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Finding archetypal patterns for binary
questionnaires

Ismael Cabero! and Irene Epifanio®

Abstract

Archetypal analysis is an exploratory tool that explains a set of observations as mixtures of pure
(extreme) patterns. If the patterns are actual observations of the sample, we refer to them as
archetypoids. For the first time, we propose to use archetypoid analysis for binary observations.
This tool can contribute to the understanding of a binary data set, as in the multivariate case.
We illustrate the advantages of the proposed methodology in a simulation study and two appli-
cations, one exploring objects (rows) and the other exploring items (columns). One is related to
determining student skill set profiles and the other to describing item response functions.

MSC: 62H99, 62P25, 97D60.
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1 Introduction

Mining binary survey data is of utmost importance in social sciences. Many raw data
from exams, opinion surveys, attitude questionnaires, etc. come in the form of a binary
data matrix, i.e. examinees’ responses are coded as (/1 (1 if examinee i answers item &
correctly, otherwise 0). The binary matrix can be viewed from two points of views. In
the first, the interest lies in the rows, i.e. in the people, while in the second, the interest
lies in the columns that contain the items or variables. In both cases, exploratory data
analysis (EDA) aims to find information in data and generate ideas (Unwin, 2010). In
order to be useful as a tool for EDA on data sets, the tool should be simple and easy to
use, with few parameters, and reveal the salient features of the data in such a way that
humans can visualize them (Friedman and Tukey, 1974).

For the first time, we propose the use of the exploratory tool Archetypoid Analy-
sis (ADA) for this kind of data in order to understand, describe, visualize and extract
information that is easily interpretable, even by non-experts. ADA is an unsupervised
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statistical learning technique (see Hastie, Tibshirani and Friedman, 2009, Chapter 14)
for a complete review of unsupervised learning techniques). Its objective is to approxi-
mate sample data by a convex combination (a mixture) of k pure patterns, the archety-
poids, which are extreme representative observations of the sample. Being part of the
sample makes them interpretable, but also being extreme cases facilitates comprehen-
sion of the data. Humans understand the data better when the observations are shown
through their extreme constituents (Davis and Love, 2010) or when features of one ob-
servation are shown as opposed to those of another (Thurau et al., 2012).

ADA was proposed by Vinué et al. (2015) for real continuous multivariate data as
a derivative methodology of Archetype Analysis (AA). AA was formulated by Cutler
and Breiman (1994), and like ADA, it seeks to approximate data through mixtures of
archetypes, also for real continous multivariate data. However, archetypes are not actual
cases, but rather a mixture of data points. Recently, Seth and Eugster (2016b) proposed a
probabilistic framework of AA (PAA) to accommodate binary observations by working
in the parameter space.

AA and ADA have been applied to many different fields, such as astrophysics (Chan,
Mitchell and Cram, 2003), biology (D’Esposito, Palumbo and Ragozini, 2012), climate
(Steinschneider and Lall, 2015; Su et al., 2017), developmental psychology (Ragozini,
Palumbo and D’Esposito, 2017), e-learning (Theodosiou et al., 2013), finance (Moliner
and Epifanio, 2019), genetics (Thggersen et al., 2013), human development (Epifanio
2016; Epifanio, Ibafiez and Simd, 2020), industrial engineering (Epifanio et al., 2013;
Epifanio, Ibdfiez and Sim6, 2018; Milldn-Roures, Epifanio and Martinez, 2018; Alcacer
et al., 2020), machine learning (Mgrup and Hansen, 2012; Seth and Eugster, 2016a,b;
Ragozini and D’Esposito, 2015; Cabero and Epifanio, 2019), market research (Li et
al., 2003; Porzio, Ragozini and Vistocco, 2008; Midgley and Venaik, 2013), multi-
document summarization (Canhasi and Kononenko, 2013, 2014), nanotechnology (Fer-
nandez and Barnard, 2015), neuroscience (Tsanousa, Laskaris and Angelis, 2015; 2016)
and sports (Eugster, 2012; Vinué and Epifanio, 2017, 2019).

Archetypal analysis techniques lie somewhere in between two well-known unsuper-
vised statistical techniques: Principal Component Analysis (PCA) and Cluster Analysis
(CLA). In data decomposition techniques, a data set is viewed as a linear combination
of several factors to find the latent components. Different prototypical analysis tools
arise depending on the constraints on the factors and how they are combined (Mgrup
and Hansen, 2012; Vinué, Epifanio and Alemany, 2015). The factors with the least re-
strictions are those produced by PCA, since they are linear combinations of variables.
One of the advantages is that this helps explain the variability of the data; however, the
interpretability of the factors is compromised. Instead, the greatest restrictions are found
in cluster tools, such as k-means or k-medoids. Their factors are readily interpreted be-
cause they are centroids (means of groups of data) or medoids (concrete observations)
in the case of k-means and k-medoids, respectively. The price that clustering tools pay
for interpretability is their modeling flexibility due to the binary assignment of data to
the clusters. Archetypal tools, on the other hand, enjoy higher modeling flexibility than
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cluster tools but without losing the interpretability of their factors. A table summarizing
the relationship between several unsupervised multivariate techniques is provided by
Mgrup and Hansen (2012) and Vinué et al. (2015).

AA and ADA were originally thought of for real-valued observations. The aim of this
work is to extend archetypal tools to binary data. For AA, as the factors (archetypes) are
a mixture of data, they would not necessarily be binary vectors, and as a consequence
they would not be interpretable. In ADA though, the factors (archetypoids) are actual
cases, so ADA can be applied to binary data without losing the interpretability of the
factors. So, among the possible archetypal techniques (AA, PAA and ADA), we propose
to use ADA for binary data.

To perform a sanity check and provide insight we analyze the solutions obtained by
AA, PAA and ADA through a simulation study, where ADA shows its appropriateness
versus AA or PAA for binary data sets. Furthermore, we present two real applications
and compare ADA solutions with those of other established unsupervised techniques
to illustrate the advantages of ADA in educational and behavioral sciences, when used
as another useful tool for data mining in these fields (Slater et al., 2017). In the first
application, we are interested in rows, while in the second application in columns.

The outline of the paper is as follows: In Section 2 we review AA and ADA for real-
valued multivariate and functional data and PAA, besides other multivariate techniques
used in the comparison. In Section 3 we introduce the analysis for binary multivariate
data. In Section 4, a simulation study with binary data compares the different strategies
for obtaining archetypal patterns. In Section 5, our proposal is applied to two real data
sets and compared to the results of other well-known unsupervised statistical learning
techniques. Section 6 contains conclusions and some ideas for future work.

The data sets and code in R (R Development Core Team, 2019) for reproducing
the results for both artificial and real data are available at http://www?3.uji.es/ epifanio/
RESEARCH/adaedu.rar.

2 Preliminary

2.1 AA and ADA in the real-valued multivariate case

Let X be an n x m real-valued matrix with n observations and m variables. Three matrices
are established in AA: a) the k archetypes z;, which are the rows of a k X m matrix

Z; b) an n x k matrix o = (o) with the mixture coefficients that approximate each
k
observation x; by a mixture of the archetypes (X; = Z «;jz;); and ¢) a k X n matrix
j=
B = (B;i) with the mixture coefficients that characterize each archetype (z; = 37, 5,iX)).
To figure out these matrices, we minimize the following residual sum of squares (RSS)

with the respective constraints (|| - || denotes the Euclidean norm for vectors):
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As previously mentioned, archetypes do not necessarily match real observations. In-
deed, this will only happen when one and only one 3;; is equal to one for each archetype,
i.e. when each archetype is defined by only one observation. So, in ADA the previous
constraint 2) is substituted by the following one, and as a consequence in ADA a mixed-
integer problem is optimized instead of the AA continuous optimization problem:

2) Z'Bﬂ: 1 With,@ﬂ G{O,I}andj: 1,....k.
=1

As regards the location of archetypes, they are on the boundary of the convex hull
of the data if k > 1 (see Cutler and Breiman, 1994), although this does not necessarily
happen for archetypoids (see Vinué et al., 2015). Nonetheless, the archetype is equal to
the mean and to the medoid in case of the archetypoid (Kaufman and Rousseeuw, 1990),
ifk=1.

We want to emphasize that archetypal analysis is an EDA technique based on a geo-
metric formulation (no distribution of data is assumed). It is not an inferential statistical
technique, i.e. it is not about fitting models, parameter estimation, or testing hypotheses.
Nevertheless, a field to study in the future would be to view archetypal analysis as a
feature extraction method (Hastie et al., 2009, Ch. 5), where the raw data are prepro-
cessed and described by «, which can be used as inputs into any learning procedure for
compositional data (Pawlowsky-Glahn, Egozcue and Tolosana-Delgado, 2015).

2.1.1 Computation of AA and ADA

The estimation of the matrices in the AA problem can be achieved by means of an
alternating minimizing algorithm developed by Cutler and Breiman (1994), where the
best o for given archetypes Z and the best archetypes Z for a given o are computed
by turns. To solve the convex least squares problems, a penalized version of the non-
negative least squares algorithm by Lawson and Hanson (1974) is used. Eugster and
Leisch (2009) implemented that algorithm in the R package archetypes, although with
some changes. Specifically, the data are standardized and the spectral norm in equation
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1 is used instead of Frobenius norm for matrices. In our R implementation those changes
were annulled, i.e. the data are not standardized by default and the objective function to
minimize is defined by equation 1.

With respect to the estimation of the matrices in the ADA problem, it can be achieved
using the algorithm developed by Vinué et al. (2015). It is composed of two steps: the
BUILD step and the SWAP step. The objective of the BUILD step is to determine an
initial set of archetypoids that will be upgraded during the following step. The objective
of the SWAP step is to improve the primitive set by exchanging the selected instances
for unselected observations and checking whether these replacements decrease the RSS.
Vinué (2017) implemented that algorithm in the R package Anthropometry with three
possible original sets in the BUILD step: cand,, cand,, and candg. These sets corre-
spond to the nearest neighbor observations in Euclidean distance to the k archetypes,
the cases with the maximum « value for each archetype j and the observations with the
maximum {3 value for each archetype j, respectively. Then three possible solutions are
obtained once these three sets go through the SWAP step, but only the solution with
lowest RSS (often the same final set is returned from the three initializations) is chosen
as the ADA solution.

One important point is the selection of k, since archetypes are not necessarily nested
and neither are archetypoids. If the user has prior knowledge of the structure of the data,
the value of k can be chosen based on that information. Otherwise, a simple but effective
heuristic (Cutler and Breiman, 1994; Eugster and Leisch, 2009; Vinué et al., 2015; Seth
and Eugster, 2016b) such as the elbow criterion can be used. With the elbow criterion,
we plot the RSS for different £ values and the value of £ is selected as the point where
the elbow is located.

2.1.2 lllustrative example

In Figure 1 a toy two-dimensional data set is used to illustrate what archetypoids mean
and the differences compared with CLA and PCA, as well as to provide some intuition
on what these pure and extreme patterns imply in behavioral sciences. Two numeric vari-
ables are considered from the data set personality-1.0 of the R package neuropsychol-
ogy (Makowski, 2016), which contains personality traits data from an online question-
naire: Empathy.Agreeableness and Honesty.Humility. We apply k-means and ADA with
k=3, 1.e. we find 3 clusters and archetypoids. We also apply PCA. Archetypoids are peo-
ple with extreme values, which have clear profiles: archetypoid 1 is characterized by a
very low Empathy.Agreeableness value together with a high Honesty. Humility value (1,
5.25), archetypoid 2 has the maximum values for both Empathy.Agreeableness and Hon-
esty.Humility (7,7), while the third archetypoid has a very high Empathy.Agreeableness
value together with the lowest Honesty. Humility value (6,0). Archetypoids are the purest
people. The rest of the individuals are expressed as mixtures (collected in alpha coef-
ficients) of these ideal people. For example, an individual with values of 6.25 and 0.75
for Empathy.Agreeableness and Honesty. Humility, respectively, is explained by 11% of
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archetypoid 2 plus 89% of archetypoid 3.
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Figure 1: (a) Plot of the toy example. The size of the points depends on their frequency. The red crosses
represent the archetypoids, while the green stars represent the centroids of each cluster; (b) PC scores. Pro-
Jected archetypoids are represented by red crosses; (c) k-means cluster assignments; (d) ADA assignments
by the maximum alpha, i.e. assigned to the archetypoid that best explains the corresponding observation.

This is compatible with the natural tendency of humans to represent a group of ob-
jects by its extreme elements (Davis and Love, 2010). Figure 1 d) shows the partition
of the set generated by assigning the observations to the archetypoid that best explains
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each individual. However, when we apply k-means to this kind of data set, without dif-
ferentiated clusters, the centroids are in the middle of the data cloud. Centroid profiles
are not as differentiated from each other as archetypoid profiles. This happens because
centroids have to cover the set in such a way that the set is partitioned by minimizing the
distance with respect to the assigned centroid (see Wu, Kamar and Horvitz, 2016) about
the connection between set partitioning and clustering). On the one hand, this means
that the set partition generated by k-means and ADA would be different (Figures 1 c)
and d)). On the other hand, centroids are not the purest, and therefore their profiles are
not as clear as those of archetypoids. For example, centroids 2 and 3 have values (4.1,
5.7) and (5.3, 3.5), which are not as intuitively interpretable as archetypoids. If we look
again at the individual with values (6.25, 0.75) from the clustering point of view this
individual is clearly assigned to cluster 3, with centroid (5.3, 3.5), but clustering does
not say anything about the distance of this point with respect to the assigned centroid,
or in which direction they are separated. In fact, (6.25, 0.75) is quite far from (5.3, 3.5).
This happens because the objective of clustering is to assign the data to groups, not to
explain the structure of the data more qualitatively. Finally, note that archetypoids do
not coincide with the individuals with the most extreme PC scores (see Figure 1 b)).

In summary, depending on our objective, the appropriate analysis should be selected.
The objective of PCA is to reduce data dimension. Although PCA returns the location
of the observations in the new dimensions by PC scores, there is no guarantee that the
principal components are interpretable. In other words, observations are expressed in a
new base, but in general the PCA base is not easily interpretable. However, the objective
of CLA is to segment the data, i.e. to make groups of data by finding modes in data. Al-
though the modes can be easily interpretable, CLA does not return an expression about
the location of each observation with respect to each mode. On the other hand, finding
extreme profiles, which are easily interpretable, is not the objective of PCA or CLA, but
that of AA or ADA. These techniques also return the location of the observations as a
function of the extreme profiles, in fact as a mixture (a convex combination), which is
more easily interpretable than a linear combination. This provides a complete overview
of the data set, generally supported by visual methods, i.e. this allows data to tell us
more beyond the formal modeling or hypothesis testing task.

2.2 Probabilistic archetype analysis

The idea underlying PAA is to work in a parameter space instead of the observation
space, since the parameter space is often vectorial even if the sample space is not. The
key is to assume that data points come from a certain distribution (from the Bernoulli
distribution in the case of binary observations). Then the maximum likelihood estimates
of the parameters of the distributions are seen as the parametric profiles that best de-
scribe each observation, and archetypal profiles are computed in the parameter space by
maximizing the corresponding log-likelihood under the constraints for o and /. In sum-
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mary, probabilistic archetypes lie in the parameter space, whereas classical archetypes
lie in the observation space. Thus, archetypal profiles for binary data are the probability
of a positive response. Details can be found in Seth and Eugster (2016b).

2.3 AA and ADA in the functional case

In Functional Data Analysis (FDA) each datum is a function. Therefore, the sample is a
set of functions {x;(7),...,x,(¢)} with z € [a,b], i.e. the values of the m variables in the
standard multivariate context are replaced by function values with a continuous index .
We assume that these functions belong to a Hilbert space, satisfy reasonable smoothness
conditions and are square-integrable functions on that interval. Simplistically, the sums
are replaced by integrals in the definition of the inner product.

AA and ADA were extended to functional data by Epifanio (2016). In the func-
tional context, functions from the data set are approximated by mixtures of archetypal
functions. In functional archetype analysis (FAA), we seek k archetype functions that
approximate the functional data sample by their mixtures. In other words, the objective
of FAA is the same as AA, but now both archetypes (z;(¢)) and observations (x;(z)) are
functions. As a consequence, RSS is now calculated with a functional norm instead of a
vector norm. We consider the L2-norm, || f||> =< f, f >= [ f(r)?dt. The interpretation
of matrices o and S is the same as in the classical multivariate case.

Analogously, FADA is also a generalization of ADA, where k functional archety-
poids, which are functions of the sample, approximate the functions of the sample
through the mixtures of these functional archetypoids. Again, vectors are replaced by
functions and vector norms by functional norms, and the matrices are interpreted is the
same way as before.

To obtain FAA and FADA in a computationally efficient way (Epifanio (2016)),
functional data are represented by means of basis functions (see Ramsay and Silverman
(2005) for a detailed explanation about smoothing functional data). Let B, (h=1,...,m)
be the basis functions and b; the vector of coefficients of length m such that x;(z) ~

m_ b!By(t). Then, RSS is formulated as (see Epifanio (2016) for details):

n k n k n n
RSS=Y |lxi— Y aizjl =y =y iy Bunll? = aiWay, (2)
= = = = B = =

where a; =b. — 2’;:] @;j S1-, Bib; and W is the order m symmetric matrix with the inner
products of the pairs of basis functions Wy, u, = [ By, Bm,. If the basis is orthonormal,
for instance the Fourier basis, W is the order m identity matrix and FAA and FADA can
be estimated using standard AA and ADA with the basis coefficients. If not, W has to
be calculated previously one single time by numerical integration.
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2.4 Other unsupervised learning techniques

The following well-known multivariate analysis tools for binary data are used in the
comparison. We use homogeneity analysis (multiple correspondence analysis) using the
R package homals (de Leeuw and Mair, 2009) (HOMALS). HOMALS can be consid-
ered as an equivalent to PCA in the case of categorical data. For CLA we use Partitioning
Around Medoids (PAM) from the R package cluster (Maechler et al., 2018; Kaufman
and Rousseeuw, 1990), since it returns representative objects or medoids among the ob-
servations of the data set. The pairwise dissimilarities between observations in the data
set needed for PAM are computed with the daisy function from the R package cluster
(Maechler et al., 2018), specifically using Gower’s coefficient (Gower, 1971) for binary
observations. Other popular clustering methods (Flynt and Dean, 2016) are also used in
the comparison: latent class analysis (LCA) from the R package poLCA (Linzer and
Lewis, 2011), which is a finite mixture model clustering for categorical data, and clas-
sical k-means clustering (Lloyd, 1982). It is used in the literature (Henry et al., 2015),
despite not being recommended for binary data (IBM Support, 2016). For that reason,
we also consider PAM, since it is a robustified version of k-means (Steinley, 2006) that
can be used with distances other than Euclidean, and observations, rather than centroids,
serve as the exemplars for each cluster.

3 Archetypal analysis for binary data

Let X be an n x m binary matrix with n observations and m variables. The idea behind
archetypal analysis is that we can find a set of archetypal patterns, and that data can
be expressed as a mixture of those archetypal patterns. In the case of binary data, on
the one hand the archetypal patterns should also be binary data, as the population from
which data come. For example, if pregnancy was one of the binary variables, it would
not make sense to consider as an archetypal observation a woman who was pregnant 0.7.
In other words, archetypal patterns should be binary in order to have a clear meaning
and not lose their interpretability, which is the cornerstone of archetypal techniques, i.e.
they should not be ‘mythological’, but rather something that might be observed. On the
other hand, in order to describe data as mixtures, we should assume that observations
exist in a vector space, i.e. that observations can be multiplied by scalars (in this case in
the interval [0, 1]) and added together.

A solution that meets all these ideas is to apply ADA to X, since the feasible archety-
pal patterns belong to the observed sample. In fact, ADA was originally created as a
response to the problem in which pure non-fictitious patterns were sought (Vinué et al.,
2015).

Instead, the archetypes returned by applying AA or PAA do not need to be binary,
1.e. they do not need to belong to the feasible set of solutions. In fact, Seth and Eugster
(2016b) binarized the archetypes obtained by AA or PAA in experiments. However,
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using a continuous optimization problem to solve a problem whose feasible solutions
are not continuous can fail badly (Fletcher, 2000, Ch. 13). Indeed, there is no guarantee
that this approach will provide a good solution, even by examining all the feasible binary
solutions in a certain neighborhood of the continuous solution.

Therefore, we propose to use ADA to handle binary observations.

4 Simulation study

We have carried out a simulation study to assess all the alternatives in a controlled sce-
nario. The design of the experiment has been based on simulation studies that appear
in Vinué et al. (2015) and Seth and Eugster (2016b). We generate k = 6 archetypes,
(;, with m = 10 binary variables by sampling them from a Bernoulli distribution with
a probability of success p = 0.7, A = [(1, (2, (3, (a» (s, (o) Given the archetypes, we
generate n = 100 observations as the binarized version of x; = A:h; + E;, where A; con-
tains the archetypes after adding salt and pepper noise to them, 4; is a random vector
sampled from a Dirichlet distribution with o = (0.8, 0.8, 0.8, 0.8, 0.8, 0.8), and E; is a
10-dimensional random vector of Gaussian white noise with a mean of zero and standard
deviation of 0.1. The binarized versions are obtained by replacing all values above 0.5
with 1 and others with 0. The noise density added to A is 0.05 (the default value used in
MATLAB). With salt and pepper noise, a certain amount of the data is changed to either
0 or 1. To ensure that A;’s are archetypes, we chose o = 0.8, a value near to but less than
one.

We compute PAA, AA and ADA. The archetypes returned by PAA and AA are
binarized for comparison with the true ones, A. We calculated the Hamming distance
(Manhattan distance between binary vectors), which is the same as the misclassification
error used with binary images, between each archetypal solution and the true archetypes
after permuting the columns of each archetypal solution to match the true archetypes in
such a way that the least error with the city block distance is provided.

This was repeated 100 times. The first 10 times are displayed in Figure 2. The solu-
tions returned by all the methods are quite similar to the true archetypes, i.e. the num-
ber of errors (a zero in the solution where the true value is 1, or vice versa) is very
small. Nevertheless, there are differences between the methods, which are more evident
in columns 5 and 6. For columns 5 and 6, the number of errors for PAA is 5 and 5,
it is 4 and 2 for AA, but only 2 and 2 for ADA. Table 1 shows a the summary of the

Table 1: Summary of misclassification errors of the archetype profiles
for each method over 100 simulations.

Method PAA AA ADA
Mean (Std. dev.) | 4.20(1.86) 3.59(1.99) 3.19(1.88)
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Figure 2: Comparison between true archetypes and those returned by PAA, AA and ADA, respectively. The
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10 columns represent the first 10 repetitions of the simulation. Black represents 0 and white 1.

misclassifications. The archetypoids returned by ADA match the true archetypes better
than those returned by AA or PAA, in this order, i.e. ADA provides the smallest mean
misclassification error.

5 Applications

5.1 An initial mathematical skills test for first-year university students

5.1.1 Data

The first application corresponds to the first point of view of the binary matrix (analy-
sis of the rows). We analyze the data set described by Orts and Gregori (2008), which
was obtained through the application of a test on the initial mathematics skills of 690
first-year students of the College of Technology and Experimental Sciences at Jaume
I University (Spain) at the beginning of the 2003-04 academic year. The test consisted
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of 17 questions corresponding to 21 single items, the answers to which were coded as
0 (incorrect or unanswered) or 1 (correct). The items of the test were selected in or-
der to ascertain some given didactic hypotheses on the didactic discontinuities between
mathematics at pre-university and university levels. It is not a test designed to rank
the students and return a unique score. The complete description of the questions can be
seen in Orts and Gregori (2008). With ADA, we could obtain students’ skill set profiles.
In this way, students can be grouped by their similar mastery of skills. For instance, stu-
dents showing consistently high levels of aptitude may be selected for an advanced class
or students with similar difficulties could receive extra instruction as a group and also
teaching strategies could also be adapted to suit their level. A classical way to group stu-
dent skill set profiles is by using a clustering method, as carried out by Dean and Nugent
(2013), but in terms of human interpretability, the central points returned by clustering
tools do not seem as favorable as the extreme points returned by ADA. Results from
different exploratory tools are compared.

5.1.2 Results and discussion

We would like to estimate the skill set profiles hidden in the data set. In other words,
we would like to discover the data structure. Our intuition tells us that skill sets vary
continuously across students, i.e. we do not expect there to be clearly differentiated
(separate) groups of students with different abilities. Even so, CLA has been used to
generate groups of students with similar skill set profiles (Chiu, Douglas and Li, 2009;
Dean and Nugent, 2013). Here, we are going to consider the raw binary data and let
the data speak for themselves, as ADA is a data-driven method. We compare the ADA
solution with others from well-established unsupervised techniques introduced in Sec-
tion 2.4 to highlight the information about the quality understanding of data provided
by ADA.

For the sake of brevity and as an illustrative example, we examine the results of k
= 3. The RSS elbow for ADA and the Bayesian Information Criterion (BIC) elbow for
LCA are found at k = 3 (see Figure 3). According to the silhouette coefficient (a method
of interpretation and validation of consistency within clusters of data, see Kaufman and
Rousseeuw (1990) for details), the optimal number of clusters are k = 2 and k = 3 for
PAM. However, the highest value of the silhouette coefficient is 0.22 (for k =2 and k=3
clusters), which means that no substantial cluster structure was found, as we predicted.
We perform an h-plot (a multidimensional scaling method that is particularly suited
for representing non-Euclidean dissimilarities, see Epifanio (2013) for details) on the
dissimilarities used by PAM to graphically summarize the data set and to visualize the
obtained clusters by PAM in two dimensions (see Figure 4). Effectively, separate clusters
do not seem to exist.

This is also corroborated by Figure 5, where the students’ scores from HOMALS are
plotted in two dimensions. As regards the interpretation of the dimensions of HOMALS,
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the loadings are displayed in Figure 6 and Table 2 shows their exact values, together
with the number of correct answers. As also happens with PCA, their interpretation is
not always easy and immediate. For the first dimension, all the coefficients are positive
(as a measure of size), which can indicate a kind of sum score. The highest coefficients
more or less correspond to the last questions of the test, which fewer students answered
correctly. The second dimension compares, above all, questions 4, 5, 6a and 6b (with
high positive coefficients) with 13a and 13b (with low negative values), while in the third
dimension, questions 1, 3, 7, 8 and 10 (with high positive coefficients) are compared
with 14a and 14b (with low negative values). However, we do know how the meaning
of these contradistinctions is interpreted.

5.0
1

45
14400
I

RSS
4.0
I
BIC
14200
I

14000
I

25 3.0
I I
13800
I

2.0
I
13600
I

.

Archetypoids Number of Clusters

Figure 3: Initial mathematical skills test data: Screeplot of ADA (left-hand panel); screeplot of LCA (right-
hand panel).
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Figure 4: H-plot of dissimilarities for the initial mathematical skills test data. We perform PAM. The black

circles represent data points assigned to the first cluster, the red triangles to the second cluster and the blue
crosses to the third cluster.
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Figure 6: HOMALS of the initial mathematical skills test data. Loadings plot.

LCA returns the conditional item response probabilities by outcome variable for
each class. Table 3 lists these probabilities for correct answer. The predicted classes
for each student are shown in Figure 5, since the profiles of cluster 1 and 3 are mainly
differentiated in questions 4, 5, 13a and 13b, which are the most relevant variables of
dimension 2 of HOMALS.
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Table 2: Number of correct answers and loadings of the first three dimensions by HOMALS for the initial
mathematical skills test data.

Question No. correct answers D) D2 D3
1 621 0.02863 —0.00232 0.10936
2 589 0.05797 0.06268 0.05200
3 301 0.09098 0.02291 0.07621
4 233 0.07597 0.09596 —0.00863
5 253 0.09922 0.09102 0.00465
6a 231 0.05414 0.08397 —0.05947
6b 105 0.05230 0.08735 —0.04804
7 270 0.07408 0.03324 0.07881
140 0.0601 —0.01729 0.10596
9 109 0.07749 0.07059 —0.04028
10 202 0.09541 —0.02469 0.07325
11 71 0.07485 0.07870 -0.01717
12 329 0.08006 0.01380 0.01518
13a 177 0.12934 —0.12748 —0.02185
13b 132 0.12953 —0.12312 —0.01241
14a 114 0.11951 —0.03559 —0.09643
14b 22 0.07565 —0.04544 —0.06506
15 183 0.10749 —0.03665 0.01754
16 236 0.12062 —0.00018 —0.00465
17a 47 0.12116 0.00354 —0.00952
17b 62 0.10884 0.00955 —0.02249

Table 3 also lists the profiles of the medoids, centroids of k-means and the archety-
pal profiles for AA, PAA and ADA. For medoids and archetypoids, the code of the
corresponding observation is also displayed. To facilitate the analysis we also show the
binarized profiles of AA and PAA, referred as BAA and BPAA, respectively.

As a simple summary of the profiles, we compute the percentage of correct answers
for each profile. For PAM, the percentages are 9.5%, 33.3% and 57.1%; for binarized
LCA, 38.1%, 9.5% and 33.3%; for binarized k-means, 38.1%, 9.5% and 42.9%; for
BAA, 9.5%, 47.6% and 61.9%; for BPAA, 9.5%, 42.9% and 57.1%; and for ADA,
57.1%, 52.4% and 9.5%, respectively. Note that the median of the percentage of correct
answers in the data set is 28.6% (the minimum is 0, the first quartile is 19.1%, the third
quartile is 38.1%, while the maximum is 95.2%).

One profile is repeated in all the methods, a student who only answers questions 1
and 2 correctly, i.e. a student with a serious lack of competence. We therefore concen-
trate the analysis on the other two profiles for each method.
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Table 3: Profiles for the initial mathematical skills test data, for PAM, LCA, k-means (k-M), AA (and
binarized, BAA), PAA (and binarized, BPAA) and ADA, with k = 3. The numbers in brackets for PAM and
ADA indicate the code of the representative student.

Methods 1 2 3 4 5 6a 6b 7 8 9 10 11 12 13a 13b 14a 14b 15 16 17a 17b
PAM(®661) 1 1 0 0 0 0 o0 o o o O o o O O O O o o0 0 O
PAM(GS8) 1 1 1 1 1 0O O 1 O O O O 1 O O O O O O O O
pAM(162) 1 1 1 0 1 o0 o0 1 o0 o0 1 o0 1 1 1 1 O 1 1 O O
LCA 1 0.930.880.570.360.480.370.170.490.320.200.51 0.14 0.62 1.00 0.850.43 0.100.50 0.55 0.18 0.19
LCA2 0.880.790.280.170.150.24 0.070.300.14 0.030.150.020.320.05 0 0.03 0 0.130.14 0 O
LCA3 0.910.94 0.600.62 0.650.48 0.270.47 0.230.350.360.230.630.04 0 0.200.030.310.530.090.17
k-M 1 0.910.950.640.700.74 0.43 0.250.53 0.24 0.320.38 0.22 0.63 0.05 0.000.19 0.02 0.33 0.52 0.10 0.15
k-M 2 0.880.78 0.260.130.110.27 0.09 0.27 0.13 0.05 0.14 0.02 0.32 0.06 0.01 0.03 0.01 0.12 0.15 0.01 0.01
k-M 3 0.930.910.590.340.490.370.170.500.330.200.540.140.64 1 0.880.460.100.520.580.180.19
AA1 0.850.680.02 0 0 0.05 0 004005 0 001 0 016 0O 0O O 0 001 O O O
AA2 090 1 087 1 1 1 0.630.820.190.520.240.380.65 0 0 0.16 0 0.070.430.090.15

AA3 1 1 0.890.320.530.190.060.710.580.26 1 0.17 1 1 1 067018 1 1 0.360.37
BAA'1 1 1.0 00 0O 0 0 O 0O O o o o o o o o o0 o0 o
BAA2 111 1 1 1 1 1 0 1 O O 1 O O O O O O O O
BAA3 $1 11 o0 1 0 o0 1 1 o0 1 0 1 1 1 1 O 1 1 O O
PAA'1 0.860.720.13 0 0 O O 0.12007 0 O 0022 0 O O O O O O O
PAA 2 09 1 078 1 1 1 0610.730.270.400.380.31066 0 0 O O O 043 0 O
PAA 3 099 1 0.820.360.570.25 0 0.660.440.270.860.120.85 1 1 0.730.15 1 1 0.320.42
BPAA 1 1 1.0 00 0 0 0 O 0O O o o o o o o o o0 o0 o
BPAA 2 t1r 11 1 1 1 1 0 O O O 1 O O O O O O O O
BPAA3 t1 1r 10 1 0 0 1 o0 o0 1 o0 1 1 1 1 O 1 1 O O
ADA(182) 1 11 0 O O o0 o0 1 o0 1 O 1 1 1 1 O 1 1 0 1
ADA274 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0

ADA (1) 1 1 0 0 O O O O O O 0 0 0 0 0

In contrast with the third archetypoid, i.e. the student with very poor skills, the first
and second archetypoids correspond to students with very high percentages of correct
answers. In fact, the first archetypoid corresponds to the 92nd percentile of the data
set, while the second archetypoid corresponds to the 88th percentile. Nevertheless, both
profiles are quite different. In fact, the Hamming distance between archetypoids 1 and
2 is 13, which means that although they answered a lot of items correctly, these cor-
rectly answered items do not coincide. In other words, archetypoids 1 and 2 are some-
how complementary. Both answered items 1, 2, 3, 12 and 16 correctly, which were
among the most correctly answered items. Neither of them answered items 11, 14b
and 17a correctly, which were among the least correctly answered items. On the one
hand, the items that archetypoid 1 answered correctly, but archetypoid 2 did not are
8, 10, 13a, 13b, 14a, 15 and 17b. These items are about nonlinear systems and lin-
ear functions. On the other hand, the items that archetypoid 2 answered correctly, but
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Figure 7: Ternary plot of as of ADA together with a plot density estimate for the initial mathematical skills
test data.

archetypoid 1 did not are 4, 5, 6a, 6b, 7 and 9. These items are about the calculation of
derivatives and integrals and algebraic interpretation. The skills of these archetypoids
are clear and different to each other.

We can use the alpha values for each of the students to learn about their relation-
ship to the archetypoid profiles. The ternary plot in Figure 7 displays the alpha values
that provide further insight into the data structure. Note that the majority of the data is
concentrated around archetypoid 1, i.e. the one with very poor skills. If we wanted to
form three groups using the alpha values, we could assign each student to the group in
which their corresponding alpha is the maximum, as we did in Figure 1 (d). In this way,
the number of students similar to archetypoid 1 is 113, to archetypoid 2 it is 110 and to
archetypoid 3 it is 467.

The profiles of medoids 2 and 3 are not as complementary as the previous archety-
poids. In fact, medoid 2 corresponds to the 56th percentile, while medoid 3 corresponds
to the 92nd percentile. In this case, the percentage of correct answers for medoid 2 is not
high. The Hamming distance between the two medoids is only 7. On the one hand, both
answered items 1, 2, 3, 5, 7 and 12 correctly, which are the most correctly answered
items. On the other hand, both failed items 6a, 6b, 8§, 9, 11, 14b, 17a and 17b, many
more items than in the case of ADA. The only item that medoid 2 answered correctly but
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medoid 3 did not is item 4. The items that medoid 3 answered correctly but medoid 2
did not are 10, 13a, 13b, 14a, 15 and 16. It seems as if the cluster definition was guided
by the number of correct answers rather than by the kind of item answered correctly.
This is the reason why PAM selects medoid 2 in the middle of the data cloud. PAM, and
usual clustering methods, tries to cover the set in such a way that every point is near to
one medoid or one cluster center. The number of students belonging to each cluster is
398, 179 and 113, respectively. Note that the size of the cluster of students with poor
skills is smaller than in the case of ADA, because some of those students are assigned
to the cluster of medoid 2.

The binarized profile of LCA 1, corresponding to the 75th percentile, is similar to
medoid 3, but with a lower number of correct answers (5, 7, 14a and 15), while the
binarized profile of LCA 3, corresponding to the 56th percentile, is similar to medoid 2,
only differentiated by two items (7 and 16). Therefore, they are even less complementary
than the previous medoids. The Hamming distance between both LCA-profiles is only
5. The number of students belonging to each cluster is 155, 352 and 183, respectively.
Note that the size of the cluster of students with poor skills is smaller than in the case of
PAM.

The binarized profile of the first centroid of k-means, corresponding to the 75th per-
centile, is similar to medoid 2, only differentiated by item 16, while the binarized profile
of the third centroid, corresponding to the 82nd percentile, is similar to medoid 3, but
with a lower number of correct items (5, 7 and 14a). The Hamming distance between
both centroids is 7. The level of complementarity between both centroids is similar to
that of the medoids of PAM, but the number of correct answers of medoid 3 is higher
than binarized centroid 3. The number of students belonging to each cluster is 196, 349
and 145, respectively. Note that the size of the cluster of students with poor skills is
smaller than in the case of PAM, but larger than in the case of PAM for cluster 3, which
in both clustering methods corresponds to the students with more correct answers.

In the clustering methods, the profiles of each cluster are not as extreme as archety-
poids. Archetypoids are also more complementary, which makes it clearer to establish
which kinds of features distinguish one group from another. Remember also that clus-
tering is limited to assign each student to a group but alpha values of ADA allows to
know the composition, i.e. ADA returns a richer information.

The profiles of BAA2 and BAA3 and BPAA2 and BPAA3 are quite similar to the pro-
files of archetypoid 2 and 1, respectively, but with slight differences. The percentiles cor-
responding to correctly answered items are also high, although for one of the archetypes
not as high as for archetypoids. The percentiles are the 82nd and 94th for BAA2 and
BAA3, and the 75th and 92nd for BPAA2 and BPAA3, respectively. Therefore, the
archetypoids are more extreme than the binarized archetypes of AA and PAA. Although
the profiles for BAA and BPAA are also complementary, they are not as complementary
as the two archetypoids. The Hamming distance between BAA2 and BAA3is 11, and 9
between BPAA2 and BPAA3. Archetypoids therefore manage to find more complemen-
tary profiles.
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5.2 An American College Testing (ACT) Mathematics Test

5.2.1 Data

This application corresponds to the second point of view of the binary matrix (analysis
of the columns). We use the same data and approach followed by Ramsay and Silverman
(2002, Ch. 9) and Rossi, Wang and Ramsay (2002), although another strategy could be
considered (Ramsay and Wiberg, 2017). The data used are the 0/1 (incorrect/correct)
responses of 2115 males from administration of a version of the ACT Program 60-item
Mathematics Test. Unlike the test introduced in Section 5.1.1, the objective of the test is
to relate a student’s ACT score with probability of him or her earning a college degree,
i.e. to rank students. It seeks that the difficulty of questions increases as you get to higher
question numbers.

Although this binary matrix does not seem curvaceous at first sight, by making the
simplifying assumption that the probabilities Py, (probability that examinee A gets item
i right) vary in a smooth one-dimensional way across examinees, we can estimate the
ability space curve that this assumption implies. Then, we can work with item response
functions (IRFs) P;(0) as functional data (Ramsay and Silverman, 2005), where 6 is the
charting variable that measures out positions along the ability space curve. Or rather,
we can work with the log odds-ratio functions W;(), since these transformations of the
item response functions have the unconstrained variation that we are used to seeing in
directly observed curves. Ramsay and Silverman (2002, Ch. 9) and Rossi et al. (2002)
used functional PCA (FPCA) to study variations among these functions. Instead, we
propose to use functional ADA (FADA), which reveals very interesting patterns that
were not discovered with FPCA.

Note that in the literature, we find other terms for IRFs, such as option characteristic
curves, category characteristic curves, operating characteristic curves, category response
functions, item category response functions or option response functions (Mazza, Punzo
and McGuire, 2014).

5.2.2 Results and discussion

As mentioned previously, we used the same data and approach followed by Ramsay and
Silverman (2002, Ch. 9) and Rossi et al. (2002) to estimate IRFs, P;(6), and their logit
functions, W;(0) = log(P;(0)/(1 — P(#))). In particular, a penalized EM algorithm was
used and functions were expanded by terms of 11 B-spline basis functions using equally
spaced knots. Figure 8 displays the estimated IRFs, exp(W;(6))/(1 + exp(W;(0))), and
their log odds-ratio functions W;(6) for the 60 items. As expected, this kind of graphs
with superimposed curves is largely uninformative and aesthetically unappealing (Jones
and Rice, 1992).

To explore a set of curves Jones and Rice (1992) proposed the use of functions with
extreme principal component scores. This could be viewed as finding the archetypoid
functions. Nevertheless, the aim of PCA is not to recover extreme patterns. In fact,



58 Finding archetypal patterns for binary questionnaires

09f
08f
07f
061
L osf
0.4\
03F

0.2

0.1

4

L L L L L L L L L L L L L L L L
0.5 1.5 25 -25 -2 -15 -1 -05 0 0.5 1 15 2 25

L
0

L L L
-15 -1 -05

Figure 8: Estimated IRFs (left-hand panel) and log odds-ratio functions (right-hand panel) for the ACT
math exam estimated from the male data.

curves with extreme PCA scores do not necessarily correspond to archetypal observa-
tions. This is discussed in Cutler and Breiman (1994) and shown in Epifanio, Vinué and
Alemany (2013) through an example where archetypes could not be restored with PCA,
even if all the components had been considered. Not only that, Stone and Cutler (1996)
also showed that AA may be more appropriate than PCA when the data do not have
elliptical distributions.

In order to show the advantages of ADA over PCA, we compute FPCA and FADA for
W(0), since they are unconstrained, therefore making them more appropriate for PCA
application than the bounded P,(#). This is not a problem with FADA as it works with
convex combinations. Figure 9 displays the first four PCs after a varimax rotation having
been back-transformed to their probability counterparts, as performed by Ramsay and
Silverman (2002, Ch. 9) and Rossi et al. (2002). We base the interpretation of each PC
on the detailed description carried out by Ramsay and Silverman (2002, Ch. 9).

The percentage of total variation explained by those four components is nearly 100%,
while the percentage explained by each component is reported in Figure 9. The first
component concentrates on the middle part of the ability range, in such a way that an
item with a high (low) score in that component has a higher (lower) slope than the
mean from approximately O to 2, i.e. it quantifies a discriminability trade-off between
average students and those with rather high abilities. Analogously, the fourth component
quantifies a discriminability trade-off between average examinees and those with rather
low abilities. On the contrary, the second component concentrates on the upper end of
the ability range. As Rossi et al. (2002) explained, the 3PL. model is not well suited to
modeling this type of variation. An item with a low score on this component is good at
sorting out very high ability students from others of moderately high ability, whereas if
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Figure 10: Bivariate plots of principal component scores of IRFs. PCI versus PC2 (left-hand panel); PC3
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the score for this item is high, it will discriminate well among most of the population
but will be found to be of approximately equal difficulty by all the very good students.
Nevertheless, conclusions on the extreme part of the ability range should be made with
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Figure 11: ACT data: The four IRF archetypoids are items 2, 18, 28 and 60.
See the legend inside the plot.

caution, since the estimation is carried out using a relatively small numbers of students.
The third component also accounts for variation in the characteristics of test items in
the extreme ability range, but now in low ability ranges. PC scores for these four com-
ponents can be seen in Figure 10. Note that to evaluate the 4 PC scores simultaneously
and combine them to give an idea about each item, it is not easily comprehensible or
human-readable.

Figure 11 displays the archetypoids for k = 4 explaining 97% of the variability, which
is nearly as high as FPCA. The archetypoids are items 2, 18, 28 and 60. These four items
describe the extreme patterns found in the sample. Item 2 has very high scores in PC
3 and PC 4, high scores in PC 1 and a score of nearly zero for PC 2. Its IRF is quite
flat with a very slight slope, it seems to be a very easy item, with high probabilities of
success throughout the ability range. The other archetypoids discriminate better between
low and high ability students but in very different ways. Item 18 has a very high score
for PC 2 and a negative score for PC 3, but nearly zero for PC 1 and PC 4. It is an item
that is quite difficult even for the students in the very high ability range. The IRF of item
28 is quite similar to that of item 18 for the low ability range until € 0, but its slope for
the high ability range is higher, and the probabilities of success are higher than 0.9 for
s higher than 1. On the contrary, the probabilities of success of the IRF of item 60 are
quite low as far as 1.5, which means that it is a difficult item, but the probabilities of
success for the best students are high. In fact, the probabilities of success for item 60 for
0 higher than 2 are higher than those of item 18. Item 28 has high score for PC 1 and
low score for PC2, while it has a score of nearly zero for PC 3 and PC 4. However, item
60 has low scores for PC 1 and PC 4, a high score for PC 2 and nearly zero for PC 3.
In other words, it would have been very difficult to guess the extreme representatives of
the sample returned by ADA from an analysis of the scores in Figure 10.
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Figure 12: Star plots of the alphas of each archetypoid for IRFs. The item number appears below each
plot. The archetypoids are 2, 18, 28 and 60.

The alpha values (from O to 1) tell us about the contribution of each archetypoid
to each item. Remember that they add up to 1. Figure 12 shows star plots of the alpha
values for each archetypoid, thus providing a complete human-readable view of the
data set. The 4 alpha values in this case are represented starting on the right and going
counter-clockwise around the circle. The size of each alpha is shown by the radius of
the segment representing it. The items that are similar to the archetypoids can be clearly
seen (for example, 7 and 8 are somehow similar to 2; 15 and 19 are somehow similar to
18; 14 and 16 are somehow similar to 28; and 56, 57 and 59 are similar to 60), as can
the items that are a mixture of several archetypoids (for example, item 1 is a mixture of
mainly item 2, together with items 28 and 18, to a lesser extent). Item 1 was selected
by Ramsay and Silverman (2002, Ch. 9) and Rossi et al. (2002) as an example of a low
difficulty item, although it seems that item 2 would be a better representative of this kind
of item. Item 9 was selected by Ramsay and Silverman (2002, Ch. 9) and Rossi et al.
(2002) as an example of a medium difficulty item, and it is mainly a mixture of items 18
and 28. Finally, item 59 was selected by Ramsay and Silverman (2002, Ch. 9) and Rossi
et al. (2002) as an example of a hard item. Item 59 was mainly explained by item 60.
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Results of applying FADA with kernel and parametric IRF estimates are discussed
in the Supplementary Material.

6 Conclusion

We have proposed to find archetypal patterns in binary data using ADA for a better
understanding of a data set. A simulation study and results provided in two applications
have highlighted the benefits of ADA for binary questionnaires as an alternative that can
be used instead of (or in addition to) other established methodologies.

Although, much of statistics is based on the idea that averaging over many elements
of a data set is a good thing to do, in this paper we adopt a different perspective. We have
selected a small number of representative observations, archetypal observations, and the
data composition is explained through mixtures of those extreme observations. We have
shown that this can be highly informative and is a useful tool for making a data set more
“human-readable”, even to non-experts.

In the first application, we have shown how ADA returns the most complementary
profiles, which can be more useful in order to establish groups of students with similar
mastery of skills. Furthermore, ADA returns composition information of each observa-
tion through alpha values, which is a richer information than the simple assignation to
groups returned by CLA. In the second application, FADA has discovered the extreme
patterns in the data, which cannot be recovered by FPCA. Furthermore, we have ex-
plained each item of the ACT math exam as a percentage of the archetypal items, which
is easily understandable even for non-experts.

As regards future work, throughout the paper all variables share the same weight, but
for certain situations some variables could have more weight in RSS. Another direction
of future work would be to consider ADA for nominal observations, for example, by
converting those variables into dummy variables, i.e. with binary codes. Furthermore,
this work is limited to binary data, but questionnaires can also have Likert-type scale
responses. Therefore, archetypal techniques for ordinal data would be very valuable.
Another not so immediate extension, would be to consider the case of mixed data, with
real valued and categorical data, together with missing data. Finally, from the compu-
tational point of view, in case of working with a very big data set, the ADA algorithm
described in Section 2.1.1 could be slow. In that case, a recent alternative implemented
in the R package adamethods (Vinue and Epifanio, 2019) for computing ADA with
large data sets could be used.

Acknowledgments

This work is supported by the following grants: DPI2017-87333-R from the Spanish
Ministry of Science, Innovation and Universities (AEI/FEDER, EU) and UJI-B2017-13
from Universitat Jaume L.



Ismael Cabero and Irene Epifanio 63

References

Alcacer, A., Epifanio, L., Ibafiez, M. V., Simd, A. and Ballester, A. (2020). A data-driven classification of
3D foot types by archetypal shapes based on landmarks. PLOS ONE, 15, 1-19.

Cabero, I. and Epifanio, I. (2019). Archetypal analysis: an alternative to clustering for unsupervised texture
segmentation. Image Analysis & Stereology, 38, 151-160.

Canhasi, E. and Kononenko, I. (2013). Multi-document summarization via archetypal analysis of the
content-graph joint model. Knowledge and Information Systems, 1-22.

Canhasi, E. and Kononenko, 1. (2014). Weighted archetypal analysis of the multi-element graph for query-
focused multi-document summarization. Expert Systems with Applications, 41, 535-543.

Chan, B., Mitchell, D. and Cram, L. (2003). Archetypal analysis of galaxy spectra. Monthly Notices of the
Royal Astronomical Society, 338, 790-795.

Chiu, C.-Y., Douglas, J. A. and Li, X. (2009). Cluster analysis for cognitive diagnosis: Theory and applica-
tions. Psychometrika, 74, 633.

Cutler, A. and Breiman, L. (1994). Archetypal analysis. Technometrics, 36, 338-347.

Davis, T. and Love, B. (2010). Memory for category information is idealized through contrast with com-
peting options. Psychological Science, 21, 234-242.

de Leeuw, J. and Mair, P. (2009). Gifi methods for optimal scaling in R: The package homals. Journal of
Statistical Software, 31, 1-20.

Dean, N. and Nugent, R. (2013). Clustering student skill set profiles in a unit hypercube using mixtures of
multivariate betas. Advances in Data Analysis and Classification, 7, 339-357.

D’Esposito, M. R., Palumbo, F. and Ragozini, G. (2012). Interval archetypes: a new tool for interval data
analysis. Statistical Analysis and Data Mining, 5, 322-335.

Epifanio, I. (2013). H-plots for displaying nonmetric dissimilarity matrices. Statistical Analysis and Data
Mining, 6, 136-143.

Epifanio, I. (2016). Functional archetype and archetypoid analysis. Computational Statistics & Data Anal-
ysis, 104, 24-34.

Epifanio, I., Ibafiez, M. V. and Simd, A. (2018). Archetypal shapes based on landmarks and extension to
handle missing data. Advances in Data Analysis and Classification, 12, 705-735.

Epifanio, 1., Ibafiez, M. V. and Simd, A. (2020). Archetypal analysis with missing data: see all samples by
looking at a few based on extreme profiles. The American Statistician, 74, 169-183.

Epifanio, I., Vinué, G. and Alemany, S. (2013). Archetypal analysis: contributions for estimating boundary
cases in multivariate accommodation problem. Computers & Industrial Engineering, 64, 757-765.

Eugster, M. J. and Leisch, F. (2009). From Spider-Man to Hero - Archetypal Analysis in R. Journal of
Statistical Software, 30, 1-23.

Eugster, M. J. A. (2012). Performance profiles based on archetypal athletes. [International Journal of
Performance Analysis in Sport, 12, 166-187.

Fernandez, M. and Barnard, A. S. (2015). Identification of nanoparticle prototypes and archetypes. ACS
Nano, 9, 11980-11992.

Fletcher, R. (2000). Practical Methods of Optimization (Second ed.). John Wiley & Sons.

Flynt, A. and Dean, N. (2016). A survey of popular R packages for cluster analysis. Journal of Educational
and Behavioral Statistics, 41, 205-225.

Friedman, J. H. and Tukey, J. W. (1974). A projection pursuit algorithm for exploratory data analysis. I[EEE
Transactions on Computers, C-23, 881-890.

Gower, J. C. (1971). A general coefficient of similarity and some of its properties. Biometrics, 27, 857-871.

Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical Learning. Data mining,
inference and prediction. 2nd ed., Springer-Verlag.



64 Finding archetypal patterns for binary questionnaires

Henry, D., Dymnicki, A. B., Mohatt, N., Allen, J. and Kelly, J. G. (2015). Clustering methods with quali-
tative data: a mixed-methods approach for prevention research with small samples. Prevention Science,
16, 1007-1016.

Hinrich, J. L., Bardenfleth, S. E., Roge, R. E., Churchill, N. W., Madsen, K. H. and Mgrup, M. (2016).
Archetypal analysis for modeling multisubject fMRI data. IEEE Journal on Selected Topics in Signal
Processing, 10, 1160-1171.

IBM Support (2016). Clustering binary data with K-Means (should be avoided). http://www-01.ibm.com/
support/docview.wss?uid=swg21477401. Accessed: 2018-07-09.

Jones, M. C. and Rice, J. A. (1992). Displaying the important features of large collections of similar curves.
The American Statistician, 46, 140-145.

Kaufman, L. and Rousseeuw, P. J. (1990). Finding Groups in Data: An Introduction to Cluster Analysis.
New York: John Wiley.

Lawson, C. L. and Hanson, R. J. (1974). Solving Least Squares Problems. Prentice Hall.

Li, S., Wang, P., Louviere, J. and Carson, R. (2003). Archetypal Analysis: A New Way To Segment Markets
Based On Extreme Individuals. In ANZMAC 2003 Conference Proceedings, pp. 1674—-1679.

Linzer, D. A. and Lewis, J. B. (2011). poLCA: An R package for polytomous variable latent class analysis.
Journal of Statistical Software, 42, 1-29.

Lloyd, S. P. (1982). Least squares quantization in PCM. IEEE Transactions on Information Theory, 28,
129-137.

Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M. and Hornik, K. (2018). Cluster: Cluster Analysis
Basics and Extensions. R package version 2.0.7-1.

Makowski, D. (2016). Package 'neuropsychology’: An R Toolbox for Psychologists, Neuropsychologists
and Neuroscientists. (0.5.0).

Mazza, A., Punzo, A. and McGuire, B. (2014). KernSmoothIRT: An R package for kernel smoothing in
item response theory. Journal of Statistical Software, 58, 1-34.

Midgley, D. and Venaik, S. (2013). Marketing strategy in MNC subsidiaries: pure versus hybrid archetypes.
In P. McDougall-Covin and T. Kiyak, Proceedings of the 55th Annual Meeting of the Academy of Inter-
national Business, pp. 215-216.

Millan-Roures, L., Epifanio, I. and Martinez, V. (2018). Detection of anomalies in water networks by
functional data analysis. Mathematical Problems in Engineering, 2018 (Article ID 5129735), 13.

Moliner, J. and Epifanio, I. (2019). Robust multivariate and functional archetypal analysis with application
to financial time series analysis. Physica A: Statistical Mechanics and its Applications, 519, 195-208.

Mgrup, M. and Hansen, L. K. (2012). Archetypal analysis for machine learning and data mining. Neuro-
computing, 80, 54—63.

Orts, P. and Gregori, P. (2008). Fictitious Pupils and Implicative Analysis: a Case Study, pp. 321-345.
Berlin, Heidelberg: Springer.

Pawlowsky-Glahn, V., Egozcue, J. J. and Tolosana-Delgado, R. (2015). Modeling and Analysis of Compo-
sitional Data. John Wiley & Sons.

Porzio, G. C., Ragozini, G. and Vistocco, D. (2008). On the use of archetypes as benchmarks. Applied
Stochastic Models in Business and Industry, 24, 419—437.

R Development Core Team (2019). R: A Language and Environment for Statistical Computing. Vienna,
Austria: R Foundation for Statistical Computing. ISBN 3-900051-07-0.

Ragozini, G. and D’Esposito, M. R. (2015). Archetypal networks. In Proceedings of the 2015 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining 2015, New York, NY,
USA, pp. 807-814. ACM.

Ragozini, G., Palumbo, F. and D’Esposito, M. R. (2017). Archetypal analysis for data-driven prototype
identification. Statistical Analysis and Data Mining: The ASA Data Science Journal, 10, 6-20.

Ramsay, J. O. and Silverman, B. W. (2002). Applied Functional Data Analysis. Springer.


http://www-01.ibm.com/support/docview.wss?uid=swg21477401

Ismael Cabero and Irene Epifanio 65

Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis (2nd ed.). Springer.

Ramsay, J. O. and Wiberg, M. (2017). A strategy for replacing sum scoring. Journal of Educational and
Behavioral Statistics, 42, 282-307.

Rossi, N., Wang, X. and Ramsay, J. O. (2002). Nonparametric item response function estimates with the
EM algorithm. Journal of Educational and Behavioral Statistics, 27, 291-317.

Seth, S. and Eugster, M. J. A. (2016a). Archetypal analysis for nominal observations. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 38, 849-861.

Seth, S. and Eugster, M. J. A. (2016b). Probabilistic archetypal analysis. Machine Learning, 102, 85-113.

Slater, S., Joksimovié¢, S., Kovanovic, V., Baker, R. S. and Gasevic, D. (2017). Tools for educational data
mining: A review. Journal of Educational and Behavioral Statistics, 42, 85-106.

Steinley, D. (2006). K-means clustering: A half-century synthesis. British Journal of Mathematical and
Statistical Psychology, 59, 1-34.

Steinschneider, S. and Lall, U. (2015). Daily precipitation and tropical moisture exports across the Eastern
United States: An application of archetypal analysis to identify spatiotemporal structure. Journal of
Climate, 28, 8585-8602.

Stone, E. and Cutler, A. (1996). Introduction to archetypal analysis of spatio-temporal dynamics. Physica
D: Nonlinear Phenomena, 96, 110-131.

Su, Z., Hao, Z., Yuan, F., Chen, X. and Cao, Q. (2017). Spatiotemporal variability of extreme summer
precipitation over the Yangtze river basin and the associations with climate patterns. Water, 9.

Theodosiou, T., Kazanidis, 1., Valsamidis, S. and Kontogiannis, S. (2013). Courseware usage archetyping.
In Proceedings of the 17th Panhellenic Conference on Informatics, PCI *13, New York, NY, USA, pp.
243-249. ACM.

Thggersen, J. C., Mgrup, M., Damkier, S., Molin, S. and Jelsbak, L. (2013). Archetypal analysis of diverse
pseudomonas aeruginosa transcriptomes reveals adaptation in cystic fibrosis airways. BMC Bioinformat-
ics, 14, 279.

Thurau, C., Kersting, K., Wahabzada, M. and Bauckhage, C. (2012). Descriptive matrix factorization for
sustainability: Adopting the principle of opposites. Data Mining and Knowledge Discovery, 24, 325~
354.

Tsanousa, A., Laskaris, N. and Angelis, L. (2015). A novel single-trial methodology for studying brain
response variability based on archetypal analysis. Expert Systems with Applications, 42, 8454—-8462.
Unwin, A. (2010). Exploratory data analysis. In P. Peterson, E. Baker, and B. McGaw (Eds.), International

Encyclopedia of Education (Third Edition), pp. 156-161. Oxford: Elsevier.

Vinué, G. (2017). Anthropometry: An R package for analysis of anthropometric data. Journal of Statistical
Software, 77, 1-39.

Vinué, G. and Epifanio, 1. (2017). Archetypoid analysis for sports analytics. Data Mining and Knowledge
Discovery, 31, 1643-16717.

Vinue, G. and Epifanio, I. (2019). Adamethods: Archetypoid Algorithms and Anomaly Detection. R package
version 1.2.

Vinué, G. and Epifanio, I. (2019). Forecasting basketball players’ performance using sparse functional data.
Statistical Analysis and Data Mining: The ASA Data Science Journal, 12, 534-547.

Vinué, G., Epifanio, I. and Alemany, S. (2015). Archetypoids: A new approach to define representative
archetypal data. Computational Statistics & Data Analysis, 87, 102—-115.

Wu, C., Kamar, E. and Horvitz, E. (2016). Clustering for set partitioning with a case study in ridesharing.
In IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), pp. 1384—-1388.






