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A B S T R A C T

This paper proposes a new approach for the leak diagnosis problem in pipelines based on the use of a Kalman
filter for Linear Parameter Varying (LPV ) systems. Such a filter considers the availability of flow and pressure
measurements at each end of the pipeline. The proposed methodology relies on an LPV model derived from the
nonlinear description of the pipeline. For the Kalman filter design purposes, the LPV model is transformed into
a polytopic representation. Then, using such a representation, the LPV Kalman filter is designed by solving a set
of Linear Matrix Inequalities (LMIs) offline. In the online implementation, the observer gain is calculated as an
interpolation of those gains previously computed at the vertices of the polytopic model. The main advantages
of this approach are: a) the embedding of the nonlinearities in the varying parameters allows the quasi-LPV
system to be obtained which is equivalent to the original nonlinear one, and; b) the use of the well-known
LMIs to compute the Kalman gain allows the extension to the LPV case. Those aspects are the main advantages
with respect to the classic design of the Extended Kalman Filter (EKF ) that requires a linearization procedure
and the solution of the Ricatti equation at each iteration. To illustrate the potential of this method, a test
bed plant built at Cinvestav-Guadalajara is used. Additionally, the results presented are compared with those
results obtained through the classical EKF showing that LPV Kalman observer outperforms the classical EKF.
1. Introduction

Pipeline systems have become important because they are the
heapest way to transport fluids as drinkable water, oil derivatives,
aste water and others. However, leaks can cause economical losses,
eople death and environmental pollution. Recently, in Mexico, the
llegal fuel extraction problem has worsened and severe consequences
ave been experienced.

On the other hand, there is also a great interest in safeguarding the
vailable water resources that are increasingly scarce. According to the
ational Water Commission (CONAGUA, for its Spanish acronym), the

oss of drinking water due to leaks reaches up to 40% in the distribution
ystems. This loss is counteracted with the overuse of natural water
ources.

In the literature, there is a large amount of leakage diagnosis strate-
ies, (Allidina & Benkherouf, 1988; Begovich, Pizano, & Besançon,
012; Billman & Isermann, 1987; Delgado-Aguiñaga & Begovich, 2017;
elgado-Aguiñaga, Begovich, & Besançon, 2016; Delgado-Aguiñaga &
esançon, 2018; Delgado-Aguiñaga, Besançon, Begovich, & Carvajal,
016; Fernandes, da Silva, & Fileti, 2018; Navarro, Begovich, Sánchez,

∗ Corresponding author.
E-mail address: jorge.delgado@uvmnet.edu (J.A. Delgado-Aguiñaga).

& Besançon, 2017; Puig & Ocampo-Martínez, 2015; Santos-Ruiz et al.,
2018; Soldevila, Fernandez-Canti, Blesa, Tornil-Sin, & Puig, 2017;
Verde, Torres, & González, 2016). In Billman and Isermann (1987),
nonlinear adaptive observers are proposed for fault detection through
a correlation technique for a single leak, but the leak localization
results are very sensitivity to uncertainties. In Begovich et al. (2012), a
real-time implementation of such a method is presented with accurate
results. The authors highlight some practical issues especially those
related to the friction coefficient in plastic pipelines. In Navarro et al.
(2017), a two-step-based leak diagnosis scheme has been proposed.
In the first step, a fitting loss coefficient calibration is performed. In
the second one, the leak parameters identification is carried out by
using an EKF. Such a method highlights the fact that a constant friction
coefficient introduces deviation in the leak parameters estimation espe-
cially for smooth pipelines (plastic pipelines). Extensions to branching
pipeline configurations are also considered in Verde et al. (2016),
based on a set of observers together with a logic detection function
for detect and locate a leak in a pipeline with an outflow at a branch
junction considered to be known. Similarly in Delgado-Aguiñaga and
Besançon (2018), the case of leaks in a branched pipeline system is
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considered. First, a leak region is identified on the basis of a residual
nalysis between the nominal system and the leaky one and, relying
n this, two EKFs are designed. The first one estimates the pressure
ead at the inner nodes, and the second one is fed with the estimates
f the first one and it can finally estimate the leak coefficients. This
ethod can be extended to a general case of a branched pipeline

onfiguration. On the other hand, successful implementations have
een reported (Delgado-Aguiñaga & Begovich, 2017), where a leak was
dentified in a water pipeline located in Guadalajara, México. In the
ase of water distribution networks, one can quote (Cugueró-Escofet,
uig, & Quevedo, 2017; Puig & Ocampo-Martínez, 2015; Soldevila
t al., 2017) for instance. Other methods also exist and are based
n different approaches as acoustic methods (Fernandes et al., 2018),
liding mode observers (Delgado-Aguiñaga, Begovich, & Besançon,
016), pressure waves (Liu, Li, Fang, Han, & Xu, 2017) and among
thers.

The problem of multiple leaks has also been studied. In Verde
2005), the case of two leaks is considered presenting results in sim-
lation. The proposed approach can only be successfully applied if
new leak appears at the down side of the previous one, once the

irst one has been found. In Delgado-Aguiñaga, Besançon, Begovich,
nd Carvajal (2016), the multi-leak problem is addressed by using an
KF as state observer. The method consists in developing a multi-leak
iagnosis scheme by expanding the pipeline model description at each
ew leak occurrence and by considering the leak parameters of the
revious identifications as constant variables.

In the preceding overview, many of the leak diagnosis approaches,
hat use real data, depend on a pre-tuning process either involving
ignal processing regarding to noise or on parameter tuning in order to
uarantee some convergence rate. However, in practical applications
hose pre-processes often cannot be done in a desired manner, com-
romising the final diagnostic. According to the authors’ experience,
he Kalman filter is a powerful tool to face the leak diagnosis problem
n real situations (see Delgado-Aguiñaga & Begovich, 2017), but it
epends on the tuning of covariance matrices of measure and process
oises.

This paper introduces a Kalman filter for Linear Parameter Varying
LPV ) systems to be used in leak diagnosis in pipelines. Through the
olytopic representation of the LPV system, the Kalman filter design
an be done offline via solving a set of Linear Matrix Inequalities LMIs
n the vertices models. This procedure also allows the conditions that
stablish the convergence rate to be provided on the basis of Lyapunov
echniques improving the classical EKF approach where such a guar-
ntee is not provided by design, as discussed in Pletschen and Diepold
2017). The LPV framework has become a well-accepted approach to
xtend LTI schemes for control and estimation to non-linear systems
ia the non-linear embedding of the non-linearities in the varying
arameters (avoiding linearization) and LMIs (as e.g. see Kazemi &
abali, 2018; Marx, Ichalal, Ragot, Maquin, & Mammar, 2019; Morato,
ename, Dugard, & Nguyen, 2019). Note that, in the last decades,
everal control and estimation strategies have been designed on the
asis of LMIs, because it is not difficult to formulate those problems
y using an LMI framework. In addition, many solvers can be used
or solving efficiently those LMIs in Matlab environment (Rotondo,
ánchez, Nejjari, & Puig, 2019).

Thus, the main contribution of this work is the introduction of a
alman filter for LPV systems for leak diagnosis in pipelines. The main
dvantages of the proposed approach, compared with the standard
olution in pipeline leak diagnosis based on EKF, are as follows:

(a) the nonlinearities are embedded in the obtained LPV representa-
tion avoiding to use on-line linearization,

(b) the proposed LPV Kalman filter not only avoids the need of
the successive linearization, but the calculation of the Kalman
filter gains that is done in an off-line procedure while only the
polytopic interpolation of the vertices gains are required on-line,
saving time;
(c) because the design is based on the LMI approach, additional
convergence constraints based on the Lyapunov theory can be
added as proposed in Pletschen and Diepold (2017). Those aspects
are the main differences with respect to the EKF widely used in
leak diagnosis: (Navarro et al., 2017; Santos-Ruiz et al., 2018;
Torres, Besançon, Georges, Navarro, & Begovich, 2011) for single
leak cases and Delgado-Aguiñaga, Besançon, Begovich, and Car-
vajal (2016) and Rojas and Verde (2020) for multi-leak problems,
but also for real life applications (Delgado-Aguiñaga & Begovich,
2017), for instance, and finally,

(d) a quantitative analysis evidences that the LPV Kalman filter out-
performs the classical EKF. This fact, according to the authors’
experience, is decisive to reduce the cost of repairing procedures
as it is discussed in Delgado-Aguiñaga and Begovich (2017),
where it is presented a real life leak identification in an aqueduct
that is located in Guadalajara city in Mexico, on the basis of
an EKF. In that experience, the accurate estimation of the leak
position was the main problem what in turn motivated the present
work.

he structure of the paper is the following: Section 2 presents the
lassical flow transient model. Section 3 introduces the LPV repre-

sentation of the flow transient model. Then, Section 4 presents the
LPV Kalman filter design. Some experimental results are presented
in Section 5 by using some database coming from a pilot plant built
at Cinvestav-Guadalajara that show the effectiveness of the proposed
method. Finally, Section 6 presents some conclusions and perspectives
for future research.

2. Pipeline transient flow model

The transient response of a liquid circulating through a pipeline
is described by a couple of quasilinear hyperbolic Partial Differential
Equations (PDEs), known as the Water Hammer Equations (WHEs), that
are obtained by mass and energy balances (Chaudhry, 2014; Roberson,
Cassidy, & Chaudhry, 1998):

• Momentum Equation
𝜕𝑄(𝑧, 𝑡)
𝜕𝑡

+ 𝑔𝐴𝑟
𝜕𝐻(𝑧, 𝑡)
𝜕𝑧

+ 𝜇𝑄(𝑧, 𝑡) |𝑄(𝑧, 𝑡)| = 0 (1)

• Continuity Equation
𝜕𝐻(𝑧, 𝑡)
𝜕𝑡

+ 𝑏2

𝑔𝐴𝑟
𝜕𝑄(𝑧, 𝑡)
𝜕𝑧

= 0. (2)

where 𝑄 is the flow rate [m3∕s], 𝐻 is the pressure head [m], 𝑧 ∈ (0, 𝐿)
is the length coordinate [m], 𝐿 is the equivalent straight length of the
pipeline (Mataix, 1986), 𝑡 ∈ (0,∞) is the time coordinate [s], 𝑔 is the
ravity acceleration [m∕s2], 𝐴𝑟 is the cross-section area [m2], 𝑏 is the
ressure wave speed in the fluid [m∕s], 𝜇 = ϝ(𝑄)∕2𝜙𝐴𝑟, where 𝜙 is
he inner diameter [m] and ϝ(𝑄) is the friction coefficient calculated
s in Swamee and Jain (1976) that depends, among other things, on

the flow:

ϝ(𝑄𝑖) =
0.25

[

log10

(

𝜀
3.7𝜙

+ 5.74
𝑅𝑒(𝑄𝑖)0.9

)]2
(3)

where 𝜀 is the roughness of the pipe in [m], Re is the Reynolds number
dimensionless], given by 𝑅𝑒(𝑄𝑖) = 𝑄𝑖𝜙∕𝜈𝐴𝑟, where 𝜈 is the kine-

matic viscosity of water in [m2∕s], which can be computed following
the procedure reported in Delgado-Aguiñaga, Begovich, and Besançon
(2016).

PDEs (1)–(2) are obtained considering the following assumptions:

• the pipe is straight and without slope,
• the fluid is slightly compressible,
• the wall of the pipe is slightly deformable,
• the convective changes in the velocity are negligible and
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• the cross section area of the pipe, the diameter and density of the
fluid are constant.

On the other hand, the fluid dynamics are subject to initial condi-
ions 𝐻(𝑧, 0), 𝑄(𝑧, 0) that correspond to the initial steady-state flows
nd related boundary conditions on 𝐻 or 𝑄. More precisely, boundary

conditions for (1) and (2) are here considered to be:

𝐻(0, 𝑡) = 𝐻𝑖𝑛(𝑡) and 𝐻(𝐿, 𝑡) = 𝐻𝑜𝑢𝑡(𝑡). (4)

A closed-form solution of these governing Eqs. (1) and (2) is not
available. However, several approximate solutions have been devel-
oped as: method of characteristics, finite-difference methods (explicit
or implicit), finite-element method, and so on. A detailed description
of such solution methods can be found in Chaudhry (2014).

In particular, in order to obtain a pair of nonlinear Ordinary Dif-
ferential Equations (ODEs) keeping time as continuous variable, the
finite-difference method is applied, as shown in Delgado-Aguiñaga,
Besançon, Begovich, and Carvajal (2016). By using such an ODE-model-
based of the flow dynamics, the single leak case can be represented by
using only one interior node in which the leak effect can be introduced
by means of the following expression:

𝑄𝑙 = 𝑡𝑙𝜆
√

𝐻𝑙 (5)

here 𝑄𝑙 is the leak flow rate in [m3∕s], 𝐻𝑙 is the pressure head at leak
oint in [m], 𝜆 is the leak coefficient in [m5∕2∕s] associated, among

other things, to a discharge coefficient 𝐶𝑑 and to the leak cross section
area 𝐴𝑙, respectively. 𝑡𝑙 is the 𝐻𝑒𝑎𝑣𝑖𝑠𝑖𝑑𝑒 unit step function associated
to the leak occurrence at time 𝑡𝑙. Finally, the resulting finite-difference
description for the single leak case is given by:

�̇�1 =
−𝑔𝐴𝑟
𝛥𝑧1

(

𝐻2 −𝐻𝑖𝑛
)

− 𝜇1𝑄1|𝑄1|

�̇�2 =
−𝑏2

𝑔𝐴𝑟𝛥𝑧1

(

𝑄2 −𝑄1 + 𝜆1
√

𝐻2

)

�̇�2 =
−𝑔𝐴𝑟
𝛥𝑧2

(

𝐻𝑜𝑢𝑡 −𝐻2
)

− 𝜇2𝑄2|𝑄2|

(6)

here 𝐻1 = 𝐻𝑖𝑛(𝑡) and 𝐻3 = 𝐻𝑜𝑢𝑡(𝑡) denote the boundary conditions,
𝑧1 = 𝑧𝑙 − 𝑧0 is the distance between upstream boundary and the
osition of the leak, and 𝛥𝑧2 = 𝐿 − 𝑧𝑙 is the distance between the leak
osition up to downstream boundary. This representation (6) can be
ritten in compact form as follows:

�̇� = 𝜉(𝜁 ) + 𝜌(𝜁 )𝛾
𝛹 = 𝜗(𝜁 )

(7)

here 𝜁 = [𝜁1 𝜁2 𝜁3]𝑇 = [𝑄1 𝐻2 𝑄2]𝑇 ∈ R3 is the state vector,
= [𝐻𝑖𝑛 𝐻𝑜𝑢𝑡]𝑇 ∈ R2 is the input vector and 𝛹 = [𝑄𝑖𝑛 𝑄𝑜𝑢𝑡]𝑇 ∈ R2

s the output vector for some functions 𝜉, 𝜌 and 𝜗.

. LPV representation of the pipeline transient model

The idea of the proposed approach is to use a state estimation
cheme to find the position and the leak size, i.e. the leak parameters.
ith this aim, the leak parameters are considered as new state variables
= [𝑧𝑙 𝜆1]𝑇 with constant dynamics: �̇� = 0 (Besançon, 2007). Thus,

he original state vector is extended with these new states, resulting
n 𝑥 = [𝜁 𝜃]𝑇 : 𝑥 = [𝑄1 𝐻2 𝑄2 𝑧𝑙 𝜆1]𝑇 =∶ [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5]𝑇 . Then,
onsidering unidirectional flow given by 𝑄𝑖|𝑄𝑖| = 𝑄2

𝑖 , the extended
tate representation of (7) is as follows

�̇�1 =
−𝑔𝐴𝑟
𝑥4

(

𝑥2 − 𝑢1
)

− 𝜇1𝑥21

�̇�2 =
−𝑏2
𝑔𝐴𝑟𝑥4

(

𝑥3 − 𝑥1 + 𝑥5
√

𝑥2
)

�̇�3 =
−𝑔𝐴𝑟
𝐿 − 𝑥4

(

𝑢2 − 𝑥2
)

− 𝜇2𝑥23

�̇�4 = 0

(8)
�̇�5 = 0
that can be also written in compact form as:

�̇� = 𝑓 (𝑥) + 𝑔(𝑥)𝑢
𝑦 = ℎ(𝑥)

(9)

The state estimator uses the following measured variables
𝑦 = [𝑄1 𝑄2]𝑇 =∶ [𝑦1 𝑦2]𝑇 and 𝑢 = [𝐻1 𝐻3]𝑇 =∶ [𝑢1 𝑢2]𝑇 , that correspond
to the flows and pressure head at the upstream/downstream extremes
of the pipeline. Here 𝑓, 𝑔, ℎ are given by:

𝑓 (𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

− 𝑔𝐴𝑟
𝑥4
𝑥2 − 𝜇1𝑥21

− 𝑏2

𝑔𝐴𝑟𝑥4
(𝑥3 − 𝑥1 + 𝑥5

√

𝑥2)
𝑔𝐴𝑟
𝐿−𝑥4

𝑥2 − 𝜇2𝑥23
0
0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

; 𝑔 (𝑥) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔𝐴𝑟
𝑥4

0
0 0
0 − 𝑔𝐴𝑟

𝐿−𝑥4
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

ℎ (𝑥) = 𝐶𝑥

and 𝐶 ∈ R2 is the output matrix defined as follows taking into account
that 𝑦 = [𝑄1 𝑄2]𝑇

𝐶 =
[

1 0 0 0 0
0 0 1 0 0

]

(10)

Since the extended system (9) satisfies the rank observability condi-
tion (Besançon, 2007; Torres et al., 2011), the leak diagnosis problem
can be solved via a state estimation scheme. In particular, the variables
̂4 and �̂�5 provide estimations of the leak position and leak magnitude,
respectively.

This nonlinear model can be represented in an LPV form. LPV
systems are a particular class of Linear Time-Varying systems (LTV ),
whose time-varying elements 𝜑(𝑘) ∈ 𝛺 can be measured (or estimated).
LPV systems have already been applied successfully to many control
and estimation problems as discussed in Rotondo et al. (2019). In
his work, the single leak diagnosis case is addressed by transform-
ng the nonlinear model (9) into one in the LPV form by means of
he nonlinear embedding method that avoids the linearization proce-
ure (Kwiatkowski, Boll, & Werner, 2006). By using this method, the
ystem described by (9) can be rewritten in the LPV form as follows:

�̇�(𝑡) = 𝐴(𝜑(𝑡))𝑥(𝑡) + 𝐵𝑑 (𝜑(𝑡))𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡)

(11)

where matrices 𝐴(𝜑(𝑡)) and 𝐵(𝜑(𝑡)) depend on the varying parameters
𝜑(𝑡) as follows

𝐴(𝜑(𝑡)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝜑1(𝑡) 𝜑2(𝑡) 0 𝜑3(𝑡) 0
𝜑4(𝑡) 0 𝜑5(𝑡) 0 𝜑6(𝑡)
0 𝜑7(𝑡) 𝜑8(𝑡) 0 0
0 0 0 0 0
0 0 0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

;

𝐵(𝜑(𝑡)) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑔𝐴𝑟
𝑥4(𝑡)

0
0 0
0 −𝑔𝐴𝑟

𝐿−𝑥4(𝑡)
0 0
0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where

𝜑1(𝑡) =
−ϝ(𝑥1(𝑡))𝑥1(𝑡)

2𝜙𝐴𝑟
𝜑2(𝑡) = (1∕2)−𝑔𝐴𝑟𝑥4(𝑡)

𝜑3(𝑡) = (1∕2)−𝑔𝐴𝑟𝑥2(𝑡)
𝑥4(𝑡)2

𝜑4(𝑡) =
𝑏2

𝑔𝐴𝑟𝑥4(𝑡)

𝜑5(𝑡) =
−𝑏2

𝑔𝐴𝑟𝑥4(𝑡)
𝜑6(𝑡) =

−𝑏2
√

𝑥2(𝑡)
𝑔𝐴𝑟𝑥4(𝑡)

𝜑7(𝑡) =
𝑔𝐴𝑟

𝐿−𝑥4(𝑡)
𝜑8(𝑡) =

−ϝ(𝑥3(𝑡))𝑥3(𝑡)
2𝜙𝐴𝑟

The variation of these parameters can be bounded in a compact set
taking into account the physical limitations of the associated scheduling
variables (bounding box approach) (Rotondo et al., 2019)

𝜑(𝑡) ∈ 𝛺 = {𝜑 ≤ 𝜑 (𝑡) ≤ 𝜑 , 𝑖 = 1,… ,𝓁} ⊂ R𝓁 , (12)

𝑖 𝑖 𝑖
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leading to a polytope of 2𝓁 vertices, where 𝓁 represents the number of
varying parameters and 𝜑

𝑖
and 𝜑𝑖 are the lower and upper bounds of

𝑖th parameter 𝜑, respectively.
Note that the LPV representation (11) of the extended system (9) is

not unique. Here, the selection of structure of 𝐴(𝜑(𝑡)) has been carried
ut so that any pair (𝐴(𝜑(𝑡)), 𝐶) obtained by instantiating 𝜑(𝑡) ∈ 𝛺 is

observable, i.e.:

𝑟𝑎𝑛𝑘[𝑂(𝜑(𝑡))] = 𝑛 = 5 (13)

𝑂(𝜑(𝑡)) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐶
𝐶𝐴(𝜑(𝑡))

⋮
𝐶𝐴(𝜑(𝑡))𝑛−1

⎤

⎥

⎥

⎥

⎥

⎦

. (14)

4. LPV Kalman filter design

4.1. Polytopic formulation

In order to design a Kalman filter for the LPV system (11), it should
e represented in a polytopic form taking into account the polytope
12) that bounds the variation of 𝜑(𝑡) ∈ 𝛺. Such a representation

requires defining a set of weighted functions that allow obtaining the
original representation LPV as a sum of the matrices of the systems
defined at each vertex of the polytope as follows (see Appendix):

�̇�(𝑡) =
∑2𝓁
𝑖=1 𝜓𝑖(𝜑(𝑡))[𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)]

𝑦(𝑡) = 𝐶𝑥(𝑡)
(15)

here the matrices (𝐴𝑖, 𝐵𝑖) are constant and define the system dynam-
cs at each vertex of (12) and the coefficients 𝜓𝑖 are weighted functions
f the polytopic decomposition that satisfy (Alcala, Puig, Quevedo, &
scobet, 2018):
2𝓁
∑

𝑖=1
𝜓𝑖(𝜑(𝑡)) = 1, 𝜓𝑖(𝜑(𝑡)) ≥ 0 ∀𝑖 = 1,… , 2𝓁 ; ∀𝜑(𝑡) ∈ 𝛺 (16)

here

𝑖(𝜑(𝑡)) =
𝓁
∏

𝑗=1
𝜀𝑖,𝑗 (𝜂

𝑗
0, 𝜂

𝑗
1), 𝑖 = {1,… , 2𝓁}

𝜂𝑗0 =
𝜑𝑖 − 𝜑𝑖(𝑡)
𝜑𝑖 − 𝜑𝑖

(17)

𝜂𝑗1 = 1 − 𝜂𝑗0 𝑗 = {1,… ,𝓁}

Using this polytopic model, the following Kalman filter to reconstruct
the state vector 𝑥 is going to be designed:
̇̂ (𝑡) = 𝐴(𝜑(𝑡))�̂�(𝑡) + 𝐵(𝜑(𝑡))𝑢(𝑡) + 𝛤 (𝜑(𝑡))(𝑦(𝑡) − 𝐶�̂�(𝑡)) (18)

where �̂�(𝑡) is the estimation at time 𝑡 and where the observer gain
adopts the following polytopic form

𝛤 (𝜑(𝑡)) =
2𝓁
∑

𝑖=1
𝜓𝑖(𝜑(𝑡))𝛤𝑖 (19)

and 𝛤𝑖 is the gain computed at 𝑖th vertex of the polytope.

4.2. Design conditions

Let us consider the 𝐿𝑃𝑉 pipeline representation (11), including
Gaussian disturbances 𝑤 and noise 𝑣 with zero mean and known
covariance matrices,  = 𝑇 > 0 and  = 𝑇 > 0,
�̇�(𝑡) = 𝐴(𝜑(𝑡))𝑥(𝑡) + 𝐵(𝜑(𝑡))𝑢(𝑡) +𝑤(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑣(𝑡)

(20)

hen, the design conditions for the 𝐿𝑃𝑉 Kalman Filter (18) are intro-
uced in the following proposition considering the polytopic represen-
ation of (20) obtained in (15)

�̇�(𝑡) =
∑2𝓁
𝑖=1 𝜓𝑖(𝜑(𝑡))[𝐴𝑖𝑥(𝑡) + 𝐵𝑖𝑢(𝑡)] +𝑤(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝑣(𝑡)
(21)
4

roposition 1. Given the polytopic LPV system (15), the polytopic LPV
alman filter (18) can be designed if matrices 𝑌 = 𝑌 𝑇 and 𝑊𝑖 (𝑖 =

1,… , 2𝓁) and scalar 𝜔 can be obtained by solving the following optimization
problem

min
𝜔,𝑌=𝑌 𝑇 ,𝑊𝑖

s.t.

⎡

⎢

⎢

⎣

𝑌 𝐴 + 𝐴𝑇 𝑌 − 𝐶𝑇𝑊𝑖 −𝑊 𝑇
𝑖 𝐶 𝑌𝑇 𝑊 𝑇

𝑖
𝑌 −𝐼 0
𝑊𝑖 0 −−1

⎤

⎥

⎥

⎦

< 0 𝑖 = 1,… , 2𝓁

[

𝜔𝐼 𝐼
𝐼 𝑌

]

> 0

(22)

here  = 𝑇 > 0 and  = 𝑇 > 0 are the covariance matrices of
isturbances and noise, respectively, and  = 1∕2. Moreover, the Kalman
ilter gains (18) can be obtained as follows: 𝛤 𝑇𝑖 = 𝑌 −1𝑊𝑖 (𝑖 = 1,… , 2𝓁).

roof. The LPV Kalman filter (18) minimizes the state and output
stimation errors due to the disturbances 𝑤 and noise 𝑣, respectively.
o obtain the LMI design conditions (22) for the LPV Kalman filter
ain (19), the duality principle between Kalman filter and LQR optimal
ontrol will be used (Ostertag, 2011).

Applying duality principle to LQR matrix inequality (𝐴 → 𝐴𝑇 ,
→ 𝐶𝑇 , 𝐾 → 𝛤 𝑇 ) derived in Ostertag (2011),

𝐴𝑇𝑖 − 𝐶𝑇𝛤 𝑇𝑖 )
𝑇 𝑃 + 𝑃 (𝐴𝑇𝑖 − 𝐶𝑇𝛤 𝑇𝑖 ) +𝑄 + 𝛤𝑖𝑅𝛤 𝑇𝑖 < 0 (23)

nd using the polytopic representation of (18), the vertex gains 𝛤𝑖 of the
olytopic 𝐿𝑃𝑉 Kalman observer (19) must satisfy the following matrix
nequalities after rearranging (23)

𝑃 < 𝛾𝐼

𝐴𝑖 − 𝛤𝑖𝐶)𝑃 + 𝑃 (𝐴𝑖 − 𝛤𝑖𝐶)𝑇 +𝑄 + 𝛤𝑖𝑅𝛤 𝑇𝑖 < 0 𝑖 = 1,… , 2𝓁 (24)

here  = 𝑇 > 0 and  = 𝑇 > 0 are measurement and disturbance
ovariance matrices, respectively.

By multiplying both sides of the second inequality expressed as in
23) by 𝑌 = 𝑃−1

(𝐴𝑇𝑖 − 𝐶𝑇𝛤 𝑇 )𝑇 + (𝐴𝑇𝑖 − 𝐶𝑇𝛤 𝑇𝑖 )𝑌 + 𝑌 𝑄𝑇 + 𝑌 𝛤𝑖𝑅𝛤 𝑇𝑖 𝑌 < 0, (25)

hen, by introducing 𝑊𝑖 = 𝛤 𝑇𝑖 𝑌 and  = 𝑇, it can be rewritten as:

𝐴 + 𝐴𝑇 𝑌 − 𝐶𝑇𝑊𝑖 −𝑊 𝑇
𝑖 𝐶 +

[

𝑌𝐻𝑇 𝑊 𝑇 ]

[

𝐼 0
0 𝑅

] [

𝐻𝑌
𝛤

]

< 0,

(26)

inally, applying the Schur lemma, it leads to

⎡

⎢

⎢

⎣

𝑌 𝐴 + 𝐴𝑇 𝑌 − 𝐶𝑇𝑊𝑖 −𝑊 𝑇
𝑖 𝐶 𝑌𝑇 𝑊 𝑇

𝑖
𝑌 −𝐼 0
𝑊𝑖 0 −−1

⎤

⎥

⎥

⎦

< 0 𝑖 = 1,… , 2𝓁

(27)

hus, the 𝑖th gain of the observer is computed as 𝛤 𝑇𝑖 = 𝑌 −1𝑊𝑖.
Similarly, considering the first inequality of (24) and 𝑌 = 𝑃−1, the

ollowing LQR follows
[

𝜔𝐼 𝐼𝑛
𝐼𝑛 𝑌

]

> 0 (28)

To obtain the optimal Kalman filter gains, the scalar parameter
> 0 should be minimized subject to the LMIs (27) and (28) leading

o the optimization problem (22), ending the proof. □
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Fig. 1. Prototype at Cinvestav Guadalajara.
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emark 1. The use of a common Lyapunov matrix 𝑃 = 𝑌 −1 > 0
guarantees the convergence1 of the 𝐿𝑃𝑉 Kalman filter of any value
of varying parameters 𝜑 ∈ 𝛺 (Duan & Yu, 2013) .

5. Experimental results

5.1. Pilot plant description

The methodology proposed in the paper and previously described
is here evaluated by using three different real databases obtained from
a leveled pilot plant (see Fig. 1(a)), which was built at Cinvestav-

uadalajara, México, and whose main parameters are shown in Table 2.
More details can be found in Begovich et al. (2012).

To distribute the water through pipeline, the prototype is equipped
with a centrifugal pump (𝑃𝑢𝑚𝑝 1), which is controlled with a frequency
between 0–60 Hz, for adjusting the pressure head at upstream pipeline.
To avoid wasting water, the prototype has a water recovery system,
where a pump (𝑃𝑢𝑚𝑝 2), returns the water from 𝑇 𝑎𝑛𝑘 2 (750 l) to
𝑇 𝑎𝑛𝑘 1 (750 l). Three valves are placed along it in order to simulate
leak scenarios: valve 1 at 17.04 [m], valve 2 at 33.47 [m] and valve 3 at
49.89 [m], respectively, see Fig. 1(b).

Remark 2. According to the SIAPA staff, most of the pipeline leaks
occur in the junctions and are mainly caused by flow transients that
produce an injury in the ring-shaped rubber gasket that hermetically
seals two consecutive pipe sections, in few cases are caused by earth-
quakes, by softening of the ground, among others that produce a
misaligned between two consecutive pipe sections. A weld break in a
junction and cracks around valves are also part of the causes of leaks
in pipelines.

In the databases, flow rate and pressure head measurements are
saved from sensors (sensor-device information can be seen in Table 1)
placed at both ends of the system, at a sampling rate of 100 Hz, by
employing LabView™ environment through the data acquisition card
𝑁𝐼 𝑈𝑆𝐵 − 6229. Finally, the discrete-time 𝐿𝑃𝑉 Kalman filter is tested
offline in Matlab™ environment.

5.2. LPV Kalman filter set-up

By considering the set of scheduling variables: {𝑄1(𝑘) 𝐻2(𝑘) 𝑄2(𝑘)
𝑧𝑙(𝑘)} = {𝑥1(𝑘) 𝑥2(𝑘) 𝑥3(𝑘) 𝑥4(𝑘)}, 𝓁 = 4, the resulting polytope (12)
consists of 24 = 16 vertices obtained considering the following limits:
𝑥1(𝑘) ∈ {0.0089, 0.0092} [m3∕s], 𝑥2(𝑘) ∈ {12, 18.5} [m], 𝑥3(𝑘) ∈

1 When some scheduling variables are estimated (non-measurable), the sta-
ility proof and convergence analysis is much more complex. In the literature,
he problem of non-measurable varying parameters is discussed and some
esults already exist (see as e.g. Ichalal, 2010). This issue can be addressed
n formal way in a future research adapting the results for TS Kalman filter
resented in Pletschen and Diepold (2017), benefiting from the analogies
etween the LPV and TS approaches (Rotondo, Puig, & Nejjari, 2016).
Table 1
Prototype pipeline sensors-devices: 𝐹𝑇 and 𝑃𝑇 stand for Flow Transducer
and Pressure Transducer, respectively.

Sensor/Device Trademark Specifications

(𝐹𝑇 ), 𝑃𝑟𝑜𝑚𝑎𝑔 𝑃 𝑟𝑜𝑙𝑖𝑛𝑒 10 𝑃 𝐸𝑛𝑑𝑟𝑒𝑠𝑠 𝐻𝑎𝑢𝑠𝑒𝑟™ 4 to 20 mA
(𝑃𝑇 ), 𝑃𝑀𝑃 41 𝐸𝑛𝑑𝑟𝑒𝑠𝑠 𝐻𝑎𝑢𝑠𝑒𝑟™ 4 to 20 mA
(𝑃𝑇𝐿1 and 𝑃𝑇𝐿3 ) 𝑊 𝑖𝑛𝑡𝑒𝑟𝑠™ 4 to 20 mA
Pump 1, 7502𝑀𝐸𝐴𝑈 𝑆𝑖𝑒𝑚𝑒𝑛𝑠™ 5 HP
Pump 2, 3𝐻𝑀𝐸100 𝐸𝑣𝑎𝑛𝑠™ 1 HP

Table 2
Prototype pipeline parameters.

Parameter Symbol Value Units

Length between 𝑃𝑇 sensors 𝐿 68.147 [m]
Inner diameter 𝜙 6.271 × 10−2 [m]
Wall thickness 𝜖 13.095 × 10−3 [m]
Roughness 𝜀 7 × 10−6 [m]

{0.0087, 0.009} [m3∕s] and 𝑥4(𝑘) ∈ {7, 61} [m]. 𝑘 stands for the discrete-
time index. The covariance matrices for disturbance and measured
noises required for the LPV Kalman filter design are experimentally
obtained as follows:

 = 𝑑𝑖𝑎𝑔[1 × 10−5, 1 × 10−2, 1 × 10−5, 2000, 1 × 10−7] (29)

= 𝑑𝑖𝑎𝑔[1 × 10−5, 1 × 10−5] (30)

otice that these matrices can also been chosen following the procedure
resented in Duník, Straka, Kost, and Havlík (2017). Before implement-
ng the LPV Kalman filter (18), the LMIs (22) were solved in Matlab™
nvironment by using the YALMIP toolbox, with the solver lmilab
btaining the values of each gain 𝛤𝑖 at each vertex of the polytope

(19). In Appendix, the implementation procedure is described in detail.
When implementing the LPV Kalman filter (18) using real data, it was
noticed that the approximation using the Euler discretization of the
non-linear model (9) leads to a poor performance. This fact was already
observed when using the EKF (Delgado-Aguiñaga, Besançon, Begovich,
& Carvajal, 2016), where the improved Euler method introduced by
Heun was used instead. For obtaining the results in the test scenarios
below, this improved discretization was used too to obtain comparable
results with EKF method presented in Delgado-Aguiñaga, Besançon,
Begovich, and Carvajal (2016).

5.3. Test scenarios

Each test is executed in the following way: the pipeline prototype
is started in a leak-free condition and at time 𝑡𝑙 > 𝑡0 a small leak is
induced, i.e., a leak with flow between 2% and 5% of the nominal flow
that corresponds with the size range of interest in real applications. The
leak is detected by a simple mass balance as follows:

|𝑄 (𝑡) −𝑄 (𝑡)| > 𝛿 (31)
𝑖𝑛 𝑜𝑢𝑡
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Fig. 2. Leak parameters, valve 1.
Fig. 3. Pressure head at leak point and outflow.
Fig. 4. Sum of 𝜓 ′
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here 𝛿 = 1.55 × 10−4 [m3∕s] is the detection threshold, which
onsiders the noise variance of the measurements to avoid false alarms.
mmediately the leak is detected, the identification of its parameters
tarts with observer given by (18). Hereinafter, the estimation of leak
arameters are presented and compared with those estimated by using
classical EKF designed as in Delgado-Aguiñaga, Besançon, Begovich,

nd Carvajal (2016) for the single leak case.

.3.1. Case of a leak at valve 1
Here, a leak is induced by opening the valve 1 at time 𝑡𝑙 ≈ 50 [s], and

database is obtained from this experimentation. Then, both, an EKF
 s
nd an LPV Kalman filters are designed and evaluated. To determine
he vector of initial state �̂�0 ∈ R5, �̂�0

1 (resp. �̂�0
2) is obtained as an

verage in free-leak condition in a small time-window. Likewise, a
osition �̂�0𝑙 ∈ (0 + 𝜚, 𝐿 − 𝜚) is selected arbitrarily, for a reasonably
mall 𝜚 [m] since for an initial position very close to any end of the
ipeline (when 𝜚 tends to zero), a numerical problem may occur. Then,
y using the well-known Darcy–Weisbach equation one can compute
he pressure head �̂�0

2 . Finally, 𝜆01 = 0 since the observer (18) starts
nce the leak is detected by (31). For this first leak case, the initial
tate for both filters is shown in Table 3.
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Fig. 5. Estimation error of the leak position.

To obtain moving average values of the leak parameters, the estima-
ion generated by the EKF and the LPV was filtered with the equation

𝛼𝐹 (𝑘) =
1

2𝛬 + 1
(𝛼(𝑘 + 𝛬) + 𝛼(𝑘 + 𝛬 − 1) +⋯ + 𝛼(𝑘 − 𝛬)) (32)

here 𝛼𝐹 (𝑘) is the smoothed value for the variable at time 𝑘, 𝛬 is the
umber of neighboring data taken on either side of 𝛼𝐹 (𝑘), and 2𝛬+1 is
he span dimension. The span must be odd, and it is adjusted for data
oints that cannot accommodate the specified number of neighbors on
ither side. A span equal to 2001 was used for the position parameter

𝑙. t
Table 3
Initial state for both Kalman filters, leak at valve 1.
𝑆𝑡𝑎𝑡𝑒 Value Units

�̂�0
1 8.995 × 10−3 [m3/s]

�̂�0
2 14.536 [m]

�̂�0
2 8.995 × 10−3 [m3/s]

�̂�0𝑙 41.12 [m]
�̂�01 0 [m5∕2/s]

Table 4
Initial state for both Kalman filters, leak at valve 2.
𝑆𝑡𝑎𝑡𝑒 Value Units

�̂�0
1 8.781 × 10−3 [m3/s]

�̂�0
2 14.423 [m]

�̂�0
2 8.781 × 10−3 [m3/s]

�̂�0𝑙 41.1 [m]
�̂�01 0 [m5∕2/s]

5.3.2. Case of a leak at valve 2
Here, a leak is induced by opening the valve 2 at time 𝑡𝑙 ≈ 50 [s],

and a database is obtained from this experimentation. In this scenario,
a LPV Kalman filter and an EKF are designed with initial state shown
in Table 4.

5.3.3. Case of a leak at valve 3
Finally, a leak is induced by opening the valve 3 at time 𝑡𝑙 ≈ 23 [s],

he corresponding initial state is shown in Table 5.
Fig. 6. Leak parameters, valve 2.
Fig. 7. Pressure head at leak point and outflow.
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Fig. 9. Estimation error of the leak position.

Table 5
Initial state for both Kalman filters, leak at valve 3.
𝑆𝑡𝑎𝑡𝑒 Value Units

�̂�0
1 8.970 × 10−3 [m3/s]

�̂�0
2 17.184 [m]

�̂�0
2 8.970 × 10−3 [m3/s]

�̂�01 20.56 [m]
�̂�01 0 [m5∕2/s]

5.3.4. Discussion of the results
Figs. 2(a), 6(a) and 10(a) show the leak position estimation by using

oth approaches: LPV -based and extended-based Kalman filters. Note
hat the LPV Kalman filter outperforms the other one in the sense of
he error of position estimation, as one can see in Figs. 5, 9 and 13. In
able 6, a quantitative index is presented to evidence the performance
f both approaches on the basis of the error norm criteria which is
 o
omputed as follows:

𝑒𝑧𝑙‖ =

√

√

√

√

√

𝜅−1
∑

𝑗=1
(𝑒𝑧𝑙 (𝑖))

2 𝑗 = 1,… , 𝜅 − 1 (33)

where 𝑒𝑧𝑙 = 𝑧𝑙 − �̂�𝑙 and 𝜅 is the length of the vector.
From Table 6, one can see that the estimation of the leak position

obtained by the LPV design outperforms the one provided by the
EKF, no matter noisy or filtered signals are used. On the other hand,
estimations of the leak magnitude are also depicted in Figs. 2(b), 6(b),
10(b); and corresponding pressure head at leak point is shown in
Figs. 3(a), 7(a) and 11(a), respectively. Leak flow is finally presented in
igs. 3(b), 7(b) and 11(b). The sum of coefficients 𝜓 ′

𝑖 𝑠 of the polytopic
decomposition satisfy (16) (it must be equal to 1) in each leak case as
one can check in Figs. 4(a), 8(a) and 12(a). The individual evolution of
𝜓𝑖 variables can be seen in Fig. 4(b), 8(b) and 12(b), respectively.

In Table 7, a statistical comparison of the computational time spent
by both approaches is depicted through of mean value and standard
deviation but also in terms of percentage. One can see that, the LPV
Kalman filter spends less execution time than the classical EKF, in
average.

In this table, �̄� stands for mean value in [s] and 𝜎 for standard
deviation, 𝑇𝑅𝑃 stands for time reduction percentage of the execution
algorithm and 𝐷𝐷 is the database duration. Note that the mean value
of time execution varies in each leak case since each database has a
different time duration.

Finally, the LPV Kalman filter has been evaluated with some dif-
ferent initial conditions in each leak case in order to evaluate its
sensitivity. In Figs. 14(a), 14(b) and 15, the filter performance is shown
nd one can see that the estimation of the leak position does not depend

n the initial condition as long as it be selected inside the polytopic
Fig. 10. Leak parameters, valve 3.
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Table 6
Error norm for each Filter with noisy and filtered signals.

Leak case ‖𝑒𝑧𝑙 ‖ LPV [m] ‖𝑒𝑧𝑙 ‖ EKF [m] ‖𝑒𝑧𝑙 ‖ F-LPV [m] ‖𝑒𝑧𝑙 ‖ F-EKF [m]

At valve 1 1.29 × 102 2.98 × 102 1.08 × 102 1.37 × 102

At valve 2 1.53 × 102 4.46 × 102 1.25 × 102 4.38 × 102

At valve 3 1.08 × 102 1.37 × 102 0.95 × 102 1.26 × 102
Fig. 11. Pressure head at leak point and outflow.
Fig. 12. Sum of 𝜓 ′
𝑖 𝑠 and individual variation of 𝜓𝑖.
Fig. 13. Estimation error of the leak position.

pace �̂�0 ∈ 𝛺, (12). It can be observed that the convergence time is
ery similar in each case, regardless of the initial condition.

emark 3. Regarding the extension to diagnose leaks in a real size
ipe, the results here obtained by the LPV Kalman can improve the leak
ocalization results obtained with EKF (used in this paper as baseline
olution) applied to a leak scenario in a real size pipe (SIAPA aqueduct

in Guadalajara, México) presented in Delgado-Aguiñaga and Begovich
Table 7
Comparison of the performance in computational–execution terms.

Filter leak 1 leak 2 leak 3

LPV �̄� = 1.86, 𝜎 = 0.09 �̄� = 3.26, 𝜎 = 0.09 �̄� = 2.73, 𝜎 = 0.14
EKF �̄� = 2.41, 𝜎 = 0.11 �̄� = 3.52, 𝜎 = 0.37 �̄� = 2.94, 𝜎 = 0.08

TRP 22.8% 7.3% 7.1%

DD 180 [s] 250 [s] 200 [s]

(2017). In this reference, the EKF approach was initially applied to
the same test bed used in this paper and then to a real size pipe after
applying the corresponding model parameter adjustment and tuning of
the EKF parameters. This is the same procedure that should be applied
to the LPV Kalman approach presented in this paper, expecting also
leak localization improved results in the line of those presented in this
paper.

6. Conclusions

In this work, an LPV Kalman filter has been proposed for dealing
with the single leak diagnosis problem in pipelines. The computation
of the off-line filter gain allows the computational effort in the imple-

mentation stage to be reduced, which makes this approach a potential
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Fig. 15. Estimation of leak position at valve 3 for different initial conditions..

lternative to the EKF in real-time pipeline monitoring. In addition,
he LPV Kalman method does not require the modeling linearization
s the EKF method requires it. The estimation of the leak position
rovided by the LPV Kalman filter outperforms the one provided by
he classical EKF in two of the three cases. This is very important
ince in real life applications, the inaccuracies in the leak position es-
imation can cause additional repairing costs according to the authors’
xperience, especially for underground pipes for instance. As future
ork, this approach will be tested with data from a real system as it

ould be the SIAPA aqueduct to improve the already successful EKF
pplication (Delgado-Aguiñaga & Begovich, 2017). The case of multiple
on-concurrent leaks will also be considered as well as the theoretical
roof of convergence of the LPV Kalman filter considering that some
cheduling variables are no measured and extending the results already
xisting for TS Kalman filters (Pletschen & Diepold, 2017), benefiting
rom the analogies between the LPV and TS approaches (Rotondo et al.,
016).

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

cknowledgments

This work was partly supported by CIIDETEC-UVM , and achieved
uring a research stay of the first author at Institut de Robòtica i
nformàtica Industrial of the Universitat Politècnica de Catalunya, IRI-UPC,
arcelona, Spain.

The first author would like to thank deeply Prof. Vicenç Puig for
ive him the opportunity to develop this research stay agreed in a
‘coffee-break’’ (as typically occurs) during the SAFEPROCESS held in
arsaw, Poland, 2018; and also for his contribution in this work and

or welcomed him in his laboratory with the Advanced Control System
roup and Dr. Fernando ‘‘Chano’’ Becerra for its significant fruitful
ollaboration on this paper.

All databases were obtained by the first author during his Ph.D.
tudies at Cinvestav-Guadalajara.

ppendix. LPV Kalman observer implementation

.1. Off-line procedure

-. Load a database containing the pressure head and flow rate mea-
urements: 𝐻𝑖𝑛(𝑘), 𝐻𝑜𝑢𝑡(𝑘), 𝑄𝑖𝑛(𝑘) and 𝑄𝑜𝑢𝑡(𝑘).
-. Define all physical parameters of the pipeline.
-. Compute the initial conditions �̂�(0).
-. Declare the optimization variables 𝑌 , 𝑃 , 𝜔 and 𝑊𝑖 for 𝑖 = 1,… , 2𝑙.

5-. Compute the matrices 𝐴𝑖 and 𝐵𝑖 for 𝑖 = 1,… , 2𝑙 (at each vertex of
the polytope considering the limits of the scheduling variables). The 𝐴𝑖
and 𝐵𝑖 matrices can be obtained by replacing the following variables
in the nominal model (11) as follows: (See Table A.8.)
𝑥1𝑚𝑖𝑛 is the smallest value of the vector 𝑄𝑖𝑛 and 𝑥1𝑚𝑎𝑥 is the largest
one (for variable 𝑥3 the computation is similar by using 𝑄𝑜𝑢𝑡. The
limits of 𝑥2 are computed as follows: 𝑥2𝑚𝑖𝑛 is equals to the smallest
value of vector 𝐻𝑜𝑢𝑡 + 𝛥𝐻 and 𝑥2𝑚𝑎𝑥 is equal to the largest value of
vector 𝐻𝑖𝑛 − 𝛥𝐻 , 𝛥𝐻 is small and defined by the designer such that
𝑥2(𝑡) ∈ (𝐻𝑖𝑛(𝑡),𝐻𝑜𝑢𝑡(𝑡)). Finally The limits of 𝑥4 are computed as follows:

Table A.8
Models 𝐴𝑖 in function of the scheduling variables in the different vertices.

Vertex 𝑥1 𝑥2 𝑥3 𝑥4
1 𝑥1𝑚𝑖𝑛 𝑥2𝑚𝑖𝑛 𝑥3𝑚𝑖𝑛 𝑥4𝑚𝑖𝑛
2 𝑥1𝑚𝑎𝑥 𝑥2𝑚𝑖𝑛 𝑥3𝑚𝑖𝑛 𝑥4𝑚𝑖𝑛
3 𝑥1𝑚𝑖𝑛 𝑥2𝑚𝑎𝑥 𝑥3𝑚𝑖𝑛 𝑥4𝑚𝑖𝑛
4 𝑥1𝑚𝑖𝑛 𝑥2𝑚𝑖𝑛 𝑥3𝑚𝑎𝑥 𝑥4𝑚𝑖𝑛
5 𝑥1𝑚𝑖𝑛 𝑥2𝑚𝑖𝑛 𝑥3𝑚𝑖𝑛 𝑥4𝑚𝑎𝑥
6 𝑥1𝑚𝑎𝑥 𝑥2𝑚𝑎𝑥 𝑥3𝑚𝑎𝑥 𝑥4𝑚𝑎𝑥
7 𝑥1𝑚𝑖𝑛 𝑥2𝑚𝑎𝑥 𝑥3𝑚𝑎𝑥 𝑥4𝑚𝑎𝑥
8 𝑥1𝑚𝑎𝑥 𝑥2𝑚𝑖𝑛 𝑥3𝑚𝑎𝑥 𝑥4𝑚𝑎𝑥
9 𝑥1𝑚𝑎𝑥 𝑥2𝑚𝑎𝑥 𝑥3𝑚𝑖𝑛 𝑥4𝑚𝑎𝑥

10 𝑥1𝑚𝑎𝑥 𝑥2𝑚𝑎𝑥 𝑥3𝑚𝑎𝑥 𝑥4𝑚𝑖𝑛
11 𝑥1𝑚𝑎𝑥 𝑥2𝑚𝑎𝑥 𝑥3𝑚𝑖𝑛 𝑥4𝑚𝑖𝑛
12 𝑥1𝑚𝑎𝑥 𝑥2𝑚𝑖𝑛 𝑥3𝑚𝑎𝑥 𝑥4𝑚𝑖𝑛
13 𝑥1𝑚𝑎𝑥 𝑥2𝑚𝑖𝑛 𝑥3𝑚𝑖𝑛 𝑥4𝑚𝑎𝑥
14 𝑥1𝑚𝑖𝑛 𝑥2𝑚𝑖𝑛 𝑥3𝑚𝑎𝑥 𝑥4𝑚𝑎𝑥
15 𝑥1𝑚𝑖𝑛 𝑥2𝑚𝑎𝑥 𝑥3𝑚𝑖𝑛 𝑥4𝑚𝑎𝑥
16 𝑥1𝑚𝑖𝑛 𝑥2𝑚𝑎𝑥 𝑥3𝑚𝑎𝑥 𝑥4𝑚𝑖𝑛
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𝑥4𝑚𝑖𝑛 is equal to 𝛥𝐿 and 𝑥4𝑚𝑎𝑥 is equal to 𝐿−𝛥𝐿, 𝛥𝐿 is small and defined
by the designer such that 𝑥4(𝑘) ∈ (0, 𝐿).
-. Define the covariance matrices of measure and process noises:  =

𝑇 > 0 and  = 𝑇 > 0,  = 1∕2.
7-. Define the LMIs as shown in (22).
8-. Solve those LMIs by using the solver lmilab.
-. Compute the values of 𝑊𝑖.
0-. Compute the observer gain’s 𝛤 𝑇𝑖 = 𝑌 −1𝑊𝑖.

.2. On-line procedure

1-. If a leak is detected then: for 𝑡 = 𝑡𝑙𝑒𝑎𝑘 compute 𝜓 ′
𝑖 𝑠 variables by

sing (17) and apply the observer (18).
2-. Save and plot the state variables. End.

emark 4. The observer gains’ (one of each vertex) can be computed
nd saved in the first training. The observer will work well for other
ifferent single leak cases by using the observer gains’ previously saved.
his is one of the main advantages of this LPV formulation versus the
KF which becomes it into a feasible leak diagnosis strategy for online
mplementations.
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