
Robust Zonotopic Set-Membership Approach for Model-Based
Prognosis: Application on Linear Parameter-Varying Systems

Ahmad Al-Mohamad1,2, Vicenç Puig1 and Ghaleb Hoblos2

Abstract— A robust set-membership Prognostics and Health
Management (PHM) methodology is presented in this paper.
The key advantages of the set-membership approach for states
and parameters estimation are enhanced by employing zono-
topes that are less conservative and computationally complex
than other sets. The optimal tuning of the proposed observer is
formulated using the Linear Matrix Inequality (LMI) approach.
Moreover, the Joint Estimation of States and Parameters (JESP)
leads to a non-linear representation of a monitored system
that is transformed into a Linear Parameter-Varying (LPV)
system by means of the non-linear embedding approach. The
considered case study is based on a slowly degraded DC-DC
converter. The aim of the proposed PHM approach is to forecast
the Remaining Useful Life (RUL) on a system level. Addition-
ally, the proposed RUL forecasting approach is independent of
previous knowledge of the degradation behaviors being only
dependent on the estimated zonotopic parameters. Finally, the
obtained results demonstrate the efficiency of the proposed
approach.

I. INTRODUCTION

Fault diagnosis and prognosis are powerful approaches
for the health management assessment of many engineering
applications. They require critical and reliable state
observation whether for condition-based or predictive
maintenance, and for RUL forecasting [1]. In this context,
the contributions of this paper such as modeling and
identification, robust JESP, and RUL forecasting are all
PHM-related. Specifically, we proposed the general scheme
of the aforementioned threefold in [7], that has been adapted
to the set-membership framework in this paper. Thus, the
proposed PHM approach aims to achieve a reliable RUL
forecasting which is mainly based on parameter estimation.
For this reason, we intend to employ the robustness of the
set-membership approach for JESP for the sake of RUL
forecasting, considering unknown-but-bounded noises and
uncertainties in an LPV framework.
In broad, PHM applications target dynamical systems with
varying parameters. Therefore, parameters augmentation
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is necessary for the JESP as investigated in [7]. But, this
nonlinear representation may not guarantee the observability
of the system when transforming the nonlinear representation
into an LPV model. Since the time-varying elements depend
on measurable parameters, the LPV is considered as a
particular class of Linear Time Variant (LTV) systems.
Technically, there exists more than a single methodology
to identify and classify the LPV systems such as nonlinear
embedding and linearization approximation [8]. In this case,
we approximated the nonlinear model with multiple varying
parameters using Jacobian linearization, and the LPV is
represented in a polytopic form with bounded parameters.
The efficiency of the proposed PHM approach relies
on the parameters estimation which has been carried
out using the set-membership approach. Additionally, in
spite of the existence of various geometrical shapes such
as polytopes (including zonotopes, parallelotopes and
boxes) and ellipsoids that could be integrated into the
set-membership scheme, we adopted the zonotopes on
account of the efficient arithmetic operations they provide,
in addition to the reduced conservatism compared to other
set representations [5], [6]. Therefore, the deterministic
Zonotopic Set-Membership (ZSM) approach assumes
unknown-but-bounded noises and disturbances [2]. It is
worth mentioning that the ZSM and the interval observers
approaches have been proved to be similar from a structural
aspect under some conditions [3].
The ZSM observer design is an essential element that in
this paper has been addressed using an optimization-based
scheme to cope with the reliable JESP. In particular, a
classical online approach based on the minimization of the
F−radius with an optimality criterion ([10], [6]) has been
compared to the proposed offline LMI-based Fw−radius
optimization.
Finally, a RUL forecasting approach has been developed
based on a polynomial estimation of the End of Life (EoL)
of the varying parameters, without previous knowledge of
the degradation behaviors. The complete methodology has
been assessed using a DC-DC buck-boost converter used in
electric vehicles [7]. Thus, a system-level degradation has
been modelled and investigated relying on two crucial power
electronic components that are subject to harsh degradation.
The cascading impact has been estimated using the ZSM
for states and parameters. The system-level prognostics
with multiple varying parameters that are characterized by
different degradation behaviors are being developed, whilst
the forecasted RUL of First Critical Component to Fail
(FCCF) is considered as the RUL of the whole system on



the macro level.

This paper is structured as follows. Some background
material about zonotopes are provided in Section II.
Thus, the key features of the proposed PHM approach
are highlighted in Section III. The ZSM approach is
demonstrated in Section IV. Next, the RUL forecasting
approach is detailed in Section V. Section VI is dedicated
to the application case study presenting simulation results.
Finally, the conclusions are drawn in Section VII.

II. BACKGROUND MATERIAL

As discussed in the introduction, in this paper we will
use zonotopes for the JESP in a set-membership framework.
In the following, some background material regarding zono-
topes is introduced.

Definition 2.1 (Zonotopes): A zonotope Z ⊂ Rn is a
convex symmetric polytope defined by a linear image of a
hypercube [−1,+1]m ⊂ Rm, with a center c ⊂ Rn and a
generator matrix H ⊂ Rn×m. It can be expressed as:

Z = 〈c,H〉 = {c+Hh, ‖h‖∞ ≤ 1}. (1)
Property 2.1 (Minkowski Sum): A p-order zonotope Z

can be expressed as Z = c ⊕ HBp, where ⊕ denotes the
Minkowski sum. Then, the Minkowski sum of two zonotopes
Z1 = 〈c1, H1〉 and Z2 = 〈c2, H2〉 is:

Z1 ⊕Z2 = (c1 + c2)⊕ [H1, H2]Bp1+p2 . (2)
Property 2.2 (Reduction operator): The weighted reduc-

tion operator ↓q,w is used to reduce the number of vertices
of the generator matrix H , where q specifies the maximum
number of columns in the reduced generator matrix as ↓q,w H
[6].

Definition 2.2 (Fw−radius): Fw−radius is an effective
size criterion for zonotopes Z = 〈c,H〉 ⊂ Rn. It is
calculated by a weighted Frobenius norm of H as [6]:

‖〈c,H〉‖F,w = ‖H‖F,w. (3)
Definition 2.3 (F−radius): The F−radius criterion is

similar to the Fw−radius with w = In. Thus, the Frobenius
norm of Z = 〈c,H〉 ⊂ Rn is computed as [6]:

‖〈c,H〉‖F = ‖H‖F , (4)

III. PROPOSED PROGNOSIS AND HEALTH
MANAGEMENT APPROACH

Nowadays, it has become crucial to observe and assess
the state of critical systems. The health monitoring requires
various clusters of information such as measurements data,
estimated data, human interface and more, while the ad-
vanced techniques focus on the application of the predictive
maintenance. In particular, the proposed approach deals with
degraded systems such as power electronic systems due to
thermal and/or electrical overstresses.
To date, the ongoing research targeting reliable RUL fore-
casting is still challenging. The reasons behind these diffi-
culties refer to the wide variety of applications, the modeling
complexity of the systems, the working conditions, the acces-
sible measurements, the types of the components, and more

reasonable constraints. Despite that, some of these disciplines
could be classified into clusters to manage the structuring of
the most suitable PHM approach for a specific application.
Interestingly, the model-based systems could follow the
same strategy that leads to a satisfactory RUL forecasting.
Thus, the key points of the proposed PHM approach are
illustrated in Figure 1, and provided with explanations for
RUL forecasting of model-based dynamical systems with
slow degraded parameters. Finally, it is worth mentioning
that one of the significant features of this proposed approach
is its ability to forecast the RUL without previous knowledge
of the degradation behaviors [7].

System’s Modeling:
Healthy & Degraded

PHASE
I

States and Parameters Estimation:
Bound the Uncertain Parameters

PHASE
II

Remaining Useful Life ForecastingPHASE
III

Decision Making:
Predictive Maintenance

PHASE
IV

Fig. 1. Proposed PHM Approach

• Phase I: The dynamical model is considered with
nonlinear degraded components in an augmented rep-
resentation. Thus, for generalization purposes of such
applications, the LPV representation has been adopted.
Moreover, DC-DC converters are usually modelled as
switched systems, yet the average representation is
applied due to its reduced computational effort. It is
worthwhile noting that the degradation behaviors are
only utilized as references to simulate the degraded
scenario, and to compare the zonotopic JESP with
the empirical degradation models. Hence, the ZSM for
JESP can now be applied the LPV model with multiple
varying parameters.

• Phase II: Several methods could be employed for
the states and parameters estimation in such dynami-
cal systems. However, some constraints might impose
specific techniques over others due to their advance-
ment in observers tuning. In broad, the observability
is crucial for the estimation, yet the problem turns
to be harder while augmenting the model with more
varying parameters and keeping less measurements data.
More constraints are considered such as unknown-but-
bounded uncertainties with variable inputs, and the aim
is to guarantee its observability. The failure condition is
then attained when the degraded parameters exceed their
physical thresholds that have been predefined based on
accelerated aging experiments.



In summary, the degradation estimation plays the most
important role in the proposed PHM approach. Hence,
as much as the complexity of the model increases with
the aforementioned constraints, as much as the effi-
ciency of the RUL forecasting decreases. Consequently,
bounding the uncertain states and parameters has been
utilized to guarantee a robust base for the following
phase of RUL forecasting.

• Phase III: The online RUL forecasting is one of the
main contributions to this study to ensure fast and
reliable prediction. This approach employs sets of es-
timated parameters in zonotopic forms in order to
generate intervals of polynomial EoL, and compute the
RUL of each varying parameter.

• Phase IV: The last phase of this PHM approach depends
on the type of application. Human-machine interface
could be required for maintenance while in different
situations, maintenance rescheduling would be a best
fit. In broad, cost optimization by avoiding unnecessary
maintenance is an essential financial target. Technically,
degraded components damage the healthy ones, and this
situation of cascading degradation can be avoided with
further investigations.

IV. ZONOTOPIC SET-MEMBERSHIP FOR STATES
AND PARAMETERS ESTIMATION

A. Problem Set-up

Consider the following discrete-time state-space represen-
tation of an uncertain LPV model:

xk+1 = A(ρk)xk +B(ρk)uk + Eωωk, (5a)
yk = C(ρk)xk +D(ρk)uk + Fυυk. (5b)

where k ∈ N denotes the discrete time instant. Ak =
A(ρk) = A0 + ∆A(ρk) and similarly for the rest of the
state-space matrices. Ak ∈ Rnx×nx , Bk ∈ Rnx×nu , Ck ∈
Rny×nx and Dk ∈ Rny×nu denote the state matrix, input
matrix, output matrix and feed-through matrix respectively.
Additionally, xk ∈ Rnx , yk ∈ Rny and uk ∈ Rnu are the
states, outputs and inputs of the system respectively. More-
over, ωk ∈ Rnx and υk ∈ Rny are the process disturbances
and measurement noises respectively, with Ew ∈ Rnx×nx
and Fv ∈ Rny×ny identify their direction matrices.

Assumption 4.1: The disturbances and noises are assumed
to be unknown-but-bounded zonotopes as:

W = ωc ⊕ EωBnx , and V = υc ⊕ EυBny , (6)

where, ωk and υk are bounded by a unitary hypercube
centered at 0 as:

ωk ∈ 〈0, Inω 〉, and υk ∈ 〈0, Inυ 〉, ∀k ≥ 0, (7)

B. ZSM Approach

Three steps are required for the JESP in the ZSM frame-
work. Firstly, the centers and the radii of the zonotopes are
predicted in uncertain ranges at the current time instant.
Secondly, a strip is computed based on the previous time

instant measurement unlike the stochastic approaches such
as Kalman filters [9]. Thirdly, the strip intersects with the
predicted uncertain states and parameters in order to estimate
the certain zonotopes. It should be noted that multi-output
systems require to compute a strip for each output, and to in-
tersect with the predicted states and parameters sequentially
for a guaranteed zonotopic enclosure and estimation [10].
The estimated zonotopic states and parameters after each
intersection are represented as follows:

X̂k+1 = ĉk+1 ⊕ Ĥk+1B
m, (8)

with,

ĉk+1 = ĉk + Λ(Yk − ŷ), (9a)

Ĥk+1 = [(I − ΛCk)H̄k, (I − ΛCk)Eω, −ΛFυ], (9b)

where ĉ is the estimated center of the zonotope X̂ , and Ĥ
is its estimated generator matrix. H̄k denotes the reduced
matrix which is computed by applying the reduction operator
as shown in Property 2.2, and Bm is a unitary box. I is an
identity matrix with proper dimensions and Λ is the tuning
matrix. Moreover, yk and ŷk denote the measured and the
estimated outputs respectively.

ŷk = (Ck ĉk +Dkuk). (10)

The estimated zonotope in Eq. (8) is realized by intersecting
the predicted states and parameters with the measurement
strip.
The uncertain prediction P̂ is computed once at each time
instant as:

P̂k+1 = x̂k+1 ⊕ Ĥk+1B
m, (11)

where,

x̂k+1 = Akx̂k +Bkuk + Eωωk, (12a)

Ĥk+1 = AkĤk. (12b)

Furthermore, the strip Xy is computed for each output alone
based on the previous measurement as:

Xy = {x ∈ Rnx : |Ckxk +Dkuk − Yk| < υk}. (13)

Finally, the intersection is realized, and the estimated certain
zonotopic states and parameters are represented as follows:

〈ĉk+1, Ĥk+1〉 = P̂k+1∩Xy = ĉk+1(Λ)⊕Ĥk+1(Λ)Bm. (14)

C. Computation of Tuning Matrix Λ

The ZSM observer is designed by tuning the matrix Λ as
shown in Equations (9). The generator matrix of the zonotope
is affected by the uncertainties which could negatively affect
the size of the zonotopes and lead to uncertain estimation.
Thus, the role that Λ plays in guaranteeing tight enclosures
of bounds is significantly crucial. Moreover, Λ could be
computed online using a classical method which is based
on the minimization of the F−radius with an optimality
criterion. On the other hand, an offline LMI-based optimiza-
tion problem can be solved to minimize the Fw−radius of
the estimated zonotopes. The optimal computation of both
approaches are explained below:



1) LMI-based optimization of Λ (offline):
Proposition 4.2: An LMI-based optimization problem has

been proposed to compute the optimal tuning matrix denoted
by Λ∗LMI. The objective is to minimize the F−radius of the
zonotope X less than a positive scalar γ. The LMIs has been
derived based on the stability Lyapunov theory. Therefore,
the optimal tuning matrix Λ∗LMI is obtained for the feasible
solutions Γ and W as:

Λ∗LMI = Γ−1W. (15)

Hence, the LMIs have been derived from the Lyapunov
function with respect to the Fw−radius. Next, by applying
Schur complement, the resulting LMI problem is formulated
as:

minimize
W,Γ

γ

subject to[
γI I
I Γ

]
� 0,

−Γ ΓA−WC ΓQT W
? −Γ 0 0
? ? −I 0
? ? ? −R−1

 � 0

(16)

where Q =
√
Eω and R = Fυ are the weighting parameters

for tuning, and ? denotes symmetrical elements. It should be
noted that the derivation of (16) is not detailed due to size
limitations.
The proposed LMI-based optimization problem can be
solved offline to reduce the time and the computational effort
that could lead to estimation delays if it were solved online.
Moreover, the varying parameters in the LPV model are
the degradation precursors of physical parameters. Thus, the
variation of each parameter is bounded between its rated
value ρ0 and its physical threshold (TH) ρTH that describes
the EoL of the system, as shown below:

∆ρ = ρmax − ρmin = ρTH − ρ0, (17)

It is worth noting that the TH of the parameters are defined
by excessive accelerated aging tests which characterize the
probability of failures of the components. The online mea-
surements of the degradation scenarios are provided by the
online repositories in [13], [14].
The polytopic representation of (5) is obtained using the
bounding box approach and considering the range of varia-
tion of the varying parameters as:

x(k + 1) =
N∑
i=1

µi (ρk) (Aix(k) +Biu(k)), (18)

y(k) =
N∑
i=1

µi (ρk) (Cix(k) +Diu(k)). (19)

Next, a varying value for the observer gain (15) can obtained
as follows:

Λ∗LMI(ρk) =
N∑
i=1

µi (ρk) Λ∗LMIi (20)

where Λ∗LMIi are obtained by solving (16) at the vertices of
the polytopic model (18)-(19).
The advantage of this approach is that the optimization prob-
lem (16) is solved offline. Thus, due to the limited available
tuning matrices, an interpolation based on the estimated
parameters is calculated to obtain the correct Λ∗LMI with less
computational effort. Consequently, the maximum number of
optimization problems to be solved is then reduced to N .
It is worth noting that solving the Λ∗LMI online without
interpolation has shown the same exact results of the pro-
posed offline-solving of the optimization problem with online
interpolation. However, the polytopic approach is preferable
to employ, since it avoids time and computational memory
consumption as already discussed.

2) Classical computation of Λ (online): The minimization
of the Frobenius norm of the generator matrix H of a
zonotope X using (4) leads to obtain an optimal tuning
matrix Λ∗. It has also been proved that this online approach
is independent of the weighting matrix [6], [10], [11]. Con-
sequently, the optimal tuning matrix Λ∗ using the classical
approach is computed online as:

Λ∗ =
Ĥ Ĥᵀ Cᵀ

CĤ Ĥᵀ Cᵀ + Fυ Fυ
ᵀ
. (21)

In conclusion, the LMI-based approach is applicable to
nonlinear systems, and only the interpolation of the feasible
solutions in function of ρ is computed online. Whereas, the
classical approach is implemented online to linear systems.

V. REMAINING USEFUL LIFE FORECASTING
AND DECISION MAKING

The desired outcome of the whole PHM application is a
fast and reliable online RUL forecasting. Switching power
electronic systems in specific, face harsh operating condi-
tions. They may encounter stability issues such as unexpected
behaviors, high temperatures or crashes. Moreover, the per-
sistence of the robust systems is desired by maintaining the
desired operational conditions. However, the degraded com-
ponents have a slow and long-term impact on the efficiency
of the system. As long as the faulty TH of the precursors are
not crossed, it would be difficult to assess the health status
of the system by direct measurements. Additionally, the
scheduled maintenance might increase unnecessary burden
and additional expenses. The RUL forecasting of slow-
degraded power electronic systems is challenging due to
many factors such as the complex modeling of the degra-
dation and its integration. Therefore, the RUL forecasting is
achieved online after the JESP process:
• Step 1: Retrieve the intervals of the estimated param-

eters only and assign the lower and the higher bounds
of each parameter as:

[
Ĥk(ρj), Ĥk(ρj)

]
, ∀k ∈ N.

where j denotes the number of the parameter ρ denoting
the degradation precursors (i.e RON, ESR).
Assumption 5.1: In the absence of permanent faults or
other information at k = 1, the system is assumed 100%
healthy.



• Step 2: Define a system of equations that describes
unknown-behavior polynomial degradation as:{ f1(p1, p2, ..., k,TH),

f2(p1, p2, ..., k, ρ0, ρ̂).
(22)

where (p1, p2, ...) are the parameters of the equations.
Next, the system is solved for each bound of the
estimated parameters as:

∆ρ
jk

= Ĥk(ρj)− ρj0 : (f
1
, f

2
), (23a)

∆ρjk = Ĥk(ρj)− ρj0 : (f1, f2). (23b)

Thus, the coefficients of the polynomial systems
(p1, p2, ...) are obtained based on the estimated zono-
topic bounds.

• Step 3: The previously-obtained parameters of the poly-
nomial system are used to solve Eq. (22) for ∆ρjk =
THρj and return k which defines in this case the
estimated EoL. Hence, the bounded RUL are obtained
as: { ˆRULk(ρj) = ˆEoLk(ρj)− k,

ˆRULk(ρj) = ˆEoLk(ρj)− k,
(24)

• Step 4: A safe decision-making has been adopted in this
study, based on the following proposition:
Proposition 5.2 (FCCF): The RUL of the system is the
RUL of the FCCF. Technically, the EoL of the system
is decided based on the component that reaches the
threshold first.

It is worth noting that the significant advantage of the pro-
posed forecasting approach is independent of the predefined
degradation behaviors which are only used in simulation as
source of measurements in the simulation.

VI. CASE STUDY

A. LPV Modeling of a Degraded DC-DC Converter

A DC-DC converter in boost operation mode has been
employed to feature the effectiveness of the proposed PHM
approach based on the JESP by set-membership using zono-
topes. The average model of the switched power electronics
system has been developed and detailed in previous work [7],
[9]. Thus, the augmented representation of the dynamical
model has been transformed into an LPV representation
due to the aforementioned observability and nonlinearities
concerns. The presence of the empirical degradation models
of the critical components allows the simulation of different
degradation scenarios in order to analyze the correlated
degradation effects. Two vital power electronic components
have been degraded and integrated in the converter model at
the same time. Hence, the ON-resistor (RON) is the adopted
degradation precursor of the MOSFET, and the Equivalent
Series Resistance (ESRo) denotes the precursor of the output
capacitor, where both are considered as varying parameters.
The empirical degradation is implemented for the sole reason
of simulating a degraded case based on real measurements
of accelerated-aged components [13], [14].
The converter is rated at 30 kW with the ideal values of the

input voltage vin = 200 V, and the output current io = 100 A.
Rin = 0.01 Ω is the input resistance, Cin = 80 mF is the input
capacitance and ESRin = 100 mΩ is the ESRin of the input
capacitor. Moreover, the inductance is denoted by L = 146µ
H and RL = 5 mΩ is the internal resistance of the inductor.
It should be noted that all the aforementioned parameters
are assumed as constant values. Furthermore, the following
empirical models of the ESRo and RON are described in the
following equations, and they are only used to simulate the
degradation mode:

ESR(t) ≈ 0.08805e3.649.10
−5t − 0.008749e−0.001097t,

(25a)

RON(t) ≈ RON0 + 0.0003332e0.0003331t, (25b)

with the initial value of the output capacitor resistance
ESRo = 80 mΩ, the output capacitance Co = 5 mF and
the internal resistance of MOSFET is RON = 0.2 Ω.
The following equations describe the states, inputs and
outputs vectors respectively:

xk =
[
vCin iL vCo ESRo RON

]ᵀ
, (26a)

u =
[
vin io

]ᵀ
, y =

[
iin vo

]ᵀ
. (26b)

Hence, the degradation equations in (25) are implemented in
the following average state-space matrices:

A(ρ) =



−1
Cin×RiCin

−ESRin
Cin×RiCin

0 0 0

ESRin
L×RiCin

a22
L×RiCin

d−1
L a24 a25

0 −(d−1)
Co

0 0 0

0 0 0 1 0
0 0 0 0 1


, (27a)

B(ρ) =



1
Cin×RiCin

0

ESRin
L×RiCin

−ESRo(d−1)
L

0 −1
Co

0 0
0 0


, (27b)

C(ρ) =

 −1
RiCin

ESRin
RiCin

0 0 0

0 −ESRo(d− 1) 1 c24 0

 , (27c)

D(ρ) =

 1
RiCin

0

0 −ESRo

 , (27d)

The distribution matrices of the noises and disturbances are:

Ew = diag(1, 1, 2, 0.03, 0.035), (28a)
Ev = diag(0.01, 0.089). (28b)

Table I shows the variations on specific elements due to the
transformation from a nonlinear to an LPV model. M and
MLPV represent the nonlinear matrices, and the LPV model
respectively. d is the duty cycle of the switch. Henceforth,



for the sake of simplicity, the varying states and parameters
shown in the LPV model iL, ESRo and RON will be denoted
by X2, X4 and X5 respectively.

TABLE I
ELEMENTS OF THE STATE-SPACE MATRICES IN THE NONLINEAR AND

LPV MODELS

Elements M MLPV

a22 RiCin ([X̂4](d− 1)−RL − [X̂5]× d)− ESRin ×Rin

a24 0 [X̂2](d− 1)/L

a25 0 −[X̂2]× d/L

c24 0 −[X̂2](d− 1)

It should be noted that [X̂2], [X̂4] and [X̂5] represent the
estimated zonotopes and they are implemented in the model
based on the zonotope inclusion property to satisfy the
certain intersection where all the uncertainties are accounted
and implemented in ω and υ [15].

B. Results and Discussions

The converter has been modelled and simulated in the
accelerated degradation of the MOSFET and the DC-link
capacitor which are represented by their degradation pre-
cursors (the RON and ESRo). Based on the aforementioned
information, the interconnection of these components lead to
the cascading degradation of the system itself. The system
is then discretized using a sampling frequency of 50000 Hz
to obtain satisfactory results. The duty cycle of the switch is
d = 0.33.
The ZSM has been implemented for the estimation of three
states and two parameters with two measurements provided,
in an LPV framework. The optimal classic and LMI-based
approaches for observer tuning, have been also compared
and illustrated. It should be noted that the estimation of the
states is not illustrated due to size limitations. The parameters
estimation and the RUL forecasting are illustrated. Table
II shows the Relative Accuracy (RA) of all the states and
parameters. To highlight the degradation effect, the first
state vCin shows a slight increase throughout the degradation
process. Additionally, iL and vCo have been decreased by a
total degradation of 5 A and 7 V respectively, due to the
cascading damage.
Figure 2 clearly shows that the LMI-tuned set-membership
approach provides a more accurate estimation. Both tuning
matrices are optimal and guarantee the intersection. However,
the classical approach closely encloses the higher bound to
the empirical model.
The second augmented parameter and fault precursor is
entitled as the fifth state is the RON. The intersection is
guaranteed and both approaches perform well with a small
difference in terms of bounds.
The previously illustrated results are evaluated by calculating
the average RA of the estimated bounds using the two
proposed approaches as: RA = 100 × (|ĉ− c(emp)|)/c(emp),
where ĉ and c(emp) represent the estimated and the empirical
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Fig. 3. Estimated parameter 5 showing the bounds tuned by two approaches

center of each zonotope respectively. Thus, the following
table shows the average values of the RA of the three states
and the two parameters.

TABLE II
THE AVERAGE RELATIVE ACCURACY OF THE ESTIMATED STATES AND

PARAMETERS

States & Parameters RA(Λ∗
LMI) % RA(Λ∗) %

X1 99.49522 99.49519
X2 99.05189 99.05286
X3 98.58109 98.47491
X4 56.04974 54.2355
X5 65.91433 66.65246

The average values of the RA of the estimated states
and parameters using the two tuning matrices, are evidently
matching with slight errors. Although the average RA of the
two augmented parameters X4 and X5 are lower than the
states, the intersection between the strip and the uncertain
predicted states is always guaranteed. Consequently, the
bounds always contain the empirical states and parameters,
and the advantage of adopting the LMI-based approach over
the online classical approach, is the ability of solving it
offline with reduced computations.
Finally, the RUL algorithm has been applied online at the
same time instant of each measurement and estimation. As
previously stated, the RUL of the whole system is predicted
based on the estimated parameters, ESR and RON. The FCCF
assumption is proposed in this paper, while the ongoing
research for the predictive maintenance is being developed.
Figure 4 shows the predicted RUL of each component



using the two approaches of sets tuning compared to their
respective empirical RUL. The LMI-based approach shows
wider RUL intervals than the classical approach at each
online forecasting. The results are provided in terms of
intervals that converge towards the EoL. The RUL of the
whole system is decided based on the lower RUL of a critical
component which is the ESR of the DC-link capacitor as
shown.
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Fig. 4. RUL forecasting

Moreover, Table III shows a numerical example at an online
measurement at 6000 cycles, featuring a comparison among
the RUL forecasting based on each varying parameter, and
the empirical RUL accordingly.

TABLE III
RUL FORECASTING INTERVALS AT AN ONLINE MEASUREMENT AT 6000

CYCLES

Critical Parameters ˆRUL ˆRUL Empirical RUL

ESR Λ∗
LMI 3666 4823 5233
Λ∗ 4334 4584

RON
Λ∗

LMI 6194 7343 6994
Λ∗ 6725 7452

The most optimistic RUL interval at the online measurement
at cycle 6000 is [ ˆRUL, ˆRUL] = [3666, 4823] cycles. The
LMI-based approach has been integrated in the forecasting
algorithm for the robust results that has provided in the
estimation process and later in the RUL.

VII. CONCLUSIONS

This paper has proposed a robust ZSM-based PHM ap-
proach for RUL forecasting with an application to a DC-DC
converter. The multi-aspect methodology contributes to the
modeling of dynamical systems in an LPV framework, in
phase I of the model-based PHM approach. Additionally,
the ZSM observer has been employed in phase II for the
JESP, that requires reduced computational efforts, and plays a
crucial role in RUL forecasting. Thus, the ZSM observer has
been optimally tuned for robust estimation in an offline LMI
scheme which has shown encouraging results in comparison
to the classical online approach. Hence, the proposed RUL
forecasting algorithm estimates the EoL of each degraded
component, and forecast their RUL bounds. Furthermore,
our ongoing PHM proposition for multi-component-degraded

systems is based on the FCCF proposition. The future work
aims to employ the promising zonotopic-based techniques
for RUL forecasting on a macro-level towards system-level
prognostics.
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[8] Maarten Schoukens, Roland Tóth, Linear Parameter Varying Repre-
sentation of a class of MIMO Nonlinear Systems, IFAC-PapersOnLine,
Volume 51, Issue 26, 2018, Pages 94-99, ISSN 2405-8963,
https://doi.org/10.1016/j.ifacol.2018.11.162.

[9] A. Al-Mohamad, V. Puig and G. Hoblos, ”Zonotopic Extended
Kalman Filter For RUL Forecasting With Unknown Degradation
Behaviors,” 2020 28th Mediterranean Conference on Control and
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