
Malicious website detection through Deep
Learning algorithms

Norma Gutiérrez, Beatriz Otero, Eva Rodŕıguez, and Ramon Canal

Universitat Politècnica de Catalunya (UPC). Barcelona, Spain
{norma, botero, evar, rcanal}@ac.upc.edu

Abstract. Traditional methods that detect malicious websites, such as
blacklists, do not update frequently, and they cannot detect new attack-
ers. A system capable of detecting malicious activity using Deep Learning
(DL) has been proposed to address this need. Starting from a dataset
that contains both malevolent and benign websites, classification is done
by extracting, parsing, analysing, and preprocessing the data. Addition-
ally, the study proposes a Feed-Forward Neural Network (FFNN) to clas-
sify each sample. We evaluate different combinations of neurons in the
model and perform in-depth research of the best performing network.
The results show up to 99.88% of detection of malicious websites and
2.61% of false hits in the testing phase (i.e. malicious websites classified
as benign), and 1.026% in the validation phase.

Keywords: Network attacks· Deep learning · Feed Forward Neural Net-
work · Preprocessing.

1 Introduction

Web pages may contain numerous types of attacks that target web browsers vul-
nerabilities. Malicious web pages have become one of the most common security
threats, as stated in Abdulghani [1]. These attacks run malware in the target
system, intending to take control of it. This article aims to design a system that
blocks malicious website attacks by identifying possible malicious web pages.
Moreover, the work parts from existing URLs and extracts relevant information
from them. The big data treatment is later used to gather existing vulnerabili-
ties and malicious websites used in real environments. It creates a DL model to
detect new emerging websites even before they are listed in a blacklist database.
DL techniques enable us to model complex computational architectures, such as
websites features, to predict data representation.

A defensive solution is developed by implementing this mechanism, meaning
that malicious software cannot penetrate the private network (i.e. blocked by
a firewall). Overall, the results show high effectiveness when using only website
features. The main contributions of this work are the following:

– Creation of three different datasets (training, testing and validation) parting
from existing URLs and extracting data directly from the internet.

This version of the contribution has been accepted for publication, after peer review but is not the Version of
Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is
available online at: http://dx.doi.org/10.1007/978-3-030-95467-3_37 Use of this Accepted Version is subject to
the publisher's Accepted Manuscript terms of use http://www.spingernature.com/gp/open-research/policies/
accepted-manuscript-terms

2 N. Gutiérrez et al.

– Extract and preprocess raw website data differentiating the most important
attributes.

– Develop a DL NN that uses existing patterns in malicious web pages to
detect malicious websites in real environments.

The system is divided into two main parts: the dataset creation and training
of the model and the system’s validation and detection. Firstly, the training
and testing URLs are passed through feature extraction and labelling and are
preprocessed, as explained later in the thesis. Furthermore, once the datasets
are computed, an FFNN is created, and the data is passed to train and test the
model’s validity. The training process is fine tunned and repeated until a suitable
NN is found. On the other hand, the second block parts from a validation set
of URLs. Then, the same features as in the training and testing datasets are
extracted, and the model is used to predict the sample’s output. The actual
label is stored in the validation dataset and compared with the predicted values
to compute classification metrics. Lastly, the classification phase describes the
process that an inputted URL from a user would follow. First, the user enters the
URL, then the system extracts the necessary features and predicts the output
from the URL (benign or malicious).

The remainder of this paper is organized as follows. Section 2 describes the
related work. Section 3 and 4 illustrate the dataset and its preprocessing. Then,
Section 5 explains the used Neural Network, and Section 6 describes the ex-
periments and presents the results. We draw the main conclusions in Section
8.

2 Related work

Our proposal focuses on a non-simulated dataset where features from different
websites are extracted (malicious and benign). Furthermore, our data comprises
the URL and characteristics associated with it, such as the related continent and
its JavaScript content length. These features are simple to obtain and simpler
to treat than other attributes such as the HTTP or CSS content.

Chiba et al. [2] propose a system that can detect a malicious or benign web-
site by only analyzing the IP characteristics. They create a dataset extracting
campus traffic. The article preprocesses the data separating the address by bits
and applies two different Machine Learning algorithms (SVM and RBM). They
achieve a maximum of 90% accuracy. In contrast, our proposal uses DL tech-
niques, and the dataset does not use IP information. Instead, it uses the URL
and the JavaScript content length. Using more features enables us to make a
more precise model than the one proposed by Chiba et al.

Moreover, Xuan et al. [9] uses the URL features to extract dynamic be-
haviours and train them with two supervised ML algorithms (Support Vector
Machine and Random Forest). The differences with the presented system are
that they use far more URL features than we do, expanding the computational
needs of the network. Plus, they apply ML algorithms, whereas, in our system,

Malicious website detection through Deep Learning algorithms 3

DL techniques are applied. Finally, their performance is less than ours, having
a 3% less accuracy, 4% less precision, and 1% less recall.

Saxe et al. [5] use HTML, CSS and embedded JavaScript (JS) files; they
analyze the data and create a model. First, they pass the data through an SVM
and then through a DL model. The model detects up to 97% of malicious traffic
and can identify content not previously caught by the vendor community. Our
approach reduces the data analyzed while also achieving a higher detection rate
(i.e. instead of HTML, CSS and JS content, our proposal uses URL and IP
information and the JS length).

Uçar et al. [8] develop two DL models (CNN and LSTM) that add to a
blacklist malicious URLs. The models detect the type of data and classify it.
It achieves up to 98.86% accuracy in the CNN network. The main distinctions
between our approach and this paper are: (1) the type of Neural Network used.
They use a more complex Neural Network. Thus their proposal uses more re-
sources than our proposal. (2) their dataset only contains URL information,
whereas our data also contains the continent and the JS length.

Another similar approach is presented by Johnson et al. [3]. The article
presents the same problem as in this project; a binary classifier detecting if
the URL is malicious or benign. Nevertheless, it adds a second multi-class classi-
fication that detects the type of attack. Overall, the article adds a further step to
the classification to detect the type of attack but obtain a far more complicated
NN and 2% less accuracy than in our system.

Finally, Sahoo et al. [4] propose a survey that gives a structural understanding
of Malicious URL detection techniques using Machine Learning. The survey sepa-
rates two types of families when detecting Malicious URLs: Blacklisting/heuristic
approaches or Machine Learning techniques. The survey only talks about mathe-
matical Machine Learning algorithms that previous literature has implemented,
such as SVM, Logistic Regression, Decision Trees, and online learning. We ad-
vance the state-of-the-art presented in that survey by developing DL techniques
to classify previously unseen data.

Our final approach uses DL to train the NN since the quantity of data enabled
us to perform a model with outstanding performance. Furthermore, the chosen
model was an FFNN, which was chosen since it is the most common approach for
supervised learning with binary classification datasets. Also, an FFNN needs less
computation than the other DL approaches mentioned above. Consequently, the
resulting NN presents outstanding results. A comparison table with the presented
related works and this project can be found in Table 1.

3 Dataset

To create a DL model capable of distinguishing malicious websites, we modified
the existing dataset Visualisation of Malicious & Benign Web-pages Dataset
(VoMBWeb) [6] since the dataset was fitted to our solution but lacked consis-
tency. Thus, the system starts from a list of URLs captured from malign and
benign websites and extracts the necessary information to be later trained and
correctly classified. The features were extracted from each URL crawling the

4 N. Gutiérrez et al.

Table 1: Summary of the related works to malicious website detection using
ML/DL techniques

Publication
year

Work
reference

Dataset ML
or/and DL

Used
algorithm

Maximum
accuracy

2012 [2] From
blacklists

and campus
information

ML SVM and
RBM

85.7%

2018 [5] Own
compilation

ML and DL FFNN
and SVM

97.2%

2019 [8] ISCX-URL-
2016 data

DL LSTM
and CNN

98.86%
with CNN

2020 [9] Own
compilation

ML SVM and RF 99.7%
with RF

2020 [3] ISCX-URL-
2016 data

DL and ML Fast.ia,
Keras and
Random

Forest (RF)

97.55%
with RF

internet. The data is extracted from three separate categories: the IP, the URL
and the content. The primary group is the URL group, parsed and treated as
shown in Figure 1.

Fig. 1: Example of URL preprocessing

The first part of the URL is the protocol. The HTTPS feature is extracted;
in the example, we have a https value, so the value of the feature is 1. Sec-
ondly, the body is computed where two different features are extracted, its
length (url body len) and the Top Level Domain (tld). The third part of the
URL includes the arguments where they are quantified (url num args), and
their length (url digits len) is computed. Finally, to treat the URL globally,
the URL’s length (url len), the number of digits and symbols that it contains
(url digits length), and the number of letters (url letters len) are computed.

Malicious website detection through Deep Learning algorithms 5

The next group is the IP. Firstly the IP associated with the URL is extracted
(ip addr) as the continent where the IP address is located (continent). Since
more than 300 countries were initially defined in the dataset, the values were
grouped by continent. Furthermore, treating each country individually does not
give any additional information than by doing it by continent.

Once all the IP and URL features are extracted and treated, the website’s
content is withdrawn. The obtained content is the one located inside the JS code.
Furthermore, the content was filtered to remove spaces, code, and punctuation.
Once all was computed, the cleaned JS content was saved (content), such as its
length in KBytes (js len).

The final feature inserted in the dataset is the label, which has a binary
value, depending on if the website is malicious (1.0) or benign (0.0). Hence, the
created dataset has a total of 15 features.

Moreover, the dataset is divided into two parts, a training dataset (containing
1200000 samples) and a testing dataset (containing 350000 samples). In the
whole dataset, 27253 websites (values) are considered malicious, while 1172747
are considered benign, having far more benign websites than malign ones. In
the testing dataset, the same happens with 7828 malicious samples and 342172
benign samples. Hence the dataset is mainly represented by benign websites,
such as illustrated in Table 2.

Table 2: Samples and percentage of benign and malicious websites in the dataset

VoMBWeb Benign websites Malicious websites

Number of samples 1514919 35081

(%) 97.74% 2.26%

4 Preprocessing

Since the dataset comprises extracted data from a physical environment, the
preprocessing must be meticulously designed to extract the best information
from the given data. We analyzed each of the 15 features thoroughly and tested
it before deciding on a particular technique.

The dataset contains eight numerical features (entropy, url len, url body len,
url num args, url path len, url letters len, url digits len and js len), two bi-
nary features (https and label), and features that have categorical values or
require specific treatment (ip addr, url, continent, tld and content).

Firstly, the continent in which the web page is hosted is preprocessed (continent).
The parameter was converted to a one-hot encoding. A one-hot encoding con-
sists of passing the categorical feature into a table where each column represents
a different value; hence, we created a new feature per existing continent. The
column which continent corresponds to the sample will be marked as 1; other-
wise, the value is marked as 0. Thus, after the continent preprocessing, it had
six new binary features, one for each continent.

6 N. Gutiérrez et al.

Next, the Top Level Domain (TLD) preprocessing was performed. Since more
than 600 different values were computed, the preprocessing concentrated on the
.com domain. The .com domain constitutes a total of 60% of the final data.
Consequently, it acts as a suitable separator. Therefore, the feature was stored
whether the TLD is .com or not.

All URL, IP and content features were deleted since they are thoroughly rep-
resented in other features and do not give additional information. Furthermore,
the IP address was initially converted into a binary sequence, and the model was
trained with the parameter. However, the results showed less performance than
without this feature. Additionally, as each web page must be parsed differently,
and no clear and helpful patterns were found, the content feature was deleted
during the preprocessing. Moreover, all numerical values were normalized, and
the binary parameters passed through a binary one-hot encoding. The label was
transformed using a binary one-hot encoding with a 1 value if it is considered
malicious (bad) and 0 if the website is deemed to be benign (good). This process
is depicted in Figure 2.

Fig. 2: Preprocessing flowchart

All the preprocessing is applied to the training, testing and validation datasets.
The dataset has been divided into three sections:

– Training dataset with 1200000 samples

– Testing dataset with 350000 samples

– Validation dataset with 10000 samples

Having three distinct portions of datasets allowed to train the model with a
vast amount of data. Then by testing the model, we assured the performance
was the desired and that there was no over or underfitting. Once the model
was trained and ready, the model was exported and saved. Next, the project
validated the model by predicting the label of 10000 samples (containing 195
malicious samples). We then compared the obtained labels with the expected
ones and analyzed the outputs.

Malicious website detection through Deep Learning algorithms 7

5 Deep Learning application

Given the preprocessed dataset generated, we propose the implementation of a
Fully Connected Neural Network, specifically a Feed-Forward Neural Network
(FFNN) depicted in Figure 3.

Fig. 3: Feed-Forward Neural Network representation

The reason behind choosing an FFNN is due to the significant connection be-
tween parameters. Having fully connected layers enables the network to perform
complex relationships between parameters, thus improving the system’s detec-
tion capability. Therefore, we apply this NN to demonstrate the effectiveness of
the proposal.

An FFNN is described using several design parameters that conform a model
where the training data is introduced. Additionally, the model’s algorithm is
run for several iterations or epochs. To avoid under or overfitting and to achieve
good performance, the model parameters must be carefully chosen. Therefore,
the proposed architecture has an input layer, three hidden layers and an output
layer that uses the Sigmoid activation function. Each layer uses an activation
function and has several neurons. In the model, the hidden layers use a Rectified
Linear Unit (ReLU) activation function since they avoid saturation and do not
stop to shape the sample weights. The input layer has an input size of 17 features.
Furthermore, the first hidden layer has 64 neurons; the second layer contracts
the values to 32 neurons. Finally, the third hidden layer has 64 neurons.

The final parameters that define the Neural Network are the loss, optimizer
and epochs (or iterations). A Binary cross-entropy loss is used on the result-
ing vectors since it calculates the prediction error in a binary measure, just as
we need for our output. The optimizer aims to sculpt the model into a precise
form and to minimize the loss. We use Adam [7], which achieves good perfor-

8 N. Gutiérrez et al.

mance in few epochs. Finally, the number of epochs is set to 10, which is a good
compromise between stability and over-training.

6 Experiments and Results

The correct implementation of the preprocessing was tested through the anal-
ysis of the correlation between attributes (correlation matrix). In the sample’s
preprocessing, it is crucial that parameters can be easily distinguishable by the
network. Moreover, attributes are interconnected in the dataset. This intercon-
nection can be seen in the feature correlation matrices. Performing these experi-
ments, we can decide the optimal NN use, its parameters and identify non-useful
attributes.

Secondly, to implement the NN depicted in the previous section, we started
by implementing different combinations of FFNNs. The number of hidden layers
was decided according to the dataset characteristics. In total, the dataset had an
input of 17 attributes, meaning that the number of training samples considerably
exceeds the number of attributes. With that in mind and the attributes depen-
dency, we opted for medium-sized FFNN. Having less hidden layers allows the
model to have a minor abstraction of the features, and having a more significant
number of hidden layers allows the model to be over-complex. Additionally, to
decide the number of neurons of each hidden layer, we analyzed all the possible
combinations from 16 to 512 neurons (in powers of two), meaning that in total,

we run 56 different FFNN (CR6
3 = (6+3−1)!

3!(8−3)! = 56).

Furthermore, we analyzed the most frequently used metrics: accuracy, loss,
Area Under the Curve (AUC), and f-score for these networks. These metrics
allow us to have an extensive analysis of the network’s performance.

Firstly, the accuracy is defined as the True Positives (TP) plus the True
Negatives (TN) divided by the sum of TP, TN, False Positives (FP) and False
Negatives (FN). The formula is represented in Equation 1.

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Secondly, the defined loss is the binary cross-entropy loss which formula is
represented in Equation 2. Note that the y value represents the real output,
whereas the ŷ represents the output estimation.

Loss = −[y · log(ŷ) + (1 − y) · log(1 − ŷ)] (2)

Next, the f-score is defined as a mixture of the precision and recall formulas
to evaluate the combined performance. F-score is defined as in Equation 3.

F − Score = 2 · Precision ·Recall

Precision + Recall
(3)

Where the precision is defined in Equation 4, and the recall is defined in
Equation 5.

Malicious website detection through Deep Learning algorithms 9

Precision =
TP

TP + FP
(4) Recall =

TP

TP + FN
(5)

Finally, the AUC shows the performance of a classification model. It is defined
as the area that defines the ROC curve, which is the graphical representation
of the True Positive Rate (TPR) vs the False Positive Rate (FPR). The TPR is
defined as in Equation 6, and the FPR is defined as in Equation 7.

TPR =
TP

TP + FN
(6) FPR =

FP

FP + TN
(7)

The same metrics from the validation data was analyzed to extract further
conclusions.

In the experiments, we perform 20 iterations of the three best performing
FFNNs to ensure their stability. 20 iterations were chosen since it was crucial to
assure the network’s consistency. However, we did not want to over-charge the
cloud server with redundant calculations.

Furthermore, Python was the language used to execute the system, and Keras
from Tensorflow was used to create the DL blocking system. Moreover, the sys-
tem has been created using a MacBook Air computer with a Dual-Core Intel
Core i5 and 8 GB of RAM. The university’s cluster, Sert, was used (AMD EPYC
7101p at 2.80 GHz and 128 GB of RAM) to filter the data.

6.1 Preprocessing results

To test the data preprocessing and its relevance in the dataset, several experi-
ments were conducted. Firstly, we parted from the VoMBWeb dataset [6] since
it included some of the attributes we wanted to treat and generated in a non-
simulated environment. Considering that Keras from TensorFlow needs as an
input a tensor of NumPy arrays, the multi-class attributes were converted into
a one-hot encoding, the IP was binarized, the webpage content was deleted,
and all arguments were normalized. Once this preprocessing was performed, we
observed some concerns with the dataset structure.

This dataset’s main issue was that once performed the correlation matrix.
The resulting values were very dispersed between the different attributes. There,
it could be observed that the IP address did not give any additional informa-
tion since its correlation was nearly zero. Furthermore, treating each country
independently added more than 300 features and gave misguided directions to
the DL model. However, the main issue was that the dataset relied exclusively
on the JS obfuscated length, meaning that the FFNN only modelled its weights
regarding that feature. Hence, the dataset was modified to remove this depen-
dency and add some relevant features that enable the FFNN to train correctly.
The JS obfuscated length attribute was removed from the original dataset, the

10 N. Gutiérrez et al.

country feature was grouped into continents, and the TLD was treated by dis-
tinguishing only by .com or otherwise. With this modification, the homogeneity
in the features’ correlation increased.

Since the URL is the only input received from the user, we decided to extract
as many attributes as possible from the input. The main goal was to find the
balance between extracting trainable features and having unnecessary or mis-
guiding information inserted into the NN. The final decision was to include at
least one attribute from each URL subdivision (the URL, the protocol, the body,
the TLD, the arguments and the parameters) as seen in Figure 4.

Fig. 4: URL subdivisions

Additionally, we decided to add three more attributes that gave connections
between the URL attributes. Those features were the URL entropy, the URL
letters length and the URL letters and digits length.

Once all the preprocessing was done and transformed into numerical values,
we performed a final analysis of the dataset. First, to study the parameters’
dependence and relevance, a new correlation matrix was performed with all the
final preprocessed attributes. The correlation matrix can be seen in Figure 5.

If we look at the label column, we observe the most and least interconnected
parameters. The most correlated parameters are js len, https and who is, which
contain a correlation between 0.24 and 0.72, meaning that these parameters
are crucial for detecting malicious websites. The parameters, such as who is
and https, which have a negative correlation, indicate an inverse proportion
between the label and the selected parameter. All the remaining attributes have
at least some correlation with the matrix. They are highly correlated with other
parameters, which improves the FFNN since it is a type of NN that relies mainly
on feature interconnection and dependence.

Having performed this study, we believe that it is wise to use all the depicted
parameters for evaluation in the NN. Moreover, since the parameters are corre-
lated between them, and each column depends on other attributes, FFNNs are
the best fit.

6.2 Neural Network results

After preprocessing, we run the different combinations of the FFNNs. As com-
mented in the previous section, we conducted two sets of experiments in the
Neural Networks. The first set analyzed the performance of variations of several
neurons in each layer and the network’s depth. The second set consists of the
repeated execution of the three best performing FFNN and the performance
evaluation.

Malicious website detection through Deep Learning algorithms 11

Fig. 5: Preprocessed dataset parameter correlation matrix

To finalize the network topology, we had to decide the number of layers
the FFNN would have as the number of neurons in them. We conducted three
different FFNNs with a low count of neurons. The reason behind having fewer
neurons in each layer is that a higher neuron count adds extra complexity to the
FFNN. The number of layers is directly related to the number of attributes we
have (17 in total). Hence, we tried networks with 2, 3 and 4 layers. The FFNN
with two layers indicated low network complexity and a lack of resources to
be trained. The other two networks showed similar accuracy. Since having four
layers adds complexity and computation consumption to the network, it was
decided to perform the FFNN with three hidden layers. The results are shown
in Table 3.

Once the number of layers was determined, we conducted 56 different com-
binations of FFNNs to decide the best fit. When performed the FFNNs vari-
ations, we observed certain similarities between results. First, all the networks
achieved high performance in all metrics oscillating between 94.81% and 99.88%.
These results indicate that the election of an FFNN with the selected loss, op-
timizer, activation function and epochs is ideal. The best performing networks
have a minimum of 32 neurons in each layer and 64 or more neurons in -at

12 N. Gutiérrez et al.

Table 3: Performance of three different FFNNs with different number of layers

Neurons Loss Accuracy AUC F-score

16 - 8 0.31% 98.98% 99.95% 97.22%

16 - 8 - 16 0.30% 99.88% 99.93% 97.30%

16 - 8 - 16 - 8 0.31% 99.88% 99.95% 97.34%

least- one of the layers. Table 4 shows the results for the three best-performing
networks. The results of these networks are very similar. Note that the Neurons
column represents the number of neurons inside each hidden layer, represented
as neurons hidden 1 - neurons hidden 2 - neurons hidden 3.

Table 4: Testing performance for the three best FFNNs with three layers and
variation of the amount neurons per layer

Neurons Loss Accuracy AUC F-score

64 - 32 - 64 0.30% 99.88% 99.95% 97.42%

32 - 64 - 32 0.47% 99.88% 99.79% 97.22%

128 - 64 - 32 0.46% 99.87% 99.75% 97.01%

The best performing network (and the one used in the system) is the first one
(64-32-64) since the loss decreases and f-score increases compared with the other
two, and it is the most stable network with lesser differences between attributes
than the others. Furthermore, the network is relatively small, meaning that it is
a computationally efficient network.

Figure 6 shows the mean of all the different metrics used for the best network
when executed a total of 20 times. The network achieves 99.88% of detection with
the validation data and only ten epochs, giving a high detection rate using lit-
tle resources. As for the AUC, the network achieves 99.95% in validation data.
Indicating that the performance of the classification model is almost 100%, thus
demonstrating its effectiveness. The loss value is less than 0.5% in all execu-
tions, meaning that the model does not have over or underfitting. Besides, the
f-score achieves 97.42% with the validation data. The f-score helps us to under-
stand the model’s combined performance. A high f-score reiterates the network
effectiveness showing high AUC, accuracy and performance in all studied met-
rics. Consequently, the proposed system is very effective in detecting malicious
websites.

Finally, we compute the TP (True Positives), TN (True Negatives), FP (False
Positives) and FN (False Negatives) of the selected network. The TP represents
the samples that belong to a malicious website and is correctly classified. FN
represents the samples that belong to malicious websites that are wrongly clas-

Malicious website detection through Deep Learning algorithms 13

(a) Accuracy results (b) AUC results

(c) F-Score results

Fig. 6: Mean performance for the best operating FFNN (64-32-64) in 20 iterations

sified. The sum of TP and FN denote all the existing malicious websites. On the
other hand, TN represents the benign samples that are correctly classified, and
FP the benign samples that are wrongly classified. Together TN and FP denote
all existing benign websites. The final goal of the system is to detect all malicious
websites without misclassifying any sample, which means that the network has
to minimize the FN rate. Table 5 shows the training and validation results of
these metrics after the tenth epoch. The results show that the FN rate in the
validation data is only 2.619%. In other words, only 205 of the 8062 malicious
websites are erroneously classified as benign. We can also observe that the FN
rate decreases in the validation phase. This decrease indicates that there is still
room for improvement in the network (i.e. adding more data and re-training the
network).

As commented in the preprocessing section, the dataset was divided into
three different parts. The final testing of the system consists of passing through
the trained network the validation datasets (containing 10000 samples). The final
analysis results show a total number of wrongly classified malicious websites (a
total of 1.026%) and accuracy of 99.75%. These results show a clear identification
and classification of malicious websites. Overall, these outcomes demonstrate the

14 N. Gutiérrez et al.

Table 5: True Positive (TP), True Negative (TN), False Positive (FP) and False
Negative (FN) for the best performing network (64-32-64) with 10 epochs

Data TP TN FP FN

Training 25910 1172698 48 1343

(%) (95.070%) (99.999%) (0.001%) (4.930%)

Validation 7623 341977 196 205

(%) (97.381%) (99.994%) (0.006%) (2.619%)

effectiveness of our system since almost all malicious websites will be filtered,
and they will not penetrate the system.

Furthermore, a comparison with traditional Machine Learning algorithms,
such as Random Forest (RF), Logistic Regression (LR) and Gaussian Näıve
Bayes (GNB), was performed. The results show a similar accuracy and f-score,
but the Loss and AUC results decrease considerably. Furthermore, the use of
DL is chosen due to its supremacy in performance when using large quantities
of data such as in the depicted project. Hence, DL trains quickly and effectively
large subsets of data, contrary to traditional ML algorithms. The results for all
approaches are depicted in Figure 6.

Table 6: Testing performance for RF, LR and GNB algorithms

Algorithm Loss Accuracy AUC F-score

RF 24% 99.88% 97.99% 97.34%

LR 16% 99.82% 96.43% 96.29%

GNB 19% 99.80% 97.27% 95.69%

FFNN (ours) 0.30% 99.88% 99.95% 97.42%

7 Conclusions

Malicious URL detection plays a critical role for many cybersecurity applications,
and clearly, Machine Learning approaches are a promising direction. The impor-
tance of this detection remains in assuring the user a safe browsing, blocking
the non-desired content. This work proposes a study on Malicious URL Detec-
tion using DL techniques. The proposed system evaluates the website’s features,
and it classifies them by preprocessing and entering them in a DL model. We
evaluate a real dataset that extracts basic features of real websites (malicious
and benign) to conduct the study. Furthermore, we measured the dispersion and
correlation between the dataset’s features to observe the label separability and
the feature interconnections.

Malicious website detection through Deep Learning algorithms 15

Moreover, we proposed an FFNN to compute the classification of the labels.
The proposed mechanism achieves a 99.88% accuracy, 99.95% AUC and 97.42%
f-score. Furthermore, the proposed NN only incorrectly classifies 2.619% of the
malicious websites. This slight inaccuracy is due to the complexity of identifying
all possible patterns out of malicious content. Additionally, a validation pro-
cess was performed, the results showed only a 1.026% of inaccuracy in wrongly
classified malicious websites, thus decreasing the error.

As future works, the system can be improved by adding more data and re-
training the network. Moreover, the NN could be adapted to be automatically
updated. An automatization would mean that the NN would improve with every
NN search and add new features into the model.

Acknowledgments. This work was supported in part by the Catalan Govern-
ment, through the program 2017-SGR-962 and the RIS3CAT DRAC project.

References

1. Abdulghani, A.: Malicious website detection: A review. Jour-
nal of Forensic Sciences & Criminal Investigation 7 (02 2018).
https://doi.org/10.19080/JFSCI.2018.07.555712

2. Chiba, D., Tobe, K., Mori, T., Goto, S.: Detecting malicious websites by
learning ip address features. In: Applications and the Internet (SAINT),
2012 IEEE/IPSJ 12th International Symposium on. pp. 29–39 (2012).
https://doi.org/10.1109/SAINT.2012.14

3. Johnson, C., Basnet, B.K.R.B., Doleck, T.: Towards detecting and classi-
fying malicious urls using deep learning. Journal of Wireless Mobile Net-
works, Ubiquitous Computing, and Dependable Applications (JoWUA) (2020).
https://doi.org/10.22667/JOWUA.2020.12.31.031

4. Sahoo, D., Liu, C., Hoi, S.C.H.: Malicious url detection using machine learning: A
survey (2019)

5. Saxe, J., Harang, R., Wild, C., Sanders, H.: A deep learning approach to fast,
format-agnostic detection of malicious web content (2018)

6. Singh, A.K.: Dataset of malicious and benign webpages (2020).
https://doi.org/10.17632/gdx3pkwp47.2, https://data.mendeley.com/datasets/

gdx3pkwp47/2

7. TensorFlow: tf.keras.optimizers.adam (2020), https://www.tensorflow.org/api_

docs/python/tf/keras/optimizers/Adam

8. Uçar, E., Ucar, M., İncetaş, M.: A deep learning approach for detection of malicious
urls. In: International Management Information Systems Conference (2019)

9. Xuan, C., Dinh, H., Victor, T.: Malicious url detection based on machine learning.
International Journal of Advanced Computer Science and Applications 11 (01 2020).
https://doi.org/10.14569/IJACSA.2020.0110119

https://doi.org/10.19080/JFSCI.2018.07.555712
https://doi.org/10.1109/SAINT.2012.14
https://doi.org/10.22667/JOWUA.2020.12.31.031
https://doi.org/10.17632/gdx3pkwp47.2
https://data.mendeley.com/datasets/gdx3pkwp47/2
https://data.mendeley.com/datasets/gdx3pkwp47/2
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://www.tensorflow.org/api_docs/python/tf/keras/optimizers/Adam
https://doi.org/10.14569/IJACSA.2020.0110119

	Malicious website detection through Deep Learning algorithms

