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Abstract
In a world where artificial intelligence is so consolidated in many fields and in different
applications, there is a need to understand how it works and how we can improve these
algorithms in order to optimize them. In this project we will focus on the autonomous
control of a robot by face detection.
To implement this functionality, we have compared different Convolutional Neural Net-
works. After a detailed study of each of these models and comparing their results, it has
been decided to use the FaceNet system for face detection algorithm. To improve the
performance and the processing of the video frames, a GPU, Nvidia Jetson Nano, will
be used. Finally, by means of the Jetson Nano board we will control the iRobot Roomba
600 robot through commands that will be sent through a serial port, which the robot will
receive to manage its actuators and to be able to move following our face.
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1 Introduction
This section will present the different requirements of the project, explain briefly where
this project comes from and why; and the software and hardware used in the previous
project.

1.1 Purpose of the project

For years, technology has been growing exponentially and with it the different technologies
to make people’s daily lives easier. As a result, many tedious and monotonous processes
have been replaced by autonomous work carried out by machines, robots or computers.
Previously, decisions about a process were made by a person or a group of people, but
thanks to artificial intelligence algorithms, many of these decisions can be made by a
computer. That is why nowadays autonomous decision making has become widespread in
many fields, which is why it is growing.
The autonomous control of robots or vehicles is a widespread field where machine learning
algorithms are applied, hence the interest in controlling a robot, a Roomba, by means of
a microcontroller.
This is where this project has come from, being able to control a robot by means of
machine learning algorithms using a GPU.

Theoretical objectives

• Study different autonomous learning algorithms for face recognition.

Practical objectives

• Implement face recognize algorithm.

• Control a robot by means of the face and be able to follow it.

1.2 Requirements

Control of an autonomous robot using machine learning techniques implemented on a
GPU device.

• Face recognize with a Nvidia Jetson Nano board using a Raspberry Pi Camera

• Control the robot depending on the position of the face in the image frame.

This project is the continuation of a project carried out in one of the classes of the Master
of Electronic Engineering taught at the Polytechnic University of Catalonia (UPC).
The main objective of the laboratory assignment was to use a hardware module in order
to accelerate the implementation of a machine learning algorithm for face recognition.
This module was connected to a Raspberry Pi and by means of a camera module to be
able to recognise the face.
The module for accelerating machine learning algorithms is an Intel Neural Compute Stick
2 (Intel NCS2). Combines the hardware-optimized performance of the latest Intel Movid-
ius Myriad X VPU and Intel’s OpenVINO Toolkit distribution to accelerate deep neural
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network-based applications so this processor is used to optimise complex calculations for
image processing[1].
This USB was connected to a Raspberry Pi 3, which collected live image frames via a
camera and processed them with the Intel NCS2 module in order to control the Roomba
600 Roboto. This project aims to replace the Intel NCS2 module and the Raspberry Pi 3
with a single hardware module. For this purpose it was decided to use the Nvidia Jetson
Nano board. This module is small, very powerful and has high computational capabilities
that replaces the Intel module; it allows us to run multiple neural networks in parallel for
image classification or object recognition among other applications.

1.3 Gantt Diagram

In the figure 1, by means of a Gantt diagram, we can see how we have planned the weeks
for developing the project.

.5

Phases of the Project
2021

Jan. Feb. MarchApril May June July Aug. Sep. Oct. Nov. Dec.
Theoretical part

100% completeAI algorithms
100% completeJetson Platform

100% completeInference Jetson
Development

100% completeSetup Jetson Nano
100% completeFace recognize

100% completeRobot control
Correct bugs

100% completeTesting
100% completeDocumentation

Documentation

Figure 1: Gantt diagram of the project
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2 State of art

2.1 Introduction

When studying Machine Learning you will come across many different terms such as
artificial intelligence, machine learning, neural network, and deep learning. But what do
these terms actually mean and how do they relate to each other? Below we give a brief
description of these terms and the figure 2 shows an overview of how they are related:

• Artificial Intelligence(AI): A field of computer science that aims to make computers
achieve human-style intelligence. There are many approaches to reaching this goal,
including machine learning and deep learning.

• Machine Learning: A set of related techniques in which computers are trained to
perform a particular task rather than by explicitly programming them.

• Neural Network: A construct in Machine Learning inspired by the network of neurons
(nerve cells) in the biological brain. Neural networks are a fundamental part of deep
learning.

• Deep Learning: A subfield of machine learning that uses multi-layered neural net-
works. Often, “machine learning” and “deep learning” are used interchangeably.

Figure 2: Global view Machine learning

Machine learning and deep learning also have many subfields, branches, and special tech-
niques. A notable example of this diversity is the separation of Supervised Learning and
Unsupervised Learning.
To over simplify, in supervised learning you know what you want to teach the computer,
while unsupervised learning is about letting the computer figure out what can be learned.
Supervised learning is the most common type of machine learning.
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2.2 Convolutional Neural Network (CNN)

Before explaining the different architectures we have used in this project, we will explain
what Convolutional Neural Networks are.
These algorithms are used for autonomous learning. This type of Neural Network with
supervised learning contains different hidden layers that each of these layers is in charge
of detecting different patterns as shown in the figure 3, making each layer more specific
depending on what is left to be filtered or detected. These layers mimic the visual cortex
of the eye that allows us to compare different features.

Figure 3: Convolutional neural network diagram

The function of this neural network is to recognise objects from an image or a video by
inputting it with previously selected images of different objects, be they faces, cars or
whatever we want it to learn to recognise. The image we want to recognise or identify is
converted into a matrix of pixels. For example, FaceNet uses a 160x160x3 size face image
as input and being the output a 128 dimensional float vector which can be quantified as
each image is represented as a 128 dimensional byte vector.
The convolution process consists of taking groups of pixels and making the scalar product
with the kernel, which consists of a 7x7x3 matrix in the case of the Zeiler & Fergus
model that we will discuss later. In the model we have used, the activation function is the
rectified linear (ReLU) unit as the no-linear activation [2]. This function returns 0 if the
input values are negative and on the contrary it returns positive values as can be seen in
the following figure 4. And the function is:

f(x) = max(0, x)
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Figure 4: Rectified Linear Units graphic(ReLU)

The next layer is indispensable because we need it to be able to reduce the number of
neurons, i.e. the number of calculations. Pooling layer is in charge of reducing the size of
the data by combining the outputs of this first layer into a single neuron or more than
one neuron. There are two different ways of pooling, L2-norm pooling and max pooling.
On one side, we will use a 3x3 matrix normalising its value and on the other side, with
a matrix, also 3x3, the largest value is taken. In this way we will reduce considerably the
total number of neurons, depending on the model this process will be done more than
once.
This process will be repeated several times because as we add layers we will be able to
identify objects, people and not only geometric shapes. In the following figure 5 we can
see an example with a general overview:

Figure 5: Architecture of a CNN [3]
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2.3 Face recognize

Facial recognition is a technology for recognising faces and identifying people. In the
last few years it has been used extensively for ID verification, public security and other
purposes.

Facial recognition was first developed in the 1960s by Woody Bledsoe, Helen Chan and
Charles Bisson. The system implemented by these mathematicians and scientists was not
self-learning, but required a third party to locate common features in order to calculate
the distance between common points, such as the eyes, mouth, nose, and mouth.

As the years have gone by, technology has evolved and with it the techniques for recognis-
ing faces. Nowadays there are several autonomous learning systems with a very high level
of accuracy. One system with accuracy of 99.6 % was developed by Google and is called
FaceNet: A Unified Embedding for Face Recognition and Clustering [2]. Another widely
used classifier is the Haar Cascade Classifier, which recognises the front of the face. In
the following we will explain these two models and their main features and why we have
chosen one over the other.

2.3.1 Haar Cascade Classifier

Object Detection using Haar feature-based cascade classifiers is an effective object detec-
tion method proposed in the paper, Rapid Object Detection using a Boosted Cascade of
Simple Features [4].
This algorithm needs as many positive images as negative images; a positive image is an
image of a face where different features are extracted, shown in the figure 6, these features
are defined by the kernel. There are a total of three features: edge feature, line feature,
four-rectangle feature.

Figure 6: Haar Cascade Classifier features [4]
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The value between two features of two rectangles is the difference between the sum of
their respective regions, having the same size and the same shape. Once this computation
is done, we will proceed to calculate a three-rectangle feature, which will be the sum
within two outside rectangles subtracted from the sum in a center rectangle. Finally a
four-rectangle feature computes the difference between diagonal pairs of rectangles [4].
For example with a window of 24x24 pixels, there are a total of 162336 features. This
would result in a very slow process and would require a lot of calculations. For this purpose
AdaBoost algorithm is used to select a small set of features and train the classifier.
To optimise these calculations, and because most of an image does not contain a face,
we first check if a face is not a region of a face. To do this they introduce the concept
of Cascade of Classifier, the features are grouped in different stages. According to the
authors of the paper there are a total of 38 stages with over 6000 features [4].The following
figure 7 shows the features used to detect the face in each one of the different stages.

Figure 7: Haar Cascade Classifier architecture [5]

2.3.2 FaceNet

Previously, when introducing some deep learning concepts, reference has been made to
this easy recognition system proposed by google in the paper entitled FaceNet: A Unified
Embedding for Face Recognition and Clustering [2].
Two datasets have been used for this system: Labeled Face in the Wild (LFW) and Yotube
Face Database.
In this paper it compare two different deep architectures but for our application we will
treat them as black boxes and only compare the results of using one architecture and the
other.
The network consists of a batch input layer and a deep CNN followed by L2 normalization,
which results in the face embedding. This is followed by the triplet loss during training.See
figure 8
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Figure 8: FaceNet architecture [2]

FaceNet proposes a solution using a mapping of face images in a Euclidean space such
that the distances correspond to similarities in the face.
The Triplet loss function consists of comparing an entry either an image or a video (anchor)
with a positive (true) or a negative (false) entry. On the one hand, the distance between
the anchor and the positive input is minimised, while the distance between the anchor and
the negative input is maximised. The motivation for using triplet loss tries to enforce a
margin between each pair of faces from one person to all other faces. This allows not only
face detection but also discrimination with other individuals, thanks to the embedding
space generated which can then be used to identify people.
This embedding space is represented by f(x) ∈ Rd and it embeds an image x into d-
dimensional Euclidean space. Generating all possible triplets, that are easily satisfied.
The different triplets will not be used to train the model. For this we will have to select
the hard tripets that will help to improve the neural network [2].

Algorithm 1 Loss minimized function

1: L =
∥∥xi

a − xi
p

∥∥2

2
+ α > ∥xi

a − xi
n∥

2
2 ,∀(xi

a, x
i
p, x

n
p ) ∈ τ

Where α is a margin that is enforced beetwen positive and negative pairs. τ is all the
possible triplet in the training.

The neural networks studied in this paper are Zeiler & Fergus and NN2 inception. The
two neural networks used in the study require a total of 1.6B FLOPS. FLOP is a measure
to calculate the performance of a computer used in scientific computation [2].
In the table below we can see the different acuracy results between the two networks and
different configurations.

Architecture VAL

NN1 (Zeiler & Fergus 220x220) 87.9% ± 1.9
NN2 (Inception 224x224) 89.4% ± 1.6
NN3 (Inception 160x160) 88.3% ± 1.7
NN4 (Inception 96x96) 82.0% ± 2.3
NNS1 (mini Inception 224x224) 82.4% ± 2.4
NNS2 (tiny Inception 140x116) 51.9% ± 2.9

Table 1: Accuracy of different Networks
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2.4 Architecture GPU

GPUs have become a very popular technology in the last decade. Having many different
applications, such as video processing, gaming, cryptocurrency mining and artificial in-
telligence. Its use has become so widespread thanks to the great computing power, being
able to paralyse different processes. GPUs were originally designed to render 3D graphics,
but over the years their use has expanded along with their performance capabilities.

2.4.1 GPU VS.CPU

To understand the difference between a GPU and a CPU is to compare the way they
process tasks. A CPU has different cores optimized for sequential serial processing, for
example 8 cores. While a GPU has thousands of cores to process parallel workloads
efficiently.
The CPU is a microprocessor designed to execute sequences of instructions, called thread,
as fast as possible and it just can execute a few of tens in parallel. Its works is divided
into four fundamental steps according to the Von Neumann architecture: fetch, decoding,
execution and writeback.
On the other hand, GPU is dedicated to floating point operations, and is designed to
reduce the workload of the central processor. High segmentation, with functional units,
allows faster processing of pixels. In addition, its faster memory allows the management
of intermediate results of operations in a more agile way.

Figure 9: Differences between CPU and GPU components [6]

In conclusion, the main differences between a GPU and a CPU are in their design. The
CPU design is a few very complex cores while the GPU has thousands of very simple cores.
While a GPU has independent fundamental computing units, the inherent parallelism is
one of the key aspects of a GPU and its difference from a CPU. Another important
difference is that the GPU has more transistors for data processing instead of cache
storage and flow control. See figure 9.
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2.4.2 CUDA architecture

CUDA was first developed in 2006 [7], over the years it has been improved to cover
different applications and publications making it easier to use.
The CUDA platform is made up of different software layers that give us access to different
components of the platform. We can access each of these components through instructions
and libraries for the execution of compute kernels. The compute kernels are precompiled
routines for high-performance accelerators such as GPUs. These routines share CPU ex-
ecution units with vertex shaders and pixel shaders (GPUs).
CUDA platform is designed to enable developers to use C++ as a high-level programming
language.
Other programming languages can be used to program interfaces, libraries... such as FOR-
TRAN, DirectCompute, Open ACC. In the following figure 10 we can see the supported
languages.

Figure 10: Languages used in the different components of CUDA [6]

2.4.3 Programming model

CUDA is a hardware and software platform that allows Nvidia GPUs to run programs
written in a variety of programming languages, including C, C++, Fortran, and others. A
CUDA program calls parallel functions known as kernels, which are executed on many par-
allel threads. These threads are organized by the programmer or compiler. These threads
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are organized into thread blocks, which are then organized into a grid of thread blocks.

Each thread in a thread block executes a kernel instance. Each thread also includes a
program counter, registers, private memory per thread, and input and output results.
A thread block is a collection of threads that are running at the same time and can
cooperate by using synchronization and shared memory barriers.
Through synchronization and shared memory boundaries, they are able to collaborate
with one another. Within its network, each thread block has a unique ID. If there are
too many threads in each block, there will be fewer threads; if the number of threads per
block is too large, there will be fewer blocks per multiprocessor running in parallel.
A multiprocessor can only physically handle a certain number of blocks and threads
simultaneously. To get the most out of it, the number of threads per block on the GPU
should be a multiple of the maximum number of threads supported by each multiprocessor,
and big enough to allow the blocks to communicate with each other. Each multiprocessor
must be able to support the blocks, and the blocks must be large enough to cover all
available resources. It is strongly advised that the blocks must be a multiple of two rather
than a little quantity. You should also aim to include a large number of blocks to cover
latency delays, so that the multiprocessors continue to operate even if a block is waiting
for whatever reason. If it is possible, this amount should be higher than the double of
the total number of multiprocessors in the device. In the figure 12 we can see how the
different multiprocessors are connected between each other.
A grid is a collection of thread blocks that all run the same kernel, read from global
memory, write results to global memory, and synchronize across the kernel’s dependent
calls. Below the blocks are the warps, which are a new grouping of threads that make up
the fundamental execution unit, to make program execution more concrete and optimized
[8]. The following figure 11 shows how the threats are distributed by blocks.

Figure 11: Thread organization in CUDA programming model [9]
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The warps are currently made up of 32 threads, which implies that the same instruction
will be performed by groups of threads of this size at the same time. When this is not
possible due to the fact that different threads within the same warp have different in-
structions, each thread will execute its instruction in parallel with the others but in series
with the rest of the threads with different instructions, greatly reducing the program’s
performance and parallelism.
Each thread has its own memory space in the CUDA parallel programming architecture,
which is used for register dumps, function calls, and automated C vector variables. Reg-
ister dumps, function calls, and automated vector variables are all supported in C. Each
thread block also contains a shared memory area for communication between threads.
A shared memory space is also used for inter-thread communication, data sharing, and
result sharing for parallel computations in a block of threads. After global synchronization
by the kernel, grids of thread blocks exchange results in the global memory space.
The system is divided into two parts from the perspective of the programmer: the primary
processor (host), which is the CPU (in our project, Quad-core ARM A57), which will
execute the program’s main code; and the second component, which is made up of one or
more devices, which are the GPUs. We just have one GPU on the board, thus the system
will be considerably simpler.
Because GPU processors are significantly less powerful than CPU processors, both com-
ponents of a program must be employed to obtain the best results. to get the most out
of a program, which is directly impacted by the code optimization in both blocks.
A CUDA program is made up of many stages that can be run on the host or on the
devices. Phases with little or no data-level parallelism are written in code that runs on
the host processor, whereas phases with a lot of data-level parallelism are written in code
that runs on the available devices.
Because the GPU is separate from the CPU and hence from the system’s main memory,
it will require explicit data transfers. To operate with in parallel functions, the system’s
main memory will require explicit data transfers, this results in a time delay that has a
significant impact on the program’s speed, albeit it is still less than the time it would take
to run that section of the code sequentially on a CPU.
The host is in responsibility of reserving and freeing memory on each device, as well as
performing memory transfers, during this procedure. The host is in charge of transferring
memory between the two devices and determining when each device begins to execute
each of the kernels that have been programmed is started by the device [8].
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Figure 12: GPU multiprocessor components [7]
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3 Methodology

3.1 Hardware

1. Jetson Nano Developer Kit

2. Computer with Internet Access and SD card port

3. MicroSD Memory Card (32GB UHS-I minimum)

4. Compatible 5V 4A Power Supply with 2.1mm DC barrel connector

5. USB cable (Micro-B to Type-A)

6. USB to serial port converter cable

7. Raspberry Pi Camera Module v2

8. iRobot Roomba 600

3.1.1 Jetson Nano Developer Kit

Jetson Nano, see figure 13, is an Nvidia-developed CPU with a compact size and a very
powerful design for working with AI. Behind this board there is a large community, where
you can find learning courses, forums, introduction videos and more. It is designed for
learning about machine learning, or for professional use as its platform provides a set of
frameworks to reduce complexity and effort for developers.
In order to start working with it. We have to download the latest OS image called Jetpack
SDK, which includes the Linux Driver Package (L4T) with Linux operating system and
CUDA-X accelerated libraries and APIs for Deep Learning, Computer Vision, Accelerated
Computing and Multimedia. All the material, documentation, steps to follow to be able
to use it are very well documented on their website [10].
For our project we have used JetPack 4.6, which includes the latest version of CUDA,
cuDNN and TensorRT, which we will talk about later [11].

Figure 13: Jetsno nano developer kit [11]
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Component Characteristic

GPU 128-core Maxwell
CPU Quad-core ARM A57 @ 1.43 GHz
Memory 4 GB 64-bit LPDDR4 25.6 GB/s
Storage microSD (not included)
Video Encode 4K @ 30 | 4x 1080p @ 30 | 9x 720p @ 30 (H.264/H.265)
Video Decode 4K @ 60 | 8x 1080p @ 30 | 18x 720p @ 30 (H.264/H.265)
Camera 2x MIPI CSI-2 DPHY lanes
Connectivity Gigabit Ethernet, M.2 Key E
Display HDMI and display port
USB 4x USB 3.0, USB 2.0 Micro-B
Others GPIO, I2C, I2S, SPI, UART
Mechanical 69 mm x 45 mm, 260-pin edge connector
Portable battery 10000 mAh

Table 2: Component and the characterstic

3.1.2 Camera

Figure 14: Raspberry Pi CSI Camera [13]

The CSI camera, see the figure 14, uses a module called the Sony IMX219 8-megapixel
sensor, IMX219 is a 1/4 8MP MIPI CSI-2 image sensor [12]. This module offers high
quality video, where we can take both photos and videos. Because it is a very popular
component for Raspberry developers or hobbyists there is a large community behind it
where we can find a large number of examples and projects for both beginners and more
advanced levels. It supports 1080p30, 720p60 and VGA90. The camera can work for all
Raspberry models and also this module is supported for Jetson Nano and Xavier NX. We
have used the model BO191 with a field of view of 62.2°.
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3.1.3 iRobot Roomba 600 [14]

The Roomba Open Interface (OI) is a software interface that, by means of commands,
we can modify its behaviour and control the different sensors that it includes. These
commands allow us to control the different actuators that it has, as well as activate its
sensors or commands to clean. The figure 15 shows what the iRoobot Roomba 600 looks
like.

Figure 15: iRobot Roomba 600 [14]

3.1.3.1 Communication port
It uses a Roomba’s External Serial Port Mini-DIN Connector Pinout to be able to com-
municate and send commands with it through a microcontroller or a PC. Below we will
explain its electrical characteristics as well as its pinout.

Pin Name Description

1 Vpwr Roomba battery + (unregulated)
2 Vpwr Roomba battery + (unregulated)
3 RXD 0 – 5V Serial input to Roomba
4 TXD 0 – 5V Serial output from Roomba
5 BRC Baud Rate Change
6 GND Roomba battery ground
7 GND Roomba battery ground

Table 3: Pinout iRobot Roomba 600
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In order to communicate with our microcontroller, we will need a USB to 8 Pin Mini Din
Male Serial Adapter cable.
This adapter contains an FTDI FT232RL which converts from USB to Serial UART
interface with an output clock generator. This chip can handler USB protocol to a UART
interface for 7 or 8 data bits, with 1 or 2 stop bits. The data transfer rate ranges from
300 baud to 3 megabaud.

Serial Port communication
In the following table 4 shows the configuration of the serial port.

Baud 115200
Data bit 8
Parity None
Stop Bit 1
Flow Control None

Table 4: Serial Port configuration

3.1.3.2 Roomba operation modes
The Roomba OI has four operating modes: Off, Passive, Safe and Full.
Off

• After power on, the roomba enterns in off mode waiting for the start command

Passive

• Request sensor data

• Receive sensor data

• No change in actuators (motors, speakers...)

Safe
Almost full control with a few exceptions, the Roomba will stop if some conditions hap-
pened:

• Detection of a cliff

• Detection of a wheel drop

• Charger plugged in and powered

• Detect an object

Full

• Full control over the Roomba

3.1.3.3 Commands used for controlling the Roomba

Start
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Before sending any command to he OI, we must send this Start command.

CMD D0 D1 D2 D3

0x80 - - - -

Safe mode

This command initializes the OI and it puts into Safe Mode. So now we are able to control
the OI and we must set the mode (Passive, Safe, Full)

CMD D0 D1 D2 D3

0x83 - - - -

Close communication

This command finishes the communication with the microcontroller. So the robot will no
longer respond to commands.

CMD D0 D1 D2 D3

0xAD - - - -

Drive

This command requires 4 bytes of data. The first two bytes refer to the speed of the wheels
and are measured in millimetres per second (mm/s), the velocity will be the average
between these two values; while the next two bytes are used to measure the radius at
which we want to turn the robot and the longer radii make Roomba drive straighter,
while the shorter radii make Roomba turn more. The radius is measured from the center
of the turning circle to the center of Roomba.

This command is available in Safe or Full mode
The velocity ranges are: -500 to 500 mm/2
The turning radius ranges are: -2000 to 2000 mm/s
There are some special cases:

- Straight = 32768 or 32767 = 0x8000 or 0x7FFF
- Turn in clockwise move = -1 = 0xFFFF
- Turn in counter-clockwise move = 1 = 0x0001

Forward drive

This command controls the Roomba’s drive in a fordware move.

CMD D0 D1 D2 D3

0x89 0x00 0x00 0x30 0x00
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D0 Velocity high byte (mm/s)
D1 Velocity low byte (mm/s)
D2 Radius high Byte (mm)
D3 Radius low Byte (mm)

Backward drive

This command controls the Roomba’s drive in a backward move.

CMD D0 D1 D2 D3

0x89 0xFF 0xD0 0x00 0x00

Counter-clockwise drive

This command controls the Roomba’s drive in a counter-clockwise direction.

CMD D0 D1 D2 D3

0x89 0x00 0x20 0x00 0x01

Clockwise drive

This command controls the Roomba’s drive in a clockwise direction.

CMD D0 D1 D2 D3

0x89 0x00 0x20 0xFF 0xFF

Stop drive

This command stops the Roomba.

CMD D0 D1 D2 D3

0x89 0x00 0x00 0x00 0x00

3.2 Getting started with Nvidia Jetson Nano

In this section we will talk about the material we need for our project and the first steps to
be able to use the Nvidia Jetson Nano. As well as the installation of the OS, the different
steps to install the necessary libraries to improve the efficiency in the neural networks
that we will use in the Jetson platform; improving performance and power efficiency
using graphics optimisation, kernel fusion and FP16/INT8 precision.

3.2.1 Write image to microSD card

First of all we need to download the Jetson Nano Developer Kit SD Card Image. Once
we have the image downloaded, we need to format the SD card and load the image. To
format the card we have used the SD Card Formatter program. The next step is to load
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the image to the SD card, for this we have used a program called Etcher. We select the
desired image and the device we want to flash. Once flashed, we can take out the microSD
and connect it to our microcontroller. Shown in figure 16.

Figure 16: MicroSD insertion [11]

3.2.2 Setup and first boot

There are two ways to use the Nividia Jetson Nano, one is through a monitor, a mouse, a
keyboard, ethernet cable to connect to the internet or a wifi adapter and DC power supply,
which can be either through a micro-USB cable type C or through a power supply; and
the other way is through a PC, a micro-USB cable and a power supply through the ssh
connection.
To setup the alternate barrel power supply, use the following steps.

1. Insert the 2-pin jumper across the 2-pin connector, J48, located next to the MIPI
CSI camera connector or behind the barrel power port (B01 version). This enables the
DC barrel power supply.

2. Connect your DC barrel jack power supply (5V/4A). The Jetson Nano Developer
Kit will power on and boot automatically. 3. A green LED next to the Micro-USB
connector will light as soon as the developer kit powers on.

To configure the system and its correct installation we will start by connecting all the
peripherals to the microncontroller and we will turn on the board.
When we turn on the microcontroller a green LED will light up, the first time we initialize
it, we will have to make some initial configurations as well as define our user and password.

• Review and accept the NVIDIA End User License Agreements.

• Select the language, time zone...
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• We must set our username and password

• Select APP partition size, a max size is suggested to use

3.3 Jetson Inference

As mentioned above, NVIDIA has a large community behind its platform that provides
frameworks and libraries to make developers’ work easier. This is what Hello AI World
is all about, where NVIDIA provides us with a starting point to work with different
demos and a set of deep learning inference in real time for object detection and image
classification. This platform provides tutorials for deploying AI and computational vision
for the Jetson Nano, Jetson AGX Javier, Jetson TX1 and TX2. This platform will provide
us with the different tools needed as well as pretrained network models including ImageNet
and DetectNet, which we will discuss later.

3.3.1 How to set up and build the project

As mentioned above, NVIDIA provides a TensorRT-accelerated deep learning networks
project for object detection and semantic segmentation. This inferencing library can be
supported in both Python and C++. It also comes with several pre-trained DNN models
that are ready to use. There are a variety of pre-trained models depending on the appli-
cation. For our project we are going to use the Facenet-120 model designed by Google
Inc.

See the following command :

$ sudo apt−get update
$ sudo apt−get i n s t a l l g i t cmake l ibpython3−dev python3−numpy
$ g i t c l one −−r e c u r s i v e https : // github . com/dusty−nv/ je t son−

i n f e r e n c e
$ cd j e t son−i n f e r e n c e
$ mkdir bu i ld
$ cd bu i ld
$ cmake . . /

When we call cmake automatically the tool will run the following figure 17 were we will
able to chose which models we want to download, make sure that FaceNet is selected:

28



Figure 17: Model’s installation

In the following figure 18 we have to chose which Pytorch version we want to install in
our case we are using Python 2.7 so the first option will be selected.

Figure 18: Pytorch installation version

During the development of the project, we found that the CSI camera rotated the image
by 180°. This is a problem located in the libraries provided by NVIDIA. To solve this
problem, before making the project, we have to change a parameter located in the source
code of the project.In the file jetson-utils/camera/gstCamera.cpp change the line 139 for:

i f ( mOptions . f l ipMethod == videoOptions : : FLIP_ROTATE_180 )

And now it is time to compile the project.

$ cd j e t son−i n f e r e n c e / bu i ld # omit i f working
d i r e c t o r y i s a l r eady b u i l d / from above

$ make
$ sudo make i n s t a l l
$ sudo l d c on f i g
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3.3.2 TensorRT

The repository we have downloaded above uses NVIDIA TensorRT to have an efficient
implementation on the neural networks we will work with, improving their performance
and an improvement in the management of the energy consumed for the Jetson platform.
In this section we will talk about TensorRT, how to use it and the different applications
it has.

3.3.2.1 What is TensorRT?
"The core of NVIDIA TensorRT is a C++ library that facilitates high-performance

inference on NVIDIA graphics processing units (GPUs). It is designed to work in a com-
plementary fashion with training frameworks such as TensorFlow, PyTorch, MXNet, and
so on. It focuses specifically on running an already-trained network quickly and efficiently
on a GPU." [18]

Figure 19: TensorRT [15]

TensorRT optimises trained DNN by combining different layers of it and optimising the
kernel depending on the type of application we want. For example, if we are working
on a system that needs power efficiency, the system will be optimised for low power
consumption; or to improve latency or memory consumption.
When we talk about deep learning inference, we have to take into account five important
factors for the software: Throughput, efficiency, latency, accuracy and memory usage.
So, TensorRT solves these problems that abstract away specific hardware details and
an implementation that optimizes inference for high throughput, low latency, and a low
device-memory footprint.
Many sectors can benefit such as autonomous vehicles, robotics, video analysis, automatic
speech recognition. There are already a wide variety of companies using it. See the figure
19 to see the tensorRT overview.
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3.3.2.2 Steps to use TensorRT The workflow to train and develop a neural network
can be divided into 3 phases.

Phase 1:
In the first phase of the problem we have to define the inputs, the desired outputs as well
as the loss function we will require. On the other hand, we need to have a good database,
well labelled, with a large amount of data either to train the model or to test it. Once the
data set is validated we will proceed to design the network structure and train the model.
Finally we will validate the model and test it. During this process TensorRT is not being
used.

Phase 2:
Once we have the trained model, we will create and validate the deployment solution.
We have to determine what application we want to give to this neural network, taking
into account the design and the implementation. Furthermore, we have to define what
priorities we have, as well as different things we have to take into account, for example.

• Do we have a single network or more than one? For our case we will only have one
network, face detection.

• If we are going to use a GPU or CPU or a mix.

• What latency and throughput we need as well as the system outputs we are going
to have.

After you define the architecture of your inference solution, by which you determine what
your priorities are, you then build an inference engine from the saved network using
TensorRT.
Once the network is parsed, we have to consider the optimization parameters as workspace
size, precision, batch size. These options are fit in the TensorRT build steps, where you
build an optimized inference engine based on your network. In the figure 20 it can be
observe the different steps:

Figure 20: TensorRT diagram [18]

Finally, we have created an inference engine we will need to reproduce and validate the
results of the model. And we have to write out the inference engine in a serialized format.
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Phase 3:
The TensorRT library is linked to the deployment application; the application will first
deserialize the model previously saved from the plan file into an inference engine.
Therefore, the capabilities provided by TensorRT are to adapt one or several previously
designed and implemented models for different applications and optimise them depending
on which parameters are most important to us, taking into account the system or hardware
we want to use it on.
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4 Results
In this section we will show the results obtained as well as the setup of our prototype. We
will first discuss which model we have chosen for easy recognition, comparing the accuracy
of each. And finally we will show the setup of our prototype.

4.1 Face detection model

As described above, for this project it has been decided to compare two models for face
detection. On the one hand, the Haar Cascade Classifier has been studied and on the
other hand, the FaceNet model described by Google engineers.

4.1.1 Haar Cascade Classifier

This classifier uses rectangular features to detect faces. It uses Adaboost training to choose
which features are the best and discard those that are not necessary. It classifies them into
weak classifiers and good classifiers. And finally, the cascade classifier consists of different
stages that indicate whether the classifier has found a positive region or a negative region.
To implement this model it is necessary to use OpenCV.

OpenCV is an open source library that is used in the aerial vision. This library is pro-
grammed in C++ and can be imported with the following command:

$ pip i n s t a l l opencv−python

Once the library is imported, to recognise the face we need to import the model. Intel
provides us with a cascade file [16] This file consists of the following content:

• Weak classifiers containing different stages to create a more robust classifier. These
internal nodes are used to create this model as reinforcement.

• The features necessary for face detection. These rectangles can be modified in the
file and adjusted as desired.

• It contains the SVM parameters used to divide the information into positive or
negative samples.

image = cv2 . imread ( " person . jpg " )
gray = cv2 . cvtColor ( image , cv2 .COLOR_BGR2GRAY)
face_detect = cv2 . Ca s c ad eC l a s s i f i e r ( " cascade_face . xml" )
f a c e s = f_cascade . de t e c tMu l t iS ca l e ( image , 1 . 3 , 5)

Once we have passed the image through the Haar Cascade Classifier, the detectMultiScale
https://docs.opencv.org/3.4/d1/de5/classcv_1_1CascadeClassifier.html function
will return the values of the rectangle containing the face or faces.
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4.1.2 FaceNet

With the FaceNet model we generate a high quality mapping using two neural networks
ZF-Net and Inception. We then use the Triplet loss method to be able to use these
architectures. Reaching an accuracy of 98.87%. To use this model we need to install and
set jetson-inference. This repository [17] provides us with the necessary libraries to use
this pre-trained model, which is very intuitive to import. This inference library is intended
to run on a Jetson platform. The previous section explains in detail how to download and
import the necessary libraries to be able to use it.
The following will show how to import the model as well as the different values provided
by the Detect function output.

net = j e t s on . i n f e r e n c e . detectNet ( " f a c ene t " , th r e sho ld = 0 . 5 )
de t e c t i on = net . Detect ( img , width , he ight )

The input parameters to the Detect method are the img, which in this case will be the
live video with a resolution of 640x480.
Once the frame has been processed, it will return the different coordinates of the detected
face forming a square. That is to say, it will return us a list with the parameters of the
centre, the width and the height of the detected face.

4.1.3 Conclusion

After testing the two models, varying the camera position, the room light, the distance
of the camera from the face, it was decided to use the Facenet model because it detected
the face in situations that the Haar Cascade Classifier model did not. The Haar Cascade
Classifier model did not detect the face when the camera was placed at an angle of 40° to
the floor at a distance of 2m from the face while the Facenet model did detect the face.

4.2 Robot control

Once we have chosen the model to detect the face, it is time to manage how the robot
should move. Roomba has to be all the time at a distance of approximately 2 meters
either forward, backward, moving to the left or right.
Below we will list the requirements for the movement:

• If Roomba does not detect a face in the frame, it must start to rotate counterclock-
wise.

• If it detects a face in the frame and the distance is greater than 2 metres, it must
pull forward. That is, when the Y position of the centre is greater than 270, we will
use the command.fordward method to send it the command.

• If it detects a face in the frame and the distance is less than 2 metres, Y smaller
than 210, we will use the command.backward method.
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• If it detects a face in the frame and the centre X position is greater than 360,
Roomba will rotate clockwise with the command.clockwise command.

• If it detects a face in the frame and the centre X position is less than 210, Roomba
will start to rotate counterclockwise with the command.counterClkwise command.

• If it detects a face in the frame and none of the previous conditions is met it means
that the face is in the center then the robot will stop moving.

In the following figure 21 we can see the final result of the prototype.

Figure 21: Prototype result
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5 Budget
The following tables show the total cost of both hardware and time required for the
development of the project.

5.1 Hardware cost

In this subsection are showed the price of the components used in the project.

Material Units Total price(e)

Nvidia Jetson Nano 4 GB 1 109
MicroSD 128 GB 1 20
Type C cable 1 8
Micro USB cable 1 5
Portable batery of 10000 mAh 1 20
Raspberry Pi Camera Module 1 38
iRobot Roomba 300
Laptop 1 700

Table 5: Hardware cost

5.2 Cost hours worked

In this subsection are showed the price of the hours necessaries for develop, test and
document the project.

Concept hours(h) Price(e)/hour(h) Total price(e)

Preliminary study of the requirements 10 40 4000
System development 60 40 2000
Test 40 40 1600
Documentation 30 40 1200

Table 6: Cost total hours of the project

5.3 Total budget

The total price may vary depending on where the material is purchased, as well as the
price per hour of the developer, which may vary.
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Concept Total price(e)

Hardware cost 1200
Software cost 0
Cost hours worked 7200
Total cost 8400

Table 7: Total cost of the project
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6 Conclusions and future development:

6.1 Conclusions

In this work we have studied different techniques of automatic learning and deep learning
to identify face in an image, a video or in real time. As we have presented above, we have
studied two algorithms for face detection; on the one hand we found Haar cascade one
of the most popular algorithms for object detection and on the other hand the FaceNet
algorithm developed by Google Inc. After comparing the two models, we came to the
conclusion that the algorithm developed by Google provides better results when detecting
faces so it has been decided to use this one.
Once the model to be used in theory has been chosen, it is time to implement it in
practice. For this, we will use a device developed by Nvidia, the Jetson Nano development
module. It is a very useful tool to start learning about AI and robotics, with real-world
projects with a large community behind them. That’s why we decided to choose this
device replacing the Raspberry PI 3 and the Inter NCS2. In this way with a single small,
compact and powerful device we can get better computational results, which translates
into better performance and power consumption. A developer from Nvidia, presents a
guide to inference and realtim DNN vision library for the Jetson platform among others.
The repository uses Nvidia TensorRT where we can find a variety of pre-trained models
and applying them is very simple and intuitive. This repository provides all the necessary
files to be able to use the FaceNet model. Once the model is imported and the face is
successfully detected, it is time to control the robot.
To be able to communicate with the robot, we have used a serial port that depending
on the coordinates of the center of the detected face, we will send commands to control
the different motors and making it move forward, backward, rotate counterclockwise or
clockwise.
Thanks to this work I have been introduced to the world of AI, allowing me to better
understand the different development processes of a project related to machine learning.
At the beginning it was a bit difficult because I had to learn many new concepts for
me and I had to take different courses to learn about AI as well as about the Nvidia
Jetson Nano device, a device I had never used before. After many tests, and installations
of different frameworks I was able to successfully install the inference repository already
thought to be used directly on the Jetson Nano device.

6.2 Future development

To improve the face detection algorithm, a future implementation of the project would
be to use Pytorch or Tensorflow, these frameworks allow us to create and train models
thanks to their APIs. Therefore, a future implementation would be to create and train an
own model and not the use of a pre-trained model as it has been done in this work for it
what is proposed is the following.

• First we collect our own data and generate a database to be able to train the desired
model.

• Define the neural network
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• Train and evaluate the model

Once these three tasks are done, we will have generated our data, implemented the desired
model depending on the application we want to give it and finally train and evaluate it,
being able to observe the outputs that the trained model will provide us. In this way, we
can use the system not only to detect faces, but also to train it to detect objects, identify
people, animals... In this way, we have a much greater control and allowing an instant
interaction with the model and to be able to debug it in a simple way.
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Appendices

Figure 22: Right view Roomba[14]

Figure 23: Top view Roomba [14]

Figure 24: Bottom view Roomba [14]
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Figure 25: Top view Jetson Nano board [19]

Figure 26: Pinout Jetson Nano board [20]
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