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The kinematic synthesis applied to tree topologies is a tool
for the design of multi-fingered robotic hands, for a simulta-
neous task of all fingertips. Even though traditionally wrists
and hands have been designed separately, the wrist usually
being part of the robot manipulator arm, it makes sense to
consider the wrist as a part of the hand, as many grasping
and manipulation actions are a coordinated action of wrist
and fingers. The manipulation capabilities of robotic hands
may also be enhanced by considering more than one splitting
stage, as opposed to the single-palm traditional hand.

In this work we present the dimensional synthesis for a
Sfamily of multi-fingered hands, the binary hands, which have
a 2R wrist and several splitting stages, each of them span-
ning two branches consisting f a revolute joint for each edge.
For these topologies, it is proved that a three-position task
can be defined for each fingertip, regardless of the number
of fingers. One example is presented to show the possible
design strategies and uses for this family of hands.

Nomenclature

S A line or dual vector, defined using Plucker coordinates.
s A vector

S A quaternion or dual quaternion

w A dual number

[M] A matrix

1 Introduction

The topology of an articulated system defines the num-
ber and type of joints of the system, their adjacency, and
their incidence on the end-effectors. In dimensional kine-
matic synthesis, the goal is to determine the location and ori-
entation of the joint axes of a given topology so that it can
perform a given task. It has only been recently that kinematic

synthesis has been applied to multiple end-effector systems.
These systems can be simplified, for synthesis purposes, to
chains with a tree topology, with several common joints that
branch to a number of serial chains, and possibly with sev-
eral branching stages, ending with several end-effectors. A
typical example of a kinematic chain with a tree topology is
a wristed, multi-fingered hand.

Kinematic analysis of tree topologies for applications in
modular robots and robotic hands can be found in [1], [2],
and [3], and dynamic analysis is found in [4] and [5]. Struc-
tural synthesis for multiple fingers with no wrist is also con-
sidered in [2], and in [6] for grasping and manipulation re-
quirements.

The dimensional synthesis of the tree topologies
presents particular challenges that are different from those
that appear in single serial chains or in closed-loop systems.
In particular, the dimensional synthesis of multi-fingered
hands has been explored in [7], [8] and more extensively
in [9]. In this case, the kinematic task is defined as having
the same number of positions for each of the multiple end-
effectors; this means that we are dealing with a coordinated
action of all those end-effectors, denoted as a simultaneous
task.

The synthesis of tree topologies, when applied to
wristed multi-fingered hands, allows creating robotic hands
for in-palm manipulation tasks, for instance, or complete
arm-plus-hand designs. The choice of the topology so that it
is more suited for the task is the object of the type, or struc-
tural, synthesis.

A first attempt at the enumeration of tree topologies for
the design of multi-fingered hands can be found in [10],
where solvability was studied. In this study it was concluded
that there are some families of topologies for which the num-
ber of fingers can be increased arbitrarily without constrain-
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ing their ability to perform a task.

In this paper we focus on one family of tree topologies,
denoted as binary hands, which is part of the bigger family
of fractal hands. For this family, the topologies are enumer-
ated and characterized, solvability is studied and the dimen-
sional synthesis is solved for the 2R wrested hand with R-
joint edges. A closed algebraic solution is derived and the
number of solutions is calculated for any number of fingers.
Finally, one example is presented that show the potential of
this family of multi-fingered hands.

2 Multi-fingered Robotic Hands

Multi-fingered robotic hands consist, in the most general
case, of a series of common joints spanning several Kine-
matic chains, which can split again in new chains, up to a
set of end-effectors, or fingertips [11]. We define a branch
of the hand as the serial chain connecting the root node to
one of the end-effectors, and a palm as a link that is ternary
or above. In this work it is considered that the fingertips are
the only elements whose motion or contact with the environ-
ment is being defined by the task; this could be generalized
by considering also other intermediate links of the hand.

These tree topologies are represented as rooted tree
graphs; for this we follow the approach of Tsai [12], the
root vertex being fixed with respect to a reference system.
In tree topologies, a vertex can be connected to several edges
defining several branches. Most of the current robotic hands
have one palm and several fingers, and may have a few wrist
joints. Figure 1 shows a commercial hand, the Barret® Hand,
and a modeling of the human hand considering the wrist,
with their tree representations.

Fig. 1. Barrett® Hand, wristed human hand and their tree repre-
sentations. Vertices are labeled as V, edges as E, and R denotes
revolute joints.

Open hands, that is, hands not holding an object in the
fingers, are kinematic chains with a tree or hybrid topology.
For our synthesis formulation, the internal loops in the hand
structure are substituted using a reduction process [9], so that
the hand has a tree topology with links that are ternary or
above.

Tree topologies are denoted as SC — (By,Ba,...,Bp),
where SC indicates the common joints and the dash indi-
cates a branching or splitting, with the branches contained in
the parenthesis, each branch B; characterized by its type and
number of joints. In the case of using just revolute joints, the
joint type is dropped and only the number of joints is indi-
cated. For Figure 1, the tree topologies would be denoted as
0—1(2,3,3) and 3 — (4,4,5,5,5) respectively.

Our definition of multi-fingered hand considers the wrist
as a part of the hand, as many grasping and manipulation
actions are a coordinated action of wrist and fingers. In ad-
dition, the hand design may present several splitting stages,
such as the 2—(2,1—(3,3,3),2) tree topology shown in Fig-
ure 2, with a 2R wrist and two splitting stages.

(a)

Fig. 2. A tree topology with two splitting stages. (a) edge labeling;
(b) number of joints in each edge.

Two arrays can be associated to a hand topology. One of
them is the parent-pointer representation, in which the value
of the array for each labeled edge corresponds to the previous
edge of the graph. The other array is the joint array, which
contains the number of joints for each edge. For instance, for
the tree graph in Figure 2, the parent-pointer array is pt =
{0,1,1,1,3,3,3} and the joint array is j = {2,2,1,2,3,3,3},
according to the edge notation of the Figure.

3 Dimensional Synthesis for Multi-fingered Hands

Given a hand topology and a kinematic task consisting
of a set of finite positions for each end-effector, dimensional
kinematic synthesis seeks to find the position of the joint axes
in order for each of the end-effectors to perform the given set
of displacements simultaneously; see [9]. In this section, the
formulation of the synthesis equations and the calculation of
the solvability of the topology are described.
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3.1 Dimensional Synthesis Equations

The approach followed to create dimensional synthe-
sis equations consists on equating the forward kinematics of
each root-to-fingertip branch in the hand to the set of posi-
tions defined for that particular fingertip, which is the end-
effector. Given a set of m task positions Pl k=1...m, for
each end-effector (denoted by superscript i), we compute the
relative displacements from a selected reference position (let
us say, position 1), and equate the relative forward kinemat-
ics to those relative positions. For a hand with b fingertips,
this yields b sets of equations that are to be solved simulta-
neously,

) Ak
By=T] e, i=1,...b;
J€{Bi}

where the number of end-effectors, or branches as root-to-
fingertip chains, is indicated by b, and {B;} is the set of or-
dered indices of the joints belonging to branch i. Notice that
some of the joints will be common to several branches. The
joint axes at the reference configuration are denoted as S ;.

This yields a total of 6(m — 1)b independent equations
to be simultaneously solved.

3.2 Solvability of Tree Topologies for Exact Synthesis

We define a kinematic chain as solvable [10] if we can
find a positive rational number of positions for which the ex-
act dimensional synthesis yields a finite number of solutions.
In the case of multiple end-effectors, the system of equations
needs to be properly dimensioned to be solved simultane-
ously, while not overconstraining any of the branches. This
translates to checking the relative solvability for all possible
subgraphs starting at a root node and ending at -at least- one
end effector, including all possible root node changes.

The number of positions for each subgraph is computed
as follows: let D; be an e x 1 vector containing the joint
degrees-of-freedom for each edge of the contracted graph,
and D{ be the e x 1 vector containing the number of struc-
tural parameters (four per joint in the general case) for each
edge of the contracted graph. Denote as D, the b x 1 vector
containing the degrees-of-freedom of the space of each end-
effector, and D the b x 1 vector with the number of addi-
tionally imposed constraints (if any) for each branch. Define
the vectors B, as a b; x 1 vector of ones corresponding to the
branches included in the graph, and E; as an e; x 1 vector of
ones for the edges included in the graph considered. Here
the subscript i indexes the set of subgraphs starting at the
root node and ending in at least one end-effector, for a given
tree topology. These last two vectors can be easily computed
from the end-effector path matrix and the incidence matrix
of the overall graph, see [9]. The number of positions for
exact synthesis of the graph or subgraph i is given by

D¢-E;,—D"-B;

= ﬁ"‘l.
D, B, DS E

@

mi

An overall solution can be found, for arbitrary tasks,
only when considering the solvability of all subgraphs that
start at the root node and end at end-effectors, including all
subgraphs obtained when exchanging the root node with one
of the end effectors as described above. In this case, con-
sidering m as the number of positions for exact synthesis of
the overall graph and m; as the number of positions for exact
synthesis for a subgraph i, with i € S the set of all possi-
ble different end-effector subgraphs up to isomorphism, the
topology is solvable if

1. mecQt
2. m<m;, Vm; €QT,i€S

In the case of a subgraph containing ¢ branches and
being solvable for m; = m positions, that subgraph can be
solved separately, which eliminates exactly 6¢(m — 1) equa-
tions and the same number of unknowns, so that the rest of
the graph can be solved a posteriori.

4 Binary Hands

We denote as binary hands those hands that are repre-
sented by a symmetric binary tree, that is, a tree in which
each vertex spans two edges, up to a given level. This is a
particular case of the more general family of fractal hands,
in which & branches are spanned at each splitting point. Par-
tial fractal hands have been mentioned in [13]; see Figure 3
for some examples.

Fig. 3. Graphs for some wristed fractal hands: binary and ternary.

In our case, the symmetry of the binary tree is broken
at the wrist; the first edge consists of a serial chain with two
revolute joints, while the rest of edges are single revolute
joints. The structure of these binary trees allows us to de-
fine their topology using the number of branching stages, or
splitting stages, of the tree. If a tree has depth s+ 1 (depth
of a tree is defined as the number of edges from the root to
the end-effector node), then the number of splitting stages is
s, because there is no splitting stage for the wrist. Figure 4
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k=1 k=2 k=s s +1
Fig. 4. For a tree with depth s + 1, the number of splitting stages is
§, as there is no splitting at the wrist.

shows the relation between the depth and the splitting stages
of the binary trees.
For a wristed, binary hand with s splitting stages,

The total number of splits is 2° — 1,

The total number of edges is 25+,

The hand has b = 2° end-effectors, or fingertips,

The parent-pointer representation, when naming the
edges as they appear sequentially from the root vertex,
is pr ={0,1,1,2,2,3,3,4,4,...,2°—1,2°— 1}.

el NS

The total number of joints of the hand is hence 2°+!
counting the two joints at the common wrist edge. Figure 5
shows four examples of binary hands, with one to four split-
ting stages.

Fig. 5. Graphs for binary trees with one, two, three and four splitting
stages.

Wristed binary hands may be used for scalable interac-
tion with the environment. Figure 6 below shows a 1 — (1 —

(1,1),1—(1,1)) binary hand with a planar motion at the four
fingertips that can be combined to create two small loppers
or a larger one, using two end-effectors for each one. In this
case, the task defines the workspace of the wrist, so that fin-
ger actions can be performed within a given volume and for
given orientations.

Fig. 6. An example of a two-stage binary hand

4.1 Partial Binary Hands

Partial fractal hands, in which the symmetry is broken
at a given splitting stage by eliminating, or pruning, some of
the branches, may be also considered as suitable topologies
for the design of multi-fingered robotic hands.

In the case of binary hands, it is possible to eliminate
up to 2F new branchings with their subsequent edges at each
depth k of the tree, with k = 1 to s. Because of solvabil-
ity issues presented in subsequent sections, the case studied
here is that of eliminating both edges incident in a given ver-
tex, for a certain number of vertices r < 251 In particular,
for a binary hand of depth s+ 1 in which we eliminate both
edges incident on a single vertex at a given depth k, we are
eliminating:

1. A total of 25+1=% — [ splits,
2. A total of 2(25*17% — 1) edges,
3. A total of 25T1—* end-effectors.

This counting can be generalized to the case in which
we eliminate r| pairs of branches at a depth k;, r, pairs of
branches at a depth kp, etcetera, so that the number of end-
effectors eliminated will be r{25T1—%1 4 25tk A
new end-effector is created for each pair eliminated, so that
the total number of end-effectors for a partial binary hand of
depth s+ 1 in which p prunings are performed is

)4
b=2(1-Y r2" %)+ p. (3)
i=1

Figure 7 shows the partial binary hand with one pair of
branches removed at depth 2 and another pair removed at
depth 3.
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Fig. 7. An binary tree pruned at depth 2 and depth 3, with a total of
4 end-effectors.

4.2 Other Fractal Hands

The characterization of symmetric, fractal tree topolo-
gies can be generalized to any number k of new branches
per split, and any depth s+ 1 of the tree. The generalization
of the properties from previous section yields the following
properties for a k-ary wrested fractal hand:

1. The total number of splits is Ii—;f

gl
The total number of edges is 1‘3:71'

The total number of end-effectors is &°.
The parent-pointer representation gives the array pt =

-1 k-1
{071""’1727""2’ﬁ""7k—l - .
5. The total number of joints, for a wrist with p joints and

edges having g joints each, is j = p+ k(;z:l) q.

v

Notice that the number of end-effectors grows quickly:
for instance, for a ternary hand with a depth of 4, 3 joints
in the wrist and 2 joints per edge, the total number of joints
in the hand is 81, and the total number of end-effectors or
fingertips is 27. The study of the solvability and synthesis of
general fractal hands is beyond the scope of this work.

5 Dimensional Synthesis of Binary Hands

The exact dimensional synthesis of a binary hand with
s splitting stages, or 2° end-effectors, requires checking its
solvability and, if solvable, defining the number of positions
in each fingertip task in order to obtain a finite number of
solutions.

5.1 Solvability and number of solutions

Using Equation (2), for the binary hand topology with
joint array j ={2,1,1,...,1}, a few facts can be derived for
this family, regardless of the number of splits:

1. The binary hand is solvable for all topologies of the fam-
ily.

2. The maximum number of positions per end-effector for
exact kinematic synthesis is constant and equal to three.

This can be shown as follows: the dot products of the
arrays in Equation (2) are

D¢-E; =8+4(2°"'-2), D! B; =0,
D, -B;=2'6, Dj-E=2+(2""-2), @

which yield m = 3 regardless of the depth s of the tree.

In order to conclude that the hand is solvable, we also
need to check all the non-isomporphic subgraphs. Notice
that the number of positions allowed for a subgraph with b
branches and e edges is

—TI‘FL (%)

which means that the most restrictive subtrees will be those
with the maximum number of edges, that is, those in which
we eliminate the same number of edges as branches. For
a subgraph in which i branches and edges have been elimi-
nated,

4 A
m=—2_ 141 (6)
5i ’
2_2x+1

where i < 2° always and at most i = 2°~!. This number of
positions tends to 3 as the number of splitting stages s in-
creases, regardless of the number of branches i eliminated in
the subtree. This concludes that, for all subtrees starting at
the root node, the number of positions for exact synthesis is
m; 2 3.

For those subtrees with root node substitution, the small-
est of them corresponds to the RR serial chain, with m; = 3,
and for the rest of them we can apply the same reasoning, to
conclude that the wristed binary trees are always solvable.

It is important to highlight that some of the subtrees,
in particular those corresponding of two terminal edges (the
edges incident on end-effectors) creating serial RR chains,
have m; = 3, same as the overall number of positions. Ac-
cording to [9], those can be solved separately. This is the
strategy followed for the synthesis of the binary hands:

1. Solve for the relative motion at the terminal edges of
each two branches (a spatial RR chain) with respect to
the reference frame of one of the end-effectors.

2. Once all the terminal edges are dimensioned, solve for
the relative motion of the previous branching, again as
spatial RR chains.

3. Continue until the last branching. Then the two wrist
joints can be solved for any of the branches.

Using this methodology, the total number of solutions
for a binary hand with s splitting stages, or branchings, is
2%, The simplest hand, the 2 — (1, 1), has 4 solutions, and
the hand topology with four splitting stages in Figure 5 yields
216 candidate designs for m = 3 positions.
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5.2 Solvability for partial binary hands

The partial binary hands obtained by pruning some of
the branches are also studied for solvability. As it has been
already mentioned in the previous section, the pruning at
each node can either eliminate either a pair of branches or
just one of them. The trees in which the pruning eliminates
the pair of branches at a given node are always solvable.

The constructive proof uses the solving method pre-
sented in the previous subsection, where the hand is dimen-
sioned by considering motion between pairs of end-effectors.
A tree pruned by pairs consists of consecutive R — R serial
chains when considering relative motion, and hence they are
solvable at each step.

Binary hands in which only one of the branches is
pruned at a given node, present a heterogeneous mix of 2R
and 3R serial chains when considering motion relative to the
end-effectors. Due to this, some of the subgraphs will be
more constrained in their motion than others, resulting in a
tree that is not solvable for simultaneous tasks.

For those pruned binary tree that are solvable, use the
same strategy and equations derived to solve for complete
binary trees.

5.3 Synthesis equations for each branching

For each of the subproblems mentioned above, one of
the several methods used to synthesize the spatial RR chain
can be applied, for instance [14], [15] or [16]. It is well
known that the problem yields six solutions, with only two
of them being real.

The design equations for the spatial RR chain used in
this work are as follows: consider the task position, ex-
pressed as a dual quaternion, P = p +¢€p°, where p is the
quaternion corresponding to the task rotation. Similarly, con-
sider the joint axes as Sy = § + Es'g =0+s;+ E(sg +0),a
pure dual quaternion. Then the following equations can be
written,

where §12 = §15 — §281, and the - is the usual dot product.

The first equation in set (7) is a scalar one, and the sec-
ond is a pure quaternion equation. These eight equations can
be solved for the Plucker coordinates of the axes by imposing
Plucker constraints. One of the easiest solutions is obtained
by finding the solution when intersecting for instance the z=1
plane. This system of equations is easy enough to be solved
using Groebner bases.

The inverse kinematics solution for the joint variables

can be found similarly using

6 0  2(81852812)-p
COS — COS — = (A A) p,
2 S12-812
1 6 2(5128%)-p
sin — cos — = (A A) p’
2 2 5128512
1 . 92 2 §1§12 -
cOS — sin — (A A) p7
2 2 §12-812
.01 . 06y —28pp-p
sin — sin — = AiAp ®)
2 2 S12 512

6 The2—(1,1) Hand

The 2 — (1,1) hand has a two-jointed wrist and two fin-
gers, each one consisting of a single revolute joint. Figure
8 shows the tree graph for the hand and Figure 9 shows the
kinematic sketch.

€3

€1
(®
2R

€2

Fig. 8. Graph of the 2-(1,1) hand

Solvability calculations [10] show, as expected, that the
hand is solvable for simultaneous tasks, for m = 3 finite posi-
tions for each fingertip. In this section we show how we can
reduce the rigid-body guidance problem for this hand to that
of the spatial RR chain, to obtain 4 real solutions.

The design equations for each finger are created by
equating the forward kinematics equations of each branch
to the desired position, [16]. In what follows, eSjelf' denotes
the screw displacement of rotation 93- about joint axes S,
regardless of the algebra used to compose the displacements.

In this case, absolute displacements from the fixed frame
associated to the root node are used,

25085 5181 es}egD(l) _ ﬁiI
ol S <.00 A N .
0005101552 — P2 =123, 9)
where D'(’) represents the absolute displacement of the end-

effector j at a reference configuration, for each branch ;.
Notice that 2/ (D))" is the relative displacement of branch j
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Fig. 9. Kinematic sketch of the 2-(1,1) hand

from the reference configuration up to position 1317 , expressed
in the fixed frame, so that the set of equations can be written

eS()eé)eSlell eS29’2 — pil (lA)(l))—l
ol &, &.00 A AN .
00519150 — p2(PHYTL =123 (10)

In particular, if the reference configuration is taken as
the first task position, the first equation is the identity and the
system is reduced to reaching two relative positions.

This set of equations could be solved in order to find the
dimensions of fingers and palm. However the system can be
simplified to obtain an algebraic solution.

In order to simplify the set of equations to its minimum,
we can write the forward kinematics of the common joints
(the wrist) as a function of the rest of the chain and the task
position, for each branch j,

eSA()eé)eS’\leil :P‘i]'(f’\)lj)fleSjJrleljdrl7 1= 273’ ]: 172, (11)

where j indicates the branch and i denotes the task position.
The following system of equations is created by imposing
equality of the common joints at the wrist,

e 2%eN% = (BI(A) ) IR(A) T, i=23. (12

This equations correspond to the change of reference
frame to the first end-effector in branch 1, creating a serial
chain starting at the first end-effector and going to the sec-
ond one. The displacement P (P!)~1P?(P?)~! corresponds
to the relative displacements from the first position to posi-
tion i, measured in the first end-effector frame.

The set in Eq.(12) corresponds to the equations obtained
for a spatial RR chain. Solve for the axes using Eq.(7) to
obtain two solution for axes S, and S3. Once those two so-
lutions are found, the wrist axes can be solved as another
spatial RR chain in the previous sets of equations, Eq.(11).
Each solution of the S, and S3 axes will yield two solutions
for the Sp and S; axes, for a total of four hand designs.

7 The 2-(1-(1,1),1-(1,1)) Hand

This hand topology has two splitting stages and four fin-
gertips. Figure 10 shows the tree graph and Fig 11 shows the
kinematic sketch.

Fig. 10. Graph of the 2-(1-(1,1),1-(1,1)) hand

The synthesis for m = 3 finite positions per fingertip fol-
lows the steps described in Section 5.
The relative positions to reach,

£508) 5187 ;5265 ,846) _ 1311
508 5187 ;5265 8505 _ p2
508 5181 ;8365 S0 _ p3.
5085516} ;5365 5765 _ 13;11_ ,

i=2,3, (13)

can be transformed into two sets of equations in order to di-
mension the terminal edges for the relative motion between
them,

—840i Ss6L —1p2
e 44e55:( ) Pli?

i=2,3. (14)

51
li
e %6%e5% — (P) 1B,
Each of these sets of equations are solved independently

to obtain the joint axes Sy, S5, S and S7 and the correspond-

ing rotation angles, using the spatial RR solution method.
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Fig. 11. Kinematic sketch of the 2-(1-(1,1),1-(1,1)) hand

Use the solutions to dimension the joint axes of the first
branching stage, selecting two of the four end-effector poses,
6752912 eS3613 — (p]1i67S492)71]316i6756616’

i=23. (15

After this, any of the four end-effector chains can be
used to dimension the remaining two axes, corresponding to
the wrist, for instance

esoeg 6519"1 _ 1311:' 675493 efszeg,

i=2,3. (16)

The output of the process is a set of 16 candidate solu-
tions.

8 The Binary Hand with n End-effectors
The synthesis presented in Sections 6 and 7 can be gen-

eralized for any number of splitting stages s. The relative

positions for the joints incident on end-effectors are, for a bi-

nary hand {0,1,1,2,2,3,3,...2° — 1,2° — 1} with s splitting

stages and 2° fingertips,

e SOheSith = (PP, =23,
k=2525+2,... 2" —2,
f=13,...,b—1 (17)

with k enumerating the end-effector joints, from 2° to
25+1 _ 1, corresponding to end effectors indicated by super-
script f.

These equations are solved for the corresponding
Plucker coordinates of the joint axes and for the joint angles,
using Egs.(7) and (8).

After that, the previous splitting stage is solved with

o Sk8L S8y — (p{e7§m9£n)71 p{;'efﬁ,e';
1 1
i=2.3,

k=21 25142 . 25—2,

(18)

where k enumerates the joints corresponding to this splitting
stage, and we have some flexibility in the selection of the
end-effectors f and g and associated joint axes m and r to
be used to create the kinematic chain containing axes k and
k+ 1. This process is repeated up to the wrist joints, which
can be solved using any of the serial chains leading to an
end-effector, for instance the first one,

50005107 _ B oS0 efﬁzeg’

i=2,3. (19)

8.1 Candidate solution sorting and ranking

An important post-synthesis step in the design process
is how to rank the 22" candidate solutions for a binary hand
of depth s+ 1 in order to select the most suited solution for
the task.

In finding an optimal solution, it is important to distin-
guish between requirements that depend on the dimensions
of the joint axes, and requirements that are defined by the
placement and shape of the links. There is some freedom
in the link dimensioning and placement for spatial linkages
given the position of the joints, so that links can be optimized
separately in a post-synthesis, link-based optimization pro-
cess [17]. Some of the requirements that can be targeted us-
ing the link optimization are link and joint lengths and force
transmission at the joint level. Some other performance re-
quirements are dependent on the position of the joints, such
as singularities, and some others depend both on the posi-
tion of the joints and the links, such as overall dimensions,
self-intersections and obstacle avoidance.

For an optimal solution, a possible strategy is to per-
form approximate synthesis with additional performance re-
quirements. Those requirements will in general reduce the
number of suitable candidates, so an important first step is
the knowledge of the number of potential designs available
to the designer, which is one of the results of this work. In
the case of multi-fingered robotic hand, interesting perfor-
mance requirements may include graspability and manipula-
bility conditions, according to the task being targeted.

9 Design Example

The synthesis results presented here for binary hands al-
low following several design strategies. One possible strat-
egy arises from noticing that the difference between the mo-
tion of two consecutive end-effectors happens at the terminal
edges. The binary hand can be designed by pre-designing the
relative motion between those fingertips and using the previ-
ous joints to locate that action. In this section we present one
example that locates two gripping end-effectors for a given
task.
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For this example, the 1 — (1 —(1,1),1—(1,1)) topology
is used, where the last branching stages are pre-designed and
kinematic synthesis is applied for designing the first branch-
ing stage as well as the wrist joints.

The two pairs of fingertips, 1 —2 and 3 — 4, are designed
with parallel joint axes. Figure 12 shows the selected de-
sign and the computation of the motion between both end-
effectors expressed in the frame attached to one of them, for
the case of branches 1 and 2.

Fig. 12. Fingertip design and motion with respect to Frame 1

Table 1 shows the selected relative motion between fin-
gertips 1 and 2, and 3 and 4, expressed as the motion of fin-
gertip 2 seen from fingertip 1, and the motion of fingertip 4
seen from fingertip 3. Table 2 shows the three positions for
each of the four fingertips, as expressed in the fixed frame.
Notice that, in this case, the fixed frame is attached to the
arm holding the 2-dof wrist.

Table 1. Relative positions between fingertips

Fingers 1 and 2

0.71i+0.71j 4+ &(—1.41i + 1.41})
0.140.7i+0.7 — 0.1k +&(—0.89 +0.89, — 0.07 1k — 0.071)
0.140.7i+0.7j— 0.1k +€(—0.8%i +0.89, +0.07 1k +0.071)

Fingers 3 and 4

0.71i+0.71j+&(—1.41i+ 1.41})
—0.1440.69i +0.69, +0.14k +&(—2.1i +2.1)
—0.24+0.66i 4 0.66, -+ 0.24k +&(—2.6i+2.6j — 0.071k — 0.071)

Table 2. Task positions for each fingertip

Finger 1

0.71—0.71j+&(7.07,+7.07)
0.66 — 0.24i — 0.66j + 0.24k +&(—0.07i + 7.6 j + 4.9k +5.7)
0.39 —0.58i — 0.68 — 0.19k +&(—1.3i + 2.2 + 12.0k +7.7)

Finger 2

0.540.5i+0.5,/ + 0.5k +&(4.0i + 6.0, — 6.0k — 4.0)
0.7340.34i+0.54 +0.25k + £(—0.97i + 8.6,26.3k — 3.7)
0.91+0.42i +0.009 -+ 0.004k + £(—3.6i + 14.0j23.1k + 1.5)

Finger 3

1+&(—8.84i +8.84))
0.99 —0.13i +€(—12.0i+8.8j+ 1.1k — 1.7)
0.88 —0.12i 4 0.061j + 0.45k +&(—7.2i + 14.0j + 3.3k — 3.6)

Finger 4

0.71i4+0.71j+¢(—1.41i+ 1.41j — 12.50k)
—0.05+0.71i+0.71j +0.05k + €(—1.1i + 2.3 j?15.0k + 2.6)
—0.28+0.33i4+0.9/ — 0.014k+€(—2.9i — 0.72j — 16.0k — 4.9)

The design process yields four candidate designs, and
one of them is selected as the final design. This selection is
based on a quick modeling and simulation of the four candi-
date solutions. Table 3 shows the Plucker coordinates of the
axes and Figure 13 shows the CAD model of the hand at the
three different positions.

Table 3. Plucker coordinates of the joint axes, according to the joint
notation in Figure 11

Axis Plucker coordinates
So (0.44,-0.54,0.71) +¢(13.0,12.0,1.2)
Si (0.08,—0.80,0.59) +¢(5.5,7.8,9.9)
Sy (—0.2,0.005,—0.98) +&(—13.0,—4.3,2.7)
S3 (—0.99,0.03,0.14) +€(2.6,2.5,18.0)
Sy (0.0,0.0,1.0) 4+ ¢(15.0,0.0,0.0)
Ss (0.0,0.0,1.0) +£(15.0,4.0,0.0)
Se (1.0,0.0,0.0) +¢€(0.0,0.0,—12.68)
S7 (1.0,0.0,0.0) +€(0.0,4.0, —12.68)

10 Conclusions

Fractal hands present several splitting stages, each of
them splitting in the same number of branches. Here we
present the design of wristed binary hands, those multi-
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Fig. 13. Final hand design with fingertips reaching task positions 1,
2 and 3. The task positions are indicated with reference frames.

fingered hands that split in two branches at each stage. Some
properties of the binary hands are derived and the solvability
of all possible topologies in this family is calculated. Design
equations are created for the general case, based on itera-
tively dimensioning the relative motion of branches, starting
at the end-effectors. It is also derived that other less sym-
metric hand topologies can be created by pruning the binary
hands. The dimensional synthesis equations are derived in
particular for hands with one and two splitting stages, and
also for the general case. One design example illustrates the
synthesis process.

Binary hands are one of the many families of hand
topologies that can be enumerated and solved for a specific
task or application. Even though it has been proved that there
is an infinite number of possible designs that can be synthe-
sized, some families of hands can be fully characterized, as
in the case of wristed binary hands.

These binary hands may have applications in multiple,
simultaneous mini-manipulation and in manipulation of ob-
jects at different scales, for which the stages can be added in
synchronous motion to create more sizable fingers. The use
of a systematic methodology for the design of multi-fingered
hands may lead to optimized end-effectors for specific sets
of tasks.

Acknowledgements

This work is supported by the National Science Foun-
dation under Grant No. 1208385. The content is solely the
author’s responsibility.

References

[1] Stramigioli, S., 2001, Modeling and IPC control of in-
teractive mechanical systems - A coordinate-free ap-
proach, vol. LNCIS 266, Springer.

[2] Tischler, C., Samuel, A., and Hunt, K., 1995, “Kine-
matic chains for robot hands - 1. orderly number syn-
thesis,” Mechanism and Machine Theory, 30(8), pp.
1193-1215.

[3] Chen, I., Yang, G., and Kang, 1., 1999, “Numerical
inverse kinematics for modular reconfigurable robtos,”
Journal of Robotic Systems, 16(4), pp. 213-225.

[4] Garcia de Jalon, J. and Bayo, E., 1994, Kinematic and
Dynamic Simulation of Multibody Systems: The Real-
Time challenge, Springer-Verlag.

[5] Jain, A., 2010, “Graph-theory roots of spatial opera-
tors for kinematics and dynamics,” Proc. of the 2010
International Conference on Robotics and Automation,
Anchorage, Alaska, USA, pp. 2745-2750.

[6] Lee, J.-J. and Tsai, L., 2002, “Structural synthesis of
multi-fingered hands,” ASME Journal of Mechanical
Design, pp. 272-276.

[71 Simo-Serra, E., Moreno-Noguer, F., and Perez-
Gracia, A., August 29-31, 2011, “Design of Non-
anthropomorphic Robotic Hands for Anthropomorphic
Tasks,” ASME Design Engineering Technical Confer-
ences, Washington DC, USA.

[8] Simo-Serra, E., Perez-Gracia, A., Moon, H., and Rob-
son, N., June 2012, “Design of multi fingered robotic
hands for finite and infinitesimal tasks using kinematic
synthesis,” Advances in Robot Kinematics, Innsbruck,
Austria.

[9] Simo-Serra, E. and Perez-Gracia, A., 2014, “Kinematic
synthesis using tree topologies,” Mechanism and Ma-
chine Theory, 72 C, pp. 94-113.

Makhal, A. and Perez-Gracia, A., June 2014, “Solv-
able multi-fingered hands for exact kinematic synthesis
;> Advances in Robot Kinematics, Ljubljiana, Slovenia.

(10]

JMR-15-1011, Perez-Gracia, page 10



[11] Selig, J. M., 2004, Geometric Fundamentals of
Robotics  (Monographs in  Computer Science),
SpringerVerlag.

[12] Tsai, L. W., 2001, Mechanism Design: Enumeration
of Kinematic Structures According to Function, CRC
Press, Boca Raton.

[13] Ma, R. R. and Dollar, A. M., 2011, “On dexterity and
dexterous manipulation,” The 15th International Con-
ference on Advanced Robotics.

[14] Mavroidis, C., Lee, E., and Alam, M., 2001, “A new
polynomial solution to the geometric design problem
of spatial rr robot manipulators using the denavit-
hartenberg parameters,” ASME Journal of Mechanical
Design, 123, pp. 58-67.

[15] Perez-Gracia, A. and McCarthy, J. M., 2003, “Dimen-
sional synthesis of bennett linkages,” ASME Journal of
Mechanical Design, 125, pp. 98-104.

[16] Perez-Gracia, A. and McCarthy, J. M., 2006, “Kine-
matic synthesis of spatial serial chains using clifford
algebra exponentials,” Proceedings of the Institution of
Mechanical Engineers, Part C: Journal of Mechanical
Engineering Science, 220(7), pp. 953-968.

[17] Yihun, Y., Bosworth, K., and Perez-Gracia, A., 2014,
“Link-based performance optimization of spatial mech-
anisms,” Journal of Mechanical Design, 136(12).

JMR-15-1011, Perez-Gracia, page 11



