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Bayesian structured antedependence model

proposals for longitudinal data

Edwin Castillo-Carreno1, Edilberto Cepeda-Cuervo1

and Vicente Núñez-Antón2

Abstract

An important problem in Statistics is the study of longitudinal data taking into account the effect

of other explanatory variables, such as treatments and time and, simultaneously, the incorpora-

tion into the model of the time dependence between observations on the same individual. The

latter is specially relevant in the case of nonstationary correlations, and nonconstant variances

for the different time point at which measurements are taken. Antedependence models consti-

tute a well known commonly used set of models that can accommodate this behaviour. These

covariance models can include too many parameters and estimation can be a complicated opti-

mization problem requiring the use of complex algorithms and programming. In this paper, a new

Bayesian approach to analyse longitudinal data within the context of antedependence models is

proposed. This innovative approach takes into account the possibility of having nonstationary cor-

relations and variances, and proposes a robust and computationally efficient estimation method

for this type of data. We consider the joint modelling of the mean and covariance structures for the

general antedependence model, estimating their parameters in a longitudinal data context. Our

Bayesian approach is based on a generalization of the Gibbs sampling and Metropolis-Hastings

by blocks algorithm, properly adapted to the antedependence models longitudinal data settings.

Finally, we illustrate the proposed methodology by analysing several examples where antedepen-

dence models have been shown to be useful: the small mice, the speech recognition and the race

data sets.
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1 Introduction

Continuous longitudinal data consist of repeated measurements on the same subject over

time. These measurements are typically correlated and there have been several propos-
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als in the literature to handle stationary or nonstationary correlations and variances, as

well as balanced or unbalanced longitudinal data (Diggle et al., 2002; Weiss, 2005; Ver-

beke and Molenberghs, 2000; Fitzmaurice et al., 2009). A general fixed effects regres-

sion model for longitudinal data can be defined by assuming that the response variable

Yi can be explained with the model given by:

Yi = Xiβββ+ǫǫǫi, i = 1, . . . ,m, (1)

where Yi = (Yi1, . . . ,Yini
)T is the ni × 1 vector of responses for subject i, Xi is the ni × q

design matrix of rank q, which includes the covariates for the i-th subject; ǫǫǫi is the vector

of errors, assumed to follow a multivariate normal distribution with mean 0, and a given

variance-covariance matrix so that Var(Yi) = ΣΣΣi(θθθ) = σ2V0i, whereas θθθ = (θ1, . . . ,θk)
T

and βββ = (β1, . . . ,βq)
T are k and q-dimensional vectors of unknown parameters for the

variance-covariance and mean model, respectively. Here, ni represents the number of

observations available for the i-th subject. If the number of observations available for

each subject is the same (i.e., ni = n, ∀i), we have a balanced data set. However, ob-

servations are, in general, not equally spaced. In addition, m represents the number of

individuals in the study, and N = ∑m
i=1 ni represents the total number of observations.

Fitting for the mean and covariance structure can be carried out by using maximum

likelihood estimation methods with numerical maximization, such as the Newton Raph-

son or the EM algorithms (Ware, 1985). The model’s assumptions include independence

of responses from different subjects, multivariate normality of responses, and either no

missing data or, at worst, ignorably missing responses (Laird, 1988).

The approach of fitting a regression model for longitudinal data by means of specify-

ing the variance-covariance structure includes the possibility of having several different

structures, which can be stationary or nonstationary in terms of correlation between

observations along time, and homogeneous or heterogeneous in terms of variance as

a function of the time at which observations are taken. Among the most commonly

used covariance structures featuring homogeneous variances and stationary correlations

are the compound symmetry (CS), autoregressive structures of order p (AR(p)), au-

toregressive with moving average structures of order p and q (ARMA(p,q)) models

(Weiss, 2005). Models for nonstationary correlations and heterogeneous variances in-

clude the heterogeneous versions of the previous models, which are not always the

best-fitting models for this type of settings. Therefore, mode general models, such as

the integrated autoregressive with moving average model (ARIMA) or generalizations

of the autoregressive models, such as the unstructured and structured versions of the

antedependence models of order s (AD(s) or SAD(s)) need to be implemented (Núñez-

Antón and Zimmerman, 2001; Zimmerman and Núñez-Antón, 2010). Estimation in any

of these variance-covariance parametric models is commonly carried out by restricted

maximum likelihood methods, together with the use of recursive algorithms. Some com-

putational software packages such as, for example, SAS© or SPSS©, include the possi-

bility of specifying some particular variance-covariance parametric choices to estimate
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this type of models. Estimation in higher order AD or SAD models usually requires the

use of specific numerical algorithms that need to be directly programmed in specific

computing languages or available software statistical packages.

Bayesian estimation proposals for longitudinal data settings where no specific var-

iance-covariance structure is considered in the model specification were previously de-

veloped (Brown, Kenward and Bassett, 2001), where a Wishart prior distribution was

assumed for the covariance structure. In addition, the joint estimation for the mean struc-

ture and some simple covariance structures under the assumption of prior normal distri-

bution for the mean parameters, and inverse gamma distributions for the variance in the

proposed model were previously proposed (Hui and Berger, 1983). Moreover, the advan-

tages of this proposal for fitting a growth curve model in post-menopause female bone

calcium loss were also illustrated. The first proposal introduced Bayesian longitudinal

models by taking into account regression structures in both the mean and the variance-

covariance matrix of normal observations (Cepeda-Cuervo, 2001). This approach was

based on the modelling proposal that used the Cholesky’s matrix decomposition (Mac-

chiavelli and Arnold, 1994; Pourahmadi, 1999). More specifically, by assuming nor-

mal prior distributions for the mean and variance regression structures parameters, a

Bayesian methodology was introduced to fit the proposed models building the kernel

transition functions from observational working variables (Cepeda-Cuervo, 2001). Re-

sults and some of the extensions of this work have also been presented by several au-

thors (Cepeda and Gamerman, 2004; Cepeda-Cuervo and Núñez-Antón, 2007; Cepeda-

Cuervo and Núñez-Antón, 2009; Cepeda-Cuervo, 2011), where, in addition, observa-

tional units are allowed to be correlated. These proposals included a detailed description

of the optimization algorithms, as well as simulation and case studies that allowed for

the comparison of the Bayesian and classic proposals for the analysis of this type of data.

A Bayesian version of first-order multivariate antedependence model has also been de-

veloped (Jiang et al., 2015). Finally, it is interesting to briefly mention Bayesian AD

models within the framework of Bayesian hierarchical mixed linear models, where, in

general, authors have assumed that the errors are independent and identically distributed

(i.i.d.), and also conjugate prior distributions for the parameters in the proposed models

(Congdon, 2020; Gelman et al., 2014a; Gill, 2014). More specifically, by following the

proposals in Congdon, 2020, some possible extensions of Bayesian hierarchical mixed

linear models can be considered, so that allowing for autocorrelated errors is possible.

That is, there exists the possibility of assuming that the covariance matrix of the ran-

dom errors, or that of the random effects, follows an AD model (Fahrmeir, Kneib and

Lang, 2013). Our proposals would allow researchers to develop these models and to

extend non-Bayesian previous methods for hierarchical mixed linear models with AD

structures, such as, for example, the ones in Jaffrézic and Pletcher (2000), Jaffrézic et

al. (2002) and Yang and Tempelman (2012), to a Bayesian context.

In this paper we propose a Bayesian method for the joint estimation of the mean

and covariance parameters in the regression longitudinal models settings under the nor-

mality assumption, and also allowing for the specification of several different variance-
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covariance structures. Our proposals start by considering variance-covariance models

with stationary correlations and homogeneous variances, as is the case in the CS, AR(1)

and ARMA(1,1) models, so that they are then generalized to consider nonstationary cor-

relations and heterogeneous variances, such as is the case in the structured antedepen-

dence model of order one, or SAD(1) model. That is, we extend the previous proposal

(Cepeda-Cuervo, 2001) to consider parametric more parsimonious variance-covariance

models that have been shown to be more useful in longitudinal data settings than those of

the unstructured AD model previously considered therein. For each one of the variance-

covariance structures considered here, we provide a detailed description of the estima-

tion algorithm constructed for each specific case, including the Gibbs sampling and

the Metropolis-Hasting by blocks algorithm used under each of the assumed covari-

ance structures. In order to be able to assess the behaviour of the estimation proposed

algorithms, for the specific cases of CS, AR(1) and ARMA(1,1) variance-covariance

structures, a real data set analysis for the Small Mice balanced data set (Izenman and

Williams, 1989; Weiss, 2005) is carried out. As for the SAD(1) variance-covariance

structures and given that, as previously mentioned (Zimmerman and Núñez-Antón, 2010),

the proposed variance-covariance model depends on the specific data sets and on their

underlying structure, we compare two specific structured models based on the analysis

of the Speech Recognition data set (Tyler et al., 1988; Núñez-Antón and Woodworth,

1994; Zimmerman, Núñez-Antón and El Barmi, 1998), and also on the analysis of the

100-Km Race data set, kindly provided by Ian Jollife of the University of Kent (Zim-

merman et al., 1998).

The paper is organized as follows. In Section 2, we introduce and describe the basic

characteristics of the variance-covariance models we consider. In Section 3 we include

the Bayesian longitudinal model proposals, as well as the posterior distributions and ker-

nel transition functions for each of the models considered, which include the proposed

algorithms and prior distribution assumptions required for each of them. In Section 4

we introduce and describe the data sets to be analysed, as well as the main objectives of

the data set analyses. In Section 5, we analyse the different data sets under the Bayesian

proposals included, describe the results and compare them with those obtained with

previous classic approaches. We also present a sensitivity analysis for the estimates ob-

tained under our proposals. Finally, in Section 6, we provide some general conclusions

and final practical recommendations.

2 Some covariance structures

As already mentioned by several authors (Weiss, 2005; Núñez-Antón and Zimmer-

man, 2001), some of the clear advantages of parametric modelling approaches for the

variance-covariance matrix in longitudinal data settings are the following: (a) they help

to optimize the obtention of estimates for the parameters in the mean structure; (b) they

allow to obtain the most appropriate estimates for the standard errors for the estimators
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of the parameters included in the mean structure (i.e., βββ); (c) in most cases, they provide

a feasible and effective solution when estimating models in data sets with missing data

or when times at which measurements are taken are not the same for all of the individ-

uals in the study; and (d) estimates are still valid even for the cases where the number

of observations on each individual is relatively large when compared to the number of

individuals in the study.

Specific variance-covariance structures to be introduced in this paper consider that

all of the variances and covariances within a given individual are functions of a vec-

tor of parameters with a small or moderate number of elements, which, as in equation

(1), will be denoted by θθθ. That is, the covariance model ΣΣΣi(θθθ) defines a family of pos-

sible variance-covariance matrices depending on the k-order vector of parameters θθθ.

Parameter estimation for the covariance structure is usually carried out by maximum

likelihood or restricted maximum likelihood methods (Diggle et al., 2002). One of the

main challenges and problems when modelling covariance structures within longitudi-

nal data settings is to be able to select the so-called “best-fitting” or “most appropriate”

covariance structure for the specific data set under study. Most researchers agree that, in

order to do so, a combination of graphical methods, exploratory descriptive analysis, as

well as profile plots tools provides the necessary and required information to be able to

narrow down the possible covariance structure choices to the ones that can be consid-

ered as optimal choices for the data set under study (Verbeke and Molenberghs, 2000;

Fitzmaurice et al., 2009). Our suggestion for proposing or considering “reasonable” co-

variance structures for a specific data set, which we have followed in Section 5, can be

summarized in the following items (Zimmerman and Núñez-Antón, 2010):

• Compute the means for the different time points and build a profile plot, using

the matplot function in R, for the observations in your data set. The behaviour

of the means along time will provide the user clear ideas about the type of mean

function that needs to be used for the mean model. In addition, the profile plot also

provides information about the possible behaviour of the variance for the different

time points in the data set. Compute the variances for the different time points, as

well as the correlation matrix for the corresponding data set, so that stationarity in

variance and correlation can be better assessed.

• Build the corresponding ordinary scatterplot graph - OSM, using the splom func-

tion in the lattice package in R, semivariogram, or PRISM (Zimmerman, 2000),

to better assess the correlation structure in your data set. These graphs are built for

a saturated mean model, which considers a mean parameter for each time point.

Inspection of these graphs will provide the user with a clear idea about the differ-

ent covariance models that could be considered for the data set under study. The

user is now able to propose a set of suitable covariance structures for the data set

under study, and the best fitting covariance model will be selected on the basis of

some specific goodness-of-fit criteria.
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• Finally, the user can test or assess for possible mean model reductions by fitting

alternative mean models and selecting the best fitting one on the basis of specific

tests or goodness-of-fit criteria. Later in this section, specially for antedependence

models, we describe different formulations for the covariance models considered

here. For easiness of comprehension and understanding of these formulations, we

recommend the use of variance-covariance formulations such as the ones in equa-

tions (4), (7), (8) and (9), which are the ones we use in the applications in Section

5, as well as in the Bayesian proposals in Section 4.

We now introduce the different variance-covariance structures, ΣΣΣi(θθθ), that we include

in our methodological Bayesian proposals. It is worth mentioning that, besides the co-

variance structures introduced here, there are additional structures that interested readers

may wish to read about (Weiss, 2005; Núñez-Antón and Zimmerman, 2001).

The simplest variance-covariance structure, besides the obvious independence struc-

ture which is not of real interest within these settings, corresponds to the so-called com-

pound symmetry (CS), equicovariance or equicorrelation model, which is defined by as-

suming that homogeneous or constant variances in time and equal correlations between

different measurements on the same subject. That is, Var(Yi j) = σ2, j = 1, . . . ,ni, and

Corr(Yi j,Yil) = ρ, j 6= l. There is a heterogenous version of the CS model, CSH, where

variances are allowed to change over time (Núñez-Antón and Zimmerman, 2001).

The first order autoregressive structure, AR(1), includes two covariance parameters,

σ2 and ρ, with Var(Yi j) = σ2, j = 1, . . . ,ni, and ρ is the correlation parameter such that

Corr(Yi j,Yil) = ρ|ti j−til |, j 6= l. This type of serial correlation differs from the CS model

correlation because in the autoregressive model of order one, the correlation decreases

as a power function of time. As can be easily seen, the AR(1) model assumes homoge-

neous variances and stationary correlations. That is, variances are constant over time and

correlations between observations taken at equally spaced time points are also constant.

There is, however, a heterogeneous version of the AR(1) model, ARH(1), where vari-

ances are allowed to change with time (Núñez-Antón and Zimmerman, 2001). Differ-

ences between the AR(1) and CS models are very difficult to assess from the exploratory

analysis or the individuals’ profile plots, specially when there are only few observations

available per subject (Fitzmaurice et al., 2009).

The autoregressive with moving average model or order (1,1), ARMA (1,1), rep-

resents a generalization of the previous two models, CS and AR(1). In this model, the

correlation between consecutive observations of the same observational unit is given by:

Corr(Yi j,Yil) =

{
φ | j− l|= 1

φρ|ti j−til |−1 | j− l|> 1,
(2)

with Var(Yi j) = σ2, j = 1 . . . ,ni, and where φ, 0 < φ < 1, is the correlation between

consecutive observations of the same observational unit, ρ, 0 < ρ < 1, is an additional

parameter, which allows the correlation to feature an exponential decreasing behaviour.
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As can be seen the ARMA(1,1) model reduces to the previous models: to the CS model if

ρ= 1, and to the AR(1) model if φ= ρ; and a moving average model of order 1, MA(1),

if ρ= 0 (Weiss, 2005). In addition, the ARMA(1,1) model also assumes homogeneous

variances and stationary correlations.

The concept of antedependence was originally introduced in 1962 (Gabriel, 1962),

and the antedependence models within the longitudinal data settings first defined in 2010

(Zimmerman and Núñez-Antón, 2010). Let Yi = (Yi1, . . . ,Yini
) be the vector of measure-

ments taken on the i-th subject, which is assumed to follow a multivariate normal distri-

bution. The antedependence longitudinal model of order s, AD(s) with an autoregressive

specification (Zimmerman and Núñez-Antón, 2010), is defined as:

Yi1 = x
T

i1βββ+ ǫi1

Yi j = x
T

i jβββ+
s∗

∑
k=1

φ j, j−k(Yi, j−k −x
T

i, j−kβββ)+ ǫi j j = 2, . . . ,ni, (3)

where xi j be a q-vector of covariates associated to Yi j, s∗ = min(s, j− 1), the ǫi j’s are

independent N(0,σ2
j ) random variables, and σ2

j and φ j, j−k are unstructured parameters.

In this model, each variable is regressed on the previous s∗ predecessors in the ordered

list and, in addition, it is also allowed that autoregressive coefficients vary with time (i.e.,

that they depend upon j). In this sense, AD models are nostationary in both variance and

correlation, because variances may vary with time and correlations between equidistant

observations in time are not necessarily assumed to be constant. Specific elements of

the variance-covariance matrix ΣΣΣi(θθθ) in this model can be recursively obtained by using

the well known Yule-Walker equations approach, so that, if an AD(1) model with a

covariance specification is assumed (Zimmerman and Núñez-Antón, 2010), Var(YYY i) =

ΣΣΣi(θθθ) can be specified as:

[ΣΣΣi(θθθ)]kk = σ2
k , k = 1, . . . ,ni

[ΣΣΣi(θθθ)]kl = σkσl

j=l−1

∏
j=k

ρ j, k < l, k, l = 1, . . . ,ni (4)

[ΣΣΣi(θθθ)]kl = ΣΣΣi(θθθ)lk, k > l, k, l = 1, . . . ,ni,

with ρ j = ρ j, j+1. Antedependence models of order s can be not so parsimonious mainly

because the vector of variance-covariance parameters θθθ has, for ni = n,∀i, (s+1)(2n−

s)/2 parameters (Zimmerman and Núñez-Antón, 1997). In addition, as the autoregres-

sive coefficients and the variances of the ǫi j’s in (3) depend on the time at which mea-

surements are taken, variances in this model are heterogeneous and correlations are non-

stationary. That is, variances are allowed to change over time and correlations between

observations taken at equally spaced time points are not constant and, thus, are allowed

to vary. The same holds for the AD(1) model in (4).
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Zimmerman and Núñez-Antón (1997) originally proposed the structured antedepen-

dence (SAD) models in 1997. Their proposed models specify that the correlation pa-

rameters are determined by a Box-Cox power function and the variances for each time

point are determined by a polynomial function of not so many parameters, were able

to model nonstationary correlations and variances. Moreover, Núñez-Antón and Wood-

worth (1994) and Zimmerman and Núñez-Antón (1997) have previously defined the

specific commonly used functions for the parameters in model (3), for a general struc-

tured antedependence model or order s, SAD(s), with ni = n, as:

φ j, j−k = φ
f (ti j,λk)− f (ti, j−k ,λk)

k , j = s+1, . . . ,n; k = 1, . . . ,s (5)

σ2
j = σ2G(ti j,ψψψ), j = 1, . . . ,n, (6)

or equivalently, for (4), with:

ρ j, j−k = ρ
f (ti j,λk)− f (ti, j−k ,λk)

k , j = s+1, . . . ,n; k = 1, . . . ,s (7)

σ2
j = σ2G(ti j,ψψψ), j = 1, . . . ,n, (8)

where

f (ti j,λk) =

{
(t
λk
i j −1)/λk, if λk 6= 0

log(ti j), if λk = 0,
(9)

with φk > 0,0 < ρk < 1,∀k, σ2
j > 0,∀ j, and {ψψψ : G(ti j,ψψψ) > 0}, in such a way that the

variance-covariance matrix for the i-th subject, ΣΣΣi(θθθ), is positive definite. Here, as will

be seen in the applications in Section 5, G(ti j,ψψψ) is usually assumed to be a positive

power or step function of time. In addition, given that the SAD models are special cases

of the AD models, variances in these models are heterogeneous and correlations are also

nonstationary. Equation (9) represents a Box-Cox power law. Moreover, in the SAD(1)

model settings, and if measurement times are equally spaced, then the lag-one correla-

tions (and, as a matter of fact, all same-lag correlations) are a monotone function of t:

they increase if λ < 1 and decrease if λ > 1. For λ = 1, same-lag correlations remain

constant and, in addition, they coincide with those of the AR(1) model. That is, the Box-

Cox power law can be seen as a transformation to the time scale that effects a nonlinear

deformation upon the time axis, such that correlations between measurements equidis-

tant in the deformed scale remain constant. There are some specific special cases of the

SAD(1) model that are worth mentioning:

1. Type 1 - SAD model: We assume an SAD(1) model as in (4), such that (8) holds

with G(ti j,ψψψ)≡ 1, with ρ j = ρ j, j+1 = ρ f (ti, j+1,λ)− f (ti, j ,λ), and f (t,λ) given by equa-

tion (9). This model assumes homogeneous variances and nonstationary correla-

tions.

2. Type 2 - SAD model: We assume an SAD(1) model as in (4), such that (8) holds,

with
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G(t,ψ) =

{
1, if t = 1

ψ, otherwise,
(10)

and ρ j as in the previous model. This model assumes a specific case of heteroge-

neous variances and nonstationary correlations.

3. Type 3 - SAD model: We propose an SAD(1) model as in (4), with ρ j defined as

in the previous models and

h(σ2
j ) = ψ0 +ψ1ti j + · · ·+ψrt

r
i j, (11)

where h is an appropriately chosen link function so that the σ2
j variances are pos-

itive. Some authors (Zimmerman et al., 1998) have previously proposed h to be

the identity link function, whereas we propose, without loss of generality, to use

the logarithmic link function instead. Our proposal is more general in the sense

that it does not require any additional constraints on the parameters for the vari-

ances to be positive. Moreover, this model assumes heterogeneous variances and

nonstationary correlations.

3 Bayesian longitudinal model methodological proposals

Let ti = (ti1, ti2, . . . , tini
)T, represent the times at which observations on the i-th subject

were taken, and Yi j represent the observation taken on subject i at time ti j, j = 1, . . . ,ni.

Let xi j be a q-vector of covariates associated to Yi j, so that Xi = (xi1,xi2, . . . ,xini
)T is

the ni × q design matrix of rank q. In this way, we have that model (1) holds. Thus, if

Y = (Y1,Y2, . . . ,Ym)
T denotes the vector of measurements for all of the m individuals

in the study, having a design matrix X = (XT

1,X
T

2, . . . ,X
T

m)
T, containing the values for the

covariates for all individuals, we have that:

Y = Xβββ+ǫǫǫ, (12)

where ǫǫǫ = (ǫǫǫ1, . . . ,ǫǫǫm)
T is a vector of random errors associated to the corresponding

component in the responses vector YYY , so that the ǫǫǫi’s are assumed to be independent

from each other, ǫǫǫ∼ MV N with mean 0 and block diagonal variance-covariance matri-

ces, so that Var(Y) = ΣΣΣ(θθθ) will be a block diagonal matrix with diagonal components

ΣΣΣ1(θθθ), . . . ,ΣΣΣm(θθθ).

3.1 Prior parameter distributions

In order to provide the required details for our proposed Bayesian longitudinal method,

prior distribution should be assumed for the mean and for the variance-covariance re-

gression structure parameters (Gelman, 2006). For the mean regression parameters,

we assume a q-multivariate normal distribution, so that p(βββ) ∼ N(b0,B0). As for the
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variance-covariance parameters, we assume a prior distribution p(θθθ) that will depend

on the assumed covariance structure. More specifically:

1. For the CS and AR(1) models, if we let ϕ= 1/σ2, the variance-covariance vector

parameter in these models is θθθ = (ϕ,ρ)T, so that its assumed prior distribution is

p(θθθ) = p(ϕ)p(ρ), where:

p(ϕ) ≡ Gamma

(
g0

2
,
g0σ

2
0

2

)
(13)

p(ρ) ≡ Beta(a,b), (14)

where g0, σ2
0, a and b are assumed to be known hyperparameter values (Gelman,

2006).

2. In the ARMA(1,1) structure, given that 0 < φ < 1 and 0 < ρ < 1, the parameter

vector is θθθ=(ϕ,ρ,φ)T, so that its assumed prior distribution is p(θθθ)= p(ϕ)p(ρ)p(φ),

where p(φ) ≡ Beta(a1,b1), p(ρ) ≡ Beta(a2,b2), and, for ϕ = 1/σ2, we have the

same prior distributional assumption as in (13).

3. For the structured antedependence models, we assume the following independent

prior distributions:

(a) Type 1 - SAD model: In this model, assumed prior distributions for σ2 and

ρ, are as above. That is, for ϕ = 1/σ2, we have p(ϕ) ≡ Gamma
(

g0
2
,

g0σ
2
0

2

)

and, for ρ, we have p(ρ) ≡ Beta(a,b). For λ, we assume a uniform prior

distribution, so that p(λ)≡U(−a,a).

(b) Type 2 - SAD model: For this model, the same prior distributions as above

are assumed for ϕ = 1/σ2, ρ and λ. For ψ, if we let ψ = exp(η), we then

assume that the prior distribution for η is such that p(η)≡ N(0,ν2).

(c) Type 3 - SAD model: In this model, the same prior distributions as above

are assumed for ρ and λ. Forψψψ = (ψ0,ψ1, . . . ,ψr)
T, we assume a multivariate

prior normal distribution, so that p(ψψψ)≡ MV N(ψψψ0,K0).

A final comment related to the aforementioned assumed prior distributions for the

different covariance models: we believe that it is relevant to mention that, given that we

do not really have prior information related to the parameters in the models, which will

be the ones that will to be estimated in the applications in Section 5, we have decided to

assume vague prior distributions so we do not include any prior unknown information

that can generate unjustified and unnecessary changes in the posterior distributions that

will be used for inferential purposes in Section 5. However, if we have prior information

available for the mean regression parameters, it can be easily incorporated in the model,

by assuming appropriate values for b0 and B0 in p(βββ) ∼ N(b0,B0). With regard to the
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variance parameters, our recommendation is that the prior information is specified as

follows: (i) the gamma prior distribution for ϕ = 1/σ2 can be specified by the mean

g0 and the variance σ2
0 from the prior information for the parameter σ2 available in the

specific application; (ii) the parameters a and b in the beta prior distribution for ρ can be

specified from their prior mean and variance for ρ available in the specific application;

(iii) the parameters a and b in a more general uniform prior distribution for λ (i.e.,

U(a,b)), can be also specified from the prior information for λ available in the specific

application; (iv) the prior distributions for η and ψ, or ψψψ, in the Type 2 and Type 3 SAD

models, respectively, can be directly specified from their corresponding prior means and

variances information for these parameters available in the specific application.

3.2 Posterior conditional distributions and estimation proposals

Under the model assumptions, apart from a constant term, the likelihood function is

given by:

L(βββ,θθθ|Y) ∝
m

∏
i=1

|ΣΣΣi(θθθ)|
− 1

2 exp

{
−

1

2

[
(Y−Xβββ)TΣΣΣ−1(θθθ)(Y−Xβββ)

]}
, (15)

where θθθ= (σ2,ρ)T in the CS and AR(1) models, θθθ= (σ2,ρ,φ)T in the ARMA(1,1) model,

and θθθ = (σ2,ρρρ,λ,ψψψ) in the SAD models. Thus, the posterior parameter distribution is

given by p(βββ,θθθ|Y)∝L(β,θβ,θβ,θ|Y)p(βββ)p(θθθ). Moreover, given that, under the assumed prior

distribution for βββ we have that:

p(βββ) ∝ exp

{
−

1

2
(βββ−b0)

T
B−1

0 (βββ−b0)

}
, (16)

the posterior conditional distribution ofβββ will be p(βββ|θθθ,Y)≡N(b∗,B∗), where (Cepeda-

Cuervo, 2001; Cepeda and Gamerman, 2004):

b∗ = B∗(B−1
0 b0 +X

TΣΣΣ−1Y) (17)

B∗ = (B−1
0 +X

TΣΣΣ−1X)−1 (18)

Samples of βββ are are taken from the conditional posterior distribution p(βββ|θθθ,Y) ≡
N(b∗,B∗), and accepted with probability one (Gamerman and Lopes, 2006; Gelman

et al., 2014b).

3.3 Posterior conditional distributions for σ2σ2σ2 and ρρρ in the CS and AR(1)

models

Taking into account that, in the in CS and AR(1) models, the variance-covariance matrix

can be written as ΣΣΣ(θθθ) = 1
ϕ

CCC(ρ), with ϕ= 1/σ2, samples of ϕ and ρ are obtained from

their conditional posterior distributions. More specifically, samples of ϕ are obtained
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from its posterior distribution, given by:

p(ϕ) ∝ ϕ

(
m+g0

2 −1
)

exp

(
−ϕ

g0σ
2
0 +R

2

)
, (19)

where R = (Y− Xβββ)TC−1(Y− Xβββ). That is, values for ϕ can be obtained from the

conditional gamma posterior distribution Gamma
(

m+g0
2
,

g0σ
2
0+R

2

)
. For the parameter ρ,

and given that its posterior distribution p(ρ|βββ,ϕ) is analytically intractable for these

covariance models, we propose that samples generating the posterior distribution for ρ

be obtained, using the MCMC algorithm (Gamerman and Lopes, 2006; Gelman et al.,

2014b), from the kernel transition function:

q(ρ(∗)|ρ(k)) =

{
ρ(∗) ∼U(0,2ρ(k)) ρ(k) ≤ 0.5

ρ(∗) ∼U(2ρ(k)−1,1) ρ(k) > 0.5
(20)

3.4 Posterior conditional distributions for σ2σ2σ2, ρρρ and φφφ in the ARMA(1,1)

model

We assume a longitudinal model as in (12) with variance-covariance structure similar

to (2). As in Section 3.3, samples of ϕ = 1/σ2 are obtained from the posterior distri-

bution described before; that is, from the corresponding gamma posterior distribution

Gamma
(

m+g0
2
,

g0σ
2
0+R

2

)
. However, for the parameters ρ and φ, and given that their pos-

terior distributions are analytically intractable for the ARMA(1,1) model, we propose

that samples generating the posterior distribution for ρ be obtained as before, from (20),

and samples for the posterior distribution of φ be obtained, using the MCMC algorithm

(Gamerman and Lopes, 2006; Gelman et al., 2014b), from the kernel transition function:

q(φ(∗)|φ(k)) =

{
φ(∗) ∼U(0,2φ(k)) φ(k) ≤ 0.5

φ(∗) ∼U(2φ(k)−1,1) φ(k) > 0.5
(21)

3.5 Posterior conditional distributions for σ2σ2σ2, ρρρ, λλλ and ψψψ in the SAD(1)

models

As the number of parameters in the variance-covariance matrix for the structured

antedependence models of order one, SAD(1), depend on the specific selected G(ψψψ, t)
function in (8) for the type 1 and 2 models, or (11) for the type 3 model, we have to

propose specific Bayesian estimation modelling approaches for each of them, which will

depend on the type of SAD model being considered. Based on the types of SAD models

described in Section 3.1 above, we describe the different distributions and estimation

algorithms for each of them in what follows.
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1. Type 1 - SAD model: To estimate σ2, we use the proposal in Section 3.3, so

that samples of ϕ = 1/σ2 are obtained from the posterior distribution described

above. As for the ρ parameter, we propose that samples generating their posterior

distribution be obtained, using MCMC and a transition kernel such as the one in

(20). Given that we have assumed a U(−a,a) uniform prior distribution for the

parameter λ, samples from its posterior conditional distribution are obtained by

using an MCMC algorithm (Gamerman and Lopes, 2006; Gelman et al., 2014b),

assuming that λ(∗) = a(2ν(∗)− 1), where ν(∗) is obtained from a kernel transition

function similar to those previously defined in equations (20) and (21).

2. Type 2 - SAD model: Our Bayesian proposal to estimate σ2, ρ and λ is similar

to the one described for the type 1 SAD model. As for the parameter ψ, we let

ψ = exp(η) and, in addition, assume that the prior distribution for η is such that

p(η)∼ N(0,ν2). In this way, the complete conditional posterior distribution is not

known, so that samples for the posterior distribution of ψ can be obtained, using

the MCMC algorithm (Gamerman and Lopes, 2006; Gelman et al., 2014b), from

the kernel transition function:

q(ψ(∗),ψ(k)) = ψ(k)+N(0,ν2)

ψ(k) = exp(η(k)) (22)

3. Type 3 - SAD model: Given that the posterior conditional distribution for ψψψ,

p(ψψψ|βββ,λ,ρ,Y), is analytically intractable, we propose a kernel transition function

given by the observational model obtained from Ỹj =
1

m−1 ∑m
i=1 (Yi j − Ȳj)

2
, where

Ȳj =
1
m ∑m

i=1Yi j, and by assuming, without loss of generality, that ni = n, and that

the working observational model

w̃ j = log(Ỹj) = ψ0 +ψ1X1 j +ψ2X2 j + ε j (23)

follows a normal distribution, where ε j ∈ N(0,σ2), with σ2 known, and such that

X̃ j = (1,X1 j,X2 j) and X̃ = (X̃T

1, . . . ,X̃
T

n)
T. Thus, the kernel transition function for

q(ψψψ) is obtained from the combination of the normal prior distribution and the

observational model in (23). That is,

q(ψψψ|Y)≡ N(µµµψ,Kψ), (24)

where µµµψ = Kψ(K
−1
0 ψψψ0 + X̃TΣ̃̃Σ̃Σ−1W̃), with Σ̃̃Σ̃Σ = diag(σ2), W̃ = (w̃1, . . . , w̃n)

T and

Kψ = (K−1
0 + X̃TΣ̃̃Σ̃Σ−1X̃)−1 (Gelman et al., 2014b).

As a final comment to the posterior inferences related to all of the models described

in Section 3, and given that the proposed Bayesian inference is based on the posterior

distribution of the parameters and, in addition, given that, for the models considered
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here, the posterior distributions do not have a closed form expression, inferences are

based on the simulation of the posterior distributions obtained by applying the MCMC

algorithm (Gamerman and Lopes, 2006; Gelman et al., 2014b). A first approach to sim-

ulate samples of the posterior distribution may be to apply the Gibbs sampler algorithm,

but this is possible only if all conditional posterior distributions are known. If some or all

of the conditional posterior distributions are not known, as is the case in the longitudi-

nal Bayesian models proposed here, kernel transition functions should be built in order

to be able obtain samples of the unknown conditional distributions using the Metropo-

lis Hastings algorithm. Therefore, a Metropolis-Hastings-within the Gibbs algorithm is

used to be able to draw samples of the posterior distributions, from which the posterior

inferences can be straightforwardly obtained. For example, in CS and AR(1) models,

samples of the mean regression parameters βββ are proposed from a normal distribution

with mean and variance given by equations (17) and (18), respectively, and samples of

ϕ = 1/σ2 are obtained from the gamma distribution given in equation (19), where in

both cases the Gibbs sampler algorithm is used. Moreover, samples of ρ are proposed

from the kernel transition function in equation (20), by applying the Metropolis Hastings

algorithm. Therefore, samples of the target posterior distributions are obtained by apply-

ing an iterative algorithm, so that posterior inferences on the parameters in the models

can be obtained. A proper construction of the kernel transition function is very impor-

tant to improve the convergence of the chains and to be able to obtain better posterior

inferences.

4 Data

4.1 Small Mice Data

The Small Mice data set (Izenman and Williams, 1989) was used to illustrate the pro-

posals along the lines of spectral models for the analysis of longitudinal data. The study

analysed more than 600 mice at birth, 7 days after birth (onset of growth), 14 days (when

eyes open and consumption of solid food begins), 21 days (end of maternal influence

for food) and 42 days (when most mice reach sexual maturity). Of these 600 observa-

tions a particular group of 35 male mice was divided into 4 groups. The Small Mice

data constitutes a balanced set of longitudinal data with the weights in milligrams of

14 mice which make up groups 3 and 4 of the original study (Izenman and Williams,

1989). These weights were taken in the days corresponding to t = 2,5,8,11,14,17,20

after birth by the same person using the same measurement scale. The objective is to

find a parsimonious model describing in the best possible way how weight is related to

the time at which measurements were taken, and weight on previous times.
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4.2 Speech Recognition Data

This set of data comes from the audiological study presented in 1988 (Tyler et al., 1988).

The general study was performed with five different types of implants, three single chan-

nel implants and two multichannel implants. The implants were surgically implanted

five to six weeks before connecting electrically to an external voice processor. The data

includes the scores obtained when performing a speech recognition test on patients with

multichannel cochlear implants. These patients were divided into two groups depending

on the type of implant received (namely A and B): 21 subjects received implant A and

21 subjects received implant B. The individuals in the study were bilaterally deaf, there-

fore the base values of the test were all equal to zero. Measurements were taken at 4

time points: 1,9, 18 and 30 months after having received the implant. In the study there

was a variation in the actual follow-up times, so these times were not exact. In addi-

tion, some subjects did not show up in one or more of their programmed follow-ups, so

some data were missing (there were eight missing observations at month 18 and twenty

missing observations at month 30). It was assumed observations were missing at ran-

dom (Zimmerman and Núñez-Antón, 2010). The interest of studying these data focuses

on describing the audiological performance of the individuals who receive each type of

implant and how their performance depends on the time elapsed since implantation, as

well as on the type of implant. More specifically, the goal is to assess how the average

means of the types of implants are compared to each other, and, secondarily, whether the

audiologic performance of a subject tends to be more consistent over time (Zimmerman

and Núñez-Antón, 2010).

4.3 100-Km Race Data

These data set was kindly provided by Ian Jollife of the University of Kent, and orig-

inally analysed in 1998 (Zimmerman et al., 1998). The data correspond to each of the

partial times in minutes for each of the 80 competitors in each of the 10-kilometer sec-

tions of a 100-km race in the United Kingdom in 1984. In addition to the partial times,

the data features the age of 76 of the 80 competitors. Some descriptive graphs and ex-

ploratory analyses of this data have been previously reported (Everitt, 1994a; Everitt,

1994b). The objective is to find a parsimonious model describing in the best possible

way how competitor’s performance on each 10-km section is related to the section num-

ber ( j = 1,2, . . . ,10), and performance on previous sections.

5 Applications

In this section we illustrate the usefulness of the proposed Bayesian methodology with

the statistical analysis of the three data sets that were briefly introduced in Section

4. Longitudinal models with compound symmetry, CS, autoregressive of order one,

AR(1), and autoregressive with moving average, ARMA(1,1), models for the variance-
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covariance structure were fitted to the first data set, and structured antedependence mod-

els of order one, SAD(1), were fitted to the last two data sets. Unless indicated other-

wise, in all of the analyses reported in this section, parameter estimates were obtained

from 20000 iterations, after a burn-in of 10000 samples. As specific information on the

parameters prior distributions is not available, a N(b0,B0) distribution was assumed,

where independence between the individual distributions for each one of the parame-

ters was assumed, with b0 = (0, . . . ,0)T and variances for each one of the distributions

being equal, so that B0 = diag(10k), where k = 5. In addition, Beta(1,1) prior distri-

butions were assumed for the correlation parameters ρ and φ, a Gamma
(

g0
2
,

g0σ
2
0

2

)
≡

Gamma(10−k,10−k), k = 1,2, . . . prior distribution was assumed for the variance pa-

rameter ϕ= 1/σ2, a U(−1,1) uniform prior distribution was assumed for the time-scale

transforming parameter λ in equation (9), and a N(0,ν2), with ν2 = 1, distribution was

assumed for η, in the Type 2 - SAD model, with ϕ = exp(η). Given that the posterior

estimates of ϕ may change significantly for different values of k, a sensitivity analysis

was performed concluding that, for our specific applications, k = 8 is the appropriate

value minimizing this effect.

5.1 Small Mice Data

From the correlation matrix reported in Table A.1 in the Supplementary Material, it is

worth mentioning that there exists a high correlation between consecutive observations

or lag-one correlations, with the smallest correlation being the one corresponding to the

weights taken between days 5 and 8, and the remaining ones featuring similar values.

Moreover, the values for the correlations outside the super diagonal are smaller, but not

negligible at all. More specifically, the lag-one correlations range from 0.77 to 0.96,

with correlations not being exactly equal, but quite similar to one another, except for the

0.77 value, which is smaller than the others. Thus, it seems reasonable to consider the

initial hypothesis that the lag-one correlations are approximately equal. If we move to

the lag-two and lag-three correlations, they seem to be quite similar for their first two

values, and then their values suddenly increase for the later values. A close analysis of

this matrix seems to suggest that there may be two groups of observations, the early

ones, corresponding to times 2, 5, 8 and 11, and the late ones, corresponding to times

14, 17 and 20. The former feature a pattern of high lag-one correlations, intermediate

values for lag-two correlations, and low lag-three correlations, whereas the latter, if we

consider observations at times 11, 14, 17 and 20, all feature high correlations. Based on

the above, variance-covariance models such as the CS, AR(1) and ARMA(1,1), as de-

scribed in Section 2, should be considered for this specific data set. From the correlation

matrix reported in Table A.1 (see Supplementary Material), it is worth mentioning that

there exists a high correlation between consecutive observations or lag-one correlations,

with the smallest correlation being the one corresponding to the weights taken between

days 5 and 8, and the remaining ones featuring similar values. Moreover, the values for
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the correlations outside the super diagonal are smaller, but not negligible at all. More

specifically, the lag-one correlations range from 0.77 to 0.96, with correlations not be-

ing exactly equal, but quite similar to one another, except for the 0.77 value, which is

smaller than the others. Thus, it seems reasonable to consider the initial hypothesis that

the lag-one correlations are approximately equal. If we move to the lag-two and lag-

three correlations, they seem to be quite similar for their first two values, and then their

values suddenly increase for the later values. A close analysis of this matrix seems to

suggest that there may be two groups of observations, the early ones, corresponding to

times 2, 5, 8 and 11, and the late ones, corresponding to times 14, 17 and 20. The former

feature a pattern of high lag-one correlations, intermediate values for lag-two correla-

tions, and low lag-three correlations, whereas the latter, if we consider observations at

times 11, 14, 17 and 20, all feature high correlations. Based on the above, variance-

covariance models such as the CS, AR(1) and ARMA(1,1), as described in Section 2,

should be considered for this specific data set. Figure A.1 in the Supplementary Ma-

terial displays the profiles for the different mice in the data set, where we can see that

there is an increasing trend for their weights. Given the increasing structure featured by

the Small Mice Data (Weiss, 2005), we assume a longitudinal model with the following

mean regression structure:

Yi j = β0 +β1Day+β2Day2 + ǫi j, (25)

with CS, AR(1) and ARMA(1,1) variance-covariance structures. Parameter estimates

are compared to those obtained by applying restricted maximum likelihood methods

and reported in Weiss (2005). Tables 1, 2 and 3 include the parameter estimated mean

values under the Bayesian proposal, together with their respective standard deviations,

and including median values, as well as estimates obtained by restricted maximum Like-

lihood methods (REML), using the SPSS statistical software package, for the CS, AR(1)

and ARMA(1,1) variance-covariance structures, respectively. To implement and obtain

the estimates under the Bayesian proposal we have used OpenBugs (Spiegelhalter et

al., 2003), together with R (R Core Team, 2013). Based on the estimated parameter

values for the different variance-covariance models fitted to the data, we can conclude

that estimates and standard deviations under the Bayesian proposals and those obtained

by REML are quite similar, which can be used as evidence supporting the fact that

the proposed method is behaving as expected and its results are stable under the prior

distributional assumptions. However, we should be careful about these conclusions in

the sense that this is a very simple, well behaved and balanced data set, and the con-

sidered variance-covariance models are, in terms of complexity, very simple and very

parsimonious models. More complex variance-covariance models, such as the AD or

SAD models, cannot be fitted in most statistical packages and, thus, specific program-

ming is required to fit these models. Selection of the model that best fits the data will

be assessed by using the well-known and commonly used Akaike Information Criterion

(AIC) (Akaike, 1974), the Bayesian Information Criterion (BIC) (Schwarz, 1978) and



188 Bayesian structured antedependence model proposals for longitudinal data

the Deviance Information Criterion (DIC) (Spiegelhalter et al., 2002). Smaller values of

AIC, BIC or DIC indicate better fitting models.

Table 1: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, and parameter estimates under REML

methods for the CS variance-covariance structure for the Small Mice Data.

Parameter Mean Median REML-estimates

β0 65.200 (30.158) 64.715 65.745 (29.459)

β1 70.776 (4.469) 70.766 70.328 (4.406)

β2 −1.351 (0.198) −1.350 −1.349 (0.195)

σ2 9889.113 (2663.290) 9348.963 9671.253 (2621.890)

ρ 0.603 (0.095) 0.606 0.626 (0.107)

Table 2: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, and parameter estimates under REML

methods for the AR(1) variance-covariance structure for the Small Mice Data.

Parameter Mean Median REML-estimates

β0 73.843 (28.129) 73.518 74.083 (28.186)

β1 68.613 (4.089) 68.629 68.588 (3.994)

β2 −1.252 (0.173) −1.254 −1.251 (0.169)

σ2 8622.617 (2663.290) 8130.642 8796.697 (2488)

ρ 0.856 (0.037) 0.857 0.874 (0.038)

Table 3: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, and parameter estimates under REML

methods for the ARMA(1,1) variance-covariance structure for the Small Mice Data.

Parameter Mean Median REML-estimates

β0 77.556 (28.099) 77.5126 77.418 (28.494)

β1 67.687 (4.534) 67.735 67.620 (4.317)

β2 −1.208 (0.194) −1.210 −1.204 (0.183)

σ2 8169.547 (2293.082) 7684.294 8796.697 (2488)

ρ 0.792 (0.0539) 0.797 0.832 (0.055)

φ 0.842 (0.034) 0.845 0.8732 (0.035)

Table 4: Goodness-of-fit AIC, BIC and DIC values for the CS, Bayesian CS-BCS, AR(1), Bayesian AR(1)-

BAR(1), ARMA(1,1) and Bayesian ARMA(1,1)-BARMA(1,1) variance-covariance structures for the Small

Mice Data.

Model AIC BIC DIC

CS 1109.3 1110.6 –

BCS 1124.3 1137.2 1122.9

AR(1) 1039.3 1040.5 –

BAR(1) 1054.7 1067.6 1053.3

ARMA(1,1) 1038.9 1040.8 –

BARMA(1,1) 1054.6 1070.1 1052.7
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Alternative more recent model selection criteria include the Watanabe-Akaike Infor-

mation Criterion (WAIC) (Watanabe, 2010). Given that the main objective here is the

proposal of a Bayesian methodology and its comparison with previous maximum like-

lihood estimation methods, we have used the AIC and BIC criteria to be able to assess

and compare the performance of our models with those previously fitted. In any case,

and given that the DIC and WAIC are standard model evaluation tools and considered

more appropriate criteria for model selection purposes within the Bayesian framework

(Watanabe, 2010; Choi, Jang and Alemi, 2018), we have also provided the DIC values

for some of the models fitted here. Moreover, we believe that model selection, within

the Bayesian framework, and given the common use of the DIC criterion and the well

known advantages of the WAIC criterion, should be proposed together with the use of

both model selection criteria (Piironen and Vehtari, 2017; Vehtari, Gelman and Gabry,

2017). However, in our view and given that our main objective is to compare and as-

sess the behaviour of our Bayesian proposals with previous non-Bayesian approaches,

we consider that the reported AIC and BIC criteria are appropriate within this context,

specially taking into account that we have assumed vague prior distributions. Table 4

includes the AIC, BIC and DIC values for the CS, Bayesian CS-BCS, AR(1), Bayesian

AR(1)-BAR(1), ARMA(1,1) and Bayesian ARMA(1,1) variance-covariance structures

for the Small Mice Data. Based on these values and keeping in mind that these are

simple models than can be fitted by using REML methods in SPSS or other alternative

statistical packages, the best fitting model based on AIC is the ARMA(1,1) model, with

the AR(1) model being a close competitor. If we use BIC, the best fitting model is the

AR(1), with the ARMA(1,1) model being also a close competitor. The same conclusion

is reached if DIC is used as a model selection criterion, with the BARMA(1,1) model

being the best fitting one, and the BAR(1) following quite closely, a fact that is also sup-

ported is we use the AIC or BIC criteria for the Bayesian model proposals. In summary,

for the Small Mice data, the best fitting models are the autoregressive model of order

one and the autoregressive model with moving average, ARMA(1,1), model.

A final remark on the basis of a comment raised by an anonymous reviewer is that

practitioners may consider using the logarithm of the weight as a response variable in-

stead. They should be aware that when we have higher variance sample values for the

different time points it may be convenient to use this transformation so that these vari-

ance values may be more parsimoniously modelled. However, given that our main ob-

jective was to compare our results to those in previous analyses (see, e.g., Weiss, 2005),

and also to assess if the proposed methodology was able to model specific variance and

correlation behaviours, such as the ones in the small mice data, we decided to use weight

as the response variable for the analyses reported here.

5.2 Speech Recognition Data

Previous analyses (Zimmerman et al., 1998) reported that the likelihood-ratio test for

the equality of the within-group covariance matrices indicated that it was reasonable to
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pool them (p = 0.35). From the pooled correlation matrix reported in Table A.2 in the

Supplementary Material, it is worth mentioning that correlations are positive and quite

large, that correlations between test scores at times t and t+k seem to decrease monoton-

ically as k increases, and that correlations between test scores at adjacent measurement

times increase over time. This latter statement is somehow consistent with a prior be-

lief that subjects may “learn” over time, as with the result that responses equidistant in

time become more highly correlated as the study progressed, which is a clear sign of

nonstationary correlation structures, such as the one modelled by SAD-type models and

the proposed time-transforming scale in equation (9). In addition, variances seem to be

homogeneous at all times points except for the first one. Based on the above, variance-

covariance models such as the SAD, as described in Section 2, should be considered

for this specific data set. Figure A.2 in the Supplementary Material displays the profiles

for the different individuals for each type of implant. As Zimmerman and Núñez-Antón

(2010) have already mentioned in previously presented exploratory analyses, these plots

suggest that there is an increasing trend for the mean audiologic performance, at least

for the initial months, and that audiologic performance seems to stabilize for the later

months, which provides some empirical evidence for the consistency of audiologic per-

formance over time. These plots also suggest that variances seem to increase slightly

from the first to the second measurement, but remain constant thereafter. Several pre-

vious different models were fitted (Zimmerman and Núñez-Antón, 2010), such as, for

example, homogeneous and heterogeneous versions of the CS and AR(1) models, but

finally concluded that the best fitting models models for this data are the structured

antedependence model of order one or SAD(1) models. Given the increasing mean fea-

tured by this data (Núñez-Antón and Woodworth, 1994), in order to be able to compare

our results when fitting the Type 1 - SAD model, we initially propose the mean regres-

sion structure:

Yi j = β0 +β1ti j +β2t2
i j + ǫi j, ti1 = 1, ti2 = 9, ti3 = 18, ti4 = 30 (26)

with the Type 1 - SAD model variance-covariance structure described in Section 2.

Table 5 includes the parameter estimated mean values under the Bayesian proposal, to-

gether with their respective standard deviations, and including median values, as well

as estimates obtained by restricted maximum Likelihood methods (REML), previously

reported by Núñez-Antón and Woodworth (1994), where standard deviations for the

variance-covariance parameters were not provided. Initial values for the regression pa-

rameters were assumed so thatβββ0 =(20,1,0)T. In addition, initial values for the Bayesian

estimation were assumed so that ρ0 = 0.50, λ0 = 0.50 and σ2
0 = 100. The acceptance

rates for ρ and λwere equal to 39% and 32%, respectively. The corresponding goodness-

of-fit information criteria values for this model were AIC=1322.752, BIC=1341.351,

and DIC=1320.714. Núñez-Antón and Woodworth (1994) did not report these values

in earlier analyses, and their computation was not straightforward unless specific pro-

grams to fit the proposed model are implemented. This issue is clearly out of the scope
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of this paper. Based on the estimated parameter values reported in Table A.2 in the Sup-

plementary Material, we can conclude that estimates and standard deviations under the

Bayesian proposal and those obtained by REML are quite similar, which can be used as

evidence supporting the fact that the proposed method is behaving as expected and its re-

sults are stable under the prior distributional assumptions. In addition, fitting of this not

so parameterized and parsimonious model by REML methods requires a more specific

and complex programming and maximization than the ones proposed in this paper. As

an illustration of fitting the Type 2 - SAD model and in order to be able to compare the

results obtained with our proposed methodology, we fitted the same model previously

proposed (Zimmerman et al., 1998), with mean regression structure given by:

Yi j = β0 +β1ti j +β2t2
i j +β3zi +β4ziti j +β5zit

2 + ǫi j, (27)

and also with ti1 = 1, ti2 = 9, ti3 = 18, ti4 = 30, and zi = 1 if the i-th individual received

implant type A, and zi = 0, otherwise. As for the variance-covariance structure, we as-

sume a Type 2 - SAD model given by (4) and (10). Table 6 includes the parameter esti-

mated mean values under the Bayesian proposal, together with their respective standard

deviations, as well as median values. Values previously obtained by restricted maximum

likelihood methods (REML) were not reported (Zimmerman et al., 1998). Initial values

for the regression parameters were assumed so that βββ0 = (20,1,0,8,1,0)T. In addition,

initial values for the Bayesian estimation were assumed so that ρ0 = 0.50, λ0 = 0.50,

ψ0 = 1 and σ2
0 = 100. Table 7 includes the parameter mean values under the Bayesian

proposal for the variance-covariance parameters, together with their standard deviations,

including median values, for the Type 2 - SAD variance-covariance structure, as well as

those obtained by restricted maximum Likelihood methods (REML) (Zimmerman et

al., 1998), where standard deviations for the variance-covariance parameters were not

provided.

Table 5: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, and parameter estimates under REML

methods for the Type 1 - SAD variance-covariance structure for the Speech Recognition Data.

Parameter Mean Median REML-estimates

β0 22.330 (4.294) 22.375 22.850 (4.260)

β1 2.537 (0.313) 2.540 2.520 (0.340)

β2 −0.048 (0.008) −0.048 −0.04695 (0.009)

σ2 602.028 (112.636) 585.562 587.15

ρ 0.933 (0.025) 0.9395 0.940

λ 0.297 (0.144) 0.300 0.300

The acceptance rates for ρ, λ and ψ were equal to 35%, 32% and 34%, respec-

tively. The corresponding goodness-of-fit information criteria values for this model were

AIC=1287.364, BIC=1318.362, and DIC=1283.554. These values were not originally

reported in previous analyses (Zimmerman et al., 1998), and their computation is not
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straightforward unless specific programs to fit the proposed model are implemented.

This issue is clearly out of the scope of this paper. Based on the estimated parameter

values reported in Table 7, we can conclude that estimates under the Bayesian proposal

and those obtained by REML are comparable, except for parameter σ2, which can be

used as evidence supporting the fact that the proposed method is behaving as expected

and its results are stable under the prior distributional assumptions. In addition, fitting of

this not so parameterized and parsimonious model by REML methods requires a more

specific and complex programming and maximization than the ones proposed in this

paper. Moreover, estimates reported in Table 6 for the mean regression structure do not

support the conclusions previously reported (Zimmerman et al., 1998) with regard to the

significance of the parameter β5 in (27). Given the robustness of the proposed method-

ology, the above differences could question the appropriateness of estimates obtained

by REML methods.

Table 6: Parameter estimated mean values under the Bayesian proposal, together with their respective

standard deviations within parentheses, including median values, for the Type 2 - SAD variance-covariance

structure for the Speech Recognition Data.

Parameter Mean Median

β0 13.827 (3.959) 13.837

β1 2.249 (0.386) 2.246

β2 -0.044 (0.010) -0.044

β3 14.719 (5.663) 14.634

β4 0.395 (0.551) 0.398

β5 −0.009 (0.015) −0.009

Table 7: Parameter estimated mean values for the variance-covariance structure under the Bayesian pro-

posal, together with their respective standard deviations in parentheses, including median values, for the

Type 2 - SAD variance-covariance structure for the Speech Recognition Data.

Parameter σ2 ρ λ ψ

Mean 334.046 0.928 0.323 1.773

Standard Deviation 71.858 0.0381 0.192 0.316

Median 325.052 0.936 0.330 1.746

REML-estimates 388.7 0.935 0.240 1.615

Table 8: Parameter estimated mean values under the Bayesian proposal for the Type 3 - SAD variance-

covariance structure, together with their respective standard deviations within parentheses, including me-

dian values, and parameter estimates under REML-methods for the 100-Km Race Data.

Parameter Mean Median REML-estimates

β0 44.585 (1.632) 44.573 43.428

β1 −2.410 (2.102) −2.421 1.354

β2 1.327 (0.752) 1.326 0.253

β3 −0.097 (0.072) −0.097 -0.017
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5.3 100-Km Race Data

From the correlation matrix and sample variance values reported in Table A.3 in the

Supplementary Material, it can be observed that variances tend to increase as the race

progresses, that the correlations among split times are positive and quite large, that the

correlations between the split time for a fixed 10-Km section and split times for suc-

cessive sections tend to decrease monotonically, and that the correlations between split

times for adjacent sections are smaller in the later sections of the race than in the earlier

sections. In addition, variances seem to increase as the race progresses, with the excep-

tion of the seventh section of the race. Based on the above, variance-covariance models

such as the SAD, as described in Section 2, should be considered for this specific data

set. Figure A.3 in the Supplementary Material displays the profiles for the individuals in

the data set, where we can see that there is an increasing trend for the times as the race

progresses. In addition, variances for the different sections also seem to increase mono-

tonically. Based on the above, some authors (Zimmerman et al., 1998) have previously

suggested the fitting of an SAD model of order one, as well as a cubic in time mean

regression model, so that:

Yi j = β0 +β1ti j +β2t2
i j +β3t3

i j + ǫi j, i = 1, . . . ,80; j = 1, . . . ,10 (28)

As for the variance-covariance structure, we assume a Type 3 - SAD model with vari-

ances given by σ2
j = exp(ψ0 +ψ1ti j +ψ2t2

i j), j = 1, . . . ,10,, and covariance structure

given by (4). In the model proposal for the Type 3 - SAD model, there is a slight dif-

ference with that in previous analyses (Zimmerman et al., 1998), where the proposed

variance function was, instead, σ2
j = σ2(1+ψ1ti j +ψ2t2

i j), j = 1, . . . ,10. Therefore, pa-

rameter estimates are not directly comparable. Our variance model variation was neces-

sary for the Bayesian proposal in this paper. In the data analysis reported here, parameter

estimates were obtained from 15000 iterations, after a burn-in of 5000 samples. Initial

values for the regression parameters were assumed so thatβββ0 = (20,1,0,0)T. In addition,

initial values for the Bayesian estimation were assumed so that ρ0 = 0.50, λ0 = 0.50,

ψψψ0 = (1,1,1)T and K0 = diag(k0,k0,k0), with k0 = 0.1384. Table 8 includes the regres-

sion parameter estimated mean values under the Bayesian proposal, together with their

respective standard deviations, and including median values, as well as estimates ob-

tained by restricted maximum Likelihood methods (REML) (Zimmerman et al., 1998),

where standard deviations for the variance-covariance parameters were not provided.

It is worth mentioning that, even though there are differences between the REML es-

timates and those obtained by the Bayesian proposal, the values previously reported

(Zimmerman et al., 1998) for the regression parameters are all within the 95% credi-

bility intervals listed here: CI(0.95)β1
= (−11.77,6.95), CI(0.95)β2

= (−4.90,7.547),

and CI(0.95)β3
= (−0.5433,0.3513), which were generated with the obtained esti-

mated values under the Bayesian proposal. Table 9 includes the estimated values for the

variance-covariance parameters under the Bayesian proposal, together with their respec-

tive standard deviations, and including median values, as well as estimates obtained by
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restricted maximum Likelihood methods (REML), when available (Zimmerman et al.,

1998), where standard deviations for the variance-covariance parameters were not pro-

vided. In any case and in order to be able to compare the estimated variances at each split

time, we also include their REML-estimates for the variance parameters: σ̂2 = 16.952,

ψ̂1 = 0.590, and ψ̂2 = 0.450.

Table 9: Parameter estimated mean values for the variance-covariance parameters under the Bayesian

proposal for the Type 3 - SAD variance-covariance structure, together with their respective standard devi-

ations within parentheses, including median values, and parameter estimates under REML-methods, when

available, for the 100-Km Race Data.

Parameter Mean Median REML-estimates

ρ 0.918 (0.031) 0.924 0.929

λ 1.680 (0.261) 1.684 1.600

ψ0 2.771 (0.308) 2.767 –

ψ1 0.677 (2.128) 0.683 –

ψ2 −0.034 (0.021) −0.034 –

The acceptance rates for ρ, λ and ψψψ, the latter resulting from the working variable

in equation (23), were equal to 34%, 37% and 84%, respectively. The correspond-

ing goodness-of-fit information criteria values for this model were AIC = 1401.88,

BIC = 1425.31, and DIC = 1403.078. These values were not reported in previous anal-

yses (Zimmerman et al., 1998), and their computation is not straightforward unless spe-

cific programs to fit the proposed model are implemented. This issue is clearly out of

the scope of this paper. In order to better assess the behaviour of the estimated split

time variances obtained under the Bayesian proposal, we have computed the estimated

variances under our proposal and under the REML method proposal (Zimmerman et

al., 1998) and report this information, as well as the estimated sample variance values

obtained from the data, in Table 10. In our opinion, it is clear that the Bayesian and

REML estimated values for each of the sections in the race differ from each other, as

well as from the reported sample values. However, it is worth mentioning that the ob-

served increase for the estimated variances under the Bayesian proposal is smaller than

that obtained under the REML methods.

Based on the estimated parameter values reported in Tables 8, 9 and 10, we can con-

clude that estimates under the Bayesian proposal and those obtained by REML are not

exactly similar, but show a similar behaviour, which can be used as evidence support-

ing the fact that the proposed method is behaving as expected and its results are quite

stable even under very general prior distributional assumptions. In addition, fitting of

this not so parameterized and parsimonious model by REML methods requires a more

specific and complex programming and maximization than the ones proposed in this

paper. Given the robustness of the proposed methodology, the above differences could

question the appropriateness of estimates obtained by REML methods. In addition, to

be able to better compare mean split times estimated values under the Bayesian proposal

with the corresponding fitted values that can be obtained from the estimates previously
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reported (Zimmerman et al., 1998), Figure A.4 in the Supplementary Material shows

the residuals obtained for the 100-Km Race Data obtained under the Bayesian and clas-

sic REML methods for the Type 3 - SAD variance-covariance structure. As can be seen

from this figure, there are no significant differences between the residuals resulting from

the model estimation by classic REML estimation and Bayesian estimation methods.

Moreover, the residual sum of squares computed on the model estimated by restricted

maximum likelihood methods is RSS = 83455.21, whereas the corresponding one for

the proposed Bayesian method is RSS = 94598.3. As an additional way of comparing

the behaviour of the residuals for each section of the race, Figures A.5 and A.6 in the

Supplementary Material include the corresponding boxplots for the residuals resulting

from the REML and Bayesian method proposals. Conclusions that can be obtained from

the information provided in these figures suggest that residuals for the different sections

of the race obtained by the two methods do not significantly differ from each other,

which supports the claim that results obtained by the REML classic methodology can

be well approximated by means of a simpler and more flexible Bayesian method, such

as the one included in this manuscript.

Table 10: Estimated sample variances, and parameter estimated variances under the Bayesian proposal for

the Type 3 - SAD variance-covariance structure, and REML-methods for the 100-Km Race Data.

Parameter Sample values REML-estimates Bayesian estimates

σ2
1 26.89 34.58 31.01

σ2
2 34.78 67.48 54.60

σ2
3 49.01 115.61 90.08

σ2
4 58.89 179.013 139.28

σ2
5 91.41 257.67 201.82

σ2
6 149.90 351.58 274.05

σ2
7 107.85 460.75 348.73

σ2
8 152.22 585.18 415.86

σ2
9 144.99 724.86 464.73

σ2
10 167.21 879.80 486.70

5.4 Sensitivity analysis

In this section we study the behaviour of the Bayesian estimate for the variance σ2

under different values of the hyperparameters used in the assumed prior distribution

for ϕ = 1/σ2, which, as already mentioned in previous sections, was assumed to be a

Gamma(k,k) distribution, with k = 10−5. In this case, we illustrate this behaviour in

the analysis of the three different models (i.e., CS, AR(1) and ARMA(1,1)) fitted to the

Small Mice Data (SMD) and the two SAD (i.e., Type 1 and Type 2) models fitted to the

Speech Recognition Data (SRD). Changes in the estimated values for σ2 are observed
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for different values of k in the gamma distribution, such that the assumed values for

the hyperparameter k for this analysis are k = 1× 10−3, k = 1× 10−5, k = 1× 10−8

and k = 1×10−10. Table 11 includes the average variance estimated value of the chains

by means of a Gibbs sample of the resulted conditional posterior distribution, together

with their corresponding standard deviations in parentheses, for different values of the

hyperparameter k in the prior Gamma(k,k) distribution assumed for ϕ = 1/σ2. Fitted

models correspond to the SC, AR(1) and ARMA(1,1) models for the Small Mice Data

(SMD) and to the Type 1 and Type 2 - SAD models for the Speech Recognition Data

(SRD). From the information reported in Table 11, we can conclude that, as the hyper-

parameter in the assumed gamma distribution becomes smaller, the standard deviation

and estimated values obtained under the Bayesian proposal approach those obtained by

the REML estimating method. In addition, and given that variance estimates and their

standard deviations obtained for values of k = 1× 10−8 and k = 1× 10−10 are quite

similar, we can conclude that once the value of k in the prior distribution is equal to

1×10−8, changes in the means of the corresponding chains are negligible, and this was

the main reason for the use of this specific hyperparameter value in the prior distribution

assumed for the analysis of the three data sets in Section 5.

Table 11: Estimated variances, together with their corresponding standard deviations within parentheses,

for different values of the hyperparameter k in the prior Gamma(k,k) distribution assumed for ϕ = 1/σ2.

Fitted models correspond to the CS, AR(1) and ARMA(1,1) models for the Small Mice Data (SMD) and to

the Type 1 and Type 2 - SAD models for the Speech Recognition Data (SRD).

kkk 1×10−3 1×10−5 1×10−8 1×10−10

SMD-CS 12302.35 10672.29 9889.11 9890.02

(4103.29) (3504.29) (2663.29) (2662.79)

SMD-AR(1) 10025.26 9989.30 8622.617 8621.85

(3234.567) (3012.23) (2663.29) (2661.95)

SMD-ARMA(1.1) 10054.53 9867.56 8169.55 8169.00

(2997.72) (2900.32) (2488.56) (2488.32)

SRD-Type 1 SAD 768.34 727.02 602.03 602.24

(172.3452) (156.14) (112.64) (112.45)

SRD-Type 2 SAD 380.65 372.99 334.05 334.05

(83.579) (78.93) (71.86) (71.81)

6 Conclusions and final recommendations

We have proposed alternative Bayesian longitudinal models for fitting compound sym-

metry, autoregressive or order one, autoregressive with moving averages, as well as un-

structured and structured antedependence models for nonstationary in variance and/or

correlation longitudinal data settings. Very flexible distributional prior assumptions were

proposed, and the specific methods to obtain the conditional posterior distribution were



Edwin Castillo-Carreno, Edilberto Cepeda-Cuervo and Vicente Núñez-Antón 197

described. The usefulness of the proposed method was illustrated with the analysis of the

Small Mice Data, the Speech Recognition Data and the 100-Km Race Data, and results

were compared to those obtained by restricted maximum likelihood methods. Results

suggested that the proposed methods behave well under general conditions, and esti-

mated values are in line with with those obtained by classic methods. However, classic

methods require specific programming, whereas the proposed Bayesian methods can be

easily adjusted to the data sets under study by using very flexible and easy programming,

as well as general available software, such as R and OpenBugs. Future work includes

extending these proposals to more complex unstructured and structured antedependence

higher order models. Finally, we would like to mention that, even though the proposed

Bayesian methodology has been shown to have a fast convergence and reasonable ac-

ceptance rates, our future research in the area includes the study of acceptance rates

improvements in terms of making the proposed methodology more efficient, providing

at the same time recommendations useful for researchers in the area. In practice, ac-

ceptance rates are known to improve with the adequate selection of initial values from

the information available in the data, as well as from the appropriate parameter selec-

tion for the prior distributions. They do so by making use of a thorough analysis of the

available prior information, such as, for example, variables rank or proposed models

motivation and/or parameterization. For example, if we let ϕ′ = log(ϕ) and we assume

a normal prior distribution for ϕ′ instead in the CS and AR(1) models. Convergence

rates and acceptance rates can also be improved by applying alternative Monte Carlo

resampling methods, such as the reduced-rejection-rate method (Baldassi, 2017). This

parametrization of ϕ can be also important for the aforementioned problem of sensitiv-

ity of the posterior variance (i.e., precision) estimates to the gamma prior distributions

Gamma(10−k,10−k) assumption, for k = 1,2,3,4, . . . . Thus, when this prior distribution

is assumed and no prior information on ϕ is available, a sensitivity analysis, like the one

described in Section 5.4, should always be included in any statistical data analysis, so

that the sensitivity of ϕ to the smallest changes in the value of k is minimized.
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