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Abstract—Autonomous vehicles are the upcoming solution
to most transportation problems such as safety, comfort and
efficiency. The steering control is one of the main important
tasks in achieving autonomous driving. Model predictive control
(MPC) is among the fittest controllers for this task due to its
optimal performance and ability to handle constraints. This
paper proposes an adaptive MPC controller (AMPC) for the path
tracking task, and an improved PSO algorithm for optimising
the AMPC parameters. Parameter adaption is realised online
using a lookup table approach. The propose AMPC performance
is assessed and compared with the classic MPC and the Pure
Pursuit controller through simulations.

Index Terms—Autonomous Vehicles, Optimization, Model Pre-
dictive Control, Adaptive Control, Particle Swarm Optimization.

I. INTRODUCTION

The increase in road accidents and traffic jams all around the
world has encouraged research to further develop autonomous
driving technologies [1]. This field has received great attention
and has seen some important advances in the last decades [2],
[3], especially urban autonomous driving that is still a big
challenge today. Among the most famous competitions in the
field was the DARPA grand challenge that took place in 2007
[4], where several research groups tested their autonomous
driving systems in an urban-like environment but only six of
them managed to finish the race.

Self-driving vehicles do not need human intervention to
navigate their path, they are fully controlled by the control
module that commands the different actuators such as the
accelerator and the steering wheel. Autonomous vehicles are
divided into 5 automation levels; level zero represents the
conventional cars with no automation, level one includes
simple automatic driving systems like adaptive cruise control
and electronic stability control. Level two introduces advanced
systems like speed and steering control or emergency braking
systems. Level three allows the vehicle to sense the environ-
ment through multiple sensors and drive autonomously while

requiring human intervention in infeasible situations. In level
four, the vehicle is fully autonomous with only occasional
human intervention and only for certain driving modes, while
in level five the vehicle is fully autonomous in all driving
modes and without any human intervention [5]. Path tracking
is a fundamental part of autonomous driving, it ensures that
the vehicle follows a predefined trajectory and this is achieved
by controlling the vehicle lateral dynamics. Various control
strategies for this task are reported in the literature. For
example, authors of [6] developed a lateral control system
based on the adaptive pure pursuit controller, they used a PI
controller to reduce the lateral offset and improve the tracking
error caused by the look ahead distance. In [7], an output-
feedback robust controller is introduced to assist in the path
tracking task, the controller considers different driver’s charac-
teristics described by uncertain parameters such as delay time
and achieves good stability and tracking performance through
regional pole placement. Han et al. [8] designed an adaptive
neural network PID controller for path tracking, they used
it with a second order vehicle model whose parameters are
estimated using the forgetting factor least square estimation.
Kebbati et al. [9] developed a self-adaptive PID controller
for speed regulation using neural networks and then genetic
algorithms. Hu et al. [10] introduced an integral sliding mode
controller for path tracking of an independently four-wheel
actuated vehicle, the proposed nonlinear feedback controller
considers multi-input multi-output (MIMO) systems with time
varying trajectories. However, most of the above mentioned
strategies cannot handle constraints that are imposed by the
safety and physical limitations of actuators.

Model predictive control (MPC) stands out in this field
due to the fact that it systematically handles constraints on
control, output and state signals, in addition to the fact that it
easily handles MIMO systems. In [11], Zhang et al. designed
an MPC controller for path following with low computation
load, for which they used Laguerre functions to approximate
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the control signal, and exponential weight to improve the
tracking accuracy. Guo et al. [12] developed a path-tracking
MPC controller that considers measurable disturbances, the
authors considered the varying road conditions and small-angle
assumptions as a form of measurable disturbance and solved
the control problem using the differential evolution algorithm.
In MPC control methods, there are many parameters to tune
such as the weighting matrices and prediction and control
horizons which is not trivial. This has not been addressed in the
above mentioned papers, but in [13] and [14] the authors used
fuzzy inference systems (FIS) to tune the weighting matrices
of the MPC. Papers [15] and [16] used genetic algorithms
(GA) and particle swarm optimization (PSO) to optimize
the MPC tunable parameters. Nevertheless, the controllers in
these approaches remain non adaptive to varying parameters
and external uncertainties. In [17], Lin et al. designed an
adaptive MPC controller that adapts to estimated varying road
friction and cornering stiffness coefficients and in [18] an
adaptive MPC was designed for lane keeping systems where
the steering offset is continuously learned from measured data
and adapted.

This paper proposes an adaptive MPC controller for the
lateral control task, the contributions of this work are threefold:
first, the design of an optimized adaptive MPC controller with
Laguerre functions for the lateral control task. Second, the
optimization of MPC parameters and cost function weight
matrices with a new improved PSO algorithm. Third, the
adaptation of the MPC, cost function and Laguerre function
parameters online using a lookup table. Section II of this
paper presents the vehicle lateral dynamics modeling and
MPC control formulation. The controller optimization with
improved PSO algorithm is introduced in section III. The
results of the proposed controller are evaluated and discussed
in section IV. Section V gives final conclusions and some
suggestions for the continuation of future research.

II. VEHICLE MODELING AND CONTROLLER DESIGN

A. Vehicle Lateral Dynamics Model

Path tracking is associated with the lateral motion of the
vehicle, which is the displacement on the y-axis and the yaw
motion around the z-axis. Therefore, the bicycle (2-DOF)
dynamics model shown in Fig. 1, can accurately represent the
vehicle motion and it is used to formulate the MPC controller.
Applying newton’s law of motion along the y-axis and z-axis
yields the following equations:{

m(ÿ + ẋφ̇) = 2Fyf + 2Fyr
Izφ̈ = 2lfFyf − 2lrFyr

(1)

where, m represents the mass of the vehicle, y, x and φ are the
respective lateral and longitudinal positions and the heading
angle of the vehicle, Fyf and Fyr are the longitudinal forces
of the front and rear wheels respectively and lf and lr are the
distances from the front and rear wheel axles to the vehicle’s
center of gravity (CG). The longitudinal force Fy is a result
of the nonlinear interaction between the tires and the road, In

this work the linearized tire model under the assumption of
small slip angles is used and it is given as follows:{

Fyf = Cyfαf
Fyr = Cyrαr

(2)

with Cy(f,r) and a(f,r) being the cornering stiffness coefficient
and the lateral slip angle for the front and rear wheels
respectively. The lateral slip angles are given by the following
equations: {

αf = δf − γf
αr = δr − γr

(3)

where δ(f,r) is the front and rear wheel steering angles where
only the front wheel is considered steerable (δr = 0), γ(f,r)
define the angles between the direction of the front/rear wheel
directions and the longitudinal velocity given as:{

tan(γf ) =
ẏ+lf φ̇
ẋ

tan(γr) = ẏ−lrφ̇
ẋ

(4)

The transformation from the vehicle body frame to the inertial
frame is obtained by equation (5):

Ẏ = ẋ sinφ+ ẏ cosφ (5)

Hence, by considering equation (5), using angle approximation
and substituting equations (4) and (3) into (2) and then
equation (2) into (1) we obtain the lateral dynamics model
as the following:

{
m(ÿ + ẋφ̇) = 2[Cyf (δf − ẏ+lf φ̇

ẋ ) + Cyr
lrφ̇−ẏ
ẋ ]

Izφ̈ = 2[lfCyr(δf − ẏ+lf φ̇
ẋ )− lrCyr lrφ̇−ẏẋ ]

(6)
The above mentioned model can be transformed into the
following continuous state space representation:{

ẋc = Acxc +Bcu
yc = Ccxc

(7)

where xc = [ẏ φ φ̇ y]T is the state vector, yc = y is the output
of the system, u = δf is the control input and Ac, Bc and Cc
are the respective state, control and output matrices given by:

Fig. 1: 2-DOF Bicycle dynamic model.
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Cyf lf−Cyrlr

mẋ 0
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B. MPC Controller Design

The linear MPC controller with Laguerre functions is con-
sidered in this paper due to its high computational efficiency.
The idea of MPC control is to use a descriptive model of the
plant to predict its behaviour in the future along a prediction
horizon Np, and produce an optimal control sequence along
the control horizon Nc that minimizes the error between the
set-point and the output of the plant. In the context of path
tracking, MPC aims to minimize the gap between the reference
trajectory and the predicted trajectory. The optimal control
sequence is achieved by minimizing a quadratic cost function
subject to constraints, therefore, solving a constrained convex
optimization problem. However, only the first term of this
sequence is applied at each iteration and the whole prediction-
optimization process is repeated iteratively, this is known as
the receding horizon principle (Fig. 2). The linearized vehicle
dynamic model of (7) is discretized to be used as the prediction
model of the MPC controller:{

x(k+1) = Akx(k) +Bu(k)
y(k) = Cx(k)

(8)

To allow the MPC controller to be adaptive to varying
longitudinal speeds, the state matrix Ak is iteratively updated
with the current longitudinal velocity to produce an adaptive
prediction model for varying speed profiles and not only fixed
longitudinal speeds as is the case in most studies in the
literature [11], [13], [17], [18]. This standard model is then
augmented by embedding an integrator and introducing the
output y(k) to the state vector as follows:{

x̃(k+1) = Ãkx̃(k) + B̃∆ũ(k)
ỹ(k) = C̃x̃(k)

(9)

where the new state x̃ =
[
∆x(k) y(k)

]T
is connected to the

output, the new input signal is ∆ũ(k) and the augmented
system matrices are given by:

Ã =

[
Ak oTm
CAk Iq×q

]
, B̃ =

[
B
CB

]
, C̃ = [om Iq×q] .

om =

n︷ ︸︸ ︷
[0 0...0] is a zero vector and Iq×q is an identity matrix

with n being the number of states, m the number of inputs
and q the number of outputs. At ki > 0 the state vector x(k)
is assumed available providing the current plant information,
the future control trajectory along the control horizon Nc is
given by:

∆u(ki),∆u(ki + 1), ...,∆u(ki +Nc − 1)

The future plant information is predicted along the prediction
horizon Np using the model given in equation (9) and the
future control parameters through the following equation:

Y = Fx(ki) + Φ∆U (10)

where Y is the future outputs, F is the future prediction
matrix, Φ is the future control matrix and ∆U is the future
control sequence given by:

Y = [y(ki + 1|ki) y(ki + 2|kiy(ki + 3|ki) . . . y(ki +Np|ki)]T

∆U = [∆u(ki) ∆u(ki+1) ∆u(ki+2) . . .∆u(ki+Nc−1)]T

F =


CA
CA2

CA3

...
CANp



Φ =


CB 0 . . . 0
CAB CB . . . 0
CA2B CAB . . . 0

...
...

...
...

CANp−1B CANp−2B . . . CANp−NcB


The goal of MPC is to find the best ∆U that minimizes the

error (Rs − Y ), where Rs = [1 1 . . . 1]r(ki) is the reference
trajectory containing Np set-point information r(ki). Then, the
constrained optimization problem is formulated as:

min J = (Rs − Y )TQ(Rs − Y ) + ∆UTR∆U (11)
s.t : x(k + 1) = Ax(k) +B∆u(k) (12)

∆umin ≤ ∆u ≤ ∆umax (13)
umin ≤ u ≤ umax (14)
ymin ≤ y ≤ ymax (15)

Equation (11) is the cost function to be minimized, (12) is the
vehicle dynamic model and equations (13) to (15) represent
the constraints on the control, control increment and output
signals. Q and R are weighting matrices that penalise the
tracking precision and control magnitude respectively. The set

Fig. 2: MPC receding horizon concept.



of constraints can be reformulated and expressed in terms of
the decision variable ∆U as:

M∆U ≤ γ (16)

such that M contains 3 reformulation sub-matrices and γ
contains the set of upper and lower bounds on the control,
control increment and output signals. The model predictive
control becomes a quadratic programming (QP) problem with
quadratic cost function and linear inequality constraints for-
mulated in the following form:{

J = 1
2x

TEx+ xTK
Mx 6 γ

(17)

where E,K,M and γ are compatible matrices and vectors and
x is the decision variable (∆u) in the quadratic programming
problem, E is assumed symmetric and positive definite.

1) Laguerre function approximation: The Laguerre func-
tion is used to reduce the computation burden by approxi-
mating the control sequence ∆U , the orthogonal feature of
the Laguerre function allows to realize long control horizons
without using a large number of parameters. The discrete form
of a Laguerre function is given by:

Γ1(z) =

√
1− α2

1− αz−1

Γ2(z) =

√
1− α2

1− αz−1
z−1 − α
1− αz−1

...

ΓN (z) =

√
1− α2

1− αz−1
(
z−1 − α
1− αz−1

)N−1

(18)

where 0 6 α 6 1 is the pole of the discretized Laguerre
network called scaling factor and N is the number of terms.
The orthonormality of the Laguerre functions in the time
domain is expressed by:

∞∑
k=0

li(k)lj(k) = 0 for i 6= j. (19)

∞∑
k=0

li(k)lj(k) = 1 for i = j. (20)

The discrete Laguerre function expression is simplified into a
vector form as the following:

L(k) = [l1(k) l2(k) . . . lN (k)]T (21)

where li(k) is the inverse z-transform of Γi(z, α):

Γk(z) = Γk−1(z)
z−1 − α
1− αz−1

(22)

Based on equation (22), the Laguerre sequence can be ex-
pressed recursively by:

L(k + 1) = AlL(k) (23)

with Al being an N × N matrix and a function of α and
β = (1− α2), and L(0) as initial condition given by:

L(0)T =
√
β[1 − α α2 − α3 . . . (−1)N−1αN−1].

For N=5, we have: Al =


α 0 0 0 0
β α 0 0 0
−αβ β α 0 0
α2β −αβ β α 0
−α3β α2β −αβ β α

,

L(0)T =
√
β


1
−α
α2

−α3

α4

 .
For the case of α = 0 the Laguerre function becomes just
a set of pulses and the MPC design becomes equivalent to
the traditional approach discussed earlier. Thus, the control
increment at (k + i) is represented by the Laguerre terms as
the following:

∆u(k + i) =

N∑
j=1

cj(k)lj(i) = L(i)T η, i = 1, 2, ..., Nc (24)

where η = [c1 c2 . . . cN ]T is the Laguerre fitting coeffi-
cient, solving the QP problem becomes a matter of finding
the optimal fitting coefficient ηopt. The solution of the QP
problem given in equations (17) can be divided into two cases;
minimization with equality constraints, and minimization with
inequality constraints. For equality constraints the QP problem
is solved using Lagrange multipliers:

J =
1

2
xTEx+ xT + λT (Mx− γ) (25)

The Lagrange expression is subject to equality constraints
(Mx = γ) and the solution is obtained by finding the optimal
Lagrange multiplier λ and corresponding decision variable x
through partial derivatives equated to zero:

∂J

∂x
= Ex+ F +MTλ = 0 (26)

∂J

∂λ
= Mx− γ = 0 (27)

Hence, the solution is the optimal λopt which contains the
Lagrange multipliers, and the optimal decision variable xopt
which denotes ∆U in the context of predictive control:

λopt = −(ME−1MT )−1(γ +ME−1F ) (28)

xopt = −E−1(MTλopt + F ) (29)

For inequality constraints, (Mx 6 γ) is divided into active
(Mx = γ) and inactive (Mx < γ) constraints and these are
defined in terms of Lagrange multipliers through the Kuhn-
Tucker conditions:

Ex+ F +MTλ = 0

Mx− γ 6 0

λT (Mx− γ) = 0

λ > 0

(30)

The solution in this case requires the identification of active
constraints first and then solving the optimization for those
active constraints while inactive constraints are eliminated. In
this paper, the Hildreth’s QP method has been used to solve



the QP problem of (19), for ample details on this method we
refer the reader to [19].

III. CONTROLLER OPTIMIZATION WITH IMPROVED PSO

The particle swarm optimization is a swarm intelligence
algorithm that mimics animal group behaviours, such as bird
flocks and fish swarms. It is an evolutionary population-
based algorithm where each individual (particle) represents
a possible solution and the group of individuals make up a
swarm. Due to its flexibility and ease of implementation, the
PSO tool is used in various fields [20]–[22]. In an optimization
problem with N dimensions, each ith particle is attributed with
a velocity vector vi = [vi1, vi2, ..., vin] and a position vector
pi = [pi1, pi2, ..., pin]. The classic algorithm is defined by: vi(k + 1) = ωvi(k) + c1r1(Pbi(k)− xi(k))

+c2r2(Gb(k)− xi(k))
xi(k + 1) = xi(k) + vi(k + 1)

(31)

where at each iteration k, vi and pi are the velocity and
position of particle i, and ω is the inertia weight. The
coefficients c1,2 are learning factors called cognitive and
social accelerations respectively, and r1,2 ∈ [0, 1] are random
numbers. Pbi represents the position with the best fitness score
for particle i and Gb is the global best position in the swarm.
In the classic algorithm ω and c1,2 are constant values, several
improved versions have been reported in the literature such as
[23] and [24] where w and c1,2 are dynamic according to
equation (32) and table (I):

ω = ωmax − (ωmax − ωmin)
g

G
(32)

where ωmax and ωmin are the maximum and minimum of
the inertia weight, g and G represent the number of the
actual generation and the maximum number of generations
respectively.

TABLE I: Rules for updating c1 and c2.
Phase c1 c2

Exploration Big increase Big decrease
Exploitation Small increase Small decrease
Convergence Small increase Small increase
Jumping out Big decrease Big Increase

In table (I), the cognitive acceleration coefficient c1 is
increased during the exploration phase to explore the swarm
and pull the particle towards its best position Pb. During
the exploitation phase, the social acceleration coefficient c2
is increased to push the swarm towards the global best Gb. In
the convergence phase, the swarm begins to find the globally
optimal region and increasing c2 while slightly decreasing
c1 helps accelerate the convergence. At the finale phase
of the optimization, the global best particle moves from a
local optimum, where most particles are clustered, towards a
better optimum (the new global best). Therefore, all clustered
particles must move as fast as possible towards the new global
best. To achieve this, c2 is greatly increased during this phase
while c1 is greatly decreased. to balance the four phases in

Fig. 3: Schematic diagram of the proposed approach.

table (I), we control c1 and c2 by the following logic which
promotes the global search capabilities of PSO:

c1(k + 1) = c1(k) + α
c2(k + 1) = c2(k) + β
α = −β = 0.05 for g

G ≤ 20%
α = −β = 0.02 for 20% ≤ g

G ≤ 35%
α = −β = −0.035 for 35% ≤ g

G ≤ 75%
α = −β = −0.0015 for g

G ≥ 75%

(33)

where g is the current generation and G is the maximum
number of generations.

According to (32), ω decreases linearly over iterations. A
small ω promotes the local search of PSO [24]. A new formula
for updating the inertia weight is proposed in this paper (34),
which ensures an exponential decrease rather than linear.

ω = ωmin +
exp (ωmax − λ1(ωmax + ωmin) gG )

λ2
(34)

This has been found to effectively enhance the overall search
capabilities of PSO when coupled with the control logic of
c1,2. Unlike a linear decrease, an exponential decrease of ω
ensures faster convergence and better overall optimization.
λ1,2 are adjustable constants to achieve a decrease from ωmax
to ωmin.

The proposed PSO algorithm is used to optimize the pa-
rameters of the MPC designed with the Laguerre function
in section II-B. These parameters include; the prediction
and control horizons Np and Nc, the weighting matrices Q
and R and the number of Laguerre terms N . To the best
of our knowledge, existing research has not addressed the
tuning and adaptation of these parameters all-together with
the proposed PSO algorithm. Thus, the proposed approach
allows us to optimize the controller performance in terms of
its tunable parameters and Laguerre approximation at the same
time without losing the computation efficiency. The mean
squared error (MSE) is used as a fitness function to assess
the optimality of the solutions. The schematic diagram of our
approach is given in Fig. 3, where Yref , Y , ẋ and Xstate are
the reference path, the vehicle lateral position, the longitudinal
velocity and the states vector respectively.



IV. RESULTS AND DISCUSSION

The performance of the proposed PSO algorithm is com-
pared to the improved version of [24], the modified PSO of
[23] and the latter enhanced with a damped inertia weight
instead of a constant one (ω(k + 1) = ω(k) × ωdmp). The
sphere function (f1(x) =

∑n
i=1 x

2
i ) is used as a benchmark

test similar to [24], and the optimization is carried out with
the parameters given in table (II) and the logic stated by
equations (33). The obtained results in Fig. 4, show that the
proposed PSO is much faster than the other PSO versions
and able to find better optimal solutions. After 41 generations,
the proposed PSO reached a fitness of 10−3 compared to 2.1
and 3.11 for the improved PSO and the classic damped PSO
respectively, while the classic PSO reached only 5.59.

A high fidelity vehicle model has been built using the
Vehicle Dynamics Blockset of MATLAB, the latter consists of
a 3 DOF dual track lateral dynamics block with nonlinear
Pacejka tire formula [26]. In addition, a simplified powertrain
block is added to accommodate varying speed profiles with
the predictive longitudinal driver block. The proposed MPC
controller is optimized with the proposed PSO using 15
generations and 20 particles, the rest of the parameters are
identical to table (II). The optimization is done for multiple
longitudinal speeds (ẋ(m/s) ∈ [3, 27]) and reference lateral
positions (yref (m) ∈ [−15, 15]). The adaptive MPC (AMPC)
has been tested against the pure pursuit controller (P.P) and
the classic MPC (tuned by trial and error) for three scenarios:

1) Sc1 consists of a double lane change with constant
longitudinal velocity vx = 9m/s.

2) Sc2 is a double lane change with varying longitudinal
velocity (Fig. 8) where the AMPC is adapted to both
trajectory and velocity profile.

3) Sc3 where the AMPC is tested for a general trajectory
with varying longitudinal velocity (Fig. 15) subject to
wind gust as an external disturbance (Fig. 21).

The parameters of the dynamic model (6) and the MPC
controller are listed in table (III). The results of (Sc1) show
that the three controllers are able to track the double lane
change trajectory. However, the proposed AMPC outperforms
the other two controllers where it achieved an MSE value of
e1 = 2.6 compared to e2 = 11.27 and e3 = 12.89 for the
classic MPC and pure pursuit respectively. Fig. 5-7 compare
the tracking performance (Yposition), the steering angles (δf )
and the heading rates (φ̇) for the three controllers.

TABLE II: PSO hyper parameters.
Parameter Interpretation Value

G Number of generations 15

NPop Number of particles 20

ωmax Maximum inertia weight 0.99

ωmin Minimum inertia weight 0.1

ωdmp Damping constant 0.99

c1i Initial cognitive acceleration coefficient 2

c2i Initial social acceleration coefficient 2

λ1 Constant 30

λ2 Constant 3

Fig. 4: Performance of the proposed PSO.

Fig. 5: Path tracking for Sc1.

Fig. 6: Control signal for Sc1.

On the other hand, the P.P controller could not perform
the double lane change of (Sc2), while the proposed AMPC
tracked the trajectory significantly better than the classic MPC.
Their respective MSE values are e1 = 3.59 against e2 = 14.2.
Fig. 9-11 show the tracking performance, the control signals
and the heading rates.

TABLE III: MPC and dynamic model parameters
Parameter Interpretation Value

m vehicle mass 1575 (kg)

Iz moment of inertia 2875(kg.m2)

lf front axle to (CG) 1.2(m)

lr rear axle to (CG) 1.6(m)

Cf front cornering stiffness 19000(N/rad)

Cr rear cornering stiffness 33000(N/rad)

T sampling time 0.1(s)

Np Prediction horizon 45

Nc Control horizon 15

∆umax/min Control increment constraints ± π
12

(rad)

umax/min Control constraints ±π
6

(rad)

R Control magnitude weight 0.01

Qy Tracking precision weight 10

N Number of Laguerre terms 5

α Laguerre scale factor 0.75



Fig. 7: Heading rate for Sc1.

Fig. 8: Longitudinal velocity profile for Sc2.

Fig. 9: Path tracking for Sc2.

Fig. 10: Control signal for Sc2.

Fig. 11: Heading rate for Sc2.

The results for (Sc3) confirm better tracking ability of the
proposed AMPC. Fig. 12-14 show the tracking performance
for a constant velocity vx = 11m/s. The MSE values are
e1 = 176.73, e2 = 347.79 and e3 = 1255.3 for the AMPC,
MPC and P.P respectively. In Fig. 16-18, the same trajectory
is simulated with a varying velocity profile (Fig. 15). The
performance of AMPC is much improved compared to regular
MPC, but both are able to track the trajectory and the resulting
MSE values for AMPC and MPC are e1 = 121.97 and
e2 = 423.71. The parameters adaptation for this case is
illustrated in Fig. 19-20.

Fig. 12: Path tracking for Sc3 with constant velocity.

Fig. 13: Control signal for Sc3 with constant velocity.

Fig. 14: Heading rate for Sc3 with constant velocity.

For the same trajectory and velocity profile, the lateral
wind disturbance profile shown in Fig. 21 is applied to the
high fidelity vehicle model to verify the controller robustness.
The simulation results (Fig. 22-24) show that at certain wind
speeds, the classic MPC is not able to reject the external
disturbance and its performance deteriorates and diverges. On
the other hand, the proposed AMPC still manages to track
the trajectory despite the introduced disturbances. This is due
to its adaptive feature with the optimized parameters which
allows the AMPC to overcome the perturbations.



Fig. 15: Velocity profile for Sc3.

Fig. 16: Path tracking for Sc3 with varying velocity.

Fig. 17: Control signal for Sc3 with varying velocity.

Fig. 18: Heading rate for Sc3 with varying velocity.

Fig. 19: MPC parameters adaptation for Sc3 with varying velocity.

Fig. 20: Cost function adaptation for Sc3 with varying velocity.

Fig. 21: Wind disturbance profile.

Fig. 22: Path tracking for Sc2 under wind disturbance.

Fig. 23: Control signal for Sc3 under wind disturbance.

Fig. 24: Heading rate for Sc3 under wind disturbance.



V. CONCLUSIONS

This paper addressed the lateral control task in autonomous
vehicles for which an AMPC controller is proposed. A new
improved PSO algorithm is also proposed to optimize and
tune the AMPC controller for varying working conditions.
The MPC controller is formulated with a linearized bicycle
model and Laguerre functions and solved through quadratic
programming. The parameter optimization is performed for
different scenarios, and the generated optimal parameters
are used for controller adaptation. The performance of the
proposed controller is tested against the classic MPC and the
Pure Pursuit controller using a high fidelity vehicle model.

The results demonstrate that the designed AMPC is able to
perform much better tracking accuracy especially for varying
longitudinal velocities. Moreover, the AMPC is able to handle
varying working conditions and reject external disturbances.
These good performances are achieved thanks to its adaptive
feature and well optimized parameters through the proposed
PSO algorithm. Future research shall address the possibility
of using neural networks and adaptive neuro-fuzzy inference
systems to learn the optimized parameters by the proposed
PSO algorithm for adaptation purposes.
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