
DEFS - Data Exchange with Free Sample

Protocol

RAFAEL GENÉS-DURÁN, UPC

JUAN HERNÁNDEZ-SERRANO, UPC
OSCAR ESPARZA, UPC

MARTA BELLÉS-MUÑOZ, UPF

JOSÉ L. MUÑOZ-TAPIA, UPC

15 June 2021

Abstract

Distrust between data providers and data consumers is one of the main
obstacles hampering digital-data commerce to take off. Data providers
want to get paid for what they offer, while data consumers want to know
exactly what they are paying for before actually paying for it. In this
article, we present a protocol that overcomes this obstacle by building
trust based on two main ideas. First, a probabilistic verification protocol,
where some random samples of the real dataset are shown to buyers in
order to allow them to make an assessment before committing any pay-
ment; and second, a guaranteed, protected payment process enforced with
smart contracts on a public blockchain, that guarantees the payment of
the data if and only if the data provided meets the agreed terms, and that
refunds honest players otherwise.

Keywords: Blockchain, Marketplace, Privacy, Fairness, Conflict resolution,
Non-repudiation, Probabilistic verification.

1 Introduction

The use of data has increasingly become a crucial factor in the success of busi-
nesses. Research has shown that proper use of big data techniques helps to
identify new insights, optimize operating processes and make better and faster
decisions [1]. In this context, ecosystems have grown to fulfill the data needs
of diverse actors, such as data suppliers, data custodians or data aggregators.
As a result, businesses not only collect and analyse the data they generate, but
increasingly rely on third party data to enhance its business value. The ne-
cessity of exchanging data between different parties gives rise to an ecosystem

1

that has an inherent regulatory complexity and a need for privacy. In general,
making proper data agreements is not easy, specially the task of valuing data
and convincing customers of their value without giving them away [2]. The
creation of marketplaces addresses many of these problems. Allowing providers
and consumers to deal with common interests in a platform where both parties
can meet each other and trade information solves the integration problem of
connecting consumers and providers.

In this article, we focus on the problem of convincing consumers of data
value, which can be seen as a form of lack of trust towards data providers.
Traditionally, this problem could not be solved without previously establish-
ing certain confidence between parties. This fact represents an entry barrier
to new providers in the market, hurting competence and thus, reducing utility
for consumers. Achieving the exchange of virtual products between many par-
ties while minimizing risks is the main goal of virtual commerce. In order to
exchange value safely, it is essential to ensure that consumers get the product
they pay for and that providers get paid. These two things are often carried
out without any strict protocols and guaranteed just by existing trust. Typi-
cally, counterparties that know each other from previous experience or that are
aligned with future interests, are confident that no intent to scam will be made
by the other party, since confidence is often more beneficial than gains from
fraud.

Nonetheless, when stronger assurance than that is needed, it is a common
practice to use a trusted third-party (TTP) to whom all parties trust to guar-
antee that the process is carried out correctly by all individuals involved. TTPs
solve the crucial aspect of minimizing risks, but ensuring its viability entails an
extra cost for all parties. Moreover, centralizing interactions between businesses
via the TTP generates a single point of failure that could produce critical delays
and denial of services. Distributed Ledger Technologies (DLTs) can be seen as a
paradigm shift when it comes to the need of TTPs. Using DLTs, all participants
in the network can maintain a set of synchronized data (who owns what) with-
out the need for a central authority (TTP) guaranteeing integrity, fairness and
data availability. In addition, recent studies have shown that replacing TTPs
by DLTs represents an important optimization of time and overall costs [3].

In this article we present DEFS, a protocol that addresses the lack-of-trust
problem between providers and consumers in a data trade. Our protocol pre-
serves the security, privacy and fairness standards that marketplaces should
guarantee, and it also includes the capability of checking some sample portions
of the dataset before committing to purchase to enhance the trust of the con-
sumers in the data value.

The article is organized the following way: In Section 2, we give an overview
of the technologies used in our protocol. Section 3 contains the state of the art
about decentralized data marketplaces. In Section 4, we explain our protocol.
First, we give a general overview and afterwards, we provide a detailed descrip-
tion of each step of the protocol. In the following section, Section 5, we present
a security analysis and finally, we conclude in Section 6.

2

2 Background

2.1 Distributed Ledger Technologies

The main technology to build a public ledger is a blockchain network. In a
blockchain network users can run a blockchain node to send their transactions
or use some available node that allows them to do so. Then, in a distributed way,
the blockchain network can create a unique sequence of ordered transactions.
In more detail, the network creates a chain of blocks following a consensus
algorithm to order transactions [4]. A block contains several transactions, and
an important property of these systems is that, once the consensus algorithm
definitively accepts a block, all nodes get to know this block and it becomes
impossible to manipulate or delete it [5].

In a blockchain network, users can own one or more accounts. Accounts are
identified via a public identifier (usually derived from a random public key using
a hash function). New blockchain accounts can be created by simply generating
a pair of asymmetric keys and deriving the account identifier from the public
key. In general, account identifiers are not directly linked with any user data,
so they can be considered pseudo-anonymous identifiers. Transactions carry the
source account identifier and a destination account identifier, and they are all
digitally signed using the private key of the source account. All the nodes that
form the blockchain network see the same state (also known as world state) that
results from executing all the transactions in order.

2.2 Smart Contracts

Some blockchains not only allow executing regular transactions that modify the
cryptocurrency balances on the ledger but also have the capability of deploying
and executing public and auditable programs called smart contracts. Smart
contracts have their own state and in their code we can define the business
logic we want to process transactions. Once a smart contract is deployed in the
blockchain network, its code is replicated on every node, and consequently, these
programs have the same availability and integrity as regular transactions. The
Ethereum [6] mainnet is a good candidate to implement our proposal because
it is a public blockchain, capable of running smart contracts, and it is the plat-
form of choice for many developers for implementing Decentralized Applications
(DApps).

2.3 Merkle Hash Trees

A Merkle Hash Tree (MHT) is an authenticated data structure where every leaf
node of the tree contains the cryptographic hash of a data block and every non
leaf node contains the concatenated hashes of its child nodes [7]. MHTs allow
to link a set of data to a unique hash value, the Merkle hash tree Root (MR),
allowing efficient and secure verification of consistency and content of large sets
of data.

3

Figure 1 contains an example of a MHT with 8 leaves. To show that a certain
value is stored in a leaf of the MHT, one can create a Merkle Proof (MP), which
consists of a list of the additional nodes required to compute the root of the
tree. For instance, a MP showing that h3 is stored in the MHT from Figure 2
would consist of the nodes

MP (h3) = {h2, h01, h4567, h01234567}.

Note that with h3 and the first three nodes of this list anyone can compute the
root of the tree. If the root matches h01234567, then the proof is valid proof of
membership for h3 in the tree.

Figure 1: MHT of 8 leafs.

Figure 2: The MP of h3 is the set {h01234567, h4567, h01, h2}, which contains
the nodes needed to compute the MR of the tree.

The security of a MP reduces to the collision resistance of the underlying
hash function [8]. For this reason, we assume the hash function H used to build

4

MHTs is cryptographically secure. That is, that the probability of finding a
preimage or a hash collision is negligible [9].

3 State of the Art

Traditional data marketplaces build trust by requiring identifying information to
the different stakeholders. This information and the process to get it is typically
known as Know Your Customer (KYC). The belief is that KYC constitutes an
entry barrier to fraudsters, since the KYC data would help victims to recur
to law enforcement if tangible fraud is committed. However, marketplaces with
KYC lead to regulatory complexity and are, in general, difficult to operate with.
This fact hinders the growth of digital-data trading and can make stakeholders
feel that their privacy is violated. In addition, law execution is slow and in
some cases might be even useless. For the previous reasons, there have been
attempts in the research community to design new approaches to mitigate these
limitations with technology and not regulations. In this context, decentralized
marketplaces have arisen as a solution to enhance security, sovereignty and trust
in data exchanges [10–12].

One interesting initiative is GAIA-X [13], which is an European project
created to develop the foundations for a federated open-data infrastructure con-
necting both classical architectures with decentralized infrastructures in order
to build a transparent ecosystem for the end users taking advantage of the
decentralized benefits.

One of the main technologies that is fostering data marketplaces is the In-
ternet of Things (IoT), which generates huge amounts of data from sensors
and devices. The increasing necessity of monetizing these data is also pushing
research. In literature, we can find several works that propose decentralized
marketplaces for IoT using distributed ledger technologies to enhance the data
exchanges with transparency, trust and integrity [14–16]. Among others, decen-
tralized marketplaces are being implemented in new disruptive scenarios such
as artificial intelligence [17], smart cities [18, 19], and connected cars [20]. In
fact, the value of data is becoming more important to the business interactions,
which is reflected in the new technologies and their necessity to generate this
new era of decentralized marketplaces.

A remarkable example of a decentralized data trading solution is presented
in [21]. As in our protocol, the data on sale are not stored on the blockchain
but in some external (and possibly distributed) storage platform. Similar to our
protocol, the proposed solution symmetrically encrypts data on sale and uses a
MHT of cryptograms to register the associated trades on the blockchain. How-
ever, the solution proposed not only requires to generate symmetric cryptograms
but also the need of asymmetrically sign each of these cryptograms. Addition-
ally, authors propose to use Plaintext Checkable Encryption (PCE) [22] to check
on-chain that cryptograms have been correctly encrypted. In our protocol, we
avoid using asymmetric encryption, which is much slower than symmetric en-
cryption. In DEFS, we achieve a faster and easier solution by providing struc-

5

ture to symmetric keys and generating a MHT with these keys to allow solving
disputes with regards to the data encryption. In addition, [21] considers three
roles: data buyers, data sellers, and miners. The main problem of involving
directly miners in the implementation of the solution is that then, the mining
software needs to be modified, which is, in general, not a trivial thing to do.
Mining software is extremely subtle, since any error in an implementation can
lead to a lack of consensus in the network. In our protocol, we also consider the
roles of data buyers and data sellers but the role of miners is abstracted, and
we use the API provided by smart contracts which is a much easier and safer
way of implementing the logic of data trades in the blockchain.

Another remarkable implementation of a decentralized data trading solution
is presented in [23], where the authors present SDTE, a secure blockchain-based
data trading ecosystem. As our protocol, SDTE tries to mitigate the existence
of dishonest parties in data exchanges. However, SDTE focuses on an scenario
in which the buyer does not need to have access to a complete dataset but it
only needs the findings from the data analysis. For this case, SDTE proposes
a data processing-as-a-service, where the buyer is paying for the analysis of the
seller’s dataset. SDTE is build using an Intel’s SGX-based secure execution
environment to protect the data processing, the source data and the analysis
results. As we will show in the following section, DEFS is not designed as a data
processing-as-a-service but as a data exchange-as-a-service. In the latter, the
seller wants to buy the complete dataset not computed data. For this scenario,
DEFS provides a probabilistic verification protocol and a conflict resolution
protocol that is guaranteed and supported by a smart contract.

4 Data Exchange Protocol

In this section we introduce DEFS, a protocol that addresses the problem of
data trading between a provider and potential consumers using a smart contract
deployed in the blockchain as a broker. To mitigate gender issues when referring
to a single provider and a single consumer, we will assume the provider is a
woman and the consumer a man.

As we explained before, the use of DLTs can replace the role of TTPs in
payment processes. When using DLTs, participants in the network can maintain
synchronized data and share payment information without the need of a central
authority, guaranteeing this way the integrity, fairness and availability of the
data. In this manner, DEFS makes use of a smart contract to preserve the
security and privacy standards that marketplaces should guarantee.

Another gap to cover in this data trading scenario is generating trust be-
tween data consumers and data providers. Here it comes the novelty of DEFS:
our proposed data exchange protocol is designed with the capability of checking
random samples from the dataset, so that consumers are able to infer if the com-
plete dataset is worth to be paid for, enhancing the trust from the consumer’s
side. On the other side, the smart contract acts as a broker during the payment
procedure, ensuring providers that they will receive the payment for the data

6

they exchanged.

4.1 Protocol Overview

First, we give a general overview of DEFS, and in Section 4.3, we describe in
greater detail all the steps the entities involved (consumer, provider and smart
contract) should follow. We assume that, before starting the protocol, a data
provider advertises her data to the public using off-blockchain means, such as a
data marketplace. Then, a consumer interested in a particular dataset contacts
the provider, who starts the DEFS protocol to perform the data exchange and
payment. To prevent potential extensive leaks of the data, it is important that
the DEFS protocol is executed independently per each individual consumer.
DEFS consists of three different phases:

1. Protocol preparation: in this initial phase, the provider prepares not
only the data to be exchanged, but also all the parameters and crypto-
graphic material necessary to demonstrate that the data exchange is secure
and private. More specifically, the provider:

• Divides the complete dataset in portions. These portions are chosen
randomly (not consecutively) from the dataset.

• Generates a seed to generate symmetric cryptographic keys.

• Uses these keys to create a MHT, whose root can be used to check
the correctness of this cryptographic material.

• Encrypts a random permutation of the data portions with the keys,
obtaining an encrypted and randomized version of the whole dataset.

• Creates another MHT using the hashes of these cryptograms as leaves,
whose root can be used to verify the correctness of the cryptograms
generated.

• Deploys a smart contract in the blockchain that includes among other
information, the roots of the previous trees.

If a consumer has interest in obtaining the dataset, the protocol continues
as follows:

• The consumer receives the whole dataset encrypted but it cannot be
decrypted at that very moment.

• The consumer queries the smart contract to obtain the root of the
tree of cryptograms and verifies that all the cryptograms belong to
this tree.

As previously stated, this is only a brief summary of the steps to follow
in this phase. A more exhaustive explanation of the protocol preparation
phase can be found in Section 4.3.3. At this point, all entities (consumer,
provider and smart contract) are ready to start the protocol execution

7

phase, in which the consumer will have access to the complete dataset
and will perform the payment.

2. Protocol execution: in this phase, the consumer gets some samples of
the dataset (for free) to evaluate if it is worth to pay for the whole set,
and if so, he will obtain the dataset and the provider will get paid:

• The consumer chooses at random some sample portions to be re-
vealed. Note that, the provider committed the shuffled encrypted
data at the very beginning of the protocol. Since the consumer re-
quests random samples, neither consumers nor providers have control
over the samples that will be revealed.

• The provider discloses the keys for those samples, so the consumer
can evaluate the quality of the dataset.

• If the consumer is not convinced, the protocol ends here. However,
he decides that it is worth paying for the dataset, he commits the
payment to the smart contract.

• The provider is asked to publish the seed (that will disclose all the
encryption keys) in the smart contract.

• If the consumer is able to properly decrypt the dataset, after a time-
out, the provider gets paid and the protocol ends.

• If the consumer is able to prove that there were problems with the
previous procedure, he starts a conflict resolution phase to obtain a
refund.

A more exhaustive explanation of the protocol execution phase can be
found in Section 4.3.4.

The following phase will only be needed in case the consumer considers
that he has been cheated on.

3. Conflict resolution*: this phase is optional and it only takes place if
the consumer detects a provider misbehaviour. The conflict resolution
can end with a refund if the consumer is able to demonstrate one of the
following misbehaviours:

• A key is not properly generated.

• A cryptogram does not have the proper format when decrypted.

A more exhaustive explanation can be found in Section 4.3.5.

8

4.2 Protocol Properties

The main properties provided by our protocol are the following ones:

1. Data samples evaluation. The consumer gets a free set of fair samples
of the data being traded before paying. The protocol ensures that neither
the consumer nor the provider are able to manipulate the chosen data or
select specific samples.

2. Payment guarantees. The provider gets paid if and only if the consumer
has access to the whole set of data. That is, the consumer can not get
the data without paying for it and the provider does not get paid without
disclosing the data.

3. The solution is cost-efficient. Due to high fees on public ledgers,
DEFS minimizes the amount of data stored on the ledger, which is also
independent of the quantity of data traded. This way, both the amount
of data stored and the number of interactions with the distributed ledger
is constant.

4. Non-repudiation. The DEFS protocol ensures that any party involved
in the exchange is not able to cancel and/or deny the data exchange once
an agreement is made.

5. Liveness. The different timeouts guarantee that the protocol reaches a
final state, even when one of the parties quits in advance.

4.3 The DEFS Protocol

In this section we describe the DEFS protocol. We establish the notation in
Section 4.3.2. The procedure before initiating the exchange is detailed in Sec-
tion 4.3.3. Then, the interactions to do a fair transaction are explained in
Section 4.3.4. The conflict resolution is detailed in Section 4.3.5. Finally, we
present the state diagram of the smart contract in Section 4.3.6.

4.3.1 Requirements

DEFS protocol assumes that measures to meet the following requirements are
already in place:

Secure off-chain channel between provider and consumer: It is assumed
that the off-chain channel between consumer and provider is end-to-end
protected. This requirement can be easily met by using the widely sup-
ported TLS protocol – e.g. with HTTPS. TLS only requires the server
to hold a valid certificate (and its complementary private key) in order to
create the secure channel. That is to say, consumers just need a valid TLS
client, which is implemented by default in most programming languages,
application frameworks, and/or web browsers.

9

Validation of data blocks’ format: It is assumed that consumers can verify
received data blocks according to a previously agreed schema. The process
that verifies that a data portion meets a predefined format is usually called
a validator. Validators are used by many technologies to check received
responses before processing them. In object-oriented programming, this
process is usually done by trying to parse the response as a given type of
object, which will throw an error if it does not. There are also specific
standards with well-known implementations, such as JSON-LD [24], that
help define and validate specific data schemas.

Identification system: The DEFS protocol releases random samples of the
dataset to potential consumers before they commit to pay for the entire
dataset. However, there is a risk of an attacker using multiple identities
to retrieve a representative portion of the dataset for free. In this context,
DEFS assumes that there are off-chain solutions run by the providers
which could effectively limit the amount of identities an attacker could
take. A known example is binding the identity to an e-mail account or
a mobile phone. The provider should decide the most suitable authenti-
cation method depending on the price of the traded data and the type
of consumers. For example, in some cases, authenticating with an e-mail
can be enough. In other scenarios, e-mail might not be enough because
it is not hard to generate multiple “identities” based on different e-mail
accounts. In the latter case, providers might require authenticating with
a mobile phone or even with both factors. In some specific cases, authen-
tication could involve more factors, such as physical key generators, smart
cards, etc.

4.3.2 Notation

The notation of the DEFS protocol is summarized in Table 1.

4.3.3 Protocol Preparation

In Figure 3 we detail the interactions between provider, consumer and smart
contract during the preparation phase of the DEFS protocol.

The steps of this phase are enumerated and explained just below:

1. Consumer→Provider: Request data.

The protocol starts with the consumer’s interest of a dataset. Through
the marketplace, the consumer requests some offered data to the provider.
Note that, each time the consumer desires a dataset, it requires a new
instance of the DEFS protocol.

2. Provider: Set id, p, n, v, collateral.

In this step the provider has to decide the main parameters associated to
the dataset. These parameters are: the identifier of the data exchange (id);
the price of the dataset (p); the number of portions in which the dataset

10

Notation Description
collateral Price that the provider must pay in order to ensure fairness.
C = {c0...cn−1} Encrypted data portions (cryptograms) such that ci = EKi

(di).
D = {d0...dn−1} Data portions.
e Index of an invalid cryptogram.
id Data-exchange identifier.
K = {k0...kn−1} Encryption keys for data portions, such that ki = hash(s + i).
MHT (C) Merkle hash tree of cryptograms.
MHT (K) Merkle hash tree of keys.
MRC Root of the Merkle hash tree of cryptograms.
MRK Root of the Merkle hash tree of keys.
MPCi Merkle proof of a cryptogram with index i.
MPKi Merkle proof of an encryption key with index i.
n Number of data portions.
p Price of the dataset.
R = {r0...rv−1} Set of indexes of the sample portions to be revealed.
s Seed. Random number for key generation.
v Number of sample portions to be revealed.

Table 1: Notation for the DEFS protocol.

will be divided (n); the number of sample portions to be revealed before
the payment (v); and finally, the associated amount of cryptocurrency to
ensure a complete refund in case a conflict resolution ends in favour of the
consumer (collateral).

How to choose v depends on the identification system in use (see Sec-
tion 4.3.1) and the resilience from providing for free a representative part
of the dataset to one or multiple attackers. The analysis in Section 5.3
shows how to properly choose v based on the size of the dataset and the
estimated amount of identities an attacker can hold.

3. Provider: Generate s.

The provider should generate the symmetric encryption keys in a way
that, in case of disclosing some of them, the consumer will not be able to
derive any other key (or the whole set). In addition, the consumer must
be able to easily derive all the keys when it agrees to buy the dataset. A
simple way to achieve these features is by generating an initially private
seed and use a cryptographic hash function to compute the whole set of
keys. For that reason, the seed s is calculated using a random number
generator.

4. Provider: Compute K=[k0...kn−1] — ki = h(s + i)i∀i ∈{0...n-1}.
The provider has to compute a set of n symmetric encryption keys (K=[k0..kn−1]).
In DEFS, we compute each key as the hash function, for instance Kec-

11

Provider
«Smart Contract»
Data Exchange Consumer

1. request (data)

2. get (id,p,n,v,collateral)

3. generate (s=rand())

4. compute (K=[k0 ... kn-1] |
ki = h(s+i))

5. generate (MHT(K), MRK)

6. generate (D=[d0 ... dn-1] |
di = concat(i, datai))

7. encrypt (C=[c0 ... cn-1] |
ci = E(ki , di))

8. generate (MHT(C), MRC)

9. deploy smart contract
(id, n, p, v, MRC, MRK, collateral)

10. (id,C)

11. request (id)

12. (n, p, v, MRC, MRK)

13. verify (MPCi |
∀i ∈{0...n-1})

Figure 3: Protocol preparation: sequence diagram.

cak256, of the sum of the seed s and the index i using the following
formula:

ki = hash(s + i))∀i ∈ {0...n− 1}.

This construction has the expected properties: without the seed s the
consumer cannot derive any other key, but once the seed is known, it is
easy for the consumer to calculate the whole sequence of keys.

5. Provider: Generate MHT (K).

The provider builds a binary MHT for the set of keys, which is going to be
used to generate the proof of the correctness of the keys used to encrypt
the data portions. We denote the MHT of encryption keys as MHT (K),
its root MRK and we refer to a membership proof of a leaf i as MPKi.

12

Figure 4 shows an example of a MHT (K). An exhaustive explanation
about the algorithm to construct these trees can be found in [25]. Here we
are just going to include a brief summary of this algorithm. To construct
the MHT (K), keys must be sorted by using their indexes, from 0 to
n − 1. The leaves of the tree are calculated by hashing the keys in their
respective position (hashed keys). The rest of the intermediate nodes in
upper levels are just calculated by hashing the concatenation of the lower
left and right nodes of the same branch. The tree construction continues
until reaching the top level, in which we obtain the MRK. Notice that
the MRK is the digest of the complete key set K, and it can be used
as a proof of its correctness. It is also important to remark that the
algorithm to construct this tree should be public, and all the entities have
to use the same algorithm, because any change in the keys or in the order
of constructing it will cause an avalanche effect that will make the root
MRK to be completely different.

6. Provider: Generate D=[d0...dn−1] — di = concat(i, datai)∀i ∈{0...n-1}.
Now, using the pre-existing data to be exchanged, the provider has to
build an array (D = [d0...dn−1]) with the portions where each di has the
corresponding data and the index as a header di = concat(i, datai). This
format is going to allow the smart contract to determine if the cryptograms
di have been properly generated. Also, it is important to note, that each
data portion datai contains a group of random registries, not consecutive
ones. To do that, registries are sorted using an external random genera-
tor tool provided by the marketplace, which should be open source and
auditable to avoid duplicated entries in the same portion. This will avoid
a potential attack where the consumer replicates several data requests to
obtain free samples without committing any payment. More details about
potential attacks can be found in Section 5.3.

7. Provider: Encrypt data. C=[c0...cn−1] — ci=Eki(di)∀i ∈{0...n-1}.
Now the provider is able to encrypt all the portions of the dataset di, and
obtain the set of cryptograms C.

8. Provider: Generate MHT (C).

The provider builds a binary MHT for the set of cryptograms, which is
going to be the proof of their correctness. We denote the MHT of cryp-
tograms as MHT (C), its root MRC and we refer to a membership proof
of a leaf i as MPCi. Figure 5 shows an example of an MHT (C). The
algorithm of the MHT (C) is the same as the MHT (K), but just chang-
ing the information used to construct it. Cryptograms are sorted by using
their indexes, from 0 to n − 1. The leaves of the tree are calculated by
hashing the cryptograms in their respective position (hashed encrypted
data). The rest of the intermediate nodes in upper levels are just calcu-
lated by hashing the concatenation of the lower left and right nodes of
the same branch. The tree construction continues until reaching the top

13

level, in which we obtain the Root of the Merkle hash tree of cryptograms
(MRC). Notice that the MRC is the digest of the complete set C, and
it can be used as a proof of its correctness.

9. Provider→SC: Deploy smart contract with parameters (id, n, p, v,
MRC, MRK, collateral).

Next, the provider deploys a smart contract in a ledger that stores the
data-exchange identifier (id), the total number of portions (n), the number
of sample portions to be revealed before the payment, the price (p) of the
dataset and the amount of cryptocurrency to assure the fairness from the
provider on the conflict resolution process (collateral), and the root of
both Merkle hash trees (MRC,MRK). These roots will allow proving
whether an element is or is not a cryptogram or a key and its position in
the MHT. Using this, the system is able to efficiently assure the consumer
that the provider cannot alter the committed dataset.

10. Provider→Consumer: Send id and the complete set of cryptograms
(C).

Finally, the provider delivers the smart contract address, the data-exchange
identifier id, and the complete set of cryptograms C to the consumer. Ob-
viously, it would be totally impractical to exchange that amount of data
using the ledger as storage. Instead, the exchange of cryptograms between
the provider and consumer is done off-blockchain. Notice also that, since
the seed will be public at the end of the process, all the off-blockchain
traffic must have been exchanged using a secure channel.

11. Consumer→SC: Request data from id.

At this point, the consumer has the id which is related to the deployed
smart contract and can read the values set by the provider in step 9.

12. SC→Consumer: Reply with values n, p, v, MRC, MRK.

Now, the consumer has the total number of portions (n), the number of
samples he can obtain before committing the payment (v), the price of the
data (p), the Merkle roots of both trees (MRC,MRK), and the complete
set of cryptograms (C).

13. Consumer: Compute MHT (C) and verify MRC.

As the consumer has the complete set of cryptograms C, he has the capa-
bility and responsibility to re-generate MHT (C) to verify that the root
MRC calculated is coherent with the one at the smart contract. If so,
the consumer knows that all cryptograms ci ∀i ∈{0...n-1} were properly
generated and match the MRC. The consumer is responsible for verifying
the MHT (C) at this very moment, and if he continues with the protocol
tacitly accepts the correctness of the generation of the cryptograms. This
means that, in case of a later conflict resolution, the consumer cannot
argue that the cryptograms were wrongly generated to get a refund.

14

Figure 4: Tree of keys MHT (K). In this example, MRK=H0123.

Figure 5: Tree of cryptograms MHT (C). In this example, MRC=H0123.

4.3.4 Protocol Execution

Once the protocol preparation phase is completed, the consumer requests the
provider to reveal some sample portions. If these samples convince the consumer
about the quality of the dataset, the consumer commits the payment. It is
important to note that, if this protocol execution phase ends as expected, the
protocol is completed, and there is no need to execute the conflict resolution
procedure.

Figure 6 details the interactions between provider, consumer and smart con-
tract during the execution phase of the DEFS protocol. The steps of this phase
are enumerated as:

1. Consumer: Generate R=[r0...rv−1] — ∀ri ∈{0...n− 1}.

15

> Timeout 1

> Timeout 2

Provider
«Smart Contract»
Data Exchange Consumer

1. generate
(R=[r0 ... rv-1]|ri ∈{0...n-1})

2. request (R)

3. (ki, MPKi | ∀i ∈R)

4. verify (MPKi | ∀i ∈R)

5. decrypt and verify
(di = E-1(ki , ci) | ∀i ∈R)

6. tx: pay(p)

7. subscribe : seedReleased

alt [seed not released]

[seed released]

8. tx: refund(p)

9. tx: releaseSeed(seed)

10. event: seedReleased

11. tx: withdraw()

> Timeout 1

> Timeout 2

Figure 6: Protocol execution: sequence diagram.

The consumer selects at random the set of indexes R, which correspond to
the sample portions to be revealed (for free). We consider that the provider
should not decide on its own which data samples will be revealed, because
she could decide to use a biased (not fair) set of samples. The consumer
is also not able to choose on purpose particular registries, because pre-
viously the dataset was randomly sorted by the provider. Therefore, the
consumer will choose at random an array of v values within the range 0
to n-1, corresponding to the indexes of the sample portions. As none of
the entities control which registries are going to be disclosed, fairness in
this process is assured.

2. Consumer→Provider: Request R which contains v indexes to be re-
vealed.

The consumer informs the provider of the v indexes of the sample portions
to be revealed (R).

3. Provider→Consumer: Return ki and MPKi ∀i∈{R}.
The provider discloses the keys associated to the v indexes, and the Merkle
proofs to verify them in the MHT (K). This process is done totally off-
blockchain. Note that, allowing the consumer to choose v sample portions

16

with no cost could result in attacks, as the consumer could try to get
a large amount of free data by repeating the process of getting small
samples. We do not consider this attack specially dangerous because the
consumer cannot choose particular registries of the dataset. In addition,
the provider can decide how many times she allows getting a sample set
without making a final deal, and she can use the marketplace to blacklist
abusive consumers. Nonetheless, a comprehensive analysis of potential
attacks is made in Section 5.3. As shown in the analysis, the provider
should carefully choose v and n to minimize the impact of such attacks.

4. Consumer: Verify each proof. MPKi ∀i ∈{R}.
The customer should verify that the proofs sent by the provider match
the MRK. To provide a partial example, consider the case of Figure 4, in
which n = 4. Let us consider the case of one single sample portion v = 1,
and the consumer has chosen index 3 to disclose. In this case, k3 is sent
to the consumer, and the proofs of the correctness are MPK3=(h01,h2).
The consumer should verify if the following expression matches:

hash(concat(h01, hash(concat(h2, hash(k3))))) == MRK

Notice that the expression is just calculating the root of MHT (K), and
comparing it with the MRK value published in the smart contract. If the
values match, the key can be considered valid as it matches the proofs, and
the consumer will continue with the protocol. If not, that means that the
provider did not send the proper proofs and that the key is not verifiable.
In this case, the consumer can abandon the protocol.

5. Consumer: Decrypt and verify each data sample.

Now that the consumer is sure that the v keys are valid, he can decrypt
the sample portions with the received keys:

di = E−1
ki

(ci)∀i ∈ R

Once this is done, the consumer has to verify that the resulting data
portions have the expected format:

di = concat(i, datai)

If not, the data samples are invalid, and the consumer can end the protocol
at this moment. If the format is valid, the consumer will evaluate the data
samples datai ∀i ∈ R. If the samples do not convince the consumer to pay
for the whole dataset, the protocol ends here, but if they do, he will
continue with the following steps.

17

6. Consumer→SC: Transaction committing payment.

If the samples convinced the consumer, he will send a transaction to the
smart contract with the payment (p) to buy the dataset.

7. Consumer→SC: Subscription to seed revelation.

The consumer also subscribes to the ’seedReleased’ event, expecting to
receive a notification when the provider publishes the seed to allow the
complete data decryption.

8. (Timeout 1) Consumer→SC: Seed not released and refund to the con-
sumer.

If the provider has not released the seed in time, a first timeout (Timeout1)
will expire and after that, the smart contract will allow the consumer to
refund the payment. This is an unhappy path in the protocol.

9. Provider→SC: Transaction publishing the seed.

The provider discloses the seed value s via a blockchain transaction before
Timeout1 expires. This is the happy path of the protocol.

10. SC→Consumer: Event to consumer about seed revelation.

As result of executing the transaction, the smart contract generates an
event and the consumer will be notified that the seed value s has been
revealed. The smart contract stops the Timeout 1 (due to seed revela-
tion), and starts the Timeout 2 allowing the consumer to start a conflict
resolution. Once that the consumer has the seed, it can derive all the keys:

ki = hash(s + i)∀i ∈ {0..(n− 1)}

Now, the consumer has all the cryptographic material to decrypt the cryp-
tograms C, but previously it has to verify that all the keys are correct.
The procedure is similar to the one performed in Step 4, but with the
difference that now the consumer has the capacity of re-generating the
whole MHT (K). If the consumer detects that (one or several) keys were
not properly generated, he can start the optional phase of conflict reso-
lution to obtain a refund. On the contrary, if all the keys were properly
generated, the consumer can decrypt the previously received cryptograms
C and access to the whole set of dataset:

di = E−1
ki

(ci)∀i ∈ {0..(n− 1)}

The consumer has also to verify that the di have the proper format, in
the same manner that was done in Step 5, but for all the cryptograms.
If the consumer detects that one or more cryptograms were not properly
generated (they do not have the proper format), he can start the optional

18

phase of conflict resolution to obtain a refund1. On the contrary, if all the
cryptograms (once decrypted) have the proper format, the consumer has
the complete dataset and can consider the protocol ended.

11. (Timeout 2) Provider→SC: Withdraw and protocol end.

If Timeout 2 expires, it means that the consumer considers that the keys
were properly generated, and cryptograms have the proper format (be-
cause if not, it would have previously started the conflict resolution). In
this case, the provider can send a transaction to the smart contract to
withdraw the payment, and end the protocol.

4.3.5 Conflict Resolution

The final aspect that our protocol has to solve is the conflict resolution, which
may appear if the consumer detects a misbehaviour. As previously stated,
the consumer must start the conflict resolution phase before the expiration of
Timeout 2 in the protocol execution phase. If Timeout 2 expires, the smart
contract considers the protocol ended and the provider can receive the payment.

We will consider two cases that are relevant and can end with a refund if the
consumer is able to demonstrate the misbehaviour: (1) A key is not properly
generated; and (2) A decryption of a cryptogram does not have the proper
format. There are also a couple of extra cases for dispute that will not end
with a refund: (3) Cryptograms not properly generated; and (4) Dataset of bad
quality.

1. Key not properly generated: When consumers obtain the seed s in
Step 9 of the protocol execution phase, they are able to generate the whole
set of keys K. The way to check if the set of keys is compliant or not is
by generating the whole set K with the formula ki = hash(s + i), and
also re-constructing the whole MHT (K) and verify that the root calcu-
lated matches the one published in the smart contract. At this moment,
a consumer can know that the registered MRK is incorrect. However, in
general, he cannot detect which keys were not properly generated. Al-
though not possible in general, there are particular cases in which the
consumer can do the detection of wrong keys. The detection is possible
when the wrong keys are either one of the keys used for encrypting the
samples, or a sibling key of them. In both cases, the consumer has got an
MPK from the provider that matches the registered MRK. Then, if one
of those keys does not follow the agreed format hash(i+s), the consumer
can send the hash of the wrong key, its MPK, and the index in conflict
to prove to the smart contract that the provider committed an incorrect
MRK. For simplicity, we will assume that the consumer detects one single
not-compliant key ke, but this discussion is completely valid in case of

1Notice that, at this point, the consumer cannot argue that the cryptograms do not match
the MHT (C), because this should have been verified in the protocol preparation phase.

19

having multiple not compliant keys2. The following are the steps that the
consumer, smart contract and provider have to follow during this conflict
resolution about a specific key ke. The sequence diagram associated is
detailed in Figure 7:

Provider
«Smart Contract»
Data Exchange Consumer

1. tx: conflictK(e, h(ke),MPKe)

2. verify (h(ke) with MPKe)

3. verify (h(ke) != h(h(s+e)))

alt [provider
cheating]

[provider did not
cheat]

4. refund

5. withdraw

Figure 7: Protocol resolution-k: sequence diagram.

(a) Consumer→SC: tx: conflictK(e, h(ke),MPKe)

This conflict resolution is performed with a transaction from the con-
sumer to the smart contract calling the function ’conflictK’. In this
transaction, the consumer sends as parameters the problematic in-
dex (e), the hash of the invalid key (h(ke)), and its associated proof
(MPKe).

(b) SC: Verify h(ke) with the MPKe

The smart contract verifies that h(ke) and MPKe match the MRK
from the Step 9.

(c) SC: Verify h(ke) != h(h(s + e))

The smart contract verifies whether h(ke) matches h(h(s+e)) or not.
If there is a match, it means that the provider did not cheat, while if
the check does not match, then it means that the provider cheated.

(d) SC: Provider cheating

If the provider cheated, the smart contract refunds the consumer. In
this case, the consumer will receive the price of the data (p) and also
the cost of the transactions he sent. The cost of the transactions is
taken from the provider’s collateral.

2DEFS do not distinguish between one or several not compliant keys, in case of demon-
strating that one single key is not properly generated, all the payment will be refunded to the
consumer.

20

(e) SC: Provider not cheating

If the provider did not cheat, the smart contract automatically trans-
fers the payment (p) to the provider.

2. Cryptograms do not have the proper format:

This situation happens when there is a conflict in D, and so one or several
data portions do not have the proper format. Just remark that there was
a previous checking of this type in Step 5 of the protocol execution phase,
in which v of the possible sample portions were tested to see if they had
the proper format:

di = concat(i, datai)

However, not all the data portions were tested (only v of n). For simplicity,
we will assume that there is one single not-compliant portion de, but this
discussion is completely valid in case of having multiple not compliant
portions.

This scenario implies that the decryption of a ce results in a de that does
not correspond with the expected format de=concat(e,datae). Specifically,
the decrypted cryptogram does not start with the expected index (e). In
this case, the consumer can start the conflict resolution about the format
of data. Figure 8 shows the sequence diagram about this scenario.

Provider
«Smart Contract»
Data Exchange Consumer

1. tx: conflictD(e, ce, MPCe)

2. verify (ce with MPCe)

3. compute (ke=hash(s+e))

4. decrypt (de = E-1
ke(ce))

5. verify (de)

alt [provider
cheating]

6. refund

[provider did not cheat]

7. withdraw

Figure 8: Protocol resolution-d: sequence diagram.

21

(a) tx: conflictD:

The conflict resolution about a ce starts with a transaction from the
consumer to the smart contract. To do that, the transaction calls
the smart contract function ’conflictD’ and sends as parameters the
problematic index (e), the cryptogram involved ce, and the proofs
of the validity of this particular cryptogram. The intention of the
consumer is to show that the cryptogram ce was properly generated
by the provider, but that after decrypting it with ke, the resulting
data portion has a bad format.

In this case, the protocol can be resolved in a single transaction from
the consumer, because the smart contract can compute ke. Note
that there is no need for an extra timeout, because the provider does
not need to send anything, all the proofs are available for the smart
contract to compute.

(b) Verify MPCe:

The smart contract has to verify that the cryptogram provided by
the consumer is valid, that is to say, that calculating MRC for the
problematic cryptogram ce from MPCe is coherent with the root
stored in the smart contract. To provide some piece of example,
consider the case of Figure 5, in which n = 4. Let us consider the
case of demonstrating that c3 is properly generated. In this case,
the proofs of the correctness of c3 are MPK3=(h01,h2). The smart
contract should verify if this expression matches:

hash(concat(h01, hash(concat(h2, hash(c3))))) == MRC

Notice that the expression is just calculating the root of MHT (C),
and comparing it with the MRC value published in the smart con-
tract. If these values match, the cryptogram can be considered valid
as it matches the proofs, and the protocol continues with the fol-
lowing step. If not, the consumer did not send the proper proofs
to demonstrate that the provider was cheating, that automatically
receives the withdrawal of the money as shown in Step 2g.

(c) Compute ke:

Now, the smart contract knows that the cryptogram ce is valid. Next,
the smart contract computes the associated key ke = hash(s + e).
Remember that s was published by means of the transaction sent in
Step 9 of the protocol execution phase.

(d) Decrypt ce:

The smart contract has the valid key and the valid cryptogram, so it
is able to decrypt and obtain de=E−1

ke
(ce).

(e) Verify de format:

The smart contract can verify if the data portion de has the correct
format.

22

(f) refund:

If the data portion de does not start with the index e, the provider was
cheating, so the transaction ends transferring the costs (p+collateral)
to the consumer.

(g) withdraw:

If the data portion de start with the index e, the provider was not
cheating, and the transaction ends transferring the payment (p) and
the collateral to the provider.

3. Cryptograms not properly generated

This case happens when there is a conflict in C, and one or several cryp-
tograms do not match the root MRC of the tree MHT (C). As previ-
ously stated, the consumer receives all the cryptograms C in Step 10 of
the protocol preparation, and verifies the correctness of the whole set of
cryptograms in Step 13. The consumer was responsible for verifying the
MHT (C) at this very moment, and if any problem during this checking
was found just abort the protocol before committing any payment. But
if the consumer continued with the protocol, he was tacitly accepting the
correctness of the generation of the cryptograms and the corresponding
MHT (C) and MRC. In case the consumer detects a cryptogram (ce)
not matching the MRC at the protocol execution or protocol resolution
phases, he cannot try to get a refund, and for this reason the conflict
resolution is not considering that case.

4. Dataset of bad quality:

This case happens when the consumer obtains a valid data portion de
(with the correct format de = concat(e, datae), but the content has not
the quality expected by the consumer. In this particular case, the DEFS
protocol is not able to consider the quality of the dataset3, so this case
is out of its scope of the discussion and no refund can be asked from the
consumer’s side. The v sample portions that were disclosed in Step 5 of
the protocol execution (for free, prior to any payment) try to alleviate this
possibility. In any case, the marketplace can consider to have a reputation
tool to value data providers and try to avoid this kind of behaviours.

4.3.6 State Diagram

The protocol operation and the interactions between the different stakeholders
and the smart contract are detailed in Figure 9.

3Probably, assessing the goodness of a dataset requires human interaction and cannot be
made automatically by the smart contract.

23

timeOut2
elapsed

tx Consumer SC:→
 conflictK(·)
 conflictD(·)

tx Provider SC:→
 releaseSeed(·)

tx Provider SC:→
 constructor(·)

contractCreated

consumer
HasPaid

seedReleasedconsumer
RefundAllowed

provider
WithdrawalAllowed

tx Consumer SC:→
 pay(·)

provider
cheated?true false

tx Provider SC:→
 cancelContract(·)

timeOut1
elapsed

tx Consumer SC:→
 refund(·) tx Provider SC:→

 withdraw(·)

Figure 9: State diagram of the smart contract.

5 Security Analysis

DEFS enables providers and consumers to make commercial agreements via
a smart contract. Essentially, the smart contract ensures that, if a consumer
agrees to purchase a dataset based on the provided random samples, then the
provider receives the right amount of money and the consumer gets access to
the whole dataset.

5.1 Protection Against Channel Attacks

Channel attacks are those in which the attacker purposely tries to eavesdrop
information from the channel. In our proposal two different channels must be
considered: the on-chain channel with the interactions with the smart contract,
and the off-chain channel between the data provider and the data consumer.

It is assumed in this work that the off-chain channel is protected from over-

24

hearing and tampering, for instance by forcing it to use transport layer security
(TLS). As a result, no information would be exposed in this channel. However,
the on-chain channel is public and all the interactions with the smart contract
will be available for an attacker, namely the data-exchange identifier id, num-
ber of data portions n, the price of the dataset p, and the roots of the MHT of
cryptograms MRC and keys MRK.

The only valuable information an attacker could obtain is the size n and
price p of the data set. The data-exchange identifier id is just an identifier.
The MRC and MRK leak no information regarding the keys and cryptograms,
since the cryptographic hash function used to create the MHT is assumed to be
preimage- and collision-resistant.

5.2 Consumer’s Protection Against Provider Attacks

In the first part of the protocol, the consumer gets access to a set of free random
samples from the dataset. The provider commits the structure of cryptograms
and keys structure (when committing the MRC and MRK to the smart con-
tract). Then, the consumer can request a specific set of random samples before
making an assessment with regard to buying the dataset or not.

A malicious provider would like to send a selected set of samples that make
the dataset more appealing. However, the provider has no control over the se-
lected samples and changing them on the fly would require the fake sample keys
and cryptograms to collude with the committed ones. This attack is assumed
to be unfeasible since the probability of finding collisions in the cryptographic
hash function used to generate the Merkle trees is assumed to be negligible.

Providers would also hold datasets with both good and bad data, meaning
bad fake or even duplicated data. However, since providers cannot choose the
requested free samples, bad samples could be detected during the evaluation of
the free samples. In any case, it is up to the consumer to decide if the amount
of samples is representative enough to get a fair idea of the content.

Finally, another potential attack would be that of a provider releasing wrong
keys, wrong cryptograms or incorrectly encrypted data after getting paid. In
these cases, the consumer can make use of the different conflict resolutions ex-
plained in section 4.3.5 and get a refund. Recall that, in the case of incorrect
cryptograms, it is important that the consumer validates all cryptograms be-
fore doing the payment, since otherwise he will not have access to the conflict
resolution.

5.3 Provider’s Protection Against Consumer Attacks

Every time a consumer engages in the protocol, he receives v samples of the
product. A dishonest consumer with several identities could accumulate free
samples and try to get the whole dataset without paying for it or, equivalently,
collaborate with other consumers to get as many data samples as possible for
free. As we show hereunder, the provider can adjust the amount of samples
disclosed to the consumer to reduce the probability of these attacks succeeding.

25

Before analysing a general setup, let us consider a simple example in which
the provider has 2 different samples and every consumer gets 1 for free. That
is, n = 2 and v = 1. Let us compute what is the probability that a malicious
consumer with several identities gets both samples. With one interaction the
consumer gets only half of the product for free. If the consumer creates a new
identity, he would get a new sample, but he would only get the whole product
if the new sample is different from the previous one. So, we need to compute
what is the probability that a new sample is different from the previous one.
We can think of this scenario as tossing two coins and finding the probability
that we get a head (H) and a tail (T), which is 1/2. So, with two identities, a
dishonest consumer would have 50% chances to get the whole set of samples. If
the consumer creates a new identity and gets a third sample, the probability of
him getting the two different samples goes up to 75%, which is the probability
that in a sequence of 3 coin tosses, at least one is a head and another a tail.

In general, assume that a consumer gets v random samples and is able to
interact with the provider with k different identities, obtaining a total of m =
k× v free random samples. Like before, the probability that among m samples,
n of them are different, is the same as the probability of having n different
elements in a sequence of m elements. If m < n, then clearly this probability is
0. If m = n, then there are n! different sequences with the n elements. So, the
probability of getting a sequence of this kind is n!/nn. When n is large enough,
this probability is very low. To get an idea, we show in Table 2 what happens
if the provider discloses 10% of samples of his dataset and the consumer creates
10 identities to get a total of n samples. Note that, even for small values of n,
the probability that a consumer gets the whole dataset is very low.

n v k = m/v Probability of getting the whole dataset
10 1 10 3.62× 10−4

100 10 10 9.33× 10−43

1000 100 10 4.02× 10−433

10.000 1.000 10 ∼ 10−4340

100.000 10.000 10 ∼ 10−43426

Table 2: Probability that the consumer gets the whole dataset if the provider
makes 10 interactions with the consumer and discloses 10% of his dataset every
time.

To increase the odds of getting all samples, a dishonest consumer would
create more identities so that m ≥ n. In this scenario, we need to calculate what
is the probability that, among the nm possible outcomes, the consumer gets n
distinct data samples. If we go back to the case n = 2, v = 1, and a consumer
with three identities (k = 3), we should count how many sequences of three
elements contain 2 distinct elements. Or equivalently, what is the probability
that after three coin tosses, we get at least one head and one tail. We can think
of this problem as counting the different ways in which we can assign the three

26

positions of the sequence {1, 2, 3} to a head or a tail, so that at least one is
a head and another a tail. This counting is precisely the number of ways in
which we can partition the set {1, 2, 3} into two non-empty sets: {1, 2} ∪ {3},
{1, 3} ∪ {2} and {2, 3} ∪ {1}. If we assign the first set to heads and the second
set to tails, the partitions lead to the three sequences HHT,HTH, TTH, and if
we do the opposite assignment, we get TTH, THT,HHT . As a result, we get a
total of 3× 2 = 6 different sequences containing at least one head and one tail,
which divided by the 23 = 8 possibilities, results in the 75% chances we claimed
before.

In general, the number of sequences of m elements that contain n distinct
elements, is equivalent to the number of ways we can partition the m positions
of the sequence into n non-empty sets multiplied by the number of permutations
of n distinct elements. This count is precisely the Stirling number of the second
kind S(m,n) multiplied by the number of permutations of n elements [26, Ch.
3]:

S(m,n)n! =

n∑
j=0

(
n

j

)
(−1)n−jjm.

Hence, the probability that a consumer with k = m/v identities gets the whole
data set is

S(m,n)n!

nm
=

1

nm

n∑
j=0

(
n

j

)
(−1)n−jjm.

In Figure 10 we illustrate the probability that a consumer with k identities that
gets 10% of free samples with each identity, obtains the whole data set of n
registries. Note that a provider with a data set of 10,000 registries disclosing a
random 10% of it for free should almost only be worried about consumers that
are able to create more than 50 different identities. The off-chain identification
system (see Section 4.3.1) should be chosen to minimize or even impede the
likelihood of an attacker getting more than k identities. Typically, n is several
orders of magnitude higher than 10,000, so the amount of fake identities needed
to perform this attack would make it infeasible in practice.

Even if the probability of getting the whole dataset is low enough, the
provider may also want to avoid disclosing a large valuable set of data. We
analyse what is the probability of obtaining a meaningful amount of samples
for different values of m. The same way as we argued before, the probability
of getting x different samples is the number of combinations of sequences of m
elements with x distinct elements, but now multiplied by the combinations of x
elements that we can make with n distinct elements. That is,

P (get exactly x distinct samples) =
S(m,x)x!

nm

(
n

x

)
=

1

nm

(
n

x

) x∑
j=0

(
x

j

)
(−1)x−jjm.

Therefore, the probability of getting x distinct elements in a sequence of m

27

10 20 30 40 50 60 70

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Consumer with k identities

P
ro

ba
bi

lit
y

of
 g

et
tin

g
al

l s
am

pl
es

n = 10, r = 1
n = 100, r = 10
n = 1000, r = 100
n = 10000, r = 1000

Figure 10: Probability that a consumer with k different identities that gets a
10% of samples with each identity obtains all n different data samples.

elements is

P (get at least x distinct samples) = 1−
x−1∑
i=0

P (get exactly i distinct samples)

= 1−
x−1∑
i=0

(
n

i

)
S(m, i)i!

nm
.

To illustrate the tendency of these probabilities, we have depicted in Figure
11 the probability of obtaining at least 5, 10, 15, . . . , 100 different samples from
a dataset with 100 different samples. The different lines correspond to the
probabilities using a different number of identities.

As we can see, there is a significant drop in the probability of obtaining
at least a 65% of samples with 10 identities, but with more identities, this
inflection point moves up to 80% (with k = 15), 90% (with k = 20), and 95%
(with k = 25). So, even though the probability of obtaining the whole 100% of
the data set is very close to 0, with 25 identities it is possible to obtain at least
the 90% of it with probability 0.84.

As we have shown, the provider can mitigate the risks of identity-replication
by strongly authenticating consumers through the off-chain channel (see Sec-
tion 4.3.1), and by adjusting the amount of free samples disclosed to the con-
sumer.

28

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x samples

P
ro

ba
bi

lit
y

of
 g

et
tin

g
x

of
 s

am
pl

es

k = 10
k = 15
k = 20
k = 25

Figure 11: In a database of n = 100 portions and v = 10 free samples per
consumer, this graphic depicts the probability of getting a different portion of
samples for free with several identities: k = 10 (large red circles), k = 15 (blue
squares), k = 20 (small orange circles), k = 25 (purple lines).

In general, the provider should find a trade-off between securing the dataset
while at the same time letting the consumer get a fair idea its content.

Lastly, we would like to remark that the provider is protected against a
consumer that does not pay after acknowledging the protocol, since the salt is
revealed only once the payment is in the smart contract, and the cryptograms
are useless without it.

6 Conclusions

Distrust is one of the main obstacles to implement exchanges between data
providers and data consumers in a decentralized way. In this article, we present a
protocol that allows a consumer to probabilistically obtain and check a subset of
a dataset on sale from a provider before committing the payment. The protocol
is executed using a smart contract deployed in a public distributed ledger. Once
the consumer accepts to buy the dataset, the payment process, the agreed terms,
and the possible refunds are managed and enforced by the smart contract. To
expose the dataset, our protocol splits the data in portions and encrypts and
stores each portion off-chain. Then, we create a MHT for the cryptograms
and another MHT for the encryption keys. The encryption keys are related
to each other using a cryptographic hash function in a way that allows us to

29

implement a cost-efficient conflict resolution mechanism. The security analysis
of our protocol shows that consumers and providers are economically protected
and that the provider can reduce the risks of identity-replication attacks by
adjusting the amount of free samples disclosed to the consumer.

Acknowledgements

The architecture presented in this paper is supported and developed in the con-
text of the i3-MARKET project [?]. The i3-MARKET project is an active Eu-
ropean H2020 project focused on developing solutions for building an European
data market economy by enhancing current marketplace platforms with innova-
tive technologies (call H2020-ICT-2019-2 with grant agreement number 871754).
This work is also supported by the TCO-RISEBLOCK (PID2019-110224RB-
I00), MINECO/FEDER funded project ARPASAT TEC2015-70197-R and by
the Generalitat de Catalunya grant 2014-SGR-1504.

References

[1] V. Gopalkrishnan, D. Steier, H. Lewis, and J. Guszcza, “Big data, big
business: Bridging the gap,” in Proceedings of the 1st International
Workshop on Big Data, Streams and Heterogeneous Source Mining:
Algorithms, Systems, Programming Models and Applications, ser. BigMine
’12. New York, NY, USA: Association for Computing Machinery, 2012,
p. 7–11. [Online]. Available: https://doi.org/10.1145/2351316.2351318

[2] L. D. W. Thomas and A. Leiponen, “Big data commercialization,” IEEE
Engineering Management Review, vol. 44, no. 2, pp. 74–90, Second 2016.

[3] N. Ravi and N. R. Sunitha, “Introduction of blockchain to mitigate the
trusted third party auditing for cloud security: An overview,” in 2017
2nd International Conference On Emerging Computation and Information
Technologies (ICECIT), 2017, pp. 1–6.

[4] I. Bashir, Mastering blockchain. Packt Publishing Ltd, 2017.

[5] D. Yaga, P. Mell, N. Roby, and K. Scarfone, “Blockchain technol-
ogy overview,” https://arxiv.org/abs/1906.11078, 2019, [Accessed 10-May-
2021].

[6] G. Wood et al., “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project White Paper, vol. 151, no. 2014, pp. 1–32, 2014.

[7] F. Haider, “Compact sparse merkle trees,” Cryptology ePrint Archive, Re-
port 2018/955, 2018, https://eprint.iacr.org/2018/955.

30

https://doi.org/10.1145/2351316.2351318
https://arxiv.org/abs/1906.11078
https://eprint.iacr.org/2018/955

[8] R. Dahlberg, T. Pulls, and R. Peeters, “Efficient sparse merkle trees:
Caching strategies and secure (non-)membership proofs,” Cryptology
ePrint Archive, Report 2016/683, 2016, https://eprint.iacr.org/2016/683.

[9] S. Al-Kuwari, J. H. Davenport, and R. J. Bradford, “Cryptographic hash
functions: Recent design trends and security notions,” Cryptology ePrint
Archive, Report 2011/565, 2011, https://eprint.iacr.org/2011/565.

[10] H. Yoo and N. Ko, “Blockchain based data marketplace system,” in 2020
International Conference on Information and Communication Technology
Convergence (ICTC), 2020, pp. 1255–1257.

[11] L. Mikkelsen, K. Mortensen, H. Rasmussen, H.-P. Schwefel, and T. Madsen,
“Realization and evaluation of marketplace functionalities using ethereum
blockchain,” in 2018 International Conference on Internet of Things, Em-
bedded Systems and Communications (IINTEC), 2018, pp. 47–52.

[12] V. P. Ranganthan, R. Dantu, A. Paul, P. Mears, and K. Morozov, “A de-
centralized marketplace application on the ethereum blockchain,” in 2018
IEEE 4th International Conference on Collaboration and Internet Comput-
ing (CIC), 2018, pp. 90–97.

[13] A. Braud, G. Fromentoux, B. Radier, and O. Le Grand, “The road to
european digital sovereignty with gaia-x and idsa,” IEEE Network, vol. 35,
no. 2, pp. 4–5, 2021.

[14] K. R. Özyilmaz, M. Doğan, and A. Yurdakul, “Idmob: Iot data marketplace
on blockchain,” in 2018 Crypto Valley Conference on Blockchain Technol-
ogy (CVCBT), 2018, pp. 11–19.

[15] D.-D. Nguyen and M. I. Ali, “Enabling on-demand decentralized iot col-
lectability marketplace using blockchain and crowdsensing,” in 2019 Global
IoT Summit (GIoTS), 2019, pp. 1–6.

[16] P. Tzianos, G. Pipelidis, and N. Tsiamitros, “Hermes: An open and trans-
parent marketplace for iot sensor data over distributed ledgers,” in 2019
IEEE International Conference on Blockchain and Cryptocurrency (ICBC),
2019, pp. 167–170.

[17] V. Arya, S. Sen, and P. Kodeswaran, “Blockchain enabled trustless api mar-
ketplace,” in 2020 International Conference on COMmunication Systems
NETworkS (COMSNETS), 2020, pp. 731–735.

[18] S. Musso, G. Perboli, M. Rosano, and A. Manfredi, “A decentralized mar-
ketplace for m2m economy for smart cities,” in 2019 IEEE 28th Interna-
tional Conference on Enabling Technologies: Infrastructure for Collabora-
tive Enterprises (WETICE), 2019, pp. 27–30.

31

https://eprint.iacr.org/2016/683
https://eprint.iacr.org/2011/565

[19] G. S. Ramachandran, R. Radhakrishnan, and B. Krishnamachari, “To-
wards a decentralized data marketplace for smart cities,” in 2018 IEEE
International Smart Cities Conference (ISC2), 2018, pp. 1–8.

[20] B.-G. Jeong, T.-Y. Youn, N.-S. Jho, and S. U. Shin, “Blockchain-based data
sharing and trading model for the connected car,” Sensors, vol. 20, no. 11,
2020. [Online]. Available: https://www.mdpi.com/1424-8220/20/11/3141

[21] Y.-N. Li, X. Feng, J. Xie, H. Feng, Z. Guan, and Q. Wu,
“A decentralized and secure blockchain platform for open fair data
trading,” Concurrency and Computation: Practice and Experience,
vol. 32, no. 7, p. e5578, 2020, e5578 cpe.5578. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5578

[22] S. Ma, Y. Mu, and W. Susilo, “A generic scheme of plaintext-checkable
database encryption,” Information Sciences, vol. 429, pp. 88–101, 2018.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0020025517301640

[23] W. Dai, C. Dai, K.-K. R. Choo, C. Cui, D. Zou, and H. Jin, “Sdte: A
secure blockchain-based data trading ecosystem,” IEEE Transactions on
Information Forensics and Security, vol. 15, pp. 725–737, 2020.

[24] P. standardization initiativ, “Json for linking data,” https://json-ld.org/,
2021.

[25] J. Muñoz, J. Forne, and O. Esparza, “Certificate revocation system imple-
mentation based on the merkle hash tree,” IJIS, vol. 2, p. 110–124, 2004.

[26] T. Mansour and M. Schork, Commutation Relations, Normal Ordering, and
Stirling Numbers, ser. Discrete Mathematics and Its Applications. Chap-
man and Hall/CRC, 2015.

Rafael Genés-Durán is currently a PhD candidate

of the Information Security Group (ISG) doing research in distributed ledger
technologies and zero-knowledge proofs at Universitat Politècnica de Catalunya.
He holds a B.S. degree in Telecommunications Engineering (2017) and a Master
in Informatics Engineering (2019). Contact him at rafael.genes@upc.edu.

32

https://www.mdpi.com/1424-8220/20/11/3141
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.5578
https://www.sciencedirect.com/science/article/pii/S0020025517301640
https://www.sciencedirect.com/science/article/pii/S0020025517301640
https://json-ld.org/

Juan Hernández-Serrano is an associate profes-

sor of the Department of Network Engineering of the Universitat Politècnica de
Catalunya in Spain, and a researcher of the Information Security Group (ISG).
He holds an M.S. in Network Engineering (2002) and a Ph.D. in the field of
information security (2008). His research interests has been focused on different
aspects of networks security and privacy, including IoT, distributed ledgers, cog-
nitive radio networks, M2M, smart grids, eVoting and digital forensics. Contact
him at j.hernandez@upc.edu.

Oscar Esparza is working as associate professor

of the Department of Network Engineering of the Universitat Politècnica de
Catalunya. He holds an M.S. in Telecommunications Engineering (1999) and a
PhD in Security Engineering (2004). His expertise areas are related to network
security and applied cryptography. Since 2017 he leads the Information Security
Group (ISG) of the UPC. Contact him at oscar.esparza@upc.edu.

Marta Bellés-Muñoz received her B.S. degree in

Mathematics at Universitat Autonoma de Barcelona and continued her Master
studies at Aarhus University, where she focused on the study of elliptic curves

33

and isogeny-based cryptography. She is currently a PhD student doing research
on security and efficiency of arithmetic circuits for zero-knowledge proofs at
Universitat Pompeu Fabra in collaboration with Dusk Network. Contact her at
marta.belles@upf.edu.

Jose L. Muñoz-Tapia is a researcher of the Infor-

mation Security Group (ISG) and an associate professor of the Department of
Network Engineering of the Universitat Politècnica de Catalunya. He holds an
M.S. in Telecommunications Engineering (1999) and a PhD in Security Engi-
neering (2003). He has worked in applied cryptography, network security and
game theory models applied to networks and simulators. His research focus
has now tuned to distributed ledgers technologies, and he is the director of the
Master program in Blockchain technologies at UPC School. Contact him at
jose.luis.munoz@upc.edu.

34

	Introduction
	Background
	Distributed Ledger Technologies
	Smart Contracts
	Merkle Hash Trees

	State of the Art
	Data Exchange Protocol
	Protocol Overview
	Protocol Properties
	The DEFS Protocol
	Requirements
	Notation
	Protocol Preparation
	Protocol Execution
	Conflict Resolution
	State Diagram

	Security Analysis
	Protection Against Channel Attacks
	Consumer's Protection Against Provider Attacks
	Provider's Protection Against Consumer Attacks

	Conclusions

