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Abstract— This paper presents a health-aware Model Pre-
dictive Control (MPC) including fault-tolerant capabilities for
drinking water transport networks. When a fault has occurred,
the predictive controller must be redesigned to deal with the
fault. This is done by considering the system reliability that is
incorporated into the MPC model. The inclusion of components
and system reliability in the MPC model is done through the
Linear Parameter Varying (LPV) modelling approach with the
aim of maximizing the availability of the system by considering
system reliability. As a result, the MPC design is modified
by considering the reliability model such that additionally to
achieve the best achievable performance after the fault, the
controller try to preserve the remaining useful life. The solution
to the optimization problem related to the MPC problem
is achieved by solving a series of Quadratic Programming
(QP) problems thanks to the proposed LPV formulation. The
proposed approach is applied to a part of a real drinking
water transport network of Barcelona for demonstrating the
performance of the method.

I. INTRODUCTION

Drinking Water Networks (DWNs) are critical infras-
tructures in urban environments. These networks require
advanced supervisory-control approaches to guarantee and
maintain optimal performance even in faulty situations. Wa-
ter consumption can change in both the short and the long
term, ordinarily represented by different time-based models
according the zone [1]. Therefore, better modelling and fore-
casting of demands will improve the modelling and control
of DWNs. DWNs are multivariable dynamic constrained
systems that are created by the interconnection of several
subsystems (tanks, actuators, sources, intersection nodes and
consumer sectors) [2]. Besides, its optimal management, that
can be expressed as a multi-criteria problem, is an important
challenge. Then, these complications of DWNs has led to the
use of some variants of model predictive control (MPC) as
a supervisory control approach [3]. Concerning the optimal
control approaches for managing water systems, standard
MPC is not implemented classically because there is no ref-
erence to be tracked. Regularly, standard MPC is expressed
as an optimization problem that penalizes the tracking error.
Alternatively, Economic MPC (EMPC) provides a systematic
and suitable approach for managing systems by optimizing
economic performance [4].

The MPC of DWNs needs to operate efficiently even in
faulty situations. This problem calls for the use of a fault-
tolerant control (FTC) approach after a fault is diagnosed
to avoid the MPC stopping every time a fault appears [5].
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FTC includes a variety of control approaches, which keep
control systems in the appearance of faults running in a safety
mode with satisfactory performance degradation. The object
of FTC is to maintain a system fully effective by designing
its control system such that system performance can be kept
close to acceptable levels and stability requirements can be
guaranteed, not only when the system is in nominal situations
but also in case of the appearance of system component
faults. Thus, FTC should, at the very last, guarantee an
admissible degraded performance [6].

Recently, the problem of system reliability and actuator
lifetime preservation has been gaining more interest from
the researcher community. In [7], for reducing the mainte-
nance cost, the actuator lifetime is perceived as a controlled
parameter where is achieved by applying a linear-quadratic
optimal controller. An MPC strategy based on distributing
the loads with redundant actuators is presented in [8], while
forcing constraints to ensure that the accumulated actuator
degradation will not appear at the unsafe level at the end of
the process. In [9], authors designed a health-aware MPC
controller based on fatigue-based prognosis that aims at
minimizing the damage of components. On the other hand,
the incorporation of fault tolerance in MPC has already
been regarded by several studies. In [10], authors provided a
general overview of how to embed fault tolerance in MPC.
The inclusion of fault-tolerance in MPC has principally been
presented by considering practical strategies regarding the
application domain. In [11], fault tolerant MPC has been
applied to sewage networks by considering an hybrid systems
framework. A method for incorporating fault tolerance in
MPC for smart grids to guarantee the suitable value of
energy in storage devices and reliable coverage of essential
consumer demand provided [12]. In [2], an off-line approach
to reliability based reconfiguration of an EMPC controller by
structural analysis of the faulty actuators is proposed.

One disadvantage of the previous approaches to reliability-
based MPC including fault-tolerance is that they consider
the reliability at the actuator level but not at the system
level, i.e. by taking into account the interconnection topology
because of the non-linearity of the resulting constraints
leading to the use of non-linear MPC (NMPC). NMPC is
computationally expensive and, there is no guarantee that
the solution of the optimization problem is the global one.
Besides, the evaluation of the reliability was done off-line
being necessary more time to recalculate the reliability model
and modifying the controller by means structural analysis.
Thus, by transforming the nonlinear problem to a quadratic
problem by a linearization method is one way for solving the



optimization problem in case of a nonlinear system. But, the
system is modelled by an incremental model that has to be
linearized again at each iteration. Alternatively, an approach
has been recently developed using Linear Parameter Varying
(LPV) models [13]. LPV models are a class of linear models
whose state-space matrices depend on a set of time-varying
parameters that can be measured/estimated on-line. The main
benefit of LPV models is that the system nonlinearities
are embedded in the varying parameters transforming the
nonlinear system into a linear-like system with varying
parameters [14].

The main contribution of this paper is to provide a health-
aware MPC controller including fault-tolerance that uses
on-line reliability evaluation for deciding the best control
strategy after the fault occurrence. The MPC controller is
redesigned to deal with the fault minimizing the degradation
of performance and reliability. By using the LPV framework,
the system reliability is incorporated into the MPC model.
The augmented model that includes both the reliability and
DWN models is expressed as an LPV model where at each
time instant the scheduling parameters are updated. In this
way, the MPC controller design can be modified to achieve
the best achievable performance by updating the model
reliability according to the control actions. Therefore, the
control inputs are created to satisfy the control objectives
and simultaneous to increase the lifespan and reliability of
the system components. The proposed approach is tested in
a part of the Barcelona water transportation network.

The remainder of the paper is organized as follows.
The MPC controller for the transport DWN that includes
fault tolerance capabilities is introduced in Section II. In
Section III, the system reliability and reliable-aware MPC-
LPV including fault tolerance is provided. The results of
an application of this approach based on the Barcelona
case study are presented in Section IV. Finally, Section V
concludes with some suggestions of research lines for future
work.

II. MPC OF DWN WITH FAULT-TOLERANT CAPABILITIES

A. Flow-based control-oriented model

Several modeling methods dealing with DWNs have been
proposed in the literature depending if the transportation or
distribution layer is considered. (see, e.g., [15], [16]). In this
paper, since the transportation layer is considered, a control-
oriented modeling approach that is based on a flow model
is considered that follows the principles introduced by the
authors in [16]. A DWN is a network which comprises a
set of pressurized pipes, water tanks at different elevations,
a number of pumping stations and valves to manage water
flows, pressure, and elevation to supply water to consumers.
Consider a general DWN as represented by a directed graph
G(ν, ε), where a set of elements, i.e., nd sinks, ns sources,
nx storage tanks and nq intersection nodes are represented
by v ∈ ν vertices, which are connected by a ∈ ε links.
According to the network function, water is controlled in the
network by nu flow actuators (i.e., valves and pipes), stored
in tanks, from particular origin locations to specific target

locations. Following flow/mass balance principles, a discrete-
time model based on linear differential algebraic equations
(DAEs) for all time instant k ∈ Z≥0 can be formulated for
a given DWN as follows:

x(k + 1) = Ax(k) +Bu(k) +Bddm(k), (1a)
0 = Euu(k) + Eddm(k), (1b)

where the difference equations in (1a) present the dynamics
of the storage tanks, and the algebraic equations in (1b)
describe the static relations in the network (i.e., mass balance
at junction nodes). A ∈ Rnx×nx , B ∈ Rnx×nu , Bd ∈
Rnx×nd , Eu ∈ Rnd×nu , Ed ∈ Rnd×nd and C ∈ Rny×nx

are time-invariant matrices of that depends on the network
topology. The system is subject to hard input and state as

x(k) ∈ X M
={x(k) ∈ Rnx |x ≤ x(k) ≤ x}, ∀k (2a)

u(k) ∈ U M
={u(k) ∈ Rnu |u ≤ u(k) ≤ u}, ∀k (2b)

where vectors x ∈ Rnx and x ∈ Rnx determine the
minimum and maximum possible state values of the system,
respectively. Similarly u ∈ Rnu and u ∈ Rnu determine
the minimum and maximum possible value of manipulated
variables, respectively.

B. EMPC Formulation of DWN

Computing the input commands, ahead of time, to obtain
the optimal performance of the network according to a set
of control goals is the purpose of applying MPC techniques
for managing water transportation networks. The control
goal can formulated as the minimization of a convex multi-
objective cost function including the following goals:

1) Economic costs Minimization: Minimizing the eco-
nomic costs that include water production and electrical costs
related to pumping is the main control objective of the DWN.
Transporting drinking water to proper elevation levels by the
network involves significant electricity costs due to pumping.
Therefore, the cost function related to this objective can be
expressed as

`e(k) , α(k)>Weu(k), (3)

where α(k) , (α1 + α2(k)) ∈ Rnu , α1 ∈ Rnu denotes
a fixed water-production costs that are related to the water
treatments and α2 ∈ Rnu corresponds to a time-varying
water cost associated to pumping that varies in each time
instant k with respect to the dynamic electricity tariff. We

indicates the weighting term.
2) Safety Management: Regarding preserving water stock

despite the change of water demands among two consec-
utive MPC iterations, an appropriate safety capacity for
each storage tank is required to be maintained. A possible
mathematical formulation for this goal can be formulated as
follows

`s(k) ,

{
‖x(k)− xs‖2, ifx(k) ≤ xs
0, otherwise

(4)

where xs indicates the vector of the safety levels for all the
tanks. The safety cost function can be expressed through



a soft constraint by adding a slack variable ξ that can be
formulated as

`s(k) , ξ>(k)Wsξ(k), (5)

where the next soft constraint is included x(k) ≥ xs− ξ(k),
and Ws is diagonal positive definite matrix.

3) Smoothness of Control Actions: Pumps and valves
are the considered actuators in a DWN. To guarantee the
smoothing effect, the slew rate of the control actions among
two sequential time instants is penalized according to

`∆u(k) , ∆u(k)>W∆u∆u(k), (6)

where ∆u(k) , u(k) − u(k − 1), and W∆u is a diagonal
positive definite matrix.

According to the network model (1), the MPC controller
design is based on minimizing the following cost function
in the prediction horizon Np

J =

Np∑
l=0

(`e(l|k) + `s(l|k) + `∆u(l|k)). (7)

Following [2], the control problem is solved by obtaining
the control law from a provided set of control laws U , such
that the controlled system reaches the control objectives O
while its behaviour convinces a set of constraints C.

C. Inclusion the fault-tolerant abilities

When faults are considered, the control problem 〈O, C,U〉
described earlier will be reformulated to take into account
their effect. By considering an active FTC strategy, two
main strategies for adapting the MPC law to include fault
tolerance can be applied: system reconfiguration and fault ac-
commodation. In this paper, system reconfiguration approach
is considered.

The system reconfiguration involves obtaining a new set
of constraints Cf (Θf ) i.e. model, where Θf is the set
parameters modified by the faults, such that the control
problem 〈O, Cf (Θf ),Uf 〉 should be solved. This approach
can be applied in case the fault detection and isolation (FDI)
does not provide the fault estimation. Therefore, the faulty
components are unplugged by the monitoring system and the
control objectives must be achieved by using the non-faulty
components. In the case of faulty actuators, the model (1)
that used by the MPC controller is modified as follows:

x(k + 1) = Ax(k) +
∑
i∈IN

Biui(k) +Bdd(k), (8)

0 =
∑
i∈IN

Eu,iui(k) + Edd(k), (9)

where IN is the subset of still-healthy actuators.
Note that by adapting the model (1) of the MPC controller

using the system reconfiguration approach, the controller
will consider the effect of the fault in the system model
when calculating the control action u∗0|k. Following [17],
the differences of MPC with other control laws (e.g., pole
placement and LQR ) is that the control should not be com-
puted off-line for the given set of faults by creating a bank

of controllers that must be gain-scheduled on-line taking to
account the fault features. But, instead the reconfiguration
of the MPC control law is done on-line by including the
fault effect in the control model (8). However, the MPC
controller might not be able to determine a control input
neither the calculated control input can not steer the system
to a satisfactory performance. Because of this, when applying
an MPC controller the effect of the fault and the admissibility
of the computed control input requires to be assessed on-line
as discussed in [2].

III. FAULT-TOLERANT HEALTH-AWARE
MPC-LPV

A. Actuator fault-tolerance evaluation

As discussed in [2], in case that a fault occurs, it may
occur that

• the system has lost some of the components needed to
continue with the control, or

• system performance is degraded to an unacceptable
level and it is not worth to continue with system control
by using fault-tolerant procedures.

When a reconfiguration strategy is applied, the faulty
actuator is eliminated and the connectivity between sources
and demands might be lost. This will affect both reliability
and controllability. However, these structural properties do
not consider the physical constraints of the system actuators.
Therefore, in spite of that connectivity is maintained, the
optimization problem related to the MPC may steer to the
unfeasible solution, due to the reduction of capacity of the
remaining actuators or the inadequate performance of the
control loop. Therefore, to prevent from such problems,
the actuator redundancy should be guaranteed by design.
The redundancy assessment of actuator can done by using
the reliability analysis. Actually, after a fault has occurred,
the reliability model should be evaluated again. Hence, it
necessary to redo the analysis of the reliability and it could
be the fault affects a non-redundant actuator but also a critical
one. In this case, if the fault affects a critical actuator, MPC
can not to continue with the control of the system. On the
other hand, if the fault affects the redundant actuator then it
is still possible to continue the control.

B. Reliability analysis algorithm

Failure rate and reliability Concept: Let us first define
the concept of failure rate which is important to obtain relia-
bility. The failure rate, denoted by λ, represents the fraction
of the density of the stochastic lifetime to the remainder
function (i.e., conditional probability). In this paper, failure
rates are determined from actuators under various levels of
load respect to the applied control input. The most widely
used relationship is based on assuming that actuator fault
rates varied through the load by the following exponential
law

λi = λ0
i exp

(
βiui(k)

)
, i = 1, 2, ...,m (10)



where λ0
i represents the baseline failure rate (nominal failure

rate) and ui(k) is the control action a time k for the i-
th actuator. βi is a constant parameter that depends on the
actuator characteristics.

From the mathematical point of view, reliability R(t)
is the probability that a system will be successful in the
time interval from 0 to t. Besides, the unreliability F (t) is
determined as the probability that the component or system
encounters the first failure or has failed one or more times
among the time interval 0 to time t. Considering that the
system (or component) is always in one of the two mentioned
states, the following relationship is provided

F (t) +R(t) = 1. (11)

In the useful life period, the component reliability at a
certain time t is given by

Ri(t) = exp
(
− λ0

i t
)
, i = 1, 2, ...,m (12)

Hence, the evolution of the component reliability of a i-
th system component in discrete-time can be computed as
follows

Ri(k + 1) = Ri(k)exp

(
− Ts

k+1∑
s=0

λi(s)

)
, i = 1, 2, ...,m

(13)
where λi(s) is the failure rate that is acquired from the i-
th component under varying levels of load ui and Ts is the
sampling time.

System reliability modeling by using Markov’s Pro-
cesses: Let ei be a discrete random variable in the Markov
process representing the state of the i-th component with two
possible mutually exclusive states, i.e. up (Up) and down
(Dn). The probabilistic state transition between the states is
defined by:

PMC(ei(k + 1)|ei(k)) =

[
1− p12 p12

0 1

]
(14)

where p12
∼= λ∆t and ∆t represents the time interval, and

p12 can be interpreted as the probability that the component
goes from state Up to Dn after ∆t.

Therefore, it is clear that the failure rate is the probability
of component state to be Dn at instant time k+ 1 given that
its state was Up at time k, that is:

λi(k) = Pr(ei(k + 1) = Dn|ei(k) = Up), (15)

and allows to compute the component reliability using:

Ri(k + 1) = Pr(ei(k + 1) = Up). (16)

Therefore, the overall system reliability RG(k) depends
on the actuators configuration which can be computed as

Rg(k) = 1−
s∏

j=1

(
1−

∏
i∈Ps,j

Ri(k)

)
, (17)

where j = 1, .., s is the number of minimal paths Ps. A
minimal path is a set of components such that the elimination
of one of them will lead the set not to be a successful path.

Notice that the evaluation of this probability could be quite
involved using standard reliability analysis but thanks to the
Markov chain mechanism is quite simple.

In order to integrate the reliability in the MPC model
as an additional state variable, a transformation is required
that allows to compute reliability in a linear-like form. The
proposed transformation is based on using the logarithm of
(17). As stated in (11), (17) can be rewritten as

log(QG(k)) = log

( s∏
j=1

(
1−

∏
i∈Ps,j

Ri(k)

))
, (18)

and by introducing a change of variable

zj(k) = 1−
∏

i∈Ps,j

Ri(k), (19)

C. Inclusion of Fault-tolerant Capabilities

In this section, the integration of the reliability model in
the MPC controller augmenting the DWN model is proposed.
As previously discussed, when a fault occurs, the MPC law is
modified to cope with the fault, as discussed in Section 2.3.
As explained in [18], the value of the actuator failure rate
changes because the control action should be increased in
order to compensate for the fault effect. In this case, energy
consumption increases and the value of the failure rate also
increases due to the actuator load increment. Thus, there is
an interplay between maintaining closed-loop performance
and reliability. To maintain the desired performance, the
relationship between the actuator load increment and reli-
ability can be established. Therefore, a new objective can
be included in the MPC controller that aims to preserve the
system reliability by considering the reliability model (17).

By following this procedure, the augmented MPC model
including fault can be formulated as follows

xg(k + 1) = Agxr(k) +
∑
i∈IN

Bg,iui(k) +Bd,gdm(k),

0 =
∑
i∈IN

Eu,iui(k) + Eddm(k),

(20)

where the state and output vector are given by xg =
[x, log(Qg), log(R1), ..., log(Ri)]

T and yg = [y, log(Qg)]T ,
respectively. The augmented matrices are defined as

Ag =



A 0nx×ni+1

01×nx 1
∑s

i∈Ps,j
βj(k)

0ni×nx Ini×ni


, Bd,g =



Bd,nu×nu

0ni+1×nBd


,

Bg =



Bnu×nu

0

−λi × Ini×ni


, Cg =

[
C 0 0 · · · 0
0 1 0 · · · 0

]
.

(21)



where `Rg(k) , Q>g w3Qg is additional objective with the
corresponding weight w3 into the MPC cost function to max-
imize the system reliability. Considering the control action
ui(k) as the scheduling variable related to each actuator and
state in the augmented MPC model, it can be considered
(20) as an LPV model. In this way, by following the MPC-
LPV approach in [1], the MPC optimization problem can
be formulated as a QP problem by using an estimation of
scheduling variables.

IV. APPLICATION EXAMPLE

The system used as a case study is a part selected from
the Barcelona DWN that reported in [15] (see Figure 1).
The reliable-aware MPC-LPV including the effect of fault
proposed in the previous section has been implemented in
simulation.

The objective of the MPC, as has been explained before,
is to minimize the multi-objective cost function (7) with and
without the reliability objective. The prediction horizon is
24 hours because the system and also the electrical tariff
have periodicity of 1 day. The analysis is exhibited for
a time period of 12 day (288 hours) with sampling time
of 1 hour. The weights of the cost function are We =
100, Ws = 1, W∆u = 1 and WRg = 10. The tuning of these
parameters is adjusted according to that the objective with
the highest preference is the economic cost, which must be
minimized maintaining proper levels of safety volumes and
control action smoothness and the same time should cover
the effect of the fault and preserve the system reliability. The
simulation results based on real data are obtained using the
CPLEX optimization package and Matlab R2015b (64 bits),
running in a PC Intel(R) Core(TM)i7-5500 CPU at 2.4 GHz
with 12 GB of RAM.

The FTC reconfiguration strategy of the MPC controller
based on proposed approach is now illustrated for the case
of a fault in actuator 29, which is redundant. Fig.2 presents
the volume behaviour of tank 9, which is supplied by two
actuators: 33 and 29. According to Fig.2, it can be observed
that in a non-faulty situation, the volume of tank 9 shows

Fig. 1: Barcelona drinking water network

a repeated pattern (filling when pumping is cheaper and
emptying otherwise) to provide the water demand. But, when
a fault occurs (at T = 150 h), if the MPC controller is not
reconfigured, tank 33 volume drops to zero at T = 157 h and
demand is not satisfied anymore (unfeasible solution). But,
if the MPC controller is reconfigured by removing the faulty
actuator 29 from the control model and in the reliability
model, the tank level can supply the demand. However,
the tank volume reduces with time, meaning that the faulty
actuator should be fixed. Figures 3 and 4 show the behaviour
of actuators 29 and 33. Actuator 33 starts to deliver more
flow to compensate for the faulty actuator 29 that is removed.

Furthermore, the analysis of total system reliability with
and without the reliability objective in the controller are
presented in Fig. 5. It can be seen that by considering the
reliability objective the life time of the network is improved
from 0.7994 to 0.933 and it is about 17.02% of reliability
improvement in the MPC-LPV controller with the reliability
objective.

0 50 100 150 200 250 288

Time [h]

699.9

700

700.1

700.2

700.3

700.4

700.5

700.6

700.7

700.8

W
a
te

r 
F

lo
w

 [
m

3
/s

 ]

Normal Operation

Fault occurrence

Fault occurrence  with MPC reconfiguration

Fig. 2: Evolution of tank 9 with MPC using reconfiguration.

V. CONCLUSION

In this paper, the inclusion the fault-tolerant capabilities
in a health-aware MPC controller for drinking the water
network is proposed . The proposed approach allows a degra-
dation analysis of the system to be implemented in terms
of performance and reliability. By using the LPV frame-
work, the system reliability is incorporated into the control
algorithm. In this way, the MPC controller is modified to
achieve the best achievable performance by updating the
model reliability according to the control action. Moreover,
the proposed health-aware MPC-LPV approach is efficiently
solved iteratively by a series of QP problems that uses an
update MPC model updated via the scheduling parameters
calculated at each time instant. The results obtained show that
the total system reliability of the DWN network is maximized
with the proposed controller including the reliability objec-
tive. Finally, the proposed approach has been successfully
tested in the Barcelona water network. Future research will
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Fig. 3: Water flow in actuator 29 with MPC using reconfig-
uration.
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Fig. 4: Water flow in actuator 33 with MPC using reconfig-
uration.
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Fig. 5: Evaluation of total system reliability .

focus on the study of FTC accommodation strategy of the
MPC controller.
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