
Computers & Geosciences 160 (2022) 105027

A
0
(

Contents lists available at ScienceDirect

Computers and Geosciences

journal homepage: www.elsevier.com/locate/cageo

Research paper

Acceleration strategies for large-scale sequential simulations using parallel
neighbour search: Non-LVA and LVA scenarios
Oscar F. Peredo ∗, José R. Herrero
Computer Architecture Department, UPC-BarcelonaTech, Spain

A R T I C L E I N F O

Keywords:
Geostatistics
Anisotropy
Parallel computing
Algorithms

A B S T R A C T

This paper describes the application of acceleration techniques into existing implementations of Sequential
Gaussian Simulation and Sequential Indicator Simulation. These implementations might incorporate Locally
Varying Anisotropy (LVA) to capture non-linear features of the underlying physical phenomena. The imple-
mentation focuses on a novel parallel neighbour search algorithm, which can be used on both non-LVA and
LVA codes. Additionally, parallel shortest path executions and optimized linear algebra libraries are applied
with focus on LVA codes. Execution time, speedup and accuracy results are presented. Non-LVA codes are
benchmarked using two scenarios with approximately 50 million domain points each. Speedup results of 2×
and 4× were obtained on SGS and SISIM respectively, where each scenario is compared against a baseline code
published in Peredo et al. (2018). The aggregated contribution to speedup of both works results in 12× and 50×
respectively. LVA codes are benchmarked using two scenarios with approximately 1.7 million domain points
each. Speedup results of 56× and 1822× were obtained on SGS and SISIM respectively, where each scenario is
compared against the original baseline sequential codes.
1. Introduction

Classical geostatistics can be used in many applied cases where
the values under study show isotropic or regular trends of preferential
directions. However, in complex scenarios the results obtained can be
unrealistic since the underlying phenomena shows highly anisotropic
trends which cannot be reproduced by the classical approach. These
kind of complex scenarios arise in geological modelling of faults and
veins in mineral reserves, sedimentary deposits in oil and gas reser-
voirs, environmental modelling of pollution spread, rain fall patterns
or animal migration, and mobility patterns in highly populated urban
areas. Additional computational issues arise when large-scale domains
should be analysed.

Concretely, this work is an effort to advance the state of the art
in the field of Sequential Simulation algorithms, both for classical and
LVA-based implementations, such as described previously, by present-
ing the following contributions:

• A novel parallel neighbour search is presented which introduces
a new performance improvement for a well-known bottleneck in
sequential simulation.

• Parallelization of two well-known classical sequential simula-
tion algorithms (SGSIM and SISIM), which were already paral-
lelized in Peredo et al. (2018), but contained a major bottleneck
specifically in the neighbour search strategy.

∗ Corresponding author.
E-mail address: operedo@ac.upc.edu (O.F. Peredo).

• Parallelization of two well-known LVA-based sequential simu-
lation algorithms (SGS and SISIM), with remarkable speedups,
specially in SISIM.

• Performance evaluation is presented using different
three-dimensional scenarios.

This article is organized as follows: Section 2 describes the theo-
retical background of LVA geostatistics and its main difference with
classical geostatistics. Section 3 contains all aspects of the baseline se-
quential implementations. Section 4 shows the parallelization strategies
explored in this work. Sections 5 and 6 summarize the numerical results
with a final analysis. Section 7 presents conclusions and future work.

2. Theoretical background

Anisotropy manifests itself as preferential directions of continuity
in the underlying phenomena, i.e. properties are more continuous in
one orientation than in another. If constant anisotropy is present,
a single trend or drift can be observed in the sampled data set or
secondary sources of information (Isaaks and Srivastava, 1990). In the
case of local anisotropy, each location of the domain in study presents
different preferential directions of continuity (Boisvert, 2010; Boisvert
vailable online 11 January 2022
098-3004/© 2022 The Author(s). Published by Elsevier Ltd. T

http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.cageo.2021.105027
Received 22 June 2021; Received in revised form 5 November 2021; Accepted 22
his is an open access article under the CC BY-NC-ND license

December 2021

http://www.elsevier.com/locate/cageo
http://www.elsevier.com/locate/cageo
mailto:operedo@ac.upc.edu
https://doi.org/10.1016/j.cageo.2021.105027
https://doi.org/10.1016/j.cageo.2021.105027
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cageo.2021.105027&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero
and Deutsch, 2011), which is commonly known as Locally Varying
Anisotropy (LVA).

The LVA geostatistical approach sets the initial path for future
developments in terms of numerical implementations that can poten-
tially scale to large scenarios. However, no further analysis or open
source code improvements were developed in previous years. This is
in part because non-standard algorithms, acceleration and distribution
techniques must be applied to the inner kernels of the proposed LVA
codes for geostatistical analysis. These inner kernels can be clustered in
two groups: the classical geostatistical inner kernels, such as variogram
computing, kriging estimation and sequential simulation (Deutsch and
Journel, 1998; Chilès and Delfiner, 1999); and dimensionality reduc-
tion techniques in high-dimensional spaces (Huo et al., 2004). Both
groups are connected by the property of positive definite covariance
functions (Curriero, 2006). In order to use the classical methods in
contexts where LVA is present, non-euclidean distances must be used
instead of straight lines connecting different points in the domain.
The non-linear path that connects two points is the shortest path that
follows the underlying LVA field. By computing the non-euclidean
distances between each pair of points in the domain of study, a distance
matrix is obtained. This matrix should be embedded into a similar
distance matrix generated in a higher-level space using euclidean dis-
tances. If large domains are being studied in R𝑑 with 𝑑 ∈ {2, 3}, a
prohibitive amount of computational resources will be necessary to
obtain a sequential simulation using an LVA field as proxy of the
underlying anisotropy. Additionally, a common bottleneck for non
LVA and LVA approaches is related with the neighbourhood search
to perform kriging interpolation across the random path selected for
the sequential simulation. This step can be prohibitive in terms of
computational resources if large search windows are used.

Regarding previous works related to accelerating large scale geo-
statistical simulations, novel attempts in isotropic modelling have been
reported in Vargas et al. (2007), Nunes and Almeida (2010), Peredo
et al. (2015) and Rasera et al. (2015), in order to accelerate classical
methods using different algorithmic approaches combined with multi-
core and distributed architectures, particularly MPI and OpenMP. A
recent work described in Peredo et al. (2018) follows the same path,
preserving the original values of the single-core execution by splitting
the neighbour search and simulation steps. In the same track, Nuss-
baumer et al. (2018) shows a similar approach using a constant path
for multiple simulations, proposing a parallel search for neighbour, as
first task, followed by the simulation step, with focus on execution of
multiple realizations.

In this work, a deep dive into a specific algorithm for parallel
neighbour search is presented, which is also coupled with a previous
work from the same authors. The proposed parallelization is applied
to four different scenarios, non LVA and LVA based, and also using se-
quential Gaussian and sequential indicator simulation codes as baseline
implementations.

3. Sequential implementation

Regarding classical algorithms, the baseline implementation used in
this work was proposed by Peredo et al. (2018), with baseline codes
for sequential Gaussian simulation (SGSIM) and sequential indicator
simulation (SISIM). Regarding LVA-based algorithms, the baseline im-
plementation used in this work was proposed by Boisvert and Deutsch
(2011),1 with baseline codes for variogram computation, kriging esti-
mation and sequential Gaussian simulation (SGS). Gutierrez and Ortiz
(2019) contributed posteriorly with the implementation of sequential
indicator simulation (SISIM). All of these codes are based on the well
known GSLIB code base (Deutsch and Journel, 1998).

1 http://www.ualberta.ca/~jbb/LVA_code.html.
2

The existing LVA implementations are based on the L-ISOMAP
manifold learning method (Tenenbaum et al., 2000). In this method,
landmark or ’’anchor’’ points are used to approximate non-euclidean
distances in an origin space by euclidean distances in a higher or lower
dimensional destination space. The mapping of each origin space point
to the destination space is denoted as the embedding .

The steps of the sequential classical SGSIM and SISIM algorithms
can be reviewed in Peredo et al. (2018), and briefly in Algorithm 1
from line 6 to 16 (removing non used parameters such as , 𝑘𝑐𝑜𝑣𝑎

and 𝑘𝑠𝑒𝑎𝑟𝑐ℎ). For the sake of simplicity, the inner loop in lines 12 to
14 was left as is, which is the case of LVA-based SGS, but it is worth
to mention that the actual codes can use this simulation loop outside
of the domain loop of line 9 as well, even including a new random
path for each simulation, which is the case of LVA-based SISIM, non
LVA-based SISM ans SGSIM. The steps of the sequential LVA-based SGS
and SISIM algorithms are depicted in Algorithm 1 from steps 1 to 16.
The first steps of the algorithm (lines 2, 3 and 4) correspond to the
L-ISOMAP algorithm, using specific LVA parameters such as the LVA
field 𝐅, the graph connectivity policy 𝜋 and the number of dimensions
𝑘 of the resulting embedding . With  computed, the next steps of the
algorithm are standard sequential simulation, which consists in running
an inner loop for multiple simulations using a single random-path (lines
6 to 15). Specifically, we can observe that the baseline implementa-
tion contains 4 main parts: graph building, distance matrix building,
embedding building and standard sequential simulation routines (SGS
and SISIM contain different methods to simulate). Each one contains
several subroutines and code parts that were released by the authors
without specific focus on large-scale usage. Additionally, the baseline
implementations were based on Fortran 90 coupled with C++ code
through system calls and disk I/O communications, which entangles
the code readability and exposes potential performance issues. In this
section, a brief summary of the baseline implementation features of
each part is included.

3.1. Graph building routines

As depicted in Algorithm 1, the first step of the L-ISOMAP routines
adapted for LVA-based sequential simulations consists in calculating
the connectivity graph (line 2) for the domain 𝛺. The domain must
be a regular grid, which is a constraint of the current implementation.
The inner steps of the routine build_connectivity_graph are
depicted in Algorithm 2. The inputs of this algorithm are the domain
𝛺 and specific LVA parameters. These parameters are the LVA field 𝐅
and the graph connectivity policy 𝜋.

The parameter 𝜋 is used to define the neighbourhood  for each
domain point which will be considered in the connectivity graph,
i.e. for each neighbour an edge will be added to the graph (line 3).
In practical terms, the policy 𝜋 consists of a value 𝛥 which sets the
number of separation edges (‘‘hops’’) in the regular grid. For instance,
𝛥 = 1 will set a neighbourhood  of at most 6 points located at 1 hop
of separation. The LVA field 𝐅 is defined for each domain point as a
tuple of five values, namely the angles azimuth (or strike) 𝛼, dip 𝛽 and
plunge 𝜑, and the directional ratios 𝑟1 and 𝑟2, representing the ratios
between axis X and Y, and axis Z and Y respectively. Using this tuple,
a rotation matrix 𝐑 ∶= 𝐑(𝛼, 𝛽, 𝜑, 𝑟1, 𝑟2) is computed for each domain
point in order to calculate the local anisotropic distance in each cell
of the gridded domain (line 4). With the neighbourhood and rotation
matrix computed, for each neighbour neig, an edge is added to the
graph, defined as 𝑒 = {𝚒𝚡𝚢𝚣, 𝚗𝚎𝚒𝚐}. Each edge has weight equal to
𝑑 =

√

𝐡𝑇𝐑𝑇𝐑𝐡 with 𝐡 lag vector between the edge endpoints (lines
5 to 9). The last step of the algorithm performs a removal of redundant
edges already computed, since the connectivity graph is undirected
(line 10). The resulting graph 𝐆 is stored in disk in file grid.out
(line 12).

http://www.ualberta.ca/~jbb/LVA_code.html

Computers and Geosciences 160 (2022) 105027

3

O.F. Peredo and J.R. Herrero

Fig. 1. Load balancing of workload through a block cyclic strategy for parallel neighbour search. In this example, 4 threads are computing neighbours of different blocks of points
(block size equal to 10, domain size equal to 80). Before processing a block of points, each thread should declare as marked all previous points which are not marked yet by this
thread (grey colour line). Variable nlast is used to indicate the starting index of marked points for the next block. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. Execution time [seconds] comparison baseline SGSIM parallel code and adapted SGSIM parallel code using the parallel neighbours search algorithm.

Computers and Geosciences 160 (2022) 105027

4

O.F. Peredo and J.R. Herrero

Fig. 3. Execution time [seconds] comparison baseline SISIM parallel code and adapted SISIM parallel code using the parallel neighbours search algorithm.

Fig. 4. Speedup comparison between baseline SGSIM parallel code and adapted SGSIM parallel code using the parallel neighbours search algorithm.

Computers and Geosciences 160 (2022) 105027

5

O.F. Peredo and J.R. Herrero

Fig. 5. Speedup comparison between baseline SISIM parallel code and adapted SISIM parallel code using the parallel neighbours search algorithm.

Fig. 6. swiss-roll: different views of sample points with LVA field dataset (sample).

Computers and Geosciences 160 (2022) 105027

6

O.F. Peredo and J.R. Herrero

Fig. 7. escondida: different views of sample drillhole points with LVA field dataset (sample).

Fig. 8. Slices of simulated domains for swiss-roll scenario using parallel LVA-based SGS with different 𝑟1 ratio values from LVA field parameters.

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero

3

s
o
m

Input:
(𝐕, 𝛺): sample database values 𝐕 defined in a 3D domain 𝛺;
𝛺𝐿: landmark 3D domain (subset of 𝛺) [Only LVA];
𝐅: LVA field defined in 𝛺 [Only LVA];
𝜋: connectivity graph policy [Only LVA];
𝑘𝑠𝑒𝑎𝑟𝑐ℎ: maximum search distance dimensions [Only LVA];
𝑘𝑐𝑜𝑣𝑎: maximum covariance distance dimension [Only LVA];
𝑛𝑚𝑎𝑥: maximum neighbours for interpolation;
𝜅: local interpolation parameters;
𝜏: seed for pseudo-random number generator;
𝑆: number of generated simulations;
output.txt: output file name

1 // Only LVA: First calculate the embedding using L-ISOMAP
2 𝐆 ← build_connectivity_graph(𝛺,𝐅, 𝜋)
3 𝐃 ← build_distance_matrix(𝐆, 𝛺,𝛺𝐿)
4  ← build_embedding(𝐃)
5 //non-LVA and LVA: Then proceed with the simulation routines using the

embedding to calculate distances
6 𝐏 ← create_random_path(𝛺, 𝜏) //Array with index random

re-ordering
7 𝐕𝑡𝑚𝑝 ← zeros(|𝛺| × 𝑆)
8 𝐕𝑡𝑚𝑝 ← assign(𝐕) //Sample data assignment
9 for ixyz ∈ {1,… , |𝛺|} do
10 //𝐏ixyz corresponds to the index ixyz of the random path P
11 LocalNeighbours ← search_neighbours(𝐏ixyz, 𝜅, 𝜏,, 𝑘𝑠𝑒𝑎𝑟𝑐ℎ)
12 for isim ∈ {1,… , 𝑆} do
13 𝐕𝑡𝑚𝑝(𝐏ixyz,isim) ←

simulate(𝐏ixyz, LocalNeighbours,, 𝑘𝑐𝑜𝑣𝑎, 𝑛𝑚𝑎𝑥)
14 end
15 end
16 write(output.txt,𝐕𝑡𝑚𝑝)

Output: 𝑆 stochastic simulations stored in file output.txt

Algorithm 1: Sequential Simulation for non-LVA and LVA
scenarios

Input:
𝛺: 3D domain 𝛺;
𝐅: LVA field in each domain point of 𝛺;
𝜋: graph connectivity policy;

1 𝐆 ← ∅ //Empty graph
2 for ixyz ∈ {1,… , |𝛺|} do
3  ← Compute all neighbours of point ixyz according to policy

𝜋
4 𝐑 ← Compute rotation matrix of point ixyz according to LVA

field 𝐅
5 for neig ∈  do
6 𝐡 ← Lag vector between points ixyz and neig
7 𝑑 ← Compute anisotropic distance between point ixyz and

neig according to
√

𝐡𝑇𝐑𝑇𝐑𝐡
8 𝑒 ← {ixyz,neig} //Definition of graph edge with weight d
9 Add (𝑒, 𝑑) to graph 𝐆
10 end
11 Remove redundant edges from 𝐆
12 end
13 Write 𝐆 to file grid.out

Output: 𝐆 in file grid.out

Algorithm 2: Routine build_connectivity_graph

.2. Distance matrix building routines

The second step of the L-ISOMAP routines adapted for LVA-based
equential simulation is the computation of the distance matrix (line 3
f Algorithm 1). This matrix is computed between domain and land-
ark points using the connectivity graph 𝐆 computed in the previous
7

Fig. 9. Top: Simulated domain for swiss-roll scenario using parallel LVA-based SGS with
𝑟1 = 5 and two threshold views. Bottom: Similar view with LVA parameter 𝑟1 = 0.2.

step. The inner steps of the routine build_distance_matrix are
depicted in Algorithm 3.

The baseline implementation reads two files from disk:
nodes2cal.out (landmark points list) and grid.out (connectivity
graph) (lines 3 and 4). With both files loaded into memory, for each
landmark point a shortest path calculation must be performed through
the connectivity graph 𝐆 (line 6). This step is computed using Dijkstra’s
shortest path algorithm (Dijkstra, 1959), implemented in the C++ Boost
Library (Boost.org, 2012). All distances from a landmark to all graph
nodes are appended to the file dist_cpp.out (line 7). As mentioned
before, the baseline implementation performs a system call to launch
the execution of a compiled C++ code with the Boost Library call to
Dijkstra routine, and the data transfer between Fortran and C++ is
performed through expensive disk I/O communication.

3.3. Embedding building routines

Based on the distance matrix 𝐃, the third step of the L-ISOMAP
routines is the computation of the embedding  (line 4 of Algorithm
1). The inner steps of the routine build_embedding are depicted
in Algorithm 4. The input of the algorithm is file dist_cpp.out,
computed in Algorithm 3, that contains the shortest path distances
between landmark and domain points.

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero

3

a
D
a
w
𝑛
r
s
n
a
e
d
m
l
a
s
a

i

t
b
o
o
n
p
d
i
s
I
w
G
d
e
k
c
S
i
t

Input:
grid.out: file with graph 𝐆 based on domain points 𝛺;
nodes2cal.out: file with landmark points indices of 𝛺𝐿

1 (𝑁, 𝑛) ← Read size of domain points 𝑁 and landmark points 𝑛 from
nodes2cal.out

2 𝐃 ← zeros(𝑁, 𝑛)
3  𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 ← Read landmark point indexes from nodes2cal.out
4 𝐆 ← Read connectivity graph from grid.out
5 for 𝑖 ∈  𝐿𝑎𝑛𝑑𝑚𝑎𝑟𝑘 do
6 𝐃∶,𝑖 ← run_dijsktra(𝑖,𝐆)
7 Write distances 𝐃∶,𝑖 into file dist_cpp.out
8 end

Output: File dist_cpp.out

Algorithm 3: Routine build_distance_matrix

First, the file dist_cpp.out is loaded in matrix 𝐃 (line 2) and
transformed into 𝐁 (line 3). After this step, matrix 𝐁𝑇𝐁 is factorized
and the largest positive 𝑘 ≤ 𝑛 eigenvalues are selected, being 𝑛 the
number of landmark points. Finally, the embedding  is defined as the
rows of the matrix 𝐘 with columns 𝜆−1𝑖 𝐁𝐯𝑖 for 𝑖 ∈ {1,… , 𝑘} (lines 5 and
6), being 𝐯𝑖 the corresponding eigenvector of 𝜆𝑖.

Input:
dist_cpp.out: file with distance matrix values 𝐃;

1 (𝑁, 𝑛) ← Read size 𝑁 of domain points 𝛺 and size 𝑛 of landmark
points 𝛺𝐿 from dist_cpp.out

2 𝐃 ← Read distance matrix from dist_cpp.out with size 𝑁 × 𝑛
3 𝐁 ← 𝐇𝑁𝐀𝐇𝑛, with 𝑎𝑖𝑗 = − 1

2
𝑑2
𝑖𝑗 , 𝑑𝑖𝑗 (𝑖,𝑗) value of 𝐃 and 𝐇𝑘 centering

matrix of size 𝑘
4 (𝚲,𝐕) ← Find the 𝑘 ≤ 𝑛 positive largest eigenvalues 𝜆1 ≥ ⋯ ≥ 𝜆𝑘 > 0

of 𝐁𝑇𝐁 with corresponding eigenvectors {𝐯1,… , 𝐯𝑘} which satisfy
(

𝐁𝐯𝑖
√

𝜆𝑖

)𝑇 (

𝐁𝐯𝑖
√

𝜆𝑖

)

= 𝜆𝑖 for all 𝑖 ∈ {1,… , 𝑘}

5 𝐘 ←
[

1
𝜆1
𝐁𝐯1 … 1

𝜆𝑘
𝐁𝐯𝑘

]

∈ R𝑁×𝑘

6  ← {𝐳1,… , 𝐳𝑁} ⊂ R𝑘 where 𝐳𝑖 is the 𝑖-th row of 𝐘 for all
𝑖 ∈ {1,… , 𝑁}. The following property holds:
‖𝐳𝑖 − 𝐳𝑗‖2 = 𝑑𝑖𝑗 , ∀𝑖 ∈ {1,… , 𝑁}, ∀𝑗 ∈ {1,… , 𝑛} (after row and column
reordering if necessary)

Output: Embedding  ⊂ R𝑘, with 𝑘 ≤ 𝑛

Algorithm 4: Routine build_embedding

.4. Sequential simulation routines

The final routines are related to the classical Sequential Simulation
lgorithm, as described in (Deutsch and Journel, 1998; Chilès and
elfiner, 1999). The random path 𝐏 (line 6, Algorithm 1) represents
random re-ordering of the domain point indexes from 1 to |𝛺|. We
ill assume that the embedding  is a subset of R𝑘, with 𝑘 ≤ 𝑛 and
the number of landmark points. Regarding the neighbour search,

epresented by the routine search_neighbours (line 10), spiral
earch is implemented in the baseline non-LVA code, and two alter-
atives are implemented in the baseline LVA code, exhaustive search
nd KDTree-based search (Kennel, 2004), being the last one the most
fficient in large-scale scenarios. The parameters of this routine are the
omain point index 𝐏𝚒𝚡𝚢𝚣, local interpolation parameters 𝜅 (such as
aximum/minimum number of neighbours for further kriging interpo-

ation, number of sample data values and previously simulated values,
nd maximum search distance) and a pseudo-random number generator
eed 𝜏. Additional parameters only for LVA codes are the embedding 

𝑠𝑒𝑎𝑟𝑐ℎ 𝑐𝑜𝑣𝑎
8

nd LVA parameters represented as 𝑘 and 𝑘 . A key parameter
n this routine is the number of dimensions used for search 𝑘𝑠𝑒𝑎𝑟𝑐ℎ. This
parameter controls which dimensions of the embedding  will be used
o perform distance comparisons to identify proximity. As discussed
y Boisvert (2010), Boisvert and Deutsch (2011), reducing the number
f dimensions in 𝑘𝑠𝑒𝑎𝑟𝑐ℎ can impact negatively in the accuracy of the
btained results, with a trade-off in speed of execution. Once the
eighbours are computed, a simulation can be performed in the domain
oint, represented by the routine simulate (line 12). This routine is
ifferent in SGS, SGSIM and SISIM implementations. In SGS, the routine
s based on the classical Fortran 90 GSLIB routine ktsol, which
olves a universal kriging linear system through Gaussian elimination.
n SGSIM, one execution of the GSLIB routine ksol is computed,
hich solves a kriging linear system. In SISIM, several executions of the
SLIB routine ksol are computed, one for each category (indicator)
efined in the inputs, and solving a kriging linear system of equations
ach time. As with the previous search_neighbours routine, a
ey parameter in these routines is the number of dimensions used for
ovariance distance-based estimation 𝑘𝑐𝑜𝑣𝑎, only used in LVA codes.
imilarly to 𝑘𝑠𝑒𝑎𝑟𝑐ℎ, the reduction of this number impacts negatively
n the accuracy of the obtained results with a trade-off in the execution
ime. The parameter 𝑘𝑐𝑜𝑣𝑎 controls which dimensions of the embedding
 will be used to compute distance differences for covariance models
implemented also following the classical GSLIB routine cova3. Finally,
simulate is executed 𝑆 times per point (𝑆 stochastic simulations),
using the same random path for all simulations (line 6). As mentioned
in the beginning if this section, non-LVA codes SGSIM and SISIM
does not work in this order, with the simulation loop placed outer-
most and using different random paths for each simulation. The final
simulation results are stored in a matrix 𝐕𝑡𝑚𝑝, which is saved in file
output.txt.

4. Accelerated/parallel implementation

The first step that must be performed in order to accelerate or
parallelize an application is to get an elapsed time profile of each
part of the code. Based on that information, further code modifications
are prioritized. In Tables 1 and 2 we can observe the percentage of
elapsed time in each set of routines, using four scenarios denoted
sgsim, sisim, swiss-roll and escondida (described in Section 5). For the
non-LVA scenarios, sgsim and sisim, elapsed time spent on neighbours
calculation and simulation can be splitted, since the baseline code
already separates these tasks. We can observe that 60% and 26%
correspond to neighbours calculation and 34% and 72% correspond to
simulation, based on execution using 16 threads for parallel processing.
For the LVA scenarios, no task separation is present in the code, so the
major portion of elapsed time corresponds to the simulation routines
(neighbour calculation + simulation) with 79% and 96% respectively,
followed by the embedding and the distance matrix building. In the
next subsections we will describe different strategies applied on these
routines.

An initial code optimization step is applied to the LVA scenarios,
since disk I/O communication and C++ code execution is performed
in the L-ISOMAP routines. Software refactoring tasks are applied to the
corresponding code in order to optimize the execution. The proposed
refactoring changes are in favour of a unified in-memory execution
(sequential and parallel) which improves performance, code develop-
ment, debugging and allows future modifications more easily. These
modifications which avoid launching other processes and communica-
tion through disk I/O are not described in this paper and they can be
analysed by the reader directly in the available code.

As result of all refactor, acceleration and parallelization strategies
applied, the proposed implementation can be reviewed in Algorithm
5. For non-LVA scenarios, steps 1 to 4 can be skipped, and also LVA
parameters such as , 𝑘𝑠𝑒𝑎𝑟𝑐ℎ and 𝑘𝑐𝑜𝑣𝑎 are not used. In the next sections,
a detailed explanation of each aspect of this algorithm is included.

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero

4

t
t
a
b
w
e
(
5

b
n
p
s
L

K
n
t
T
i
t
f
l
a
i
p

p
p
t
a
p
K
e
l
e
e

Input:
Same parameters as Algorithm 1;
𝑇 : number of parallel threads of execution;
𝑏1: block size for parallel execution of neighbour search;
𝑏2: block size for parallel execution of simulation;

1 //Only LVA: First calculate the embedding using L-ISOMAP
2 𝐆 ← build_connectivity_graph(𝛺,𝐅, 𝜋)
3 𝐃 ← parallel_build_distance_matrix(𝐆, 𝛺,𝛺𝐿)
4  ← parallel_build_embedding(𝐃)
5 //non-LVA and LVA: Then proceed with the simulation routines using the

embedding to calculate distances
6 𝐏 ← create_random_path(𝛺, 𝜏)
7 𝐕𝑡𝑚𝑝 ← zeros(|𝛺| × 𝑆)
8 𝐕𝑡𝑚𝑝 ← assign(𝐕) //Initial conditioning data assignment
9 𝐋𝐞𝐯𝐞𝐥,𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐮𝐫𝐬 ←

parallel_neighbour_search(|𝛺|,𝐏,, 𝑘𝑠𝑒𝑎𝑟𝑐ℎ, 𝑛𝑚𝑎𝑥, 𝑇 , 𝑏1)
10 𝐕𝑡𝑚𝑝 ←

parallel_simulation(𝐋𝐞𝐯𝐞𝐥,𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐮𝐫𝐬, |𝛺|,𝐏, 𝜅, 𝜏,, 𝑘𝑐𝑜𝑣𝑎, 𝑛𝑚𝑎𝑥, 𝑇 , 𝑏2)

11 write(output.txt,𝐕𝑡𝑚𝑝)

Output: 𝐒 stochastic simulations stored in file output.txt

Algorithm 5: Parallel Sequential Simulation for non-LVA and
LVA scenarios

.1. Parallel neighbour search

Following the profiling from Tables 1 and 2, the first routine group
hat should be accelerated corresponds to neighbour search and sequen-
ial simulation routines as described in Section 3. Code modifications
re applied in lines 9 to 14 of Algorithm 1, in case decoupling of
oth parts is needed (LVA scenarios), and subsequently accelerate each
ith different strategies. The framework used in this work follows an
xact path-level parallelization of non-LVA codes based on Peredo et al.
2018), which was adapted to the LVA codes, as shown in Algorithm
.

In case of neighbour search routines, the proposed parallelization is
ased on a combination of: an optimized version of sequential KDTree
eighbour search from Kennel (2004), and a parallel implementation
resented in Algorithm 6, which is used in line 9 of Algorithm 5. These
earch routines were implemented on the four codes in study, non
VA-based SGSIM and SISIM, and LVA-based SGS and SISIM.

In LVA-based SGS, the neighbour search can be applied using
DTree-based search originally. However, in LVA-based SISIM and
on LVA-based SGSIM and SISIM, the only option implemented in
he original baseline code was the exhaustive search or spiral search.
hus in these cases the first task was to adapt the original code to

nclude the KDTree method. KDTree search is algorithmically faster
han exhaustive search (𝑂(log𝑁) for KDTree-based search and 𝑂(𝑁)
or exhaustive search), so no further analysis was performed for the
ast method. Spiral search on the other hand, as described in Deutsch
nd Journel (1998), is an efficient method to search for neighbours
n gridded data, however its sequential nature makes it difficult to
arallelize it efficiently.

In the existing implementation of KDTree search, the inner-most
art of the computation should calculate distances between the query
oint and all points inside a terminal node of the tree. The points
hat are inside a fixed-size ball around the query points are marked
s neighbours until the maximum number is reached. Using the line
rofiler tool of gprof (Graham et al., 2004), we identify lines in
DTree code which are top contributors in the sequential part of
xecution. The optimization applied is based on the unrolling of the
oop that computes the squared distance between the query point and
ach potential neighbour, which reduces the number of conditional
9

valuations and branch instructions processed by the CPU.
Fig. 10. Slices of simulated domains for escondida scenario using parallel LVA-based
SISIM with different 𝑟1 ratio values from LVA field parameters.

The parallel implementation is based on a modified
OpenMP-compliant version of KDTree search and a block cyclic de-
composition strategy of the random path. The block cyclic approach
is necessary since an underlying unbalance exists in the amount of
work for neighbour search (early points require more effort than
later points). In order to use the existing KDTree implementation, a
private variable used internally in the corresponding Fortran module
should be declared as threadprivate with an OpenMP directive.
With this change, different threads can create private trees and search
independently for neighbours on different points without sharing data
structures (line 6 of Algorithm 6). Since the neighbour search should

be compliant with the sequential simulation search, only previously

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero
Fig. 11. Top: Simulated domain for escondida scenario using parallel LVA-based SISIM. Bottom: Three categories of the simulation on top.
Table 1
Profiling of executions [% of elapsed time] with baseline non-LVA codes. Left: sgsim
scenario using baseline non LVA-based SGSIM with 50 × 106 domain points, 48
maximum neighbours for kriging and 16 threads, total elapsed time was 11 min and
25 s. Right: sisim scenario using baseline non LVA-based SISIM with 50 × 106 domain
points, 48 maximum neighbours for kriging and 16 threads, total elapsed time was
37 min and 21 s.

Execution step %𝑡𝑡𝑜𝑡𝑎𝑙
(sgsim)

%𝑡𝑡𝑜𝑡𝑎𝑙
(sisim)

Read params 1.311 0.004
Neighbours calculation 68.965 26.092
Simulation 24.535 72.216
Write out 5.187 0.012

simulated nodes (marked points) or initial conditioning data can be
considered as valid neighbours. This constraint is applied in lines 12
to 14 of Algorithm 6, by setting as marked all previous nodes for each
thread of execution. By combining this strategy with a block cyclic
distribution of iterations, the final workload is balanced through all
threads, as shown in Fig. 1. The final steps, depicted in lines 23 to
27 of Algorithm 6, use the computed neighbours to infer the level of
each point, which indicates the degree of dependency of that point on
previously simulated or initial conditioning points. Specifically, initial
conditioning points are level 0 and a point is level 𝑛 if the maximum
level of all its neighbours is 𝑛 − 1.

In Section 5 we include performance tests of this specific algorithm
applied to non-LVA and LVA scenarios.

4.2. Parallel sequential simulation

As mentioned in the previous section, code modifications are ap-
plied in lines 9 to 14 of Algorithm 1, in order to decouple neighbour
10
search and simulation parts for LVA scenarios. Regarding acceleration
of the simulation part, an exact path-level parallelization is applied,
following an exact path-level strategy described in Peredo et al. (2018).
We refer the reader to that article for further details of the existing
parallel algorithm, but essentially it allows to simulate in parallel every
point located in the same level of the random path, as described in the
previous section.

The steps of this strategy applied to LVA-based SGS and SISIM are
depicted in Algorithm 7. The reader can refer to Peredo et al. (2018) for
further reference of the inner routines and arrays used in this algorithm.

4.3. Parallel embedding building

The second group of routines with large percentage of elapsed time
is related to the assembling of the embedding , which is only relevant
for LVA scenarios. After the software refactoring was completed, code
optimizations can be applied properly on this part. By examining
Algorithm 4, several matrix algebraic operations are involved in these
routines. In order to accelerate them, Intel Math Kernel Library (Intel,
2020) was selected as optimized implementation for Matrix-Vector
(DGEMV), Matrix-Matrix (DGEMM) and Eigenvalue solver computation
(DSYEV). Additionally, several memory accesses were modified from
row-major to column-major order, which is the optimal memory access
pattern in Fortran code.

4.4. Parallel distance matrix building

Regarding the computation of the distance matrix, also relevant for
LVA scenarios only, several executions of Dijkstra’s shortest path Boost
implementation are launched. These executions are orchestrated by the
routine dijkstra_cpp, integrated in the source after the software

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero
Fig. 12. Execution time [seconds] and speedup results for swiss-roll scenario using parallel LVA-based SGS code.
Table 2
Profiling of executions [% of elapsed time] with baseline LVA codes. Left: swiss-roll scenario using baseline LVA-based SGS
with 1.7 × 106 domain points, 48 maximum neighbours for kriging and 1000 landmarks, total elapsed time was 12 h and
31 min. Right: escondida scenario using baseline LVA-based SISIM with 1.7× 106 domain points, 48 maximum neighbours for
kriging and 1344 landmarks, total elapsed time was 509 h and 17 min (21 days and 5 h).
Execution step %𝑡𝑡𝑜𝑡𝑎𝑙

𝑘𝑐𝑜𝑣𝑎 = 𝑘𝑠𝑒𝑎𝑟𝑐ℎ = 1000
(swiss-roll)

%𝑡𝑡𝑜𝑡𝑎𝑙
𝑘𝑐𝑜𝑣𝑎 = 𝑘𝑠𝑒𝑎𝑟𝑐ℎ = 1344
(escondida)

Read params 0.012 0.001
Connectivity graph building 0.233 0.001
Distance matrix building 10.341 2.178
Embedding building 9.831 5.134
Neighbours calculation + Simulation 79.576 96.585
Write out 0.006 0.001
11

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero
Fig. 13. Execution time [seconds] and speedup results for escondida scenario using parallel LVA-based SISIM code.
refactoring. Since C++ code can be parallelized with OpenMP (OpenMP
Architecture Review Board, 2008) in a straightforward way, we add
parallel pragmas to this code, in order to parallelize the landmark loop
of lines 5 to 7 of Algorithm 3.

5. Results

This section is divided in two subsections. The first one shows
performance tests of the proposed implementation from Section 4.1
using two scenarios extracted from Peredo et al. (2018), with adapted
parallel versions of non LVA-based SGSIM and SISIM respectively.
In the second subsection, performance tests of the proposed imple-
mentation are presented for two LVA-based scenarios, using parallel
LVA-based versions of SGS and SISIM codes.
12
5.1. Performance tests for parallel non LVA-based codes

In order to measure the performance of the proposed parallel algo-
rithm, simulations are generated from non LVA-based codes SGSIM and
SISIM. Both scenarios are denoted sgsim and sisim respectively. Scenario
sgsim uses an initial 3D dataset of 2376 diamond drill-hole samples with
information of copper grade composites. Scenario sisim uses a synthetic
3D dataset of 3000 random samples with 10 categories. The parameters
in each scenario can be viewed in Table 3.

All runs were executed in a single-node machine with Ubuntu
18.04.5 LTS with 2 × 10-cores Intel(R) Xeon(R) CPU Silver 4210R at
frequency 2.40 GHz and a main memory of 128 GB RAM. All Fortran
programs were compiled using GNU Fortran version 4.8.5 supporting
OpenMP version 3.1, with options -cpp -O2 -ffast-math -ftree-vectorize.

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero
Fig. 14. Efficiency of parallel executions for sgsim and sisim scenarios compared against theoretical maximum speedup. In this case a maximum of 16 threads are used in order
to compare results with a previous work from Peredo et al. (2018).
Fig. 15. Efficiency of parallel executions for swiss-roll and escondida scenarios compared against theoretical maximum speedup.
Fig. 16. Points per level on both test scenarios, swiss-roll (396 initial conditioning data) and escondida (2313 initial conditioning data). All points in the same level are simulated
in parallel by 𝑃 threads.
Execution time results are depicted in Figs. 2 and 3, and speedup results
are depicted in Figs. 4 and 5.

In sgsim scenario depicted in Fig. 4 we can observe that the speedup
increased consistently across all tests, with improvements using 16
threads (this number of threads is selected in order to compare results
with previous work from the same authors). From Fig. 2, speedups
using 16 threads between the proposed implementation against the
baseline version without parallel neighbour search are 1.33×, 1.79×,
1.85× and 2.14× in cases with 16, 32, 48 and 64 maximum neighbours
13
for simulation respectively. However, it is important to notice that
using lower numbers of neighbours, such as 16 and 32, the execution
time is considerably lower in the baseline scenario using less than 8
and 4 threads of execution respectively. The reason for this behaviour
is the amount of work that needs to be done to initialize the KDTree
parallel structures, which in these cases is higher than the baseline
search methods (the reader can check srchsupr method from Deutsch
and Journel (1998)). On all other cases the parallel adaptation has
lower execution time than the baseline code.

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero
Fig. 17. Points per level on swiss-roll scenario using different percentages of initial conditioning data (4% and 0.25%, from a total of 1,728,000 points).
Fig. 18. Speedup results for scenarios sgsim and sisim using 32 and 64 maximum number of neighbours.
In the sisim scenario depicted in Fig. 5 we can observe no significa-
tive differences in speedup trends between the baseline and parallel
adaptation. From Fig. 3, speedups using 16 threads between the pro-
posed implementation against the baseline version without parallel
neighbour search are 1.55×, 2.42×, 3.06× and 4.11× in cases with 16,
32, 48 and 64 maximum neighbours for simulation respectively. In
this scenario the execution time is consistently lower in the proposed
implementation. This can be explained since this scenario involves
more work (10 kriging linear systems should be solved for each domain
14
point versus only one linear system in sgsim), so the initialization of
KDTree structures is not significative in the execution time.

Finally, if we compare the aggregated contribution to speedup of
the new parallel neighbour search and optimizations, plus the previous
parallelization work from Peredo et al. (2018), against a single thread
execution of the previous parallelization work, the obtained speedups
using 16 threads for sgsim scenario are 2.2×, 5.0×, 7.6× and 11.9×, using
16, 32, 48 and 64 maximum neighbours respectively. Similarly for sisim
scenario, speedups using 16 threads are 7.8×, 20.3×, 32.7× and 50.4×,
using 16, 32, 48 and 64 maximum neighbours respectively.

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero
Fig. 19. Speedup results for scenarios swiss-roll and escondida using 48 and 96 maximum number of neighbours.
5.2. Performance tests for parallel LVA-based codes

The first scenario, namely swiss-roll, is based in the swiss roll testing
scenario, which is extensively used in the Machine Learning commu-
nity (Tenenbaum et al., 2000). In our case, a 3D swiss roll is prepared,
which is posteriorly transformed into a 3D LVA field. A synthetic
dataset of 17280 samples is designed and attached to the domain as
sample data. The second scenario, namely escondida, is based on real
mining 3D data of 2376 diamond drill-hole samples with information
of copper grade composites and lithologies per sample. In this case,
a synthetic fold-like LVA field is used for simulation. The parameters
of each scenario are detailed in Table 4. A schema of the LVA fields
and the drillhole data are depicted in Figs. 6 and 7. In Figs. 8 and
9 we can observe simulated domains in the swiss-roll scenario using
LVA-based SGS. In the first figure, 6 slices of simulated domains are
presented, each one generated with different values of 𝑟1 ratio. The
second figure shows two 3D simulated domains generated with LVA
fields with different 𝑟1 ratio values. In Figs. 10 and 11 we can observe
simulated domains in the escondida scenario using LVA-based SISIM,
with 4 categorical values. As in the previous figures, the first one shows
3 slices of simulated domains each one generated with different values
of 𝑟1 ratio. The second one shows a 3D simulated domain generated
with an LVA field.

All runs were executed in a single-node machine with Ubuntu
18.04.5 LTS with 2 × 10-cores Intel(R) Xeon(R) CPU Silver 4210R
at frequency 2.40 GHz and a main memory of 128 GB RAM. All
Fortran programs were compiled using Intel ifort version 13.1.1 sup-
porting OpenMP version 3.1, with options -fpp -mkl -openmp -O3
-mtune=native -march=native. All C++ programs were compiled using
GCC g++ version 6.2.0 supporting OpenMP version 4.5, with options
-Ofast -fopenmp -funroll-loops -finline-functions -ftree-vectorize.
15
Fig. 12 shows execution time and speedup of the LVA-based SGS
parallel code for the swiss-roll scenario, using 𝑘𝑐𝑜𝑣𝑎 = 𝑘𝑠𝑒𝑎𝑟𝑐ℎ = 32 and
𝑘𝑐𝑜𝑣𝑎 = 𝑘𝑠𝑒𝑎𝑟𝑐ℎ = 1000 control dimensions. Fig. 13 shows execution time
and speedup of the LVA-based SISIM parallel code for the escondida
scenario, using 𝑘𝑐𝑜𝑣𝑎 = 𝑘𝑠𝑒𝑎𝑟𝑐ℎ = 42 and 𝑘𝑐𝑜𝑣𝑎 = 𝑘𝑠𝑒𝑎𝑟𝑐ℎ = 1344 control
dimensions. On both figures, speedup is computed using the baseline
sequential code (middle plot) and fully optimized code (bottom plot).
Differences in speedup values on both plots, can be explained by
large differences in elapsed time of the original baseline code and
the optimized single threaded execution of the OpenMP code. In case
of SISIM, this effect reduces three orders of magnitude the baseline
execution time, mostly due to the refactoring of neighbour search using
KDTree instead of exhaustive search.

Finally, to illustrate the contribution of the neighbour search ac-
celeration and parallelization to the overall speedup, in Table 5 we
can observe execution time and speedup against the baseline code
version for LVA-based SGS and SISIM using 𝑘∗ = 1000 and 𝑘∗ = 1344
respectively. The purpose of this information is to show the relevance
of the acceleration and parallelization of the neighbour search, which
allows to improve the speedup an order of magnitude for each scenario.
Special relevance has the inclusion of KDTree search in LVA-based
SISIM which delivered a single contribution of two orders of magnitude
in a sequential execution.

6. Analysis

According to the results of Section 5, two aspects of the proposed
implementation are reviewed in detail in this section: accuracy and
efficiency.

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero

6

r
a
o
a
a
s

v
u
p
a
I
o

Input:
𝐋𝐞𝐯𝐞𝐥𝐬: array defined in Algorithm 5 (line 9);
𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐮𝐫𝐬: array defined in Algorithm 5 (line 9);
|𝛺|: number of points in 3D domain 𝛺;
𝐏: random path defined in Algorithm 5 (line 6);
: embedding of point coordinates as defined in Algorithm 5

(line 4). For non-LVA scenarios, the embedding is exactly the 3D
coordinates in 𝛺;

𝑘𝑠𝑒𝑎𝑟𝑐ℎ: defined as input in Algorithm 1. For non-LVA scenarios,
this value is 3;

𝑛𝑚𝑎𝑥: defined as input in Algorithm 1;
𝑇 : number of parallel threads of execution;
𝑏: block size

1 𝑛 ← |𝛺|

2 𝐋𝐞𝐯𝐞𝐥 ← zeros(𝑛 × 1)
3 𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐮𝐫𝐬 ← zeros(𝑛 × 𝑛𝑚𝑎𝑥 × 2)
4 for threadId ∈ {1,… , 𝑇 } in parallel do
5 𝐵 ← ⌈𝑛∕𝑏⌉
6 //Each thread will have a copy of its own KDTree structure
7 𝐓𝐫𝐞𝐞 ← kdtree_create(, 𝑛𝑚𝑎𝑥, 𝑘𝑠𝑒𝑎𝑟𝑐ℎ)
8 //Block cyclic through blocks
9 nlast ← 1
10 for iblock ∈ {1,… , 𝐵} do
11 nmin,nmax ← (𝑏 − 1) ∗ 𝐵 ,min{𝑏 ∗ 𝐵, 𝑛}
12 if iblock % 𝑇 == (threadId − 1) then
13 for ixyz ∈ {nlast,… ,nmin − 1} do
14 point_marked(𝐓𝐫𝐞𝐞,ixyz)
15 end
16 nlast ← nmax + 1
17 //Each thread computes the valid neighbours of each point
18 for ixyz ∈ {𝑛𝑚𝑖𝑛,… , 𝑛𝑚𝑎𝑥} do
19 //Search and push operation to save neighbours in array
20 Neighbours(𝐏ixyz) ←

search_neighbours_push(𝐏ixyz, 𝜅,,𝐓𝐫𝐞𝐞, 𝑘𝑠𝑒𝑎𝑟𝑐ℎ)

21 end
22 end
23 end
24 omp_barrier //Only thread 1 will compute the levels (intrinsically

sequential)
25 if threadId = 1 then
26 for ixyz ∈ {1,… , 𝑛} do
27 Level(𝐏ixyz) ← build_level(𝐏ixyz, 𝜅,Neighbours)
28 end
29 end
30 end

Output: 𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐮𝐫𝐬, 𝐋𝐞𝐯𝐞𝐥𝐬

Algorithm 6: Routine parallel_neighbour_search
(KDTree-based)

.1. Accuracy

In terms of accuracy, all parallel codes match exactly the baseline
esults (assuming the same pseudo-random number generator seed
nd the same neighbour search method), regardless of the number
f threads used in the execution. This level of accuracy is obtained
s result of the explicit replication of the random path simulations,
lthough re-ordering non-conflicting nodes in order to allow parallel
imulation of nodes in the same level.

Particularly for LVA-based codes, by decreasing the values of control
ariables 𝑘𝑠𝑒𝑎𝑟𝑐ℎ and 𝑘𝑐𝑜𝑣𝑎 (which define the number of dimensions to
se for neighbour search and covariance distance calculation), both
arallel and baseline codes can achieve faster results, but with lower
ccuracy values (compared against larger values of control variables).
t will be a final user’s decision if he or she can tolerate lower levels
16

f accuracy. In case of LVA-based SGS (Fig. 12), the accuracy loss
Input:
𝐋𝐞𝐯𝐞𝐥𝐬: array defined in Algorithm 5 (line 9);
𝐍𝐞𝐢𝐠𝐡𝐛𝐨𝐮𝐫𝐬: array defined in Algorithm 5 (line 9);
|𝛺|: number of points in 3D domain 𝛺;
𝐏: random path defined in Algorithm 5 (line 6);
𝜅: defined as input in Algorithm 1;
: embedding of point coordinates as defined in Algorithm 5

(line 4). For non-LVA scenarios, the embedding is exactly the 3D
coordinates in 𝛺;

𝑘𝑐𝑜𝑣𝑎: defined as input in Algorithm 1. For non-LVA scenarios,
this value is 3;

𝑛𝑚𝑎𝑥: defined as input in Algorithm 1;
𝑇 : number of parallel threads of execution

1 𝐈𝐧𝐝𝐞𝐱𝐒𝐨𝐫𝐭,𝐋𝐞𝐯𝐞𝐥𝐂𝐨𝐮𝐧𝐭,𝐋𝐞𝐯𝐞𝐥𝐒𝐭𝐚𝐫𝐭 ←
order_nodes_by_level(𝐋𝐞𝐯𝐞𝐥)

2 for lev ∈ {1,… ,max(𝐋𝐞𝐯𝐞𝐥)} do
3 lbegin ← 𝐋𝐞𝐯𝐞𝐥𝐒𝐭𝐚𝐫𝐭(lev)
4 lend ← 𝐋𝐞𝐯𝐞𝐥𝐒𝐭𝐚𝐫𝐭(lev) + 𝐋𝐞𝐯𝐞𝐥𝐂𝐨𝐮𝐧𝐭(lev) − 1
5 for ixyz ∈ {lbegin,… ,lend} in parallel do
6 index ← IndexSort(𝐏ixyz)
7 //Pop operation to extract neighbours from array
8 LocalNeighbours ←

search_neighbours_pop(index, 𝜅,Neighbours)
9 for isim ∈ {1,… , 𝑆} do
10 𝐕𝑡𝑚𝑝(𝐏ixyz,isim) ←

simulate(𝐏ixyz, LocalNeighbours,, 𝑘𝑐𝑜𝑣𝑎, 𝑛𝑚𝑎𝑥)
11 end
12 end
13 write(output.txt,𝐕𝑡𝑚𝑝)
14 end

Output: 𝐒 stochastic simulations stored in file output.txt

Algorithm 7: Algorithm parallel_simulation

comparing executions with 𝑘∗ = 1000 versus 𝑘∗ = 32 is 71%, measured
as the average relative error at node level . In case of LVA-based SISIM
(Fig. 13), the accuracy loss comparing executions with 𝑘∗ = 1344 versus
𝑘∗ = 42 is 15%, measured as the average categorical mismatch at
node level. Nonetheless, the proposed parallel codes deliver the same
results as the baseline for any fixed value of the control variables.
Note that using the new parallel codes, simulations are executed much
faster. Therefore, performing computations for low values of the control
variables in search of a reduction of the execution time becomes
meaningless when the accuracy loss is high.

6.2. Efficiency

In terms of the achieved efficiency by the proposed parallelization,
in Tables 6 and 7 we can observe a detailed profile of the refactored
codes using 16 OpenMP threads in sgsim and sisim, and 20 OpenMP
threads in swiss-roll and escondida scenarios, all executions using 48
maximum neighbours for simulation, and 𝑘∗ = 1000 and 𝑘∗ = 1344
respectively on each LVA-based scenario. It is worth mentioning that
these tables are very different from the initial baseline profiling in
Tables 1 and 2, where the most relevant part was the neighbour
calculation plus simulation as a whole. Now, the relevant parts for
non LVA-based scenarios are neighbours calculations for SGSIM and
again simulation for SISIM. For LVA-based scenarios, the relevant
parts are distance calculation, neighbours calculation and simulation
(embedding building is not relevant after applying optimizations in
matrix operations and memory accesses). On non LVA-based scenarios,
both results have efficiencies of 62% and 63% respectively, measured
as the percentage of the theoretical maximum speedup achieved. On
LVA-based scenarios, both results have efficiencies of 42% and 44%
respectively. These results are acceptable for these applications since

the baseline code and algorithms were not designed originally to run on

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero

L

c
e

Table 3
Default parameters for sgsim and sisim.
Parameter sgsim sisim

Domain 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 400 × 400 × 120 210 × 600 × 400
Max nodes for simulation {16, 32, 48, 64} {16, 32, 48, 64}
Kriging OK OK
Number of structures (type) 3 (spherical, exponential, gaussian) 10 (sphericals)
Table 4
Default parameters for swiss-roll and escondida.
Parameter swiss-roll escondida

Domain 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 120 × 120 × 120 148 × 220 × 52
LVA field 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 same as domain same as domain
Graph connectivity (offset) 1 1
Landmarks 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧 10 × 10 × 10 8 × 12 × 14
𝑘𝑐𝑜𝑣𝑎 {32, 64, 125, 250, 500, 1000} {42, 84, 168, 336, 672, 1344}
𝑘𝑠𝑒𝑎𝑟𝑐ℎ {32, 64, 125, 250, 500, 1000} {42, 84, 168, 336, 672, 1344}
Max nodes for simulation 48 48
Kriging SK SK
Number of structures (type) 1 (exponential) 4 (exponentials)
Table 5
Contribution to speedup of neighbour search (NS) acceleration and parallelization on the swiss-roll and escondida scenarios. The initial parallel code did not include parallel
neighbour search, only calculation of distance matrix, embedding and simulation were parallelized. Additionally, for LVA-based SISIM, KDTree was adapted and included
for execution.
Version swiss-roll

𝑘∗ = 1000
time [seconds]

swiss-roll
𝑘∗ = 1000
speedup

escondida
𝑘∗ = 1344
time [seconds]

escondida
𝑘∗ = 1344
speedup

Baseline 45060 1× 1833020 1×
Parallel except NS, 1 thread 12132 3.71× 16438 111.51×
Parallel except NS, 20 threads 8615 5.23× 8596 213.24×
Parallel except NS + KDTree optimized, 20 threads 1682 26.77× 1648 1111.91×
Parallel including NS + KDTree optimized, 20 threads 792 56.89× 1006 1822.08×
Table 6
Profiling of executions [% of elapsed time] with parallel refactored non-LVA codes using 16 threads. Left:
sgsim scenario using accelerated non LVA-based SGSIM with 50×106 domain points, 48 maximum neighbours
for kriging, total elapsed time was 6 min and 10 s. Right: sisim scenario using accelerated non LVA-based
SISIM with 50 × 106 domain points, 48 maximum neighbours for kriging, total elapsed time was 21 min
and 26 s.
Execution step %𝑡𝑡𝑜𝑡𝑎𝑙

(sgsim)
%𝑡𝑡𝑜𝑡𝑎𝑙
(sisim)

Read params 1.807 0.101
Neighbours calculation 46.240 15.111
Simulation 43.325 84.395
Write out 8.695 0.391
Table 7
Profiling of executions [% of elapsed time] with parallel refactored LVA codes using 20 OpenMP threads. Left: swiss-
roll scenario using accelerated LVA-based SGS with 1.7×106 domain points, 48 maximum neighbours for kriging and
1000 landmarks, total elapsed time was 1 h 47 min. Right: escondida scenario using accelerated LVA-based SISIM
with 1.7 × 106 domain points, 48 maximum neighbours for kriging and 1344 landmarks, total elapsed time was 2 h
37 min.
Execution step %𝑡𝑡𝑜𝑡𝑎𝑙

𝑘𝑐𝑜𝑣𝑎 = 𝑘𝑠𝑒𝑎𝑟𝑐ℎ = 1000
(swiss-roll)

%𝑡𝑡𝑜𝑡𝑎𝑙
𝑘𝑐𝑜𝑣𝑎 = 𝑘𝑠𝑒𝑎𝑟𝑐ℎ = 1344
(escondida)

Read params 0.03 0.01
Connectivity graph building 0.09 0.06
Distance matrix building 61.81 51.40
Embedding building 3.99 4.59
Neighbours calculation 15.20 10.22
Simulation 18.84 33.71
Write out 0.05 0.01
i
s

i
f
t

parallel architectures. Additionally, Figs. 14 and 15 contain efficiency
percentages for non LVA-based scenarios for values of 𝑃 ≤ 16 and
VA-based scenarios for values of 𝑃 ≤ 20.

The achieved speedup and efficiency obtained on both scenarios
an be explained mostly by three factors: 1) intrinsic efficiency of
xternal libraries (C++ Boost and Intel MKL), 2) different sizes in the
17

s

nitial conditioning datasets, and 3) amount of work performed in the
imulation step.

Factor 1 impacts only on LVA-based scenarios, and depends explic-
tly on the performance delivered by the external libraries. Even though
urther optimizations can be done in these libraries, it is left out of
he scope of this work. In any case, on both scenarios we obtained
imilar performance since these executions only depend on the number

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero

p
l
t
p
t
s
c
4
c

s
t
t
o
s
o
f
s
s
a
w
s
n
p
h
c
w
t
o
i
i
t
s
f
i
O
h
t
c
h

7

i
C
t

of domain points, number of landmarks and LVA additional parameters,
which remain on the same orders of magnitude across scenarios.

Regarding factor 2, also impacting only on LVA-based scenarios,
in Fig. 16 we can observe the number of points assigned to each
level, using a maximum of 48 neighbour points per simulation for
both scenarios. In the swiss-roll scenario, 396 initial conditioning points
are used, which results in a larger point-level curve, and translates
into more overhead (resulting in less speedup and efficiency) due to
multi-thread contingency and context switching from level to level.
On the contrary, in the escondida scenario, 2313 initial conditioning
oints are used, which results in a shorter curve, and consequently
ess overhead (resulting in more speedup and efficiency). We can infer
hat a large number of initial conditioning data will generate a short
oint-level curve with better speedup and efficiency at lower execution
ime. In Fig. 17 we can observe different point-level curves for the
ame scenario with equal parameters, except the number of initial
onditioning data points. Curves using 48 maximum neighbours and
% and 0.25% of initial conditioning data (continuous blue and orange
urves) exemplify this phenomenon.

Regarding factor 3, which impacts on both non LVA and LVA-based
cenarios, we can identify two cases: keeping constant versus increasing
he maximum number of neighbours to use for simulation. Assuming
he maximum number of neighbours does not change, the amount
f work in the simulation step can be increased by assembling and
olving more kriging linear systems per simulation point. This situation
ccurs on non LVA-based and LVA-based SISIM implementations, since
or each category, a kriging linear system should be assembled and
olved per each simulation point. In sisim scenario, 10 categories are
imulated, which result in 10× more work per simulation compared
gainst sgsim scenario. In escondida scenario, 4 categories are simulated,
hich results in 4× more work per simulation point compared against
wiss-roll scenario. The increment of work per simulation point does
ot change the form of the point-level curve, but it will impact on
erformance by delivering better speedup and efficiency values, at
igher execution time. Multi-threaded execution becoming more effi-
ient as the problem becomes larger (more computing needed) is a
ell-known behaviour denoted weak scalability (the reader can refer to

he definition of Gustafson’s law from Hennessy and Patterson (2012)
r the original reference from Gustafson (1988)). On the other hand,
f the maximum number of neighbours increases, the amount of work
n the simulation step will be increased automatically, since the size of
he kriging linear systems will increase accordingly. Fig. 18 shows the
peedups obtained using 32 and 64 neighbours as the maximum values
or sgsim and sisim scenarios. Similarly, Fig. 19 shows the equivalent us-
ng 48 and 96 as the maximum for the swiss-roll and escondida scenarios.
n all figures we can observe an increment of the speedup values when
igher number of neighbours are used. A slight decline in the speedup
rend can be observed only for escondida using 96 neighbours, which is
aused by overhead in the execution due to multicore contingency and
igher memory usage overall.

. Conclusions and future work

The proposed implementation is able to speed-up the execution us-
ng code optimizations and allowing parallel execution using OpenMP.
ompared against the sequential baseline codes, using 16 OpenMP
hreads it delivers speedups of 12× and 50× for non LVA-based SGSIM

and SISIM respectively, and using 20 OpenMP threads it delivers
speedups of 56× and 1822× for LVA-based SGS and SISIM respectively.
Results for SISIM codes were obtained by also refactoring the baseline
code neighbour search to allow KDTree-based search. The code of
KDTree search was also optimized to reduce overhead due to large
number of conditional evaluations and branching in the CPU. On
LVA-based codes, by decreasing the parameters 𝑘𝑐𝑜𝑣𝑎 and 𝑘𝑠𝑒𝑎𝑟𝑐ℎ, the
execution speed can be increased, with a trade-off in the accuracy
obtained. In any case, the proposed implementation obtains the same
18
results as the baseline implementation, regardless of the number of
parallel threads used in the execution. This level of accuracy is possible
since the same random path of simulation is used on both implemen-
tations, preserving neighbours calculations and the order of simulated
values (assuming the same pseudo-random number generator seeds and
neighbour search method). This is exactly the main purpose of using an
exact path-level approach for parallelization, as discussed in previous
sections.

We expect that this implementation will allow many researchers and
practitioners to improve their tasks in stochastic resource simulations.
Since the code will be released publicly, every aspect can be modified
and improved by the community of interested users and institutions.

In terms of future work and next steps, two aspects will be ex-
plored: performance and usability improvements. In the first aspect,
approximate computing approaches will be explored in order to reduce
the execution time keeping statistically similar results. Additionally,
improved techniques to accelerate the distance matrix building on LVA
scenarios. In the second aspect, usability improvement can be achieved
by allowing Python or R wrappers to the main execution parts of the
code.

8. Source code

The current version of the code is available in the following links
https://github.com/operedo/parallel-sgs-lva
https://github.com/operedo/parallel-sisim-lva

CRediT authorship contribution statement

Oscar F. Peredo: Study, Conception, Design, Acquisition/generation
of data, Analysis and interpretation of results, Parallel design, Writing
– original draft, Writing – review & editing. José R. Herrero: Parallel
design, Writing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors acknowledge the donated resources from project
PID2019-107255GB of the Spanish Ministerio de Economía 𝑦 Competi-
tividad, and project 2017-SGR-1414 from the Generalitat de Catalunya,
Spain.

References

Boisvert, J.B., 2010. Geostatistics with locally varying anisotropy. (Ph.D. thesis).
University of Alberta.

Boisvert, J.B., Deutsch, C.V., 2011. Programs for kriging and sequential Gaussian
simulation with locally varying anisotropy using non-euclidean distances. Comput.
Geosci. 37 (4), 495–510.

Boost.org, 2012. Boost C++ libraries. URL http://www.boost.org.
Chilès, J.-P., Delfiner, P., 1999. Geostatistics : Modeling Spatial Uncertainty. In: Wiley

series in probability and statistics, Wiley, New York, URL http://opac.inria.fr/
record=b1098313A Wiley-Interscience publication.

Curriero, F.C., 2006. On the use of non-euclidean distance measures in geostatistics.
Math. Geol. 38 (8), 907–926.

Deutsch, C., Journel, A., 1998. GSLIB: Geostatistical Software Library and User’s Guide,
second ed. In: Applied geostatistics series, Oxford Univ. Press, New York, NY.

Dijkstra, E.W., 1959. A note on two problems in connexion with graphs. Numer. Math.
1, 269–271.

Graham, S.L., Kessler, P.B., McKusick, M.K., 2004. Gprof: A call graph execution
profiler. SIGPLAN Not. 39 (4), 49–57. http://dx.doi.org/10.1145/989393.989401.

Gustafson, J.L., 1988. Reevaluating Amdahl’s law. Commun. ACM 31 (5), 532–533.
Gutierrez, R., Ortiz, J., 2019. Sequential indicator simulation with locally varying

anisotropy – simulating mineralized units in a porphyry copper deposit. J. Min.
Eng. Res. 1 (1), 1–7. http://dx.doi.org/10.35624/jminer2019.01.01.

https://github.com/operedo/parallel-sgs-lva
https://github.com/operedo/parallel-sisim-lva
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb1
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb1
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb1
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb2
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb2
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb2
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb2
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb2
http://www.boost.org
http://opac.inria.fr/record=b1098313
http://opac.inria.fr/record=b1098313
http://opac.inria.fr/record=b1098313
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb5
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb5
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb5
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb6
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb6
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb6
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb7
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb7
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb7
http://dx.doi.org/10.1145/989393.989401
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb9
http://dx.doi.org/10.35624/jminer2019.01.01

Computers and Geosciences 160 (2022) 105027O.F. Peredo and J.R. Herrero
Hennessy, J.L., Patterson, D.A., 2012. Computer Architecture: A Quantitative Approach,
fifth ed. Morgan Kaufmann, Amsterdam.

Huo, X., Ni, X.S., Smith, A.K., 2004. A survey of manifold-based learning methods. In:
Recent Advances in Data Mining of Enterprise Data: Algorithms and Applications.
pp. 691–745. http://dx.doi.org/10.1142/9789812779861_0015.

Intel, 2020. Math kernel library. URL https://software.intel.com/en-us/mkl.
Isaaks, E.H., Srivastava, R.M., 1990. an Introduction to Applied Geostatistics. Oxford

University Press, USA.
Kennel, M.B., 2004. KDTREE 2: Fortran 95 and C++ software to efficiently search for

near neighbors in a multi-dimensional euclidean space. arXiv:physics/0408067.
Nunes, R., Almeida, J.A., 2010. Parallelization of sequential Gaussian, indicator and

direct simulation algorithms. Comput. Geosci. 36 (8), 1042–1052.
Nussbaumer, R., Mariethoz, G., Gravey, M., Gloaguen, E., Holliger, K., 2018. Acceler-

ating sequential Gaussian simulation with a constant path. Comput. Geosci. 112,
121–132. http://dx.doi.org/10.1016/j.cageo.2017.12.006.
19
OpenMP Architecture Review Board, 2008. OpenMP application program interface
version 3.0. URL http://www.openmp.org/mp-documents/spec30.pdf.

Peredo, O., Baeza, D., Ortiz, J.M., Herrero, J.R., 2018. A path-level exact parallelization
strategy for sequential simulation. Comput. Geosci. 110, 10–22.

Peredo, O., Ortiz, J.M., Herrero, J.R., 2015. Acceleration of the geostatistical software
library (GSLIB) by code optimization and hybrid parallel programming. Comput.
Geosci. 85, 210–233, Part A.

Rasera, L.G., Machado, P.L., Costa, J.F.C., 2015. A conflict-free, path-level paral-
lelization approach for sequential simulation algorithms. Comput. Geosci. 80,
49–61.

Tenenbaum, J.B., de Silva, V., Langford, J.C., 2000. A global geometric framework for
nonlinear dimensionality reduction. Science 290 (5500), 2319.

Vargas, H.S., Caetano, H., Filipe, M., 2007. Parallelization of sequential simulation
procedures. In: Proceedings of the Petroleum Geostatistics. EAGE (European
Association of Geoscientists and Engineers). EAGE.

http://refhub.elsevier.com/S0098-3004(21)00308-3/sb11
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb11
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb11
http://dx.doi.org/10.1142/9789812779861_0015
https://software.intel.com/en-us/mkl
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb14
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb14
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb14
http://arxiv.org/abs/physics/0408067
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb16
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb16
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb16
http://dx.doi.org/10.1016/j.cageo.2017.12.006
http://www.openmp.org/mp-documents/spec30.pdf
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb19
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb19
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb19
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb20
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb20
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb20
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb20
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb20
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb21
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb21
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb21
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb21
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb21
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb22
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb22
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb22
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb23
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb23
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb23
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb23
http://refhub.elsevier.com/S0098-3004(21)00308-3/sb23

	Acceleration strategies for large-scale sequential simulations using parallel neighbour search: Non-LVA and LVA scenarios
	Introduction
	Theoretical background
	Sequential implementation
	Graph building routines
	Distance matrix building routines
	Embedding building routines
	Sequential simulation routines

	Accelerated/parallel implementation
	Parallel neighbour search
	Parallel sequential simulation
	Parallel embedding building
	Parallel distance matrix building

	Results
	Performance tests for parallel non LVA-based codes
	Performance tests for parallel LVA-based codes

	Analysis
	Accuracy
	Efficiency

	Conclusions and future work
	Source code
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

