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This paper describes a novel passivity/dissipativity based approach for fault tolerant control (FTC) of
nonlinear systems by means of fault hiding, i.e., by inserting reconfiguration blocks (RBs) between the
plant and controller to mitigate the fault effects. The proposed approach is used to design a new kind
of RB, called passivation block (PB), which is generically employed for sensor and actuator faults and
achieves simultaneously series, feedback and feedfoward passivation of the controller during a fault
occurrence. Based on the dissipativity theory, new conditions are obtained to design a dynamic PB
(DPB) which requires minimum information on the system model. In particular, the proposed DPB can
be systematically obtained by combining the LMI-based conditions based on the knowledge about the
passivity indices. Numerical simulations are carried out and indicate that the PBs are able to stabilize
an example of a faulty nonlinear system.
H
H
P
s

o
o
&
&
G
o
d

1. Introduction

During the last decades, fault tolerant control (FTC) for safety-
ritical and industrial processes has been extensively studied to
mprove the reliability and availability of such systems which are
ubject to sensor and actuator faults, such as offsets and stucks,
hat degrade the system performance and may lead to instabil-
ty (Argha, Su, & Celler, 2019; Yang, Jiang, & Zhang, 2012). There-
fore, FTC aims to ensure the stability and desirable performance
even during the fault occurrence.

In general, FTC techniques can be divided into two groups:
passive and active techniques. Passive FTC (PFTC) (Stefanovski,
2018) considers the fault occurrence as a perturbation or uncer-
tainty that must be rejected by the designed controller. In this
case, it is not necessary further information on the severity and
localization of faults, since the FTC is designed to be robust with
respect to them at the expense of performance loss. Otherwise,
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active FTC (AFTC) (Lan & Patton, 2016) uses the information of a
fault detection and isolation (FDI) system to modify the control
law aiming to mitigate the fault effects avoiding the unnecessary
performance loss in fault-free conditions.

Among the AFTC techniques, the fault hiding stands out due to
its ability to maintain the same controller designed for the nom-
inal (fault-free) system during the fault occurrence. Indeed, fault
hiding consists in inserting a reconfiguration block (RB) between
the faulty plant and the controller that corrects the sensor mea-
surements and translates the control signals by control allocation
provided by a controller that does not receive the information
about the fault occurrence. Most of fault hiding applications deal
with linear systems (Lunze & Steffen, 2006), although there are
also applications for linear parameter varying (Quadros, Bessa,
Leite, & Palhares, 2020; Rotondo, Cristofaro, & Johansen, 2018),
ammerstein–Wiener (Richter, 2011), piecewise affine (Richter,
eemels, Wouw, & Lunze, 2011), and Takagi–Sugeno fuzzy (Bessa,
uig, & Palhares, 2020; Filasová, Krokavec, & Liščinský, 2016)
ystems.
Dissipativity and passivity theory is an important paradigm

f nonlinear system analysis due to its relation with input–
utput stability (Khalil, 2000; Kottenstette, McCourt, Xia, Gupta,
Antsaklis, 2014). In particular, the passivity indices (McCourt
Antsaklis, 2010) and passivation techniques (Xia, Antsaklis,

upta, & Zhu, 2017; Zhu, Xia, & Antsaklis, 2017) are studied to
btain closed-loop systems with desired passivity properties. The
issipativity/passivity framework has been already used to design
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controllers for different classes of systems, e.g., switched (Mc-
Court & Antsaklis, 2010) and networked systems (Zhu et al.,
017), but there are few results for FTC. In Yang, Cocquempot,
nd Jiang (2008), the concepts of global dissipativity and passivity
re proposed to quantify the fault tolerance and to decide if it is
ecessary to design an FTC law for each fault mode. Dissipativity
nd passivity theory are also used to obtain PFTC systems in some
ecent works (Sakthivel, Saravanakumar, Kaviarasan, & Lim, 2017;
elvaraj, Kaviarasan, Sakthivel, & Karimi, 2017).
In this work, a novel RB called passivation block (PB) is pre-

ented. It can be generically used for actuator and sensor faults
nd to perform simultaneously series, feedback and feedfoward
assivation of the controller for mitigation of fault effects. In
ddition, LMI-based conditions are obtained for designing the
B to ensure asymptotic stability of the reconfigured system
ased on the dissipativity theory. Unlike previous approaches, the
roposed PB is suitable for different classes of nonlinear systems
ince their passivity indices can be determined. In summary,
he main contributions of this work are: (i) the concept of PB
or FTC of nonlinear systems is introduced and compared to
ther passivation strategy for fault mitigation presented in Xia,
ahnama, Wang, and Antsaklis (2018); (ii) it is shown that the
roposed PB structure generalizes Virtual Actuators and Sensors
respectively, VAs and VSs) for linear systems, although it can
lso be used for nonlinear systems; (iii) new LMI-based stability
ecovery conditions after sensor or actuator fault occurrence are
stablished.
The rest of this paper is organized as follows: Section 2

resents the problem of stability recovery by fault hiding based
n passivity indices; Section 3 presents the concept of PB; Sec-

tion 4 provides the condition for asymptotic stability recovery
with PBs; Section 5 presents numerical simulation results; and
Section 6 draws the conclusions.

Notation For a matrix X , X ≻ (≺) 0 means that X is a positive
(negative) definite matrix; X⊤ is its transpose; In and 0n×m denote,
respectively, the nth order identity matrix and the null matrix of
order n×m. He{X} denotes He{X} = X+X⊤. In a symmetric block
matrix, ‘⋆’ is the term deduced by symmetry and diag{d1, . . . , dn}
is a block-diagonal matrix with blocks d1, . . . , dn in the main
diagonal.

2. Preliminaries

2.1. Dissipativity and passivity indices

Consider the nonlinear system Σ described as follows

Σ :

{
ẋ(t) = fx (x(t))+ fu (x(t)) u(t)
y(t) = hx (x(t))+ hu (x(t)) u(t) (1)

where x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rm are, respectively,
the state, input and output vectors, and the maps fx, fu, hx, and hu
satisfy Assumption 1. Assume also that Σ is zero-state detectable
(ZSD) (Hill & Moylan, 1976).

Assumption 1 (Hill & Moylan, 1976). The maps fx, fu, hx, and hu
are sufficiently smooth to ensure that (1) is well defined, i.e., for
ny x (t0) and admissible u(t), there exists a unique solution for
≥ t0 such that y(t) is locally integrable. Furthermore, fx(0) = 0
nd hx(0) = 0.

emark 1. For the concept of passivity indices that is discussed
n the following, it is required that the number of inputs is equal
o the number of outputs. If it is not possible to have the same
umber of inputs and outputs, it is still possible to extend u(t)
r y(t) by adding virtual inputs/output that are negligible in the
ystem dynamics.
The system Σ is dissipative if its stored energy, represented by
he time derivative of a non-negative continuously differentiable
unction V (x(t)), is always less than or equal to the supplied en-
rgy, represented by a supply rate function S(u(t), y(t)). A special

case of dissipativity is the (Q , S, R)-dissipativity introduced in
Definition 1.

Definition 1 (Hill & Moylan, 1976). The system Σ is (Q , S, R)-
issipative if it is dissipative with respect to the following supply
ate

S(u(t), y(t)) = y(t)⊤Qy(t)+ 2u(t)⊤Sy(t)+ u(t)⊤Ru(t). (2)

In the literature, the relation between dissipativity theory and
stability of nonlinear systems is well established (Kottenstette
et al., 2014). In particular, Lemma 1 states on stability of (Q , S,
)-dissipative systems.

emma 1 (Hill & Moylan, 1976). Let the system Σ be (Q , S, R)-
dissipative and zero-state detectable. Then, the unforced origin of Σ

is stable if Q ⪯ 0 and asymptotically stable if Q ≺ 0.

Passivity is a special case of dissipativity, i.e., a system is
said to be passive if it is passive with respect to the supply
rate S(u(t), y(t)) = u(t)⊤y(t). In particular, the framework of
passivity indices is useful to obtain an indication of the passivity
degree (Kottenstette et al., 2014) as shown in Definition 2 and to
develop passivation strategies (Xia et al., 2018).

Definition 2 (Xia et al., 2018). The system Σ described in (1) is
nput feedforward output feedback passive (IF-OFP) if for some
, ρ ∈ R it is dissipative with respect to

S (u(t), y(t)) = u(t)⊤y(t)− νu(t)⊤u(t)− ρy(t)⊤y(t). (3)

In this case, Σ is denominated IF-OFP(ν, ρ), where ν and ρ are
alled input feedforward and output feedback passivity indices,
espectively, which correspond to the excess of passivity of Σ .
f Σ is IF-OFP(ν, ρ) with ν > 0 and ρ > 0, then it is said very
trictly passive (VSP).

The passivity indices provide intuitiveness to the dissipativity
ramework because they are related to the concept of lack (or
xcess) of passivity of a system. This means that ν indicates how

much feedfoward gain can be inserted preserving Σ stability
given the excess of input passivity νu(t)⊤u(t) and, similarly, ρ
indicates how much feedback gain can be inserted to preserve Σ

stability given the excess of output passivity ρy(t)⊤y(t). In this
ense, every system is IF-OFP(ν, ρ) for some ν and ρ, but the
aximum value that ν and ρ can assume are indicators of the
tability margins of that system. For instance, if the maximum
that can be assigned for a system Σ is negative, then it is

ossible to ensure that Σ is open-loop unstable and requires a
egative feedback action to compensate for such lack of passivity
hat results in the instability. Based on that, the following fact is
onsidered regarding the framework of passivity indices.

emma 2. If Σ is IF-OFP(ν, ρ) for any scalars ν and ρ, then Σ is
also IF-OFP(ν⋆, ρ⋆) for any ν⋆

≤ ν and ρ⋆
≤ ρ.

roof. Defining

(u(t), y(t)) = u(t)⊤y(t)− νu(t)⊤u(t)− ρy(t)⊤y(t),
¯(u(t), y(t)) = u(t)⊤y(t)− ν̄u(t)⊤u(t)− ρ̄y(t)⊤y(t),

t follows that S̄(u(t), y(t)) ≥ S(u(t), y(t)) for any ν̄ ≤ ν and ρ̄ ≤
. Thus, given that Σ is dissipative with respect to S(u(t), y(t)) it
s also dissipative with respect to S̄(u(t), y(t)), and therefore Σ is
F-OFP(ν̄, ρ̄). □
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The concepts of passivity indices and (Q , S, R)-dissipativity are
closely related. Indeed, it is observed that the supply function (3)
s a special case of (2) by choosing Q = −ρIm, S = − 1

2 Im, and
= −νIm. Furthermore, the feedback interconnection of IF-OFP

ystems is (Q , S, R)-dissipative as stated in Lemma 3.

emma 3 (Madeira & Adamy, 2015). Consider the systems Σ1 and
2 described as in (1) and interconnected by negative feedback. If
1 and Σ2 are IF-OFP(ν1, ρ1) and IF-OFP(ν2, ρ2), respectively, then

he interconnected system is (Q̄ , S̄, R̄)-dissipative with matrices

¯ =

[
−(ρ1 + ν2)Im 0m×m

0m×m −(ρ2 + ν1)Im

]
(4)

¯ =

[ 1
2 Im ν1Im
−ν2Im 1

2 Im

]
(5)

R̄ =
[
−ν1Im 0

0 −ν2Im

]
(6)

with input w(t) ≜
[
w1(t)⊤ w2(t)⊤

]⊤ and output y ≜ [y1(t)⊤

y2(t)⊤]⊤. In addition, the origin of (Σ1, Σ2) is asymptotically stable
if ρ1 + ν2 > 0 and ρ2 + ν1 > 0.

2.2. Problem statement

Consider the nominal system ΣP subject to faults whose faulty
model is ΣPf described as follows

ΣP :

{
ẋ(t) = fx (x(t))+ fu (x(t)) up(t)

yp(t) = hx (x(t))+ hu (x(t)) up(t)
(7)

ΣPf :

{
ẋ(t) = fx,f (x(t))+ fu,f (x(t)) up(t)

yp(t) = hx,f (x(t))+ hu,f (x(t)) up(t)
(8)

and interconnected with an output feedback controller ΣC de-
cribed as follows

C :

{
ẋc(t) = fc,x (xc(t))+ fc,y (xc(t)) yc(t)

uc(t) = hc,x (xc(t))+ hc,y (x(t)) yc(t)
(9)

where xc(t) ∈ Rnc , uc(t), up(t) ∈ Rm, and yc(t), yp(t) ∈ Rm are,
respectively, the state, input and output of ΣC .

As shown in Fig. 1, an RB denoted by ΣR is inserted between
the faulty plant and the controller to recover the fault-free per-
formance or stability. In this work, ΣR is used as a PB, i.e., ΣR
performs series, feedback, and feedfoward passivation on ΣC to
ensure that the closed-loop system presents desired dissipativity
properties. The concept of passivation for fault mitigation pro-
posed by Xia et al. (2018) can be extended to a dynamic structure
called dynamic PB (DPB) whose model is described as follows

ΣR :

⎧⎪⎨⎪⎩
ẋr (t) = Arxr (t)+ Br,yy(t)+ Br,uuc(t)

yr (t) = Cr,yxr (t)+ R1y(t)+ R2uc(t)

ur (t) = Cr,uxr (t)+ R3y(t)+ R4uc(t)

(10)

with xr (t) ∈ Rn, y(t), uc(t), yr (t), ur (t) ∈ Rm and gain matrices Ar ,
Br,y, Br,u, Cr,y, Cr,u, R1, R2, R3, and R4 with proper dimensions.

During the fault-free operation, the nominal plant ΣP is con-
nected by feedback to the controller ΣC such that u ← uc and
yc ← y (see fault-free system in Fig. 1). However, if a fault occurs,
the system dynamics is changed and a proper FDI system can
indicate the fault occurrence and obtain the passivity indices of
ΣPf . Then, ΣR is activated between ΣPf and ΣC such that up ← ur
and yc ← yr (see reconfigured system in Fig. 1).

In this paper, the exact models of ΣP , ΣPf and ΣC do not need
to be exactly known but only the passivity indices of ΣPf and ΣC
are.
Fig. 1. Control reconfiguration by fault hiding.

Assumption 2. Assume that ΣC is IF-OFP(νc, ρc) with given νc
and ρc . In addition, there is no further knowledge about ΣP and
ΣC beyond the passivity indices of ΣC .

Assumption 3. It is assumed that ΣPf is IF-OFP(νf , ρf ) and there
exists an FDI system that is able to correctly detect the fault
occurrence as soon as it occurs. Furthermore, the FDI system
provides the values of νf and ρf .

Remark 2. The results presented in this paper are based on
the knowledge of the dissipative properties of the controller and
the estimation of dissipativity properties of the faulty system as
stated in Assumptions 2 and 3. The estimation of dissipativity
properties of the faulty system is achieved by means of any
efficient FDI strategy (notice that the FDI design is not addressed
in this paper and it is supposed to be available beforehand). The
study of fault detection and control reconfiguration is usually
separated in the literature on AFTC (Argha et al., 2019; Richter,
2011; Richter et al., 2011), although both should be implemented
together. There are few results on the integrated design AFTC and
FDI systems (Lan & Patton, 2016). Although it is still an open issue,
the integration between FTC, FDI, and passivity indices estimation
is not addressed here.

Remark 3. The estimation of dissipativity properties is a chal-
lenging problem. It is still lacking general procedures for esti-
mating it for different classes of nonlinear systems. There are
some available methodologies for estimating dissipativity prop-
erties from data (Romer, Berberich, Köhler, & Allgöwer, 2019;
Romer, Montenbruck, & Allgöwer, 2018; Tanemura & Azuma,
2019; Zakeri & Antsaklis, 2019), although most of them are only
applicable for linear time invariant systems (Romer et al., 2019,
2018; Tanemura & Azuma, 2019). There are few results for local
dissipativity of nonlinear systems under operational constraints
based on polynomial approximations (Zakeri & Antsaklis, 2019)
and for dissipativity with respect to a periodic orbit (Berberich,
Köhler, Allgöwer, & Müller, 2020).

In the context of dissipativity theory, the following fault hiding
problem can be stated.

Problem 1 (Asymptotic Stability Recovery by Fault Hiding). Let ΣP
be a nominal system with fault model ΣPf and connected to a
controller ΣC . Considering Assumptions 2 and 3, find an RB ΣR
such that the origin of (ΣPf , ΣR, ΣC ) is asymptotically stable.



3

3

p
f
o
a
s
t
b
s
(
t
s

m

s

b
f

3

g
u

t

Σ

i
0
x

a

a
2
f
t
e
s
e
p

d
t
l
p
g

Σ

Σ

Fig. 2. Interconnection between Σ and M .

. Passivation blocks for fault hiding

.1. Passivation blocks

Passivity- and dissipativity-based control are important
aradigms in control theory that have been employed for dif-
erent kind of problems, since they also related to the concept
f input–output stability. However, eventually, the dissipativity
nd passivity theory cannot be directly applied to non-passive
ystems. Then, passivation techniques enable the use of these
echniques for a wider class of systems. In the literature, feed-
ack, feedfoward and series passivation techniques have been
uccessfully employed to stabilize dynamical systems. In Xia et al.
2018), a general passivation technique expressed by a matrix
ransformation that comprises the feedback, feedforward, and
eries passivation actions is presented.
Consider the system ΣC and an input–output transformation

atrix M described as follows[
ur
yr

]
= M

[
y
uc

]
(11)

uch that their interconnection is depicted in Fig. 2a.
As shown in Xia et al. (2018), the matrix transformation M can

e expressed as the combination of passivation gains in series,
eedfoward, and feedback. In particular, Xia et al. (2018) define
the matrix M as follows

M ≜

[
mpI (ms −mpmf )I
I −mf I

]
, ms ̸= mpmf (12)

where mp, mf , and ms are feedfoward, feedback, and series gains,
such that the (ΣC , ΣR) is equivalent to the system illustrated in
Fig. 2b.

Lemma 4, originally presented in Xia et al. (2018), allows to
design the M to ensure desired passivity indices for (ΣC , ΣR).

Lemma 4 (Xia et al., 2018). Let ΣC be finite-gain L2-stable with
gain γ with the passivation matrix M given in (12). The equivalent
system (ΣC , ΣR) is

• passive if M is chosen such that

mp > 0, ms = −mfmp, 0 < |mf |γ < 1 (13)

• OFP(ρr ) with ρr > 0, such that ρr =
1
2 (

1
mp
+

mf
ms

), if M is
chosen such that

mp ≥ msγ > 0, ms > mfmp > 0 (14)

• IFP(νr ) with νr > 0, such that νr =
1
2 (mp+

ms
mf

), if M is chosen
such that

1 > mf γ > 0, mfmp > ms > 0 (15)
Fig. 3. Equivalent interconnection of (ΣPf , ΣR, ΣC ) expressed as controller
passivation with DPB.

• VSP with indices νr =
a
2mp and ρr =

a
2

1
mp

, if M is such that

mp >> 0, ms = −mfmp, m2
f γ

2
≤

1− a
1+ a

(16)

for an arbitrary 0 < a < 1.

.2. DPB and its relation with RBs

This paper extends the concept of passivation for fault miti-
ation proposed by Xia et al. (2018) for a DPB described as (10)
sed for solving the FTC Problem 1.
The equivalent reconfigured loop obtained by means of the in-

erconnection (ΣPf , ΣR, ΣC ) with ΣR described as (10) is depicted
in Fig. 3, where w1, w2, and w3 are external disturbances and r is
the reference signal.

Note that the RB proposed in Bessa et al. (2020) described as

R :

[
yr
ur

]
=

[
R1 R2
R3 R4

][
y
uc

]
(17)

s a particular DPB case obtained from (10) if one defines Ar ≜

nr×nr , Br,y ≜ 0nr×p, Br,u ≜ 0nr×m, Cr,y ≜ 0p×nr , Cr,u ≜ 0m×nr , and
r (0) ≜ 0nr×1.
Comparing (12) and (17), it is possible to note that M is a

particular matrix for ΣR, where R1 = I , R2 = −mf I , R3 = mpI ,
nd R4 = (ms − mpmf )I . Thus, the RB for passivation purpose is

defined as a PB in this work.
Indeed, the PB proposed by Xia et al. (2018) is employed in an

daptive control strategy for fault mitigation (Zakeri & Antsaklis,
019) that is similar to fault hiding. However, the conditions
or tuning that kind of PB are too strict and nonconvex, making
heir design difficult. The PB presented in this paper can be
asily obtained by solving a semi-definite programming problem,
uch that LMI-based conditions are provided. In our experimental
valuation, the PB proposed in this paper is compared to that
roposed in Xia et al. (2018).
The DPB described as (10) also generalizes the existing linear

ynamic RBs found in the literature (Richter, 2011). However,
hese RBs, namely VSs and VAs, are usually applicable only for
inear and polytopic systems and are based on the internal model
rinciple. To show that, consider for the plant the nominal model,
iven by ΣP , and fault models, given by ΣPf , described as follows

P :

{
ẋ(t) = Ax(t)+ Bup(t)
yp(t) = Cx(t) (18)

Pf :

{
ẋ(t) = Ax(t)+ Bf up(t)
yp(t) = Cf x(t)

(19)
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A VS is usually described as follows (Richter, 2011):

ΣR :

⎧⎪⎨⎪⎩
ẋr (t) = (A+ LC)xr (t)− Lyp(t)+ Bf uc(t)

yr (t) = (C − Cf )xr (t)+ yp(t)

ur (t) = uc(t)

(20)

nd it is designed to compensate sensor faults. Note that the VS
described in (20) is a particular case of (10) taking Ar ≜ A + LC ,
Br,y ≜ −L, Br,u ≜ Bf , Cr,y ≜ C−Cf , Cr,u ≜ 0m×nr , R1 ≜ Im, R2 ≜ 0p×m,
R3 ≜ 0m×p, R4 ≜ Im and xr (0) ≜ 0nr×1. On other hand, a VA is
described as follows (Richter, 2011):

ΣR :

{ẋr (t) = (A− BfM)xr (t)+ (B− BfM)uc(t)
yr (t) = Cxr (t)+ yp(t)
ur (t) = Mxr (t)+ Nuc(t)

(21)

nd is employed to compensate for actuator faults. The VA in (21)
is also a particular case of the DPB in (10) if one defines Ar ≜
A − BfM , Br,y ≜ 0nr×p, Br,u ≜ B − Bf , Cr,y ≜ C , Cr,u ≜ M , R1 ≜ Im,
2 ≜ 0p×m, R3 ≜ 0m×p, R4 ≜ N and xr (0) ≜ 0nr×1.

. Stability recovery with DPB

In this section, LMI-based conditions for computing the DPB
re presented to ensure the asymptotic stability recovery by fault
iding. For this purpose, it is worth to obtain conditions for
issipativity analysis of DPB.
All the results described in this section deal with the re-

onfigured system (ΣPf , ΣR, ΣC ) interconnected as Fig. 3, under
ssumptions 2 and 3 where ΣPf , ΣC and ΣR are, respectively,
escribed in (1), (9) and (10).
In particular, Lemma 5 provides conditions for ΣR in (10) to

be IF-OFP(νr , ρr ).

Lemma 5. ΣR is IF-OFP(νr , ρr ) if there exist a matrix P = P⊤, and
scalars νr and ρr such that the following inequalities are satisfied:

P ≻ 0 Θ ⪯ 0 (22)

with

Θ ≜

⎡⎢⎢⎣He {PAr} +W11 PBr,y −
1
2C
⊤
r,y +W12 PBr,u −

1
2C
⊤
r,u +W13

⋆ νr Im − 1
2He {R1} +W22 −

1
2R2 −

1
2R
⊤

3 +W23

⋆ ⋆ νr Im − 1
2He {R4} +W33

⎤⎥⎥⎦
W11 ≜ ρrC⊤r,yCr,y + ρrC⊤r,uCr,u, (23)

12 ≜ ρrC⊤r,yR1 + ρrC⊤r,uR3, (24)

13 ≜ ρrC⊤r,yR2 + ρrC⊤r,uR4, (25)

22 ≜ ρrR⊤1 R1 + ρrR⊤3 R3, (26)

23 ≜ ρrR⊤1 R2 + ρrR⊤3 R4, (27)

33 ≜ ρrR⊤2 R2 + ρrR⊤4 R4. (28)

roof. The DPB depicted in Fig. 3 and described in (10) is
epresented by using, respectively, augmented input and output
ectors: ūr (t) ≜

[
y(t)⊤ uc(t)⊤

]⊤ and ȳr (t) ≜
[
yr (t)⊤ ur (t)⊤

]⊤.
Defining Vr (xr (t)) = xr (t)⊤Pxr (t) as a storage function, its time
derivative is computed as

V̇ (xr (t)) = He
{
x⊤r PArxr + x⊤r PBr,yy+ x⊤r PBr,uuc

}
(29)

onsider the following supply function for ΣR

S (ūr (t), ȳr (t)) = ū⊤r ȳr − νr ū⊤r ūr − ρr ȳ⊤r ȳr . (30)

aking into account that yr (t) = Cr,yxr (t) + R1y(t) + R2uc(t) and
ur (t) = Cr,uxr (t)+ R3y(t)+ R4uc(t), (30) results in

S(ūr , ȳr ) =− x⊤r W11xr − y⊤ (−R1 +W22) y− νry⊤y

− u⊤ −R +W u − ν u⊤u + y⊤C x
c ( 4 33) c r c c r,y r
− He
{
x⊤r W12y+ x⊤r W13uc + y⊤W23uc

}
+ u⊤c Cr,uxr + y⊤R2uc + u⊤c R3y. (31)

hereWij are defined by (23)–(28). Based on the identity x⊤Wy =
1
2He

{
x⊤Wy

}
, (31) is equivalent to

(ūr , ȳr ) =− x⊤r W11xr − y⊤
(
νr Im − 1

2He {R1}

+W22) y− u⊤c
(
νr Im − 1

2He {R4}

+W33) uc − He
{
x⊤r

(
−

1
2C
⊤

r,y +W12
)
y
}

+ He
{
x⊤r

(
−

1
2C
⊤

r,u +W13
)
uc

}
+ He

{
y⊤

(
R2 + R⊤3 +W23

)
uc

}
. (32)

R is dissipative with respect to (32) if V̇ (xr (t)) − S(ūr , ȳr ) ≤ 0
or, equivalently, subtracting (32) from (29) one obtains:

x̄⊤r Θ x̄r ≤ 0 (33)

with x̄r =
[
xr (t)⊤ y(t)⊤ uc(t)⊤

]⊤. If (22) is satisfied for some νr

nd ρr , then (33) is satisfied and ΣR is IF-OFP(νr , ρr ) according to
efinition 2. □

The next Lemma presents sufficient conditions for ensur-
ng that the reconfigured system (ΣPf , ΣR, ΣC ) is a (Q , S, R)-
issipative system.

emma 6. If ΣPf , ΣC , and ΣR are, respectively, IF-OFP(νf , ρf ),
IF-OFP(νc , ρc), and IF-OFP(νr , ρr ), then the reconfigured system
(ΣPf , ΣR, ΣC ) is (Q , S, R)-dissipative with:

Q =

⎡⎢⎢⎢⎢⎣
−

(
ρf + νr

)
Im 0m×m

1
2 Im 0m×m

⋆ − (ρc + νr) Im 1
2 Im

1
2 Im

⋆ ⋆ − (νc + ρr) Im 0m×m

⋆ ⋆ ⋆ −
(
νf + ρr

)
Im

⎤⎥⎥⎥⎥⎦ (34)

=

⎡⎢⎢⎢⎢⎣
1
2 Im 0m×m 0m×m νf Im
−νr Im 0m×m

1
2 Im 0m×m

0m×m
1
2 Im −νc Im 0m×m

−Im 0m×m 0m×m −νf Im

⎤⎥⎥⎥⎥⎦ (35)

=

⎡⎢⎢⎢⎢⎣
−νf Im 0m×m 0m×m νf Im
0m×m −νr Im 0m×m 0m×m

0m×m 0m×m −νc Im 0m×m

νf Im 0m×m 0m×m −νf Im

⎤⎥⎥⎥⎥⎦ (36)

Proof. Define

X1 ≜
[
Im 0m×m 0m×m −Im

]
, X2 ≜

[
0m×m 0m×m 0m×m Im

]
,

X3 ≜
[
Im 0m×m 0m×m 0m×m

]
, X4 ≜

[
0m×m Im 0m×m 0m×m

]
,

X5 ≜
[
0m×m 0m×m Im 0m×m

]
, w̄⊤ ≜

[
r(t)⊤ w1(t)⊤ w2(t)⊤ w3(t)⊤

]
,

ȳ ≜
[
yp(t)⊤ uc(t)⊤ yr (t)⊤ ur (t)⊤

]⊤
.

Considering the equivalent loop in Fig. 3, the inputs and outputs
of ΣPf , ΣC , and ΣR can be expressed as follows

u(t) = r(t)− w3(t)− ur (t) = X1w̄ − X2ȳ, (37)

yp(t) = X3ȳ, ur (t) = X2ȳ, yr (t) = X5ȳ, (38)

y(t) = yp(t)+ w1(t) = X4w̄ + X3ȳ, (39)

uc(t) = X4ȳ, yc(t) = yr (t)+ w2(t) = X5 (w̄ + ȳ) . (40)
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Assuming that ΣPf is IF-OFP(νf , ρf ), the following inequality holds
ccording to Definition 2:

V̇f (x) ≤ u⊤p yp − νf u⊤p up − ρf y⊤p yp (41)

where Vf is a valid storage function for ΣPf . Substituting (37) and
(38) into (41), it follows that:

V̇f (x) ≤ ȳ⊤Q̄f ȳ+ 2w̄⊤S̄f ȳ+ w̄⊤R̄f w̄, (42)

Q̄f = −νf X⊤2 X2 − ρf X⊤3 X3, (43)

Sf =
1
2
X⊤1 X3 −

1
2
X⊤2 X3 + νf X⊤1 X2, (44)

R̄f = −νf X⊤1 X1. (45)

Moreover, given that ΣC is IF-OFP(νc , ρc), then

V̇c(xc) ≤ u⊤c yc − νcy⊤c yc − ρcu⊤c uc (46)

where Vc is a valid storage function for ΣC . Substituting (38) and
(40) into (46), it follows that:

V̇c(xc) ≤ ȳ⊤Q̄c ȳ+ 2w̄⊤S̄c ȳ+ w̄⊤R̄cw̄, (47)

Q̄c = X⊤5 X4 − νcX⊤5 X5 − ρcX⊤4 X4, (48)

Q̄c = X⊤5 X4 − νcX⊤5 X5 − ρcX⊤4 X4, (49)

R̄c = −νcX⊤5 X5. (50)

Similarly, assuming that ΣR is IF-OFP(νr , ρr ) and

w̄r ≜

[
y
uc

]
=

[
X4

0m×4m

]
w̄ +

[
X3
X4

]
ȳ, (51)

ȳr ≜

[
yr
ur

]
=

[
X5
X2

]
ȳ, (52)

it follows that

V̇r (xr ) ≤ w̄⊤r ȳr − νr ū⊤r ūr − ρr ȳ⊤r ȳr (53)

where Vr is a valid storage function for ΣR. Substituting (51) and
(52) into (53), it is equivalent to

V̇r (xr ) ≤ȳ⊤Q̄r ȳ+ 2w̄⊤S̄r ȳ+ w̄⊤R̄rw̄, (54)

Q̄r =X⊤3 X5 + X⊤4 X2 − νr
(
X⊤3 X3 + X⊤4 X4

)
− ρr

(
X⊤5 X5 + X⊤2 X2

)
, (55)

Sr =
1
2
X⊤4 X5 − νrX⊤4 X3, (56)

R̄f =− νrX⊤4 X4. (57)

Thus, adopting the storage function V̄ (x, xr , xc) ≜ V̇f (x) +
V̇r (xr ) + V̇c(xc) for the reconfigured system (ΣPf , ΣR, ΣC ), the
following inequality can be obtained by summing the inequali-
ties (42), (47) and (54)

V̄ (x, xr , xc) ≤ȳ⊤
(
Q̄f + Q̄r + Q̄c

)
ȳ+ 2w̄⊤

(
S̄f + S̄r + S̄c

)
ȳ

+w̄⊤
(
R̄f + R̄r + R̄c

)
w̄.

It is straightforwardly obtained that S = S̄f + S̄r + S̄c and
= R̄f + R̄r + R̄c are, respectively, equivalent to (35) and (36).

n addition, Q̄f + Q̄r + Q̄c is
⊤Γ X (58)

here X ≜
[
X⊤3 X⊤4 X⊤5 X⊤2

]⊤ and

≜

⎡⎢⎢⎢⎢⎣
−

(
ρf + νr

)
Im 0m×m

1
2 Im 0m×m

⋆ − (ρc + νr) Im 1
2 Im

1
2 Im

⋆ ⋆ − (νc + ρr) Im 0m×m

⋆ ⋆ ⋆ −
(
νf + ρr

)
Im

⎤⎥⎥⎥⎥⎦
Note that since X is an identity matrix then (58) is equivalent to
= Q̄ + Q̄ + Q̄ which results in (34). Therefore, (Σ , Σ , Σ )
f r c Pf R C
is (Q , S, R)-dissipative with Q , S and R defined by (34)–(36),
respectively. □

Based on Lemma 6, the next Theorem provides sufficient con-
ditions to ensure the stabilization of faulty systems by means of
DPB and based on passivity indices.

Theorem 1. Assume that ΣPf is IF-OFP(νf , ρf ) and ΣC is IF-OFP(νc ,
ρc) for given νf , ρf , νc , and ρc . The origin of reconfigured system
(ΣPf , ΣR, ΣC ) is asymptotically stable if there exist scalars γ1, γ2,
γ3, γ4, νr and µr , and matrices P = P⊤, Z1, Z2, Z3, Cr,y, Cr,u, R1, R2,
R3 and R4 that satisfy the following inequalities:

P ≻ 0,

γ−11 ≤ ν−1f , γ−12 ≤ ν−1c , γ3 ≤ ρf , γ4 ≤ ρc, (59)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µr Im 0m×m Cr,y R1 R2

⋆ −µr Im Cr,u R3 R4

⋆ ⋆ He {P + Z1} Z2 − 1
2C
⊤
r,y Z3 − 1

2C
⊤
r,u

⋆ ⋆ ⋆ νr Im − 1
2He {R1} −

1
2R2 −

1
2R
⊤

3

⋆ ⋆ ⋆ ⋆ νr Im − 1
2He {R4}

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0, (60)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(γ3 + νr ) 0 1
2µr 0 0 0

⋆ −(γ4 + νr ) 1
2µr

1
2µr 0 0

⋆ ⋆ −µr 0 −µr 0

⋆ ⋆ ⋆ −µr 0 µr

⋆ ⋆ ⋆ ⋆ γ1 0

⋆ ⋆ ⋆ ⋆ ⋆ γ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
≺ 0. (61)

n this case, the gains Ar , Br,y, and Br,u of (10) are given by Ar =

n + P−1Z1, Br,y = P−1Z2, and Br,u = P−1Z3.

Proof. Using a Schur’s complement argument, for µr > 0 given,
if (60) is satisfied then⎡⎢⎢⎣He {P + Z1} Z2 − 1

2C
⊤
r,y Z3 − 1

2C
⊤
r,u

⋆ νr Im − 1
2He {R1} −

1
2R2 −

1
2R
⊤

3

⋆ ⋆ νr Im − 1
2He {R4}

⎤⎥⎥⎦
+µ−1r T⊤1 T1 ≺ 0, (62)

where

T1 ≜

[
Cr,y R1 R2
Cr,u R3 R4

]
.

Further, define

W ≜

[W11 W12 W13
⋆ W22 W23
⋆ ⋆ W33

]
,

here Wij are defined as in (23)–(28), i, j = 1, 2, 3. Defining
r ≜ µ−1r , it follows that

= µ−1r T⊤1 T1.

efining Z1 ≜ PAr−P , Z2 ≜ PBr,y, and Z3 ≜ PBr,u, (62) is equivalent
to (22). Thus, according with Lemma 5, if (60) is satisfied for
ome µr > 0, then (22) is also satisfied and ΣR is IF-OFP(νr ,
r ). Lemma 6 ensures that if ΣPf , ΣC and ΣR are, respectively, IF-
FP(νf , ρf ), IF-OFP(νr , ρr ) and IF-OFP(νc , ρc), then (ΣPf , ΣR, ΣC ) is
Q , S, R)-dissipative with Q , S and R defined, respectively, by (34),
35), and (36). Using the Schur’s complement Lemma, if (61) is
atisfied then⎡⎢⎢⎢⎢⎣
−(γ3 + νr ) 0 1

2µr 0

⋆ −(γ4 + νr ) 1
2µr

1
2µr

⋆ ⋆ −µr 0

⎤⎥⎥⎥⎥⎦− T⊤2 Y1T2 ≺ 0. (63)
⋆ ⋆ ⋆ −µr
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is also satisfied for T2 ≜ [02×2 µr I2] and Y−11 ≜ diag {γ2, γ1}.
hus (63) is equivalent to

2 ≜

⎡⎢⎢⎢⎢⎣
−(γ3 + νr ) 0 1

2µr 0

⋆ −(γ4 + νr ) 1
2µr

1
2µr

⋆ ⋆ −µr − µ2
r γ2 0

⋆ ⋆ ⋆ −µr − µ2
r γ1

⎤⎥⎥⎥⎥⎦ ≺ 0. (64)

Considering (59) and Lemma 2, it is clear that ΣPf and ΣC

are, respectively, IF-OFP(γ−11 , γ3) and IF-OFP(γ−12 , γ4). Adopting
the congruence transformation T⊤3 Y2T3 with T3 ≜ diag{1, 1, µ−1r ,

µ−1r } and µ−1r = ρr , then notice that T⊤3 Y2T3 ⪰ Q with Q
defined by (34). Thus, it demonstrates that (61) implies that
Q ≺ 0, which it is sufficient to ensure the asymptotic stability
of (ΣPf , ΣR, ΣC ) according to Lemma 1. Finally, any ΣR described
as (10) with matrix gains that satisfy (59)–(61) with P ≻ 0 en-
sures the asymptotic stability of (ΣPf , ΣR, ΣC ) and this concludes
the proof. □

5. Numerical example

Consider the following nonlinear faulty system ΣPf :

ΣPf :

⎧⎨⎩ẋ1 = −0.5x31 + 0.5x2
ẋ2 = −0.5x1 − 1.25x2 − 4faup
yp = −fsx2 − 0.5fsup

(65)

where the signals fa and fs denote, respectively, actuator and
sensor multiplicative faults such that fa = 1 and fs = 1 represent
the fault-free operation.

Let V (x1, x2) =
1
2
x21+

1
2
x22 be a storage function for ΣPf . Taking

ts time-derivative, it follows that:
˙ (x1, x2) = −0.5x41 − 1.25x22 − 4faupx2. (66)

urthermore, given that ΣPf is IF-OFP(νf , ρf ), S(u, y) is the supply
rate function in (3) for (65):

S(up, yp) =−
(
1
2
fs fa + f 2a νf +

1
4
fsρf

)
u2
p

−
(
fs fa + fsρf

)
upx2 − fsρf x22. (67)

isregarding the negative term −0.5x41 in (66), the following
condition, obtained from (66) and (67), is sufficient to ensure that
the passivation indices satisfy V̇ (x1, x2)− S(up, yp) ≤ 0[
x2
up

]⊤⎡⎣−1.25+ fsρf
1
2

(
fsfa + fsρf − 4fa

)
⋆ 1

2 fsfa + f 2a νf +
1
4 fsρf

⎤⎦⎡⎣x2

up

⎤⎦ ≤ 0 (68)

hus, the above condition allows computing ρf and νf by means
of semi-definite programming (SDP) for both the fault-free and
faulty operation modes since the fault estimates fs and fa are
known (cf. Assumption 3). To test different fault scenarios (fault-
free; actuator, sensor or simultaneous faults), fs and fa are chosen
as follows:

fs =
{
0.75, if 10 < t ≤ 85,
1, otherwise

, fa =
{
1, if t ≤ 55,
−0.2, if t > 55.

Notice that the fault-free operation happens until t = 10 s, when
sensor attenuation fault starts. While the sensor fault still is
resent, an actuator fault with fa = −0.2 starts at t = 10 s.
or t > 85 s, the sensor fault is no longer occurring but only
he actuator fault affects the system. The passivity indices are
omputed solving the maximization of the cost J = ρf + νf with
onstraint (68). Then, the passivity indices are:

νf =

⎧⎪⎪⎨⎪⎪⎩
−2.563, if t ≤ 10,
−0.249, if 10 < t ≤ 55,
−2.843, if 55 < t ≤ 85,

ρf =

⎧⎨⎩
0.375, if t ≤ 10,
0.512, if 10 < t ≤ 55,
0.001, if t > 55.
0.686, if t > 85,
For the simulations, a controller ΣC , that is IF-OFP(−0.25, 2.75) is
used to stabilization and disturbance rejection for the fault-free
system. It is given by:

ΣC :

{
ẋc = −3.517xc − 4.5yc
uc = xc + 0.2045yc

(69)

The proposed DPB described in (10) is designed based on
heorem 1 by using the LMILAB. The computed gains of the DPBs
i
R for the scenarios i = 1, 2, 3 are presented in the sequel. Notice

hat Scenario 1 denotes the case when only the sensor fault
ccurs (10 < t ≤ 55 s). Scenario 2 corresponds to the case when
nly the actuator fault occurs (t ≥ 85 s). And Scenario 3 is the
ase when both sensor and actuator faults occur simultaneously
55 < t ≤ 85 s). The superscript indices in the matrices indicate
he scenario

A1
r =

[
−0.5 0
0 −0.5

]
, A2

r = A3
r =

[
−1.4142 0

0 −1.4142

]
,

B1
r,u = B2

r,u = B3
r,u = B1

r,y = B2
r,y = B3

r,y =
[
0 0

]⊤
,

C1
r,u = C2

r,u = C3
r,u = C1

r,y = C2
r,y = C3

r,y =
[
0 0

]
,

R1
1 = R1

4 = 0.126, R2
1 = R2

4 = 0.0181,

R3
1 = R3

4 = 0.0207, R1
2 = R1

3 = R2
2 = R2

3 = R3
2 = R3

3 = 0,

The procedure proposed in Zakeri and Antsaklis (2019) and the
PB in (11) proposed by Xia et al. (2018) can also be employed
to recover the stability of the reconfigured system. For this pur-
pose, Lemma 3 indicates that the passivation controller must be
FP(ρr ) with ρr > −νf for Scenarios 1 and 3. In the Scenario
, it is sufficient (ΣC , ΣR) to be passive since νf > 0 and ρf > 0.
ccording to Lemma 4, given that ΣC is finite gain L2-stable with
ain γ = 0.9688, the passivation gains may be chosen as
1
p = 0.25, m1

f = 0.2, m1
s = 0.1,

2
p = 2, m2

f = 0.5, m2
s = −1,

m3
p = 0.3, m3

f = 0.25, m3
s = 0.05.

The numerical simulation results are depicted in Fig. 4 and com-
pare the faulty system response with the reconfigured system
responses with the PB proposed by Xia et al. (2018) and with
the proposed DPB designed based on Theorem 1. Disturbances
w3 = 10 are added in the system output at t = 45 s, t = 80 s and
t = 90 s with duration of 0.1 s. The initial states are x1(0) = 1.5
and x2(0) = −2. The results illustrate that the proposed DPB is
able to recover the stability in all the fault scenarios and presents
good disturbance rejection action without requiring much control
effort. Otherwise, the system without PB became oscillatory in
Scenario 2 and unstable in Scenario 3. The PB proposed by Xia
et al. (2018) also recovers the stability, but it became too sensitive
to the disturbance when both faults are occurring (Scenario 2).

6. Conclusion

In this work, a novel fault hiding strategy by means of PBs for
asymptotic stability recovery of nonlinear systems based on dissi-
pativity and passivity theory is presented. Differently from other
fault hiding applications for nonlinear systems, the proposed
approach can be applied to different classes of nonlinear system
since it is possible to obtain the passivity indices of faulty sys-
tem and controller. LMI-based conditions for asymptotic stability
recovery by means of the proposed PBs from passivity indices
are provided. Numerical examples indicate that the proposed
approach is able to recover the stability after sensor and actuator
fault occurrence with better disturbance rejection ability than
recent approaches in the literature as Xia et al. (2018). Further
work should include investigation on the estimation of dissipa-
tivity properties from data to allow the FTC of nonlinear systems
with unknown models and on the integration of PB-based FTC
with inaccurate and delayed FDI systems.
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Fig. 4. Comparison between the proposed DPB and the PB in Xia et al. (2018) for the nonlinear system (65).
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