
Abstract

Motivation: The integration of multi-omic data using machine learning
methods has been focused on solving relevant tasks such as predicting sen-
sitivity to a drug or subtyping patients. Recent integration methods, such
as joint Non-negative Matrix Factorization (jNMF), have allowed researchers
to exploit the information in the data to unravel the biological processes of
multi-omic datasets.
Results: We present a novel method called Multi-project and Multi-profile
joint Non-negative Matrix Factorization (M&M-jNMF) capable of integrat-
ing data from different sources, such as experimental and observational multi-
omic data. The method can generate co-clusters between observations, pre-
dict profiles and relate latent variables. We applied the method to integrate
low-grade glioma omic profiles from The Cancer Genome Atlas (TCGA) and
Cell Line Encyclopedia (CCLE) projects. The method allowed us to find gene
clusters mainly enriched in cancer-associated terms. We identified groups of
patients and cell lines similar to each other by comparing biological processes.
We predicted the drug profile for patients, and we identified genetic signa-
tures for resistant and sensitive tumors to a specific drug.
Availability and implementation: Source code repository is publicly
available at https:/bitbucket.org/dsalazarb/mmjnmf/
Supplementary information: Supplementary data are available at Bioin-
formatics online.
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1. Introduction

Data fusion has become an area of interest in biological sciences [1] be-
cause it is possible to integrate data from different sources to describe and
uncover new properties of an individual. For instance, consider a type of can-
cer known as low-grade glioma, a subtype of brain cancer caused by somatic
mutations in glial cells. We can measure many molecules to obtain partial
knowledge of the disease for that cancer, but a greater understanding of the
system comes when a model integrates all the interactions between different
sources.

Many machine learning strategies have been used to better understand
the interactions of the various data sources. In general, these methods are
focused on tasks such as drug repurposing, molecular interactions prediction,
variable importance identification, etc [2, 3, 4]. Among these methods, non-
negative matrix factorization (NMF), which factorizes a non-negative input
matrix X into low-rank matrices known as the base matrix (W ) and the
coefficient matrix (H), have been used to integrate various types of data to
solve the tasks mentioned above and others [5, 6, 7, 8].

NMF methods have quite interesting properties for capturing patterns
since they integrate a sparse and part-based representation of the data cap-
tured by two non-negative low-dimensional matrices (base and coefficient
matrix). However, despite their usefulness, variants such as tri-factorization
of non-negative matrices (NMTF) or joint factorization of non-negative ma-
trices (jNMF) have taken a further step to include data from different sources
and generate patterns or clusters based on this information, in addition to
the possibility of predicting new links between the objects of study (patients,
genes, or diseases) [8, 9]. For instance, [10] used a sparse version of jNMF to
integrate miRNA and gene profiles of ovarian cancer. As a result, they identi-
fied enrichment co-clusters and groups of patients with significantly different
survival characteristics.

Furthermore, these methods have been used to stratify patients, predict
driver genes, and repurpose drugs. [6] used the NMTF strategy to integrate
somatic mutations from The Cancer Genome Atlas (TCGA), molecular in-
teractions from BioGRID and KEGG database, and chemical drug data from
DrugBank [6]. They found three groups of ovarian cancer patients signifi-
cantly separable by survival. They used these patient groups to identify two
new genes (ADAM32 and REG1P) related to cell proliferation and tumor
progression.
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Although NMTF integrates relational matrices, it does not predict a con-
centration, dose, or expression for a particular molecule. A variant of NMF
that allows factorizing non-relational matrices (XI) is jNMF, which factors
input matrices into a common base matrix (W ) and individual coefficient
matrices (HI) with the same clustering properties of the NMF method. For
example, [11] integrated six types of cell line profiles obtained from the Can-
cer Cell Line Encyclopedia (CCLE) database. As a result, they identified a
greater sensitivity to PLX4720 when there is a mutation in BRAF and activa-
tion of MITF. Furthermore, jNMF can predict omic profiles and incorporate
prior knowledge as a type of constraint that improves the interpretation of
results, as [9] proposed. They used a data set of protein-RNA interactions
predicting the interactions for 26 of 31 proteins with an AUC greater than
0.71.

Since jNMF allows researchers to solve different tasks in a single model,
we propose that the data integration can use datasets from different projects
simultaneously, for example, TCGA and CCLE. By using this information,
we can explore different scientific tasks of interest, such as the identification
of suitable cell lines for studying certain types of tumors [12] or the prediction
of the degree of sensitivity that tumors may have based on the information
of epigenetic and genetic expression of both projects [13].

In this paper, we present a new variant of jNMF to integrate omic profiles
of observational data (TCGA), experimental data (CCLE), and biological
knowledge to identify clusters for genes and miRNA, to co-cluster cell lines
and patients, and to predict the drug sensitivity profile for tumors.

2. Methods

2.1. Datasets

The omic profiles for the observational dataset, i.e., low-grade glioma
(LGG) tumors, were downloaded from The Cancer Genome Atlas (TCGA)
project using the TCGA-Assembler v2.0.6 tool [14]. The omic profiles for
the experimental dataset, i.e., cancer cell lines, were obtained from the Can-
cer Cell Line Encyclopedia (CCLE) project [15]. The common omic profiles
between the two projects were gene expression, miRNA expression, and copy
number variation (Supplementary Section S1). The drug sensitivity pro-
file, which contains AUC values, was downloaded exclusively for the CCLE
project. To ensure a positive input profiles, we scaled the values per columns
using the formula xij−Xmin/Xmax−Xmin where xij is the ith observation in the
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jth column of the matrix X. Xmax and Xmin is the maximum and the min-
imum value of the jth column, respectively (detail pre-processing steps in
Supplementary Section S1).

Each project required that the individuals (patients or cell lines) have all
the profiles. In addition, for both projects, the pairs of omic profiles must
have the same set of molecules (genes, miRNAs, or drugs).

2.2. Biological prior knowledge

The biological constraints incorporated in jNMF by [9] to improve the
clustering of clusters (co-clustering) were ΘI and RIJ , where I and J are
the identifiers for matrices. The former constraint refers to the intra-variable
relationships, and the latter corresponds to inter-variable relationships. In
Table 1, we summarized both constraints (detail description in Supplemen-
tary Section S2).

In the case of ΘI constraints, we employed the notation Θ
(t)

gene, where the
superscript (t) corresponds to the number of constraints associated to this
profile, when (t) ≥ 1. For instance, we have four different matrices on genes,
genetic interactions (Θ1

gene), protein-protein interactions (Θ2
gene), metabolic

interactions (Θ3
gene), and co-expression profiles (Θ4

gene) which are described
in the Table 1. The ΘI constraints matrix have a square structure, e.g., the
Θgene (No. genes × No. genes) constraint matrix corresponds to a binary
matrix where an association gene-gene is categorized as 1, and 0 otherwise.
The same is true for the ΘmiRNA matrix (Table 1).

The RIJ constraints may have a square or a rectangular shape because
they contained the association between two types of variables. For instance,
Rdrug−miRNA (No. drugs × No.miRNAs) constraints relate drug with a
miRNA. As ΘI constraint, RIJ constraints is a binary matrix.

2.3. Methods of joint factorization of non-negative matrices

2.3.1. Joint Non-negative Matrix Factorization

The standard method of joint non-negative matrix factorization (jNMF)
approximates a set of non-negative input matrices XI ∈ R(n×mI) for I =
1, . . . ,M , where I represents matrices of different measurements of many
features (mI) for the same objects, e.g. patients (n). The estimation of
these matrices consists of finding non-negative low-rank approximations of
each matrix, such that XI ≈ WHI , where W ∈ R(n×k) is a base matrix, and
HI ∈ R(k×mI) are the coefficient matrices for each I. Here, the coefficient
matrices are particular for each input matrix, and the base matrix is unique
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Table 1: Summary of constraints ΘI and RIJ . The number of nodes is lower
than the variables used in the proposed factorization problem because there is
no prior knowledge for all the variables, e.g., there are 314 miRNA, which 312
have evidence. Therefore, the dimension of ΘmiRNA constraint is 314 × 314. In
Thetatgene constraint the subscript (t) is equal to four.
Constraint Description No. Nodes No. Edges Edge density Reference

Θt
gene Genetic interactions 8585 848542 0.01151445

BioGRID v3.5 [16]
STRINGdb v9.1 [17]

KEGG graphite v.1.32.0 [18]
limma v3.42.2 [19]

ΘmiRNA miRNA-miRNA synergism 312 80678 0.8314577 CancerNet
Θdrug Drug-drug interactions 64 2866 0.7108135 DrugBank v5.0

RmiRNA−gene miRNA-target interactions 13336 101659 0.0005716461 miRNet v2.0
RmiRNA−drug miRNA-drug associations 70 86 0.01780538 miRNet v2.0

to the entire set of input matrices. Therefore, the matrix W allows for the
integration of the data. The low-dimensional rank k guarantees a simpler
latent structure that is interpretable as a separation into shared classes among
all dimensions. For this reason, it is possible to cluster patients, cell lines,
and molecules into groups. The jNMF method finds the matrices W and HI

that minimize:

M∑
I=1

∥XI −WHI∥2F (1)

where ∥·∥2F is the Frobenius norm of a matrix, that is, the sum of all squared
elements. As W has dimensions n × k, we can use the columns k as a
latent structure to separate objects into shared groups. Similarly, HI has
dimensions k×mI , then it is possible to use k as a latent structure to group
variables of different I in a common cluster, which is called co-cluster (Section
2.4).

2.3.2. Multi-project and Multi-profile joint Non-negative Matrix Factoriza-
tion

We can solve the jNMF problem for observational and experimental data
sets separately to obtain low-rank interpretations for each. However, given
that both datasets shared most dimensions, although measured over different
kinds of objects (e.g., patients and cell lines), we explored a pair-wise inte-
gration approach on which matrices HI are shared for different objects, with
an individual base matrix for observational data (Wobs) and for experimental
data (Wexp).
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In general, let XI (I = 1, . . . ,MX) and YI (I = 1, . . . ,MY ) be the non-
negative input matrices or profiles corresponding to observational and ex-
perimental data, respectively. As there are profiles that can be observed for
one or both datasets, let L be the set of profiles that are common to both
datasets, L = {1, . . . , |L|}, where |L| is the number of elements in L. For
the matrices that are in one dataset, but not in the other, let I be the set of
profiles in {1, . . . ,MX} that are specific to observational data, and J the set
of profiles that are specific to experimental data, but starting in MX+1, that
is, J = {MX+1, . . . , (MX+1)+MY −|L|}. When all matrices are shared, I
and J are empty sets. The total number of matrices is 2|L|+ |I|+ |J | (Fig-
ure 1). Note that this approach accepts unobserved matrices in one of the
datasets so that they could be estimated. If there are no observed matrices
XJ , where J ∈ J , then these could be estimated as X̂J = WobsHJ .

Figure 1: Representation of the pairing of observational and experimental profiles.

Accordingly, we propose a Multi-project and a Multi-profile joint Non-
negative Matrix Factorization (M&M-jNMF) to the solution of the simulta-
neous non-negative factorization of matrices as the HL for L ∈ L, HX

I for
I ∈ I, HY

J for J ∈ J , Wobs andWexp that minimizes the following expression:

∑
L∈L

(
∥XL −WobsHL∥2F + ∥YL −WexpHL∥2F

)
+
∑
I∈I

∥XI −WobsH
X
I ∥2F +

∑
J∈J

∥YJ −WexpH
Y
J ∥2F

(2)

Maintaining constant the matrices HL for both datasets implies that the
basis (representative centers of each cluster) for objects are the same; there-
fore, it is possible to cluster the groups of patients and cell lines (co-clusters).
These co-clusters create a new integration on which different sets of individ-
uals may be related among several dimensions of measurements.
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2.3.3. M&M-jNMF with prior knowledge constraints

Besides the four terms that define the objective function in Equation 2,
we considered constraints on matrices HI that can included prior knowledge
in the model (Section 2.2) and, at the same time, work as regularization
terms that help to achieve sparse and stable solutions [9].

In terms of Equation 2, the set L corresponds to three omic profiles
(Section 2.1), whereas I is empty for TCGA data (XI) and J corresponds
to the drug profile (YD) that is only observed for CCLE data (YI) (Figure 2).

Figure 2: Scheme of the integration of different data sources (TCGA and CCLE).
M&M-jNMF requires the same variables among projects; therefore, the dimensions
of each profile are equal to the number of samples (patients or cell lines) × the
number of variables (genes, miRNAs, or drugs). Omic profiles are associated with
their respective ΘI and RIJ constraints. The drug sensitivity profile for patients
is not available.

Therefore, we proposed the solution to the following optimization problem
(Equation 3):

min F (Wtcga,Wccle, H1, . . . , HI , HD) =∑
I∈L

[
∥XI −WtcgaHI∥2F + ∥YI −WccleHI∥2F

]
+ ∥YD −WccleHD∥2F

−λ1

∑
I∈L

∑
t

Tr(HIΘ
(t)

IH
T
I )− λ2

∑
(I,J∈L: I ̸=J)

Tr(HIRIJH
T
J )

−λ1

∑
t

Tr(HDΘ
(t)
D HT

D)− λ2

∑
J∈L

Tr(HDRDJH
T
J )

+γ1∥Wtcga∥2F + γ2∥Wccle∥2F + δ1
∑
I

∑
j

∥hI
j∥21

(3)

where ∥.∥2F , ∥.∥21, and Tr (·) denote Frobenius norm, L1 norm and trace, re-
spectively. The index D corresponds to the drug profile. In Equation 3, the
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first three terms correspond to the individual factorization of the observa-
tional and experimental data. The next four terms are associated with prior
knowledge, also known as regularization graphs, which are explained in Sec-
tion 2.2. The last three terms are regularization that controls the sparsity
on the HI matrices and the scale on the Wtcga and Wccle matrices.

2.3.4. Multiplicative update rule algorithm

The objective function F (·) described in Equation 3 is not convex for
all parameters simultaneously. In particular, for the optimization problem
for jNMF proposed by [9], the solution implies an iterative procedure that
updates by the group of HI matrices, or for W at each step, with other
variables fixed while the others are updated. These alternating algorithms
are NP-problems that do not guarantee a global optimal but a local optimal
[20].

We developed and implemented the multiplicative update rules (MUR)
algorithm as described by [9] (Equations 4 to 8):

(wtcga)ij ← (wtcga)ij
× (

∑
I XIH

T
I )ij

(
∑

I WtcgaHIH
T
I +γ1Wtcga)ij

(4)

(wccle)ij ← (wccle)ij
× (

∑
I YIH

T
I )ij

(
∑

I WccleHIH
T
I +γ1Wccle)ij

(5)

hI
ij ← hI

ij
× (WT

tcgaXI+WT
ccleYI+λ1/2

∑
t HI(ΘI+(Θ(t))T )+λ2/2

∑
I ̸=J HJR

T
IJ )ij

((WT
tcgaWtcga+WT

ccleWccle+δ1e(K×K))HI)ij
(6)

hI
ij ← hI

ij
× (WT

tcgaXI+WT
ccleYI+λ1/2

∑
t HI(ΘI+(Θ(t))T )+λ2/2

∑
I ̸=J HJR

T
IJ )ij

((WT
tcgaWtcga+WT

ccleWccle+δ1e(K×K))HI)ij
(7)

hD
ij ← hD

ij
× (WT

ccleYD+λ1/2
∑

t HD(ΘD+(Θ(t))T )+λ2/2
∑

D ̸=J HJR
T
DJ )ij

((WT
ccleWccle+δ1eK×K)HD)ij

(8)

In Equation 7 and 8, eK×K is a matrix of K ×K dimensions, where the
element’s value is set to 1. The stop criterion for the algorithm was proposed
by [9], where a relative measure was calculated between the results of two
consecutive iterations; in our case, τ , the stopping threshold was set to 10−7.
The formulation of the stop criterion is Ft−Ft+1

F0−Ft+1
≤ τ , where F indicates the

objective function evaluated at iteration 0, t or t + 1 with their respective
matrices (Wtcga, Wccle and HI).
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2.3.5. Hyperparameters selection

From Equation 3, a total of six hyperparameters were defined: k, λ1, λ2,
γ1, γ2 and δ1. For k, we set values of 30, 60, and 90 which represent a range
where information can be concentrated (k = 30) or dispersed (k = 90). For
the other hyperparameters, we set them between the range values of 0 to 10.
Using this range, we could explore the strength of the penalty, i.e., strong
(10) or null (0). In the case of the hyperparameters γ1, γ2 and δ1 a value equal
to zero nullified the term to be penalized, while high values generated values
close to zero in the Wtcga, Wccle and HI matrices. For the hyperparameters λ1

and λ2, a high value gives much importance to the multiplying terms (prior
knowledge) since they are subtracting in the objective function.

We performed two iterations of the MUR algorithm, and we calculated
four metrics using the model outputs to choose the best set of hyperparam-
eters. These metrics include:

1. the Sum of Squares of the Residuals, RSS, (∥XI −WtcgaHI∥2F or ∥YI −
WccleHI∥2F )

2. the Cophenetic correlation coefficient (ρ) calculated by [21]. Among
MUR runs, it may not converge to the same solution. So for several
runs, this metric reflects the probability that observations i and j are
grouped in the same cluster. Therefore, this coefficient measures the
reproducibility of the assignment of the observations in each cluster
[21].

3. measures of cluster enrichment: the ratio of enriched gene clusters,
the number of enrichment terms identified, and the number of patient
groups.

4. an adjusted version of R2 which was defined as:

R2
adjusted = 1− ∥XI −WtcgaHI∥2F ×NI

∥XI∥2F × [NI − k (p + mI)]
(9)

where mI is the number of variables, p is the number of samples, and NI is
defined by p × mI for the profile I; the parameter k (p + mI) refers to the
estimated number of parameters.

We chose the optimal set of hyperparameters that meet the following
criteria: the sum of squares of the residuals was as small as possible, and
R2

adjusted and ρ were close to 1. In addition, the ratio of enriched gene clusters
must be close to 1, the number of enriched terms must be as large as possible,
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and the number of patient groups should contain a representative sample of
patients since this allows the finding of molecular markers between these
groups.

2.4. Co-cluster assignment rule

The matrices HI and W contain the latent structure to cluster molecules
and objects (patients or cell lines), respectively [10, 7]. We found that using
the standard assignment method, which assigns a molecule to a cluster (k) if
its value inside this cluster exceeds a threshold, can incur redundant clusters
by including molecules with high weights in several clusters. Therefore, we
first detected the maximum values of each molecule in each cluster, then
using the 50th quartile of this set of values, we choose the highest values to
be included in cluster k. We repeated the same procedure with the second
maximum value of each molecule, but we used the 75th quartile to select
molecules (Supplementary Section S3). In addition, the clusters of each
omic profile can be grouped to obtain a co-cluster. For example, the first co-
cluster will gather the clusters assembled in the first cluster of each profile,
e.g., gene, miRNA, CNV, and drug profiles.

It is also possible to determine co-clusters for objects (patient or cell
line) by using Wtcga and Wccle. Using matrix W , the column k where the
maximum value for object i is found corresponds to the assignment cluster
for that object. Since some clusters contained very few samples, which led to
a problematic comparison, we decided to reassign these samples to clusters
containing more samples whether the value of the cluster for a particular
sample was close to the mean of another cluster (Supplementary Section S3).
We used the terms groups and clusters interchangeably.

2.5. Matrix comparison between TCGA and CCLE

In evolutionary theory, the quantitative traits of a population expressed
as G-matrix (covariance matrix) have been used to determine the inheri-
tance of genetic or phenotypic traits between populations. Therefore, the
comparison of G-matrices of two particular populations requires a similar-
ity metric. PCASimilarity measures the degree to which the eigenvectors of
both matrices span the same space and considers the amount of variation
that each population has in that direction (eigenvalues). PCASimilarity can
take a value of 1 when there is a high similarity between the two matrices;
otherwise, it will take a value close to or equal to 0 [22].
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Accordingly, we measured the degree of similarity between the co-variance
matrices of omic profiles for the patient and cell lines clusters (Section 2.4)
by calculating the PCASimilarity score. We calculated the PCASimilarity
score using Equation 10.

PCASimilarity(A,B) =
∑n

i=1

∑n
j=1 λ

A
i λB

j cos2(ΛA
i ,ΛB

j )∑n
i=1 λ

A
i λB

j
(10)

where A and B are input matrices, λA
i and ΛA

i are the ith eigenvalue, and
the ith principal component of matrix A, respectively. This procedure is
analogous to matrix B.

2.6. Biological interpretation

Using ClusterProfiler package v3.14.3 [23] we performed a Gene Ontology
analysis and a signaling and metabolic pathways analysis using the KEGG
database. In addition, for the CNV and miRNA profiles, we conducted a
literature review. For miRNA analysis, we used mirNet v2.0 [24].

cBioportal was employed to understand and compare the groups of pa-
tients and cell lines [25, 26]. In addition, we reviewed the literature on com-
parison between TCGA and CCLE data [27, 12]. For Kaplan-Meier curves
and biological, clinical classifications, we employed the results from [28] and
[29], respectively.

For Significance Analysis Microarrays, we used the samr package v3.0.
This method uses repeated permutations of the profiles to determine if any
gene or miRNA are significantly in two unpaired conditions [30]. In addition,
the method uses the False Discovery Rate and q − value method.

2.7. Synthetic data and evaluation metrics

We created two artificial datasets, S1 and S2, which have three common
profiles (L). We generated the base matrices for the two sources from a
uniform distribution (0, 1) with n×k dimensions, where n is the observations
and k the range of the matrix WS. Similarly, HI were obtained from a
uniform distribution (0, 1) with k×mI dimensions, where mI is the number
of variables in each matrix (Supplementary Section S4). Then, we calculated
the original matrices as XS = WSHI + ϵ where ϵ is an error term. Finally,
we created Θ and R constraints matrices as a sparse binary matrix with
appropriate dimensions for each profile.
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We defined associations of observations as pairs between two samples in
a cluster; for example, in cluster k, there are ten pairs or associations if
there are five patients. To measure the capability of our method to detect
the original associations in the predicted matrices, we calculated the metrics
F1-Score, Recall, and Precision.

2.8. Implementation

We generated a project in Spyder v4.2.1 using Python v3.6 to imple-
ment the algorithm. We used R v4.0.4 to download the data and create the
constraint matrices.

3. Results

3.1. Simulation study

We evaluated the ability of the M&M-jNMF algorithm to identify the
original dimensionality (k) of the W and HT matrices. Also, we identified
the associations between objects or between variables. As defined in Section
2.7, we defined a dimensionality of k = 5, and we pre-defined the clusters for
objects and variables. We evaluated different sets of hyperparameters and
compared their performance using the metrics R2

adjusted, F1-Score, Recall,
and Precision (Supplementary File S1). When comparing the metrics at
different k evaluated, we found that the method performed well at K = 6.
However, the ranges (k) greater than 20 did not obtain good approximations
since the values of the metrics were below 0.7. This result indicated that
the information is not well distributed in the low-rank matrices obtained.
When we used k close to the real one, the method correctly represented
the original X matrices because we found that R2

adjusted was greater than
0.7. For the classification metrics, we found that the precision was above 0.9
for the values of k = 5, 6, and 7, indicating that at other k, the erroneous
associations increase. The Recall followed similar behavior and showed that
our method correctly detected the original associations in k close to 5 (Figure
3, and Supplementary Figure F1).

3.2. Hyperparameter selection for M&M-jNMF method

In Figure 2, we show a representation of the observational data (TCGA),
experimental (CCLE) data, and the constraints used as input for the in-
tegration with the M&M-jNMF method. To ensure a representative latent
structure of input matrices, we added the hyperparameters (γ1, γ2, and δ)
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Figure 3: Performance of the M&M-jNMF method to determine the correct di-
mensionality, and to identify the correct clusters of variables. At large ranges (k),
the performance of clustering decreases, while k close to the real one improves the
approximation of the original datasets and clusters.

which control the scale of the values of the Wtcga and Wccle matrices, and the
sparsity in the HI matrix (Equation 3). In addition, the hyperparameters
(λ1 and λ2) control the importance of the prior knowledge represented in the
Θ and R constraints. As we described in Section 3.2, we selected the best
set of hyperparameters from a defined range of values (Supplementary File
S2).

The best set of hyperparameters that we found was: k = 60, γ1 = γ2 =
3.5× 10−6, δ1 = 3.5× 10−3 and λ1 = λ2 = 10. Using these hyperparameters,
we obtained an RSStcga = 32890.19 and RSSccle = 46693.95 that were among
the lowest of the other hyperparameter sets tested, R2

adjusted and ρ was over
0.88, which means there was a good representation of the original matrices
and stability of the clusters, respectively (Supplementary Figure F2). In ad-
dition, we applied the rule reassignment defined in Section 2.4 on Wtcga, and
we identified 7 patient clusters (Supplementary File S3). The convergence
time for MUR was approximately one-half hour using a 2.20GHz Intel Corei7
processor with 16GB RAM.

Concerning Θ and R constraints, although we observed an additive effect
of these constraints on the objective function, they had no relevant effect on
the clustering of the molecules (data not shown). However, when λ1 and λ2

values were greater than 100, the objective function converges very slowly.
Thus, we believe our constraint matrices are very sparse and require more
information on the associations between molecules, or perhaps they work
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better with lower-dimensional data as was the case in [9].

3.3. Gene enrichment analysis of gene clusters shows significant biological
processes related to glioma

We performed an enrichment analysis (Section 2.6) on the gene clusters.
As other studies have shown, the clusters obtained from variants of jNMF are
enriched in biological terms and are associated with different cancer processes
[31, 5]. For the 60 gene clusters, 53 clusters were enriched in biological
processes (BP), 44 clusters were enriched in molecular functions (MF), and
54 clusters were enriched in cellular components (CC) (p − value < 0.05,
Supplementary File S4).

We identified 49 gene clusters highly enriched in 185 KEGG terms (p −
value < 0.05, Supplementary Figure F3, and Supplementary File S4). In
these enrichment terms, we identified five main categories, which we man-
ually generated according to their relationship. The first group contains
amino acids, fatty acids and, simple and complex glycans. The second group
contains groups of neurotransmitters and related biological processes, such
as calcium signaling pathways. A third group contains signaling pathways
involved or related to cancer, such as the cAMP signaling pathway, cGMP-
PKG signaling pathway, p53 signaling pathway, and cell cycle. The fourth
group contains terms related to immune system response, for example, in-
flammatory mediators and genes related to infection processes. The last
group contains terms related to extracellular matrix terms, such as focal
adhesion, axon guidance, and extracellular matrix-receptor interaction (Sup-
plementary File S4).

3.4. M&M-jNMF method clusters patients into relevant clinical groups

From the W matrix, the objects can be assigned into groups or clusters.
For example, [31] used the W matrix from a non-constrained jNMF solution
to cluster patients; these groups were similar to the existing clinical categories
of ovarian cancer.

Similarly, we obtained 7 groups (I-VII) of patients using the Wtcga ma-
trix (Figure 4). We found that these groups have a significant separation for
survival curves (log-rank test p−value = 8.83×10−224). In addition, we com-
pared them to the clinical classifications for LGG to obtain a deeper analysis
[29]. The clinical classifications contain a molecular and epigenetic status
(IDH status, MGMT promoter status, TERT promoter status, and ATRX
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status). Interestingly, we identified that our groups mainly separate into clin-
ically defined groups, but our method was able to identify new groups. The
survClust method obtained similar results [32], where it found five groups, 3
of them correlated with the three clinical LGG classifications. In our case,
the groups represent the LGG clinic classification, where group I corresponds
to patients with IDH mutation, 1p/19q co-deletion, MGMT methylated, and
ATRX wild type. These molecular characteristics have been associated with
higher rates of survival [29]. Groups II and IV represent mainly IDHmut-
non-codel, and groups III and V represent a mixture of IDHmut-non-codel
and IDH wild-type subtypes. At the same time, groups VI and VII represent
mostly IDH wild-type patients. Finally, groups I-V represent mostly MGMT
methylated promoter (Figure 5, and Supplementary File S5).

Figure 4: Progression-free interval plot for cluster patients. The number of patients
per cluster is: I (164), II (103), III (81), IV (46), V (48), VI (38), and VII (44)
(Log-rank test p− value = 8.83e−224).

Using cBioportal tool [26, 25], we found 9366 genes expressed differen-
tially between the cluster of patients (p− value < 0.05, Supplementary File
S6, and Supplementary Section S5). Among these genes (Figure 5), we high-
light TRIM67 (Group I), ADAMTS20 (Group II), TESPA1 (Group III),
TPTEP1 (Group IV), GJB1 (Group V), POSTN (Group VI), and MEOX2
(Group VII) which had a deferentially level of expression than the other
groups. These genes have been related with the progression of apoptosis
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Figure 5: Comparison of M&M-jNMF clusters and clinical and molecular classifi-
cation for LGG.

[33], angiogenesis in cancer [34], chemoresistance [35], radioresistance [36], or
as a prognostic biomarkers [37].

Since our method generates groups of patients by their molecular char-
acteristics according to the integrated omic profiles, we wanted to show the
differences between these groups. We were interested in the difference be-
tween groups VI and VII, despite having a very similar survival curve. Using
cBioportal, we found that there are differences in genes, proteins, and DNA
methylation. For example, a high expression of the FBLIM1 gene, a low
expression of the CCDND1 protein, and high methylation of the AQP4 gene
in group VI. These genes and this protein may enhance drug sensitivity [38]
or reduce tumor cell viability [39], i.e., increase the probability of survival.

3.5. There are metabolic and signaling similarities between patients and cell
lines

Some studies have compared TCGA and CCLE projects to identify cell
lines for pre-clinical and pharmacological purposes [12, 15]. Despite this,
there are many differences which difficult this comparison between primary
tumors and cell lines because the former contains a mixture of cells (tumor
cells, immune cells, and stromal cells), and the latter has a more significant
number of genomic alterations [40, 41]. [27] proposed a methodology using
weights to match cell lines and tumors according to the similarity in different
contexts such as signaling pathways or mutations. Despite these differences,
it is possible to identify possible biological traits between these two projects
[40, 27]. Similarly to [27], we propose a metric to compare between groups
of cell lines and groups of tumors in specific contexts such as alterations in
signaling and metabolic pathways and gene ontology enrichment.

Therefore, we compared the 7 groups of patients (I-VII) and the 9 groups
of cell lines (1-9) (Section 2.4, and Supplementary File S3). For that, we
calculated a PCASimilarity score to find similar biological traits between
cell lines and tumors (Supplementary File S7).
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This strategy allowed us to characterize similarities in different biological
processes such as molecular functions (MF), cellular components (CC), bi-
ological processes (BP), and KEGG pathways. As expected, there is much
diversity among cell lines and patients (Figure 6, and Supplementary Section
S6). We identified that the proportion of enriched terms with a PCASimi-
larity greater than 0.85 corresponded in most cases to associations of group
5 and each of the tumor groups (29%, test for equality of proportions p −
value < 0.001). We depicted these results in Figure 6. For example, group I
of tumors has 34 similar enriched terms with group 5 of cell lines, including
DNA mismatch repair, covalent chromatin modification, and GTPase regu-
lator activity. Whereas, for example, for group I of tumors vs. group 8 of
cell lines, only 17 terms were found. Therefore, cell line group 5 has a higher
similarity for all groups of tumors, but to a lesser degree for tumor group V,
which had only 16 similar enriched terms (Supplementary Section S6). This
result is relevant because this group includes glioma cell lines (5.6%) whose
sample type is entirely from primary tumors (Supplementary File S8 and
Supplementary Section S6). Thus, we found similar results obtained by [40]
who compared CCLE cell lines with all TCGA cancer types. They used gene
expression profiles and found that LGG had a high correlation with glioma
cell lines. In addition, our method agreed with the results obtained by [40]
because 25 cell lines found by their analysis (correlation coefficient > 0.48)
correspond to cell lines that we classified in group 5. For other omic profiles
(CNV and miRNA), group 5 of cell lines has more terms related to tumors
groups than the other cell lines groups (Supplementary Figure F4).

3.6. Drug repurposing is also associated with specific genetic and miRNA
signatures

We estimated the patient drug sensitivity profile as XDrug = WtcgaHDrug

(Supplementary File S9). Since we used the drug sensitivity profile of cell
lines (AUC), then the calculated profile for LGG tumors is an approximation
of the potency and efficacy of the 262 drugs for tumors. In the CCLE project,
low AUC values correspond to sensitivity to a drug, or also a reduction in
cell viability [42, 43].

The predicted matrix contains the degree of drug sensitivity a tumor
may have. For each drug, we defined regions where the degree of sensitivity
corresponds to resistance or sensitivity. For column jth in this profile, we
defined a resistant tumor for observations whose sensitivity value is above
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Figure 6: Similarity score between CCLE and TCGAmatrices. The PCASimilarity
score must be close to one for the correlation matrices to be similar. Here we
present enriched gene clusters according to their relation or importance to the
biological processes of cancer.

the 75th quartile, while we considered them as sensitive if their value is
below the 25th quartile.

We performed a Significance Analysis of Microarrays for miRNA and
gene profiles between tumors classified as resistant or sensible to find gene or
miRNA signatures that could be related to the drug sensitivity (Section 2.6).
In Supplementary File S10, we reported genes and miRNAs differentially
expressed between resistant and sensitive tumors.

We used the patterns in the differential expression of genes and miRNAs
to assess whether there is a relationship between these patterns and drug
sensitivity. We realized that these signatures might contain: (i) molecules
related to the mechanism of drug sensitivity, (ii) molecules indirectly related
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to mechanisms that compromise the viability of the tumor, or (iii) molecules
characteristic of other biological processes of the tumor (Supplementary Sec-
tion S7). We analyzed two drugs, Temozolomide (TMZ) and Shikonin. For
TMZ, we analyzed the first ten genes and miRNAs with the most significant
fold change of expression (resistant vs. sensitive) to identify known markers
for sensitivity to this drug. For Shikonin, we performed enrichment analysis
on the low/high expressed genes, and we analyzed the context in which the
tumor might be sensitive to this drug.

Firstly, we analyzed the predicted drug sensitivity profile for TMZ, a
standard drug in glioma therapy, because there is evidence of mechanisms
of sensitivity [44]. Interestingly, the patterns of gene and miRNA expression
profiles agree with experimental evidence (see TMZ in Supplementary File
S11). We found 4 of the ten miRNAs analyzed associated with increased
sensitivity to TMZ; these are miR-34a, miR-301a, miR-146a, and miR-126-
3p [45, 46]. In the case of the genes, we highlight the low expression of
FBXO44, which its inhibition induces replication stress and DNA strand
breaks in cancer cells, reducing tumor growth [47]. In addition, we found
a high expression of the gene CREB3L1 in sensible tumors; this gene is a
suppressor of metastasis, which is involved in the Unfolded Protein Response
(UPR). Its functional activation in this response generates a cytoprotective
effect, but if it fails to mediate, it leads to apoptosis [48]. Recently, the
expression of this gene has been correlated with a better prognosis in low
and high-grade gliomas [49]. This pattern is an example of how genes and
miRNAs can be associated directly with TMZ sensitivity or indirectly by
impairing tumor viability.

Secondly, we analyzed the predicted Shikonin sensitivity profile because
we found that its genes have the greatest difference between resistant and
sensible tumor groups. Shikonin is a compound extracted from the root of
Lithospermum erythrorhizon. The active compound has an anti-cancer and
anti-adipogenic effect. The molecular mechanism involves the suppression
of Tumor Necrosis Factor-alpha (TNF-α), decreased phosphorylated levels
of EGFR, ERK1/2, and protein tyrosine kinases [50, 51]. The anti-glioma
effect has been suggested to interfere with endoplasmatic reticulum (ER)
stress-mediated tumor apoptosis [51]. The high expressed genes show that
the sensible tumor may be related with an active process in the endoplasmic
reticulum (p− value = 2.13× 10−3), e.g., STAB1, RAB13, REEP4 genes in
7, with a low expression of genes related to neurotransmitter processes (p−
value = 6.33 × 10−9), e.g., SLC17A7, SYN2 genes in Figure 7. Apparently,
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the expression of miRNAs is associated with an aggressive tumor type, which
has a high expression of onco-miRNAs such as miR-18a, miR-19a, miR-21,
miR-155, miR-196a, miR-210, among other (p − value = 3.5 × 10−7), and
low expression of miR-379 cluster ( p − value = 8.53 × 10−55), and miR-
212 cluster (p − value = 9.97 × 10−7). The former is a cluster with an
important role in glioblastoma, also known as C14MC, which has been related
positively to prognosis in glioma [52]. However, the pattern includes the high
expression of miR-200c/miR-141 cluster (p−value = 3.80×10−6) in sensitive
tumors. For this miRNA cluster, it has been recently evidenced that it has
anti-oncogenic roles in glioma; exactly, its target genes are Moesin, VEGF,
HIF-1α, MMP2, ZEB1, which participate in the processes of progression
and metastasis in cancer [53]. In general, low expression of this miRNA is
associated with high categories of glioma [54]. Therefore, the pattern found
by us indicates that the increase of this miRNA may have a combined effect
on the anti-angiogenic mechanism of Shikonin. Transfection of miR-200c in
glioma cells has shown a cytotoxic effect of radiotherapy since attenuation
of EGFR-mediated signaling-associated pro-survival signaling, and impaired
DNA damage repair has been observed [55]. For this reason, a first-line
therapy such as radiotherapy in glioma could be accompanied by Shikonin
treatment when this pattern is present in a tumor (Figure 7).

4. Discussion and conclusion

In this study, we proposed M&M-jNMF as a new method for integrating
omic data from different projects (TCGA and CCLE) or between different
types of cancer of the same project to compare similarities in metabolisms
or signaling pathways. Based on jNMF, this method allowed us to integrate
omic profiles and perform clustering and co-clustering between molecules
and between patients and cell lines. An essential advantage of the proposed
method is that we integrated the two projects but maintaining the difference
between them, i.e., each project is allowed to have its basis matrix (Wtcga and
Wccle), but at the same time, it is integrated according to the omic profiles
(HI). Because of this, we identified clusters enriched in ontological terms
related to cancer and stratified patients and cell lines. The latter allowed
us to compare clusters between cell lines and patients to match them and
propose functional cell lines for the pre-clinical phase study of drugs.

We applied the M&M-jNMF method to omic LGG data obtained from the
TCGA and cancer cell lines from the CCLE projects. We identified 7 groups
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Figure 7: miRNA and gene markers for the sensitivity profile of Shikonin. For the
Shikonin bar, red means resistant tumor group and blue represents the sensible
tumor group.

for patients and 9 groups for cell lines. For the patient groups, we evidenced
that they are similar to the clinical classifications currently available for this
type of cancer. Our method identified some groups with marked differences in
survival time or the presence of molecular markers such as MGMT promoter
or ATRX status. However, the distribution of the groups is very similar to
the clinical classification of the IDH status and 1p/19q co-deletion (Figure
4).

In addition, we identified biological similarities between cell line groups
and tumor groups. The importance of this result is because the search for
cell lines that match patient’s tumors is complex. After all, the cell lines
have a very high mutation rate [15]. For this reason, we decided to employ
another strategy to identify patterns in the signaling pathways by comparing
the similarity between the groups of cell lines and patients obtained by our
method [27]. We used the PCASimilarity score, which yielded a set of cell
lines with similar gene expression patterns between group 5 cell lines and
most patient groups. This group contains some glioma-specific cell lines
(Supplementary Section S6).
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Finally, we performed a repositioning of 262 drugs, considering that we
predicted the possible response to drug-only treatment. Thanks to this, we
identified genetic patterns to establish when a tumor might be sensitive to
a drug. In general, these signatures correspond in some cases to molecules
that may indicate a direct association with the sensitization mechanism,
e.g., in the case of TMZ. Nevertheless, also, some signatures may indicate
mechanisms by which the tumor may be vulnerable and favor treatment, as
we showed to Shikonin (Figure 7).

Our method can identify new strategies to address drug repositioning
issues, identify clusters given their omic profiles, and search for cell lines
suitable for pre-clinical drug testing.
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