice of the -parameter in Eqs. (13). Numerical oscillations around the interface may appear in

some critical cases, when one element has amuch smaller portion in one domain than in the other, as previously reported12,36,55,56.
To improve the conditioning, we consider the following simplified version of parameters reported in Annavarapu et al. 36,56,
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which yields accurate results:
L =

meas(SΩ(L))
meas(SΩ(L)) + meas(SΩ(R))

, R =
meas(SΩ(R))

meas(SΩ(L)) + meas(SΩ(R))
, (46)

where meas(SΩ(i)) denotes the physical measure of the cut cell. The choice of the ̂-parameter in Eq. (14) is a generalization of
the -parameters defined in Eq. (46) as

̂P (k,i) =
meas(SΩ(i))

∑m(k)
j=1 meas(SΩ(j))

(47)
For problemswith largematerial constant ratios, it would be advisable to use amaterial-weighted definition of  and �, analogous
to that proposed by Dolbow et al. for elasticity11,36,56. Our selection of � and  is not optimal, but it is sufficiently good to provide
accurate results for the range of material parameters considered here. A generalization of the material-weighted definition of 
to electromechanical materials, as well as the study of the optimal value of  , which would be particularly beneficial for iterative
solvers, is beyond the scope of this paper.

5 NUMERICAL EXPERIMENTS

Several numerical experiments are shown in this section. We first present error convergence analysis of the method on composite
structures in 2D and 3D using dimensionless tests. A synthetic trigonometric solution is considered and optimal conver-
gence in 2-norm is shown. In the third example we analyse a composite flexoelectric device. This device accumulates the
flexoelectrically-generated electric bias by collective beam-bending avoiding internal cancelation of the effect thanks to the use
of symmetry-breaking low-dielectricity inclusions57,18. The fourth example illustrates the efficiency and reliability of the pro-
posed generalized periodicity approach. The solution in a unit cell with generalized periodicity in both directions is compared
with the bulk response of a large structure formed by periodically replicating cells along the vertical direction. The last example
compares the performance of several flexoelectric unit cells with different geometrical shapes under generalized periodicity
conditions. For all the examples we use � = 10 in Eqs. (44) and (45). That value gives accurate results for all the numerical
experiments presented here using a direct solver.

5.1 2D Convergence Test
We consider the synthetic solution

ux(x, y) = sin(2�x),
uy(x, y) = sin(2�y),
�(x, y) = sin(2�x) + sin(2�y), (48)

depicted in Fig. 5b on a three-material triangular domain of side 2, Fig. 5a. The corresponding material parameters are given in
Table 1. We apply Dirichlet boundary conditions on the outer boundary )Ω and at the corners C , consistent with the synthetic
solution, and interface conditions on the material interfaces  and at the material interface corner C . The precise interface
conditions are given in Appendix B. The resulting numerical solution is then compared to the target synthetic solution.

Ω E � l � d eL eT eS �L �T �S
1 152 0.33 1 141 y 8.8 -4.4 4.4 1500 1100 1100
2 15 0.3 1 11 y 3.8 -2.4 2.4 1100 100 100
3 19 0.25 1 85 y 5.3 -3.2 2.6 100 1800 1800

TABLE 1Material parameters for the 3 subdomains in Fig. 5a.

Figure 6 shows the convergence plots for the 2 norm, the1 and2 seminorms and for the error of the traction and electric
charge density, for two different spline degrees, p = 3 and p = 4. The error on the interface is computed by integrating the
square error on each interface for each one of the two values on the interface. The parameter ℎ0 = 2 is a normalization length
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Boundary conditions

1 2

3

(a) Computational domain, material type and boundary. (b) Horizontal displacement, vertical displacement and electric potential.

FIGURE 5 a) Computational domain, where labels refer to material type of Table 1. The outer (Dirichlet) boundary )Ω is
shown in red, while material interfaces  are depicted in green. Boundary corners C and the interior corner C are marked with
a darker color. b) Target synthetic solution, Eq. (48).

and log2(ℎ0∕ℎ) is the mesh refinement level. In each simulation we are dividing ℎ by 2. Optimal convergence is obtained in all
cases. For simplicity we will use B-spline of degree p = 3 in the following examples.
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FIGURE 6 Convergence plots for the 2 norm, the 1 and 2 seminorms and for the error of the traction and electric charge
density, for two different spline degrees, p = 3 (left) and p = 4 (right)

5.2 3D Convergence Test
We now test convergence in a three-dimensional domain formed by four cubes of size 2x2x2 of two different set of values of
material parameters, Table 1, jointly forming the parallelepiped shown in Fig. 7. We impose Dirichlet boundary conditions on
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the outer boundaries )Ω and edges C and interface conditions on the interfaces  and interface edges C consistent with the
synthetic solution

ux(x, y, z) = sin(0.1x),
uy(x, y, z) = cos(0.1y),
uz(x, y, z) = 0.5 cos(0.1y) + sin(0.1z),
�(x, y, z) = 3 sin(0.1x) − 4 cos(0.1y) + 7 sin(0.1z). (49)

The precise interface conditions are given in Appendix B. The 2 norm, the 1 and 2 seminorms and for the error of the
traction and electric charge density of the numerical solution with respect to the synthetic solutions are plotted in Fig. 7, for
B-spline discretization of degree p = 3 and normalization length ℎ0 = 4. In each simulation we are dividing the mesh size ℎ by
2. Optimal convergence is obtained in all cases.

1
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2

2

(a)
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or

)

log2(h0/h)

2 3 4 5
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w

4.0

3.0

2.0

2.0

1.9

(b)

FIGURE 7 a) Computational domain (top) and boundary conditions (bottom). Labels indicate material type. Dirichlet bound-
aries are depicted in red and interfaces are depicted in green. The edges are depicted with a darker color. b) Convergence plot
for the 2 norm, the 1 and 2 seminorms and for the error of the traction and electric charge density, with degree p = 3 and
normalization length ℎ0 = 4. The number for each plot is the slope of the last segment.

Ω E � l � d eL eT eS �L �T �S
1 152 0.33 1 141 z 8.8 -4.4 4.4 1500 1100 1100
2 15 0.3 1 11 z 3.8 -2.4 2.4 1100 100 100

TABLE 2Material parameters for the 4 subdomains in Figure 7.
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5.3 Comb-like flexoelectric harvester
We consider next an electromechanical device consisting in two comb-like structures of non-piezoelectric dielectric joint
together by a low-dielectricity material by the tip of the beams, Fig. 8a. The application of a shear motion at the left and right sides
of the structure, induces beam bending and triggers locally the flexoelectric effect. This local flexoelectrically generated elec-
tric potential is accumulated through the structure, as shown in Fig. 8b. By breaking the overall centrosymmetry of the system,
the low-dielectricity material inclusions preclude internal cancelation of the local flexoelectrically generated electric poten-
tial, thereby endowing the device with an effective piezoelectric behavior, even when the base material is a non-piezoelectric
dielectric31,18,19.
A 10-beam device is considered, for illustration purposes. The beams are 100 nm long by 10 nmwide, the insulator is a square

of side 10 nm. Material properties are given in Table 3. Displacements, uL = (0, 5) nm and uR = (0,−5) nm are prescribed on
the left and right sides of the structure, and the top-right half side of the structure is electrically grounded, Fig. 8a. Homogeneous
Neumann boundary conditions are assumed otherwise. The effective piezoelectric response of the structure manifests in a net
potential difference between the ground electrode and the top-left half side of the structure.

Ω E[GPa] � l[nm] �[nJV−2m−1] dpiezo eL[J V−1m−2] eT eS �L[µJ V−1m−1] �T �S
1 152 0.33 1 141 y 0 0 0 150 110 110
2 152 0.33 1 141 × 10−7 y 0 0 0 0 0 0

TABLE 3Material properties of the material tensors described in Section 5.3

(a) (b)

1

0

FIGURE 8 (a) Geometry of the comb with flexoelectric material in Ω1 (in light blue) and insulator in Ω2 (in dark blue). The
interface, , and its corners, , are also shown in green. Dirichlet boundary is depicted in red and electrical ground side is shown
is orange. (b) Deformed shape of the material and electric potential distribution.

5.4 Generalized periodicity analysis: sensor under vertical compression.
We validate the generalized periodicity conditions by comparing the response of a large periodic arrangement of triangular voids
on a dielectric matrix to that of the periodic unit cell, Fig. 9. Such structure has been proposed as a means to generate local
flexoelectric response in a non-piezoelectric material in such a way that a net electric potential is generated under macroscopic
homogeneous deformation31,18. For a very large structure under a prescribed strain, we expect the solution in the central part of
the structure to be unaffected by boundary effects and thus exhibiting generalized periodicity. In Fig. 9, we compare the solution
obtained on the generalized periodic unit cell with the central unit cell of a vertical stack ofN unit cells. In the first simulation,
we consider a unit cell with generalized periodic conditions in both directions. A displacement jump along the vertical direction
y

ûy = (0,−0.1) nm. (50)
is prescribed and all other jumps in Eq. (28), ǔx, �̌x and �̌y, are let free, see discussion under Eq. (29). The unit cell is a square
of side 4 µm with a triangular void of side 3

√

3
2

µm. The material properties correspond to the first material in Table 3. Figure
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9a shows the unit cell and the resulting electric potential distribution. In the second simulation, we consider a stack of N=19
such unit cells subject to prescribed displacements on the top and bottom faces matching, in the limit, the previous generalized
periodicity conditions, i.e.

u|y=ymax = N û
y u|y=0 = 0, (51)

and unconstrained generalized periodicity conditions for u and � in the horizontal direction. As the electric potential is deter-
mined up to a constant, we set it to zero at the center of the structure. Figure 9b shows the vertical structure and the electric
potential distribution, with a zoom around the central cell. For comparison purposes, the scale of the electric potential for the
second simulation is adjusted to show perfect agreement with the generalized periodic unit cell result, Fig. 9a. That error is
smaller than 0.1% in all points inside the unit cell. For stacks of a large number of unit cells, we expect the average electric

(a)
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FIGURE 9 (a) Unit cell and electric potential distribution with generalized periodic conditions in both directions. (b) Distribu-
tion of the electric potential in a structure formed by 19 unit cells prescribed displacements at the top and bottom. Results on
the central generalized periodic unit cell are shown with the same scale as a) for direct comparison purposes.

potential difference on a unit cell to tend to the generalized periodicity electric potential jump �̌y, i.e.
lim
N→∞

Δ�
N

= �̌y, (52)
where Δ� is the electric potential difference between top and bottom boundaries of the structure in Fig. 9b. For quantitative
validation purposes, we plot in Fig. 10 the value of Δ�∕N for stacks of increasing number of unit cells, from N = 1 to
N = 20 and compare it against the generalized periodicity electric potential jump �̌y obtained in the generalized periodic unit
cell simulation, Fig. 9b. From this plot, the limit in Eq. (52) is apparent. The electromechanical response of a unit cell under
generalized periodicity conditions is thus shown to be representative of the bulk response of a periodic material built from
that unit cell under the corresponding macroscopic conditions on its boundaries. Although we only show the validation for a
sensor mode considering generalized periodicity in y-direction, actuator mode and different generalized periodicity have been
considered and all them have the same agreement as the one presented here.

5.5 Unit cell of flexoelectric metamaterial in sensor mode.
We now analyze the performance of three 2D periodic structures with periodically-replicated holes. As shown in Figure 11a,
the unit cells are a square of side 4 µm with holes of different shapes: a square of side 1 µm, a triangle of side 3

√

3
2

µm and and
circle of radius 1 µm. The material is a non-piezoelectric dielectric with properties corresponding to the first material in Table
3. The generalized periodicity conditions used are

ûy = (0,−0.1) µm, (53)
while all other generalized periodicity jumps, ǔx, �̌x and �̌y, are let free. This corresponds to applying a uniform compressive
strain in the vertical direction at the macroscopic level, while allowing a free transversal expansion or compression of the
material. As the solution is determined up to a constant, the displacement and the electric potential of the most left down corner
is set to 0. If the resulting �̌y is not null, the potential difference accumulates with the repetition of unit cells and the flexoelectric
metamaterial behaves effectively as a piezoelectric at the macroscale.
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FIGURE 10 Plot of the difference of electric potential,Δ�, per unit cell, versus the number of unit cellsN (in blue) and potential
difference, �̌y, for one unit cell considering generalized periodicity in both directions (in red).

(a) Periodic settings.

(b) Electric potential distribution

0

4

-6

6

0

3

FIGURE 11 (a) Periodic unit cell of a metamaterial with square, triangular and circular holes respectively (b) Distribution of
the electric potential in the unit cells.

From Figure 11b, we see that centro-symmetric structures, namely those with square and circular holes, do not lead to a net
electric potential accumulation. On the other hand, the non-centrosymmetric structure with a triangular hole leads to a net electric
potential difference. Therefore, the triangular hole can be used to create a flexoelectric metamaterial, in agreement with58,18.

6 CONCLUDING REMARKS

In this paper we propose a formulation for simulating general flexoelectric domains composed by multiple materials in unfitted
meshes. Boundary conditions and interface conditions are imposed in weak form through a variational formulation following
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Nitsche’s method. The high-order continuity required by the resulting weak form is fulfilled by using an unfitted B-spline
approximation. Optimal convergence is demonstrated with numerical tests in 2D and 3D.
The proposed method is also particularized to the modelling of flexoelectricity problems in generalized periodic structures.

Periodicity boundaries are treated as mathematical interfaces and the variational formulation is used to weakly impose gener-
alized periodicity conditions. The formulation is tested on a geometrically periodic structure under applied macroscopic strain.
The electromechanical response of the generalized periodic unit cell under generalized periodicity conditions is shown to be
representative of the bulk response of large geometrically periodic structures. Three examples of periodic structures are shown
to illustrate the applicability and efficiency of the proposed formulation to analyze and design flexoelectric metamaterials.
Although we focus here mainly on flexoelectricity with strain gradient elasticity, the formulation is readily extensible to other

high-order problems. The reduction to the computation of one unit cell of a periodic structure makes this method really useful
for computational homogenization.
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APPENDIX

A MATERIAL TENSORS

In the following appendix, the material tensors are defined, as in Codony et al.8. They are described component-wise (non-zero
components) and d is the number of dimensions of the physical space.
We use an isotropic elasticity tensor defined in terms of the Young modulus E and Poisson ratio � as

ℂiiii = CL, i = 1,… , d;
ℂiijj = CT , i, j = 1,… , d ∶ i ≠ j;

ℂijij = ℂijji = CS , i, j = 1,… , d ∶ i ≠ j, (A1)
where the parameters CL, CS and CT are

CL ∶=
E (1 − �)

(1 + �)(1 − 2�)
, CT ∶=

E�
(1 + �)(1 − 2�)

, CS ∶=
E

2(1 + �)
(A2)

We use a sixth-order tensor to describe strain gradient elasticity. We consider an isotropic version of the general model in
Mindlin et al.59 that is described in Atlan et al.60. The strain gradient tensor depends on the Young modulusE, the Poisson ratio
� and the internal length scale l as

ℎiikiik = l2CL, i, k = 1,… , d;
ℎiikjjk = l2CT , i, j, k = 1,… , d ∶ i ≠ j;

ℎijkijk = ℎijkjik = l2CS , i, j, k = 1,… , d ∶ i ≠ j (A3)
where the parameters CL, CS and CT are defined in Eq. (A2).
We use an second-order tensor to describe isotropic dielectricity �, which depends on a parameter as

�ii = �, i = 1,… , d. (A4)
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Piezoelectricity is represented by the third-order tensor e, where tetragonal symmetry is considered, which has a principal
direction. It involves longitudinal, transversal and shear couplings represented by the parameters eL, eT and eS , respectively.
For a material with principal direction x1, the piezoelectric tensor e<x1> is

e<x1>111 = eL;
e<x1>1jj = eT , j = 2,… , d;

e<x1>j1j = e<x1>jj1 = eS , j = 2,… , d. (A5)
The piezoelectric tensor e oriented in an arbitrary direction d is obtained by rotating e<x1>. Flexoelectricity is represented by
the fourth-order tensor � where cubic symmetry is considered. It leads to a tensor involving longitudinal, transversal and shear
couplings represented by the parameters �L, �T and �S , respectively. The components of the flexoelectric tensor �<x> of a
material oriented in the Cartesian axes are the following:

�<x>iiii = �L, i = 1,… , d;
�<x>ijji = �T , i, j = 1,… , d ∶ i ≠ j;

�<x>iijj = �<x>ijij = �S , i, j = 1,… , d ∶ i ≠ j. (A6)
The flexoelectric tensor � oriented in an arbitrary orthonormal basis is obtained by rotating �<x>.

B SPECIFIC INTERFACE CONDITION FOR SYNTHETIC SOLUTION

In the following appendix the specific interface conditions for sections 5.1 and 5.2 are detailed. The synthetic solution for section
5.1 is

ux = sin(2�x), uy = sin(2�y), � = sin(2�x) + sin(2�y). (B7)
The body force and free charges are

q =
[

4�2�
]

sin(2�x) −
[

4�2(eT − �)
]

sin(2�y) −
[

8�3�L
]

cos(2�x) −
[

8�3�L
]

cos(2�y),
bx =

[

CL(16l�4 + 4�2)
]

sin(2�x) −
[

8�3�L
]

cos(2�x),
by =

[

4�2eS
]

sin(2�x) +
[

16�4l2CL + CL + eL
]

sin(2�y)) −
[

8�3�L
]

cos(2�y), (B8)
and the traction, double traction, electric charge density and edge forces are
tx =

[

− 4�n1(�Ln21 + �Sn
2
2 − 2�L)

]

sin(2�x) +
[

4�2n31(�S + �T )
]

sin(2�y)
+
[

− 8�3CLl2n31 + 16�
3CLl

2n1 + 4�CLn1 + 2�n2eS
]

cos(2�x)
+
[

8�3n31l
2CT + 2�n1CT + 2�n1eT

]

cos(2�y),
ty =

[

4�2n32(�S + �T )
]

sin(2�x) −
[

4�n2(�Ln22 + �Sn
2
1 − 2�L)

]

sin(2�y)
+
[

8�3n32l
2CT + 2�n2CT + 2�n2eT

]

cos(2�x)
+
[

− 8�3CLl2n32 + 16�
3CLl

2n2 + 4�CLn2 + 2�n1eS
]

cos(2�y),
rx =

[

− 4�2l2n21CL
]

sin(2�x) −
[

4�2l2CT n1n2
]

sin(2�y) +
[

2��Sn22 + 2��Ln
2
1
]

cos(2�x) +
[

2�(�S + �T )n1n2
]

cos(2�y),
ry =

[

− 4�2l2CT n1n2
]

sin(2�x) −
[

4�2l2n22CL
]

sin(2�y) +
[

2�(�S + �T )n1n2
]

cos(2�x) +
[

2��Sn21 + 2��Ln
2
2
]

cos(2�y),
w =

[

4�2�Ln1
]

sin(2�x) −
[

2�n2
]

sin(2�y) −
[

2�(eLn2 − �n1)
]

cos(2�x) −
[

2�n2(eT − �)
]

cos(2�y),
jx = −

[

4�2l2CL(mL1 n
L
1 + m

R
1 n

R
1 )
]

sin(2�x) −
[

4�2l2CT (mL1 n
L
2 + m

R
1 n

R
2 )
]

sin(2�y)
+
[

2�(mL1 n
L
1 �L + m

R
1 n

R
1 �L + �S(m

L
2 n

L
2 + m

R
2 n

R
2 ))

]

cos(2�x)
+
[

2�(mL1 n
L
1 �T + m

R
1 n

R
2 �T + �S(m

L
2 n

L
1 + m

R
2 n

R
1 ))

]

cos(2�y),
jy =

[

− 4�2l2CT (mL2 n
L
1 + m

R
2 n

R
1 )
]

sin(2�x) −
[

4�2l2CL(mL2 n
L
2 + m

R
2 n

R
2 )
]

sin(2�y)
+
[

2�(mL2 n
L
2 �T + m

R
2 n

R
1 �T + �S(m

L
1 n

L
2 + m

R
1 n

R
2 ))

]

cos(2�x)
+
[

2�(mL2 n
L
2 �L + m

R
2 n

R
2 �L + �S(m

L
1 n

L
1 + m

R
1 n

R
1 ))

]

cos(2�y), (B9)
where n = (n1, n2)T
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The synthetic solution for section 5.2 is
ux = sin(0.1x), uy = cos(0.1y), uz = 0.5 cos(0.1y) + sin(0.1z), � = 3 sin(0.1x) − 4 sin(0.1y) + 7 sin(0.1z). (B10)

The body force and free charges are
q =

[

0.03�
]

cos(0.1x) +
[

0.001�L
]

sin(0.1y) +
[

0.07� − 0.01eL
]

sin(0.1z)
−
[

0.001�L
]

cos(0.1x) +
[

− 0.04� − 0.005eS
]

cos(0.1y) −
[

0.001�L
]

cos(0.1z),
bx =

[

(0.01 + 0.0001l2)CL
]

sin(0.1x) −
[

0.003�L
]

cos(0.1x),
by =

[

(0.01 + 0.0001l2)CL
]

cos(0.1y) −
[

0.004�L
]

sin(0.1y),
bz =

[

0.03eS
]

sin(0.1x) +
[

0.07eL + 0.01CL + 0.0001l2CL
]

sin(0.1z)
+
[

(0.005 + 0.00005l2)CS − 0.04eS
]

cos(0.1y) −
[

0.007�L
]

cos(0.1z). (B11)
The traction, double traction, electric charge density and edge forces are
tx =

[

− 0.05�Ln31 + ((−0.03n
2
2 − 0.03n

2
3)�S + 0.06�L)n1)

]

sin(0.1x)
+
[

(−0.1 + (0.001n22 − 0.001)l
2)CT n1

]

sin(0.1y)
+
[

((0.07 − 0.07n23)�S − 0.07n
2
3�T + 0.07�T )n1

]

sin(0.1z)
+
[

− 0.001CLl2n31 + (0.002l
2CL + 0.1CL)n1 + 0.3eSn3

]

cos(0.1x)
+
[

(−0.04�S + 0.04n22�T + 0.04n
2
2�S − 0.04�T )n1

]

cos(0.1y)
+
[

((0.1 + (−0.001n23 + 0.001)l
2)CT + 0.7eT )n1

]

cos(0.1z),
ty =

[

(0.03�T + 0.03�S − 0.03n21�T − 0.03�Sn
2
1)n2

]

sin(0.1x)
+
[

0.001CLl2n32 + 0.0005l
2CSn

2
2n3 + (−0.002l

2CL − 0.1CL)n2 + (0.4eS − 0.05CS − 0.0005l2CS)n3
]

sin(0.1y)
+
[

((−0.07�T − 0.07�S)n23 + 0.07�T + 0.07�S)n2
]

sin(0.1z)
+
[

((0.001 − 0.001n21)CTl
2 + 0.1CT )n2

]

cos(0.1x)
+
[

0.04�Ln32 + (−0.08�L + 0.04�Sn
2
1 + 0.04�Sn

2
3)n2

]

cos(0.1y)
+
[

(0.1CT − 0.001CT n23l
2 + 0.001CTl2 + 0.7eT )n2

]

cos(0.1z),
tz =

[

((0.03 − 0.03n21)�S + 0.03�T − 0.03n
2
1�T )n3

]

sin(0.1x)
+
[

(0.001n22l
2CT − 0.001CTl2 − 0.1CT )n3 + 0.0005CSl2n32 + (−0.001l

2CS − 0.05CS + 0.4eS)n2
]

sin(0.1y)
+
[

− 0.07�Ln33 + (−0.07n
2
2�S − 0.07�Sn

2
1 + 0.14�L)n3

]

sin(0.1z)
+
[

((0.001 − 0.001n21)CTl
2 + 0.1CT )n3 + 0.3eSn1

]

cos(0.1x)
+
[

((0.04�T + 0.04�S)n22 − 0.04�S − 0.04�T )n3
]

cos(0.1y)
+
[

− 0.001CLl2n33 + (0.002l
2CL + 0.1CL + 0.7eL)n3

]

cos(0.1z),
rx =

[

− 0.01n21l
2CL

]

sin(0.1x) +
[

(0.4�T n2 + 0.4n2�S)n1
]

sin(0.1y) −
[

0.01n1n3l2CT
]

sin(0.1z)
+
[

0.3n21�L + (0.3n
2
2 + 0.3n

2
3)�S

]

cos(0.1x) −
[

0.01n1n2l2CT
]

cos(0.1y) +
[

(0.7n3�T − 0.7�Sn3)n1
]

cos(0.1z),
ry =

[

− 0.01n1n2l2CT
]

sin(0.1x) +
[

0.4�Sn21 + 0.4�Ln
2
2 + 0.4�Sn

2
3
]

sin(0.1y) −
[

0.01n2n3l2CT
]

sin(0.1z)
+
[

(0.3�Sn1 + 0.3n1�T )n2
]

cos(0.1x) +
[

− 0.01n22l
2CL − 0.005n2n3l2CS

]

cos(0.1y) +
[

(0.7�T + 0.7�S)n2n3
]

cos(0.1z),
rz =

[

− 0.01n1n3l2CT
]

sin(0.1x) +
[

(0.4�T + 0.4�S)n2n3
]

sin(0.1y) −
[

0.01n23l
2CL

]

sin(0.1z)
+
[

(0.3�Sn1 + 0.3�T n1)n3
]

cos(0.1x) +
[

− 0.005n22l
2CS − 0.01n2n3l2CT

]

cos(0, 1y)
+
[

0.7�Sn21 + 0.7n
2
2�S + 0.7n

2
3�L

]

cos(0.1z),
w =

[

0.01n1�L
]

sin(0.1x) +
[

0.4n2� + 0.05eSn2 + 0.1eT n3
]

sin(0.1y) +
[

0.01n3�L
]

sin(0.1z)
+
[

0.3n1� − 0.1eT n3
]

cos(0.1x) +
[

0.01�Ln2 + 0.005�Sn3
]

cos(0.1y) +
[

(0.7� − 0.1eL)n3
]

cos(0.1z),
(B12)
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jx =
[

− 0.01CLl2mL1 n
L
1 − 0.01CLl

2mR1 n
R
1
]

sin(0.1x)
+
[

(0.4mL2 n
L
1 + 0.4m

R
2 n

R
1 )�S + 0.4m

L
1 n

L
2 �T + 0.4m

R
1 n

R
2 �T

]

sin(0.1y)
+
[

− 0.01CTl2mL1 n
L
3 − 0.01CTl

2mR1 n
R
3
]

sin(0.1z)
+
[

(0.3mL2 n
L
2 + 0.3m

R
2 n

R
2 + 0.3m

L
3 n

L
3 + 0.3m

R
3 n

R
3 )�S + 0.3m

L
1 n

L
1 �L + 0.3m

R
1 n

R
1 �L

]

cos(0.1x)
+
[

− 0.01CTl2mL1 n
L
2 − 0.01CTl

2mR1 n
R
2
]

cos(0.1y)
+
[

(0.7mL3 n
L
1 + 0.7m

R
3 n

R
1 )�S + 0.7m

L
1 n

L
3 �T + 0.7m

R
1 n

R
3 �T

]

cos(0.1z),
jy =

[

(−0.01CTmL2 n
L
1 − 0.01CTm

R
2 n

R
1 )l

2] sin(0.1x)
+
[

(0.4mL1 n
L
1 + 0.4m

R
1 n

R
1 + 0.4m

L
3 n

L
3 + 0.4m

R
3 n

R
3 )�S + 0.4m

L
2 n

L
2 �L + 0.4m

R
2 n

R
2 �L

]

sin(0.1y)
+
[

(−0.01CTmL2 n
L
3 − 0.01CTm

R
2 n

R
3 )l

2] sin(0.1z)
+
[

(0.3mL1 n
L
2 + 0.3m

R
1 n

R
2 )�S + 0.3m

L
2 n

L
1 �T + 0.3m

R
2 n

R
1 �T

]

cos(0.1x)
+
[

(−0.01CLmL2 n
L
2 − 0.01CLm

R
2 n

R
2 − 0.005CSm

L
3 n

L
2 − 0.005CSm

R
3 n

R
2 )l

2] cos(0.1y)
+
[

(0.7mL3 n
L
2 + 0.7m

R
3 n

R
2 )�S + 0.7m

L
2 n

L
3 �T + 0.7m

R
2 n

R
3 �T

]

cos(0.1z),
jz =

[

(−0.01CTmL3 n
L
1 − 0.01CTm

R
3 n

R
1 )l

2] sin(0.1x)
+
[

(0.4mL2 n
L
3 + 0.4m

R
2 n

R
3 )�S + 0.4m

L
3 n

L
2 �T + 0.4m

R
3 n

R
2 �T

]

sin(0.1y)
+
[

(−0.01CLmL3 n
L
3 − 0.01CLm

R
3 n

R
3 )l

2] sin(0.1z)
+
[

(0.3mL1 n
L
3 + 0.3m

R
1 n

R
3 )�S + 0.3m

L
3 n

L
1 �T + 0.3m

R
3 n

R
1 �T

]

cos(0.1x)
+
[

(−0.005CSmL2 n
L
2 − 0.005CSm

R
2 n

R
2 − 0.01CTm

L
3 n

L
2 − 0.01CTm

R
3 n

R
2 )l

2] cos(0.1y)
+
[

(0.7mL1 n
L
1 + 0.7m

R
1 n

R
1 + 0.7m

L
2 n

L
2 + 0.7m

R
2 n

R
2 )�S + 0.7m

L
3 n

L
3 �L + 0.7m

R
3 n

R
3 �L

]

cos(0.1z), (B13)
where n = (n1, n2, n3)T .
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