

Title: Design, implementation and validation of ML
models based on Adversarial Network for generating
synthetic biometric behaviour

Author: Idoia Eizaguirre Peral

Advisor: Pedro Delicado Useros, Francesco Zola

Department: Department of Statistics and Operations
Research

University: Universitat Politècnica de Catalunya –
Universitat de Barcelona

Academic year: 2021-2022

Interuniversity Master
 in Statistics and

Operations Research

UPC-UB

Abstract

Keywords: Keystroke dynamics, Users Behaviour, Conditional Generative Adversarial
Networks

MSC2000: 62M45 - Neural nets and related approaches

Digital security has become crucial in this new era of technology. Behavioral biometrics
have been proved to be a robust user authentication system because it provides continuous
user authentication. In recent years, keystroke dynamics, a type of behavioral biometric,
is gaining popularity in user authentication systems due to the facility of being captured
without any special hardware and an absence of the need for an active response of the
user. However, its popularity has led hackers (and researchers) to investigate more deeply
in how it is possible to fool authentication systems through a presentation attack. A
presentation attack is a way to attack a system by using prank biometrics to impersonate
a user.

To date, there is no literature on synthetic data generation on keystroke dynamics using
Generative Adversarial Networks (GAN), which can be used for replicating presentation
attacks. In this study, we pursue a new approach of keystroke dynamics data generation
using Conditional Generative Adversarial Networks (cGAN), an extension of GANs. To
that aim, two different architectures have been designed, implemented and validated. On
the one hand, a “traditional” Vanilla-cGAN in which both subnetworks, the Generator
(G) and the Discriminator (D), are Artificial Neural Networks (ANN) and on the other
hand, a LSTM-cGAN in which both G and D are Recurrent Neural Networks (RNN) that
make use of Long Short-Term Memory units (LSTM) in order to treat data sequentially.
Two different real use cases have been considered, the first case, in which the attacker
knows exactly the order of the word to be typed for replicating the user behavior, and the
second case, in which the order of the words in the phrase is not known. Such use cases
have been used for implementing and validating the models in real scenarios.

In order to evaluate the data generated by these models, the accuracy of the internal
discriminator (D) has been measured during the training of the models and with a prefixed
stopping criteria. A behavioral classifier trained with real data and based on a Siamese
Network has been used to validate the synthetic behavioral data. This Siamese Network
is trained to detect whether two keystroke dynamics belong to the same user or not.

In what keystroke dynamics data generation concerns, promising results have been ob-
tained with a high performance at impersonating a user. However, the Vanilla-cGAN
required much more training than the LSTM-cGAN to get realistic synthetic data. On
the report of the results, the Vanilla-cGAN performed better than the LSTM-cGAN ac-
cording to the external model. Nevertheless, when the stopping criteria is removed and the
LSTM-cGAN is trained more, it is more successful than the Vanilla-cGAN. Consequently,
if LSTM cells are used to treat keystroke dynamics as sequential data, even more realistic
synthetic data can be obtained. In addition, architectures with LSTM units have shown
to need less training to reach better results.

Abstract

Key words: Dinámica de tecleo, Comportamiento de usuarios, Redes Generativas Ad-
versarias Condicionadas

MSC2000: 62M45 - Redes neuronales y enfoques relacionados

La seguridad digital se ha vuelto crucial en esta nueva era de la tecnoloǵıa. La biometŕıa de
comportamiento ha demostrado ser un sistema de autenticación de usuarios muy robusto
ya que proporciona una autenticación continua de los usuarios. En los últimos años, la
dinámica de tecleo está ganando popularidad en la autenticación de usuarios gracias a
la facilidad a la hora de capturar los datos al no necesitar de ningún tipo de hardware
especial ni respuesta activa del usuario. Sin embargo, su popularidad ha llevado a hackers
(e investigadores) a investigar más detenidamente cómo es posible engañar a los sistemas de
autenticación de usuarios mediante un ataque de presentación. Un ataque de presentación
es una forma de atacar un sistema utilizando biométricos falsos para suplantar la identidad
de otro usuario.

Hasta la fecha, no hay bibliograf́ıa sobre la generación de datos sintéticos de dinámicas de
tecleo mediante Redes Generativas Adversarias (GAN), los cuales pueden ser utilizados
para replicar ataques de presentación. En este estudio, seguimos un enfoque de generación
de datos de dinámica de tecleo utilizando Redes Generativas Adversarias Condicionadas
(cGAN), una extensión de las GANs. Para ello, se han diseñado, implementado y validado
dos arquitecturas distintas. Por una parte, un “tradicional” Vanilla-cGAN en el cual las
dos subredes, el Generador (G) y el Discriminador (D), son Redes Neuronales Artificiales
(ANN), y por otra parte, un LSTM-cGAN en el cual ambos, G y D, son Redes Neu-
ronales Recurrentes (RNN) que utilizan unidades de gran memoria a corto plazo, también
conocidas como LSTM. En este estudio, se han considerado dos casos de uso reales: en
el primero, el atacante sabe exactamente el orden de las palabras que se escriben para
replicar el comportamiento del usuario, en el segundo, el orden de las palabras de la frase
no se conoce. Dichos casos se han utilizado para implementar y validar los modelos en un
contexto real.

Para evaluar los datos generados por estos modelos, durante el entrenamiento, la precisión
del discriminador interno (D) se ha medido con una condición de parada preestablecida.
Por otra parte, se ha entrenado un modelo basado en una Red Siamesa con datos reales
para clasificar comportamientos y validar los datos de comportamiento sintéticos. Esta
Red Siamesa está entrenada para que detecte si dos secuencias de dinámica de tecleo
pertenecen a un mismo usuario o no.

En lo que se refiere a la generación de datos de dinámica de tecleo, se han obtenido
resultados prometedores con un alto rendimiento en imitar a un usuario. A pesar de ello, el
Vanilla-cGAN ha necesitado mucho más entrenamiento que el LSTM-cGAN para obtener
datos realistas. Según los resultados de este estudio, el Vanilla-cGAN genera mejores datos
que el LSTM-cGAN en cuanto al modelo externo. Sin embargo, cuando la condición de
parada se elimina, y el LSTM-cGAN se entrena más, se obtienen mejores resultados que
con el Vanilla-cGAN. En definitiva, si las unidades de LSTM se usan para tratar datos de

i

dinámica de tecleo como datos secuenciales, se pueden obtener datos sintéticos aún más
realistas. Además, las arquitecturas con unidades de LSTM han demostrado necesitar
menos entrenamiento para llegar a mejores resultados.

Abstract

Key words: Dinàmica de tecleig, Comportament dels usuaris, Xarxes Generatives Ad-
versàries Condicionades.

MSC2000: 62M45 - Xarxes Neuronals i enfocaments relacionats

La seguretat digital ha esdevingut de vital importància en aquesta nova era de la tecnolo-
gia. La biometria de comportament ha demostrat ser un sistema d’autenticació d’usuaris
molt robust ja que proporciona una autenticació cont́ınua dels usuaris. Els darrers anys,
la dinàmica de tecleig està guanyant popularitat en l’autenticació d’usuaris gràcies a la
facilitat a l’hora de capturar les dades en no necessitar cap tipus de hardware especial
ni resposta activa de l’usuari. Tanmateix, la seva popularitat ha instigat hackers (i in-
vestigadors) a investigar de forma més profunda com és possible enganyar els sistemes
d’autenticació d’usuaris mitjançant un atac de presentació. Un atac de presentació és una
manera d’atacar un sistema utilitzant biomètrics falsos per suplantar la identitat d’un
altre usuari.

A dia d’avui, no hi ha bibliografia sobre la generació de dades sintètiques de dinàmiques de
tecleig mitjançant Xarxes Generatives Adversàries (GAN), les quals poden ser utilitzades
per replicar atacs de presentació. En aquest estudi, seguim un enfocament de generació
de dades de dinàmica de tecleig utilitzant Xarxes Generatives Adversàries Condicionades
(cGAN), una extensió de les GANs. Amb això, s’han dissenyat, implementat i validat dues
arquitectures diferents. D’una banda, un “tradicional” Vanilla-cGAN en què les dues sub-
xarxes, el Generador (G) i el discriminador (D) són Xarxes Neuronals Artificials (ANN), i
d’altra banda, un LSTM-cGAN en què ambdós, G i D, són Xarxes Neuronals Recurrents
(RNN) que utilitzen unitats de gran memòria a curt termini, també conegudes com a
LSTM. En aquest estudi, s’han considerat dos casos d’ús reals: en el primer, l’atacant sap
exactament l’ordre de les paraules que s’escriuen per replicar el comportament de l’usuari;
en el segon, l’ordre de les paraules de la frase és desconegut. Aquests casos s’han utilitzat
per a implementar i validar els models en un context real.

Per evaluar les dades generades per aquests models, durant l’entrenament, la precisió del
discriminador intern (D) s’ha mesurat amb una condició d’aturada preestablerta. Per
altra banda, s’ha entrenat un model basat en una Xarxa Siamesa amb dades reals per
a classificar comportaments i validar les dades de comportament sintètiques. Aquesta
Xarxa Siamesa està entrenada per a que detecti si dues seqüències de dinàmica de tecleig
pertanyen a un mateix usuari o no.

Pel que fa a la generació de dades de dinàmica de tecleig, s’han obtingut resultats prom-
etedors amb un alt rendiment en imitar a un usuari. Malgrat això, el Vanilla-cGAN ha
necessitat molt més entrenament que el LSTM-cGAN per obtenir dades realistes. Segons
els resultats d’aquest estudi, el Vanilla-cGAN genera millors dades que el LSTM-cGAN
pel que fa al model extern. Tanmateix, quan la condició d’aturada s’elimina, i el LSTM-
cGAN s’entrena més, s’obtenen millors resultats que amb el Vanilla-cGAN. En definitiva,
si les unitats de LSTM s’usen per a tractar dades de dinàmica de tecleig com a dades
seqüencials, es poden obtenir dades sintètiques encara més realistes. A més a més, les

i

arquitectures amb unitats de LSTM han demostrat necessitar menys entrenament per
arribar a millors resultats.

Aknowledgements

First of all, I would like to thank my advisor Francesco Zola for guiding me during
the whole project at Vicomtech and for his help, motivation and support, you have
incredibly helped me in this successful learning process. Also, I would like thank
my director Pedro Delicado from university for his support, advice, for trusting me
and for his help with my Catalan skills.

Next, special words for my friend and classmate Leire Agirretxe who has supported
me in the last six years me throughout my university career. Same to my parents,
to the investment they have made to give me the best for my professional career.

Last but not least, I am really really grateful for my colleagues at my department
V5 at Vicomtech, thanks for welcoming me with open arms, making me feel part
of you from day one, helping me so much with any inconvenience I could have had
and showing me the best tortilla de patatas I have ever tried. Additionally, thanks
to Vicomtech for giving me an opportunity to work on this project and providing
all the equipment I needed.

Thank you.

ii

Contents

Aknowledgements ii

List of Figures v

List of Tables vi

Chapter 1. Introduction 1
Vicomtech 3

Chapter 2. Preliminaries 4
2.1. Presentation attack 4
2.2. Artificial Neural Networks 5

2.2.1. Recurrent Neural Networks (RNN) 8
2.2.2. Long Short-Term Memory unit (LSTM) 9

2.3. Generative Adversarial Network 10
2.3.1. Most common unstable adversarial models 13
2.3.2. Tips and tricks to train a stable GAN 16

2.4. Conditional Generative Adversarial Network (cGAN) 17
2.5. Embeddings 18
2.6. Keystroke dynamics 19

2.6.1. TypeNet 20

Chapter 3. Experimental Design 22
3.1. Context 22
3.2. Data 24
3.3. The Models 26

3.3.1. Conditional Vanilla-GAN 27
3.3.2. Conditional LSTM-GAN 28
3.3.3. Optimizers 29

3.4. Use cases 29
3.4.1. Use case 1 29
3.4.2. Use case 2 30

3.5. Metrics 31
3.6. Validation 32

3.6.1. First validation 32
3.6.2. Second validation 33

3.7. System architecture 34

iii

CONTENTS iv

Chapter 4. Analysis 35
4.1. Data preprocessing 35
4.2. Results 36

4.2.1. Summary 40
4.3. Discussion and future work 41

Chapter 5. Conclusion 42

References 44

Statement of independent work 47

List of Figures

1 Types of attacks to a Biometric system 4

2 A Neural Network with one hidden layer. 6

3 Recurrent Neural Network 8

4 LSTM cell visualization 11

5 General Adversarial Network (GAN). 12

6 Example of non convergence in training a GAN. 14

7 Example of mode collapse in training a GAN. In this particular case,
the model has been trained for 60,000 epochs, the x axis of the plot
corresponds to the number of epochs. 15

8 Conditional Generative Adversarial Network 18

9 Keystroke dynamics times representation. 20

10 TypeNet architecture. 21

11 Use case 1. 23

12 Use case 2. 23

13 Keycode frequencies of Alice (Participant ID = 100182). 25

14 Word length frequencies of Alice (Participant ID = 100182). 27

15 Architecture of the Vanilla-cGAN. 28

16 Architecture of the Conditional LSTM-GAN. 29

17 Example of generation and reconstruction of a sequence in use case 1. 30

18 Ilustration for the three tests in the second validation approach. 33

19 Side-by-side barplot with accuracies of the Vanilla-GAN, the LSTM-cGAN
and the LSTM-cGAN 2 for each repetition in use case 1. 37

20 Side-by-side barplot with accuracies of the Vanilla-GAN, the LSTM-cGAN
and the LSTM-cGAN 2 for each repetition in use case 2. 38

v

List of Tables

1 Statistics of keystroke dynamics times of the user Participant ID = 100182 25

2 Confusion matrix of the estimated and observed values depending on the
threshold c. 31

3 Accuracy of the classification of TypeNet for the generated data in use
case 1. 38

4 Accuracy of the classification of TypeNet for the generated data in use
case 2. 38

5 Recall, precision and F1 score values for the three models in use case 1. 39

6 Recall, precision and F1 score values for the three models in use case 2. 39

vi

Chapter 1

Introduction

In the last decade, with the development of technology and Internet communication,
cybersecurity has become crucial for data protection and more and more security
methods have arisen for user security, privacy and data protection. Therefore, cyber
attackers have also grown significantly, and hence, cyber attacks have become more
difficult to detect, face and protect users from.

In this new era, there are millions of users that continuously store personal and
intransferable information in the cloud. This progress leads to the need of a user
authentication system to enable users access information. The first steps of user
authentication were given in the 1960s with the first PIN codes and passwords.
However, this authentication has become outdated and with almost every computer
it is possible to guess any password in a few hours.

Digital Security is the area that studies the protection of some internet account and
files from an attack. Nowadays, internet users make use of security systems in their
computers to keep them safe when navigating in the cloud. For businesses, this
security is incredibly important because they store important and intransferable
information about personal data, behavioural data, financial data etc.

Digital Security refers to a wide range of techniques and processes that are used to
protect users from data subtraction, important information theft or cyber attacks.
As it is a constantly evolving area, it is necessary to be always updated. However,
the biggest threat of a digital security system is the cybercrime. Cybercrime hap-
pens when hackers can access and steal information about people or organizations
and try to make profit of it. To face this problem, in the last years it has been
proved that biometry is a robust mechanism against these type of attacks.

Biometry refers to the measurement taking of living beings or biological processes.
The area of research that studies biometry for the unequivocal recognition of people
based on one or more features is called biometrics. As mentioned above, biometry is
used to register and authenticate users. The main advantage of using it to register
and authenticate system users is its universality (all users have), singularity (each

1

1. INTRODUCTION 2

user has its own), permanence in time and context and being measurable quan-
titatively. When registering a user, first, the measurements have to be captured,
then, processed, and last, recorded in some adequate storage unit. To authenticate
a user, that is, to verify its identity, first, the user has to be identified to see if the
system recognizes the user, and then, the system, by means of biometry, needs to
verify that the measurements correspond to the user that is requesting access.

There are several biometric measurements that can be used to authenticate users.
These measurements are divided in two groups, on the one hand, there are tech-
nologies that use physiological biometrics such as face, iris, fingerprint recogni-
tion [1], [2], [3]. On the other hand, there are technologies that use behavioral
biometrics like signature, voice, way of walking and keyboard typing among oth-
ers [4] [5] [6].

Biometrics have come to be a impressively secure authentication system. Thanks
to the development of artificial intelligence and machine learning, the use of finger-
prints, face recognition and iris recognition are very popular user authentication
techniques nowadays. On the contrary, voice recognition and specially keystroke
dynamics, are not as popular as the techniques mentioned before but they can lead
to promising results in what continuous user authentication systems concern. In
this project, behavioural biometrics will be studied, particularly, keystroke dynam-
ics.

Keystroke dynamics refer to how a user types on a keyboard. The rhythm, the
speed, the common mistakes and the time spent pressing each key can be used for
authentication. It is thought that each user has its own typing ID and it can be very
difficult to immitate by another user or by a robot. Keystroke dynamics research
is divided into two groups: fixed-text (a fixed input is expected, it is previously
known what the user will write) and free-text (the user decides what to write,
input is unknown) dynamics. Almost all the literature until the moment has been
made with fixed text and to the best of our knowledge, free-text dynamics have not
been studied at large scale yet.

In order to study keystroke dynamics, most studies use different models from SVM
(Support Vector Machines) and MLP (MultiLayer Perceptrons) to RNN (Recurrent
Neural Networks) models from machine learning. However, such models try to di-
rectly classify keystroke dynamics of each user. Nevertheless, in this study, our idea
is to learn these user behavioural patterns for implementing a Presentation Attack.
This kind of attack represents an important risk in biometrics authentication, since
it allows hackers to impersonate “genuine” users. In this work, we will implement
the keystroke presentation attack using Generative Adversarial Networks (GAN)
introduced by Ian Goodfellow in 2014.

VICOMTECH 3

Vicomtech

The center in which this project has been developed is called Vicomtech1, a non
profit foundation with approximately 175 workers in which 4 out of 10 have a
doctor’s degree. Vicomtech is divided into 7 departments: Industry and Advanced
Manufacturing, Intelligent Transport Systems and Engineering, Digital Health and
Biomedical Technologies, Data Intelligence for Energy and Industrial Processes,
Speech and Natural Language Technolgies, Digital Media and Digital Security.
The mission of the foundation is to respond to the needs of Applied Research,
Development and Innovation in Information Technology.

This work has been done in the Digital Security department in which there are two
technological guidelines: Detection&Response and Protection&Trust. In particu-
lar, this work is related to the second technological guideline (Protection&Trust).
More concretely, this study is supported by the EGIDA project, a national project
funded by the CERVERA network of national excellence for information privacy
technology research. Its purpose is to use the records of the actions that are cap-
tured from a person to verify their identity or detect attempts to impersonate them.
Therefore this project, if needed, it can be later used to integrate it in some other
project.

1https://www.vicomtech.org/es/

https://www.vicomtech.org/es/

Chapter 2

Preliminaries

2.1. Presentation attack

In the last decade, user authentication has had a huge development and today,
it is much more than password verification [7]. Nowadays, biometrics are used
for user authentication in very diverse areas like banking, military access control,
smartphones and many more [8], [9]. Biometric techniques that are being used
for authentication are face, fingerprint, iris, voice, keystroke dynamics recognition
among others. These techniques based on physical and behavioural measurements
are proved to be more secure than conventional authentication with PIN codes and
passwords. [10]. However, there are various ways to attack a biometric system.
Presentation attack (PA) is a way to attack a system by using spoof biometrics to
impersonate a genuine user (see Figure 1). [11].

Biometric
sensor

Feature
Extractor Comparator Decision

Stored
database

Presentation
Attack

Modify sample

Disallow Feature
Extractor

Modify
examination

Disallow
Comparator

Modify Score

Modify
database

Modify Biometric
Reference

Reverse
Decision

Fig. 1. Types of attacks to a Biometric system

A presentation attack tries to impersonate or obfuscate (hide the user’s identity) a
user that is authorized to access to the system. These presentation attacks are very
common, for example, for a face recognition system the attack can be performed
by using makeup [12], a mask, a picture or a video of the victim. In the case
of fingerprint recognition, a silicon finger or a fingerprint stamp can be recreated

4

2.2. ARTIFICIAL NEURAL NETWORKS 5

to try to trick the system [13]. For voice and keystroke dynamics presentation
attacks, synthetic data can be used to impersonate the victim. All these tools used
for presentation attack are called Presentation Attack Instruments (PAI) [7].

The techniques developed for mitigating presentation attacks are called Presenta-
tion Attack Detection (PAD). PAD systems proceed as follows: first, they identify
whether the input is real or fake; then, if the system detects that the input is a
presentation attack, access is rejected, and if not, the authentication of the user
starts. To authenticate a user, the system verifies that the user is registered. If
the user’s identity is verified, access is accepted, on the contrary, access is denied.
Researchers have developed many techniques to develop PAD systems, however,
according to Abdullakutty et al. [7], it is not possible to know in advance all the
attacks that can be performed to an authentication system.

For what concerns PAD in keystroke dynamics, Stefal et al. [14] studied the robust-
ness of keystroke dynamics authentication against synthetic falsification attacks by
means of a Principal Component Analysis (PCA), SVM, Markov Chains and a re-
mote biometric authentication system called TUBA. However, according to Hazan
et al. [15], keystroke dynamics do not help preventing replay attack, a type of at-
tack that consists of collecting data and resending it to try to spoof the system by
impersonating a user. On the contrary, Yu et al. [16] argued that keystroke be-
havioural biometrics is a feasible method to increase in user authentication system
fiability. They obtained promising results when resolving the limitations of a neural
network approach that Cho et al. proposed [17]. To that end, they used SVM, an
extension of these using Genetic Algorithms (GA) and an ensemble creation.

In this project, we propose a new approach to generating keystroke dynamic be-
haviour to provoke presentation attacks. For the best of our knowledge, this is the
first approach for generating keystroke biometric behaviour in an adversarial way.

2.2. Artificial Neural Networks

Artificial neural networks, also known as Neural Networks (ANN) are computa-
tional models that are able to reproduce and model nonlinear processes or be-
haviours. The idea of ANNs began in the 1950s when some researchers wanted
to simulate brain behaviour. They belong to deep learning, a subfield of machine
learning composed of several algorithms that try to model highly abstract data by
means of multiple nonlinear transformations [18].

Artificial neural networks are composed of layers: an input layer, one or more
hidden layers and an output layer. Each layer is formed by neurons (see figure
2) which combine their inputs in order to return an output. The architecture of
ANNs can be changed by the user and it can be specified according to the problem
to be addressed. In particular, the user can specify the number of hidden layers,
the number of neurons at each layer, the activation function used by each layer, as
well as the number of input and output neurons. The aim of ANNs is to obtain the

2.2. ARTIFICIAL NEURAL NETWORKS 6

optimal weight values for each neuron in order to minimize a loss function which
will help the model learn nonlinear behaviours of data.

Let us define an ANN with one hidden layer and j neurons that form this layer. At
each neuron, information is received and after transforming it with some operations
an output is returned. This transformation has three steps. First, the inputs
xi ∀i ∈ {1, ..., n} from the input layer are multiplied by their corresponding weight
wij ∈ θ. Second, they are combined lineally with a transfer function and a bias
or intercept x0, then,

∑n
i=0 wijxi. Last, the transformed output is once again

transformed by an activation function f and the output of the neuron is obtained,
that is, f (

∑n
i=0 wijxi).

Activation functions, are functions that help transform the output of the trans-
fer function to some restricted space. The most common activation functions
are Rectified Linear Unit (ReLU) f(z) = max{0, z} ∈ [0,∞), the sigmoid func-
tion (sigmoid) f(z) = 1

1+e−z ∈ (0, 1), the hyperbolic tangent function (tanh)

f(z) = ez−e−z

ez+e−z ∈ (−1, 1) and the linear function (linear) f(z) = z ∈ (−∞,∞).
However, general recommendation is to use the ReLU activation function due to
its properties that help optimize neural networks with methods based on gradi-
ent computation. Note that the derivative of the sigmoid and the tanh activation
functions can be computed by the functions themselves.

···Input
layer

x 1 x 2 x n

Hidden
layer

Output
layer

···

Fig. 2. A Neural Network with one hidden layer.

To optimize the model, the optimal weights need to be computed. These weights are
obtained by minimizing a previously fixed loss function that evaluates the prediction
error of the whole network. There are some commonly used loss functions already
implemented in literature. For binary classification, one of the most common used
techniques is the Binary Crossentropy. This loss function, also known as Log Loss,
is the one used later in this work and is defined as follows:

Lp(θ) = − 1

n

n∑
i=1

yilog(pθ(xi)) + (1− yi)log(1− pθ(xi))

2.2. ARTIFICIAL NEURAL NETWORKS 7

where y is each observed label and pθ(y) is the predicted label for all n observa-
tions that depend on the estimated weights wij ∈ θ. Note that the value of the
loss function increases when the observed label and the predicted label for each ob-
servation differ a lot and decreases when observed and predicted labels are similar.
Then, when minimizing this function, the similarity between the observed and the
predicted labels is maximized.

To minimize the loss function, when the number of weights to optimize is large, the
Stochastic Gradient Descent algorithm introduced by Cauchy in 1847 is commonly
used [19].

This iterative method lies on the fact that the function to minimize is differentiable.
Therefore, the partial derivatives with respect to the parameters to optimize can be
computed. Let θ ∈ Rp be the vector of the weights to optimize. At each iteration,
the algorithm computes a new point by giving a step towards the optimum point
as follows:

(1) θk+1 = θk + αkδk

where α is the step-length or learning rate, δ is the direction of movement and k
is the iteration number. The direction of movement is obtained from the gradient
of the function to minimize, in this case, the loss function Lp(θ). Note that this
gradient measures the change in the output if the input changes slightly.

Then, at each iteration, the partial derivatives of the loss function with respect
to each element in the parameter vector θ need to be computed ∂

∂wj
Lp(θ) ∀j ∈

{1, ..., p}. The initial values of these weights are usually randomly chosen by means
of a uniform distribution and the biases are initially set to 0.

To compute the direction of movement of each iteration, i.e. the gradient of the loss
function, the backpropagation algorithm is used. As mentioned before, this algo-
rithm computes the gradient of the loss function of the neural network with respect
to the weights in all the previous layer’s neurons in order to minimize the predicted
error. This method works by computing the partial derivatives with respect to each
weight by applying the chain rule. The most important fact of this method is that
calculations are computed effectively to avoid repeated calculations and computing
unecessary intermediate derivatives between hidden layers. In addition, the back-
propagation algorithm can be written in terms of matrix multiplication and this
fact fastens the computation of the new weights.

The Stochastic Gradient Descent algorithm’s rate of convergence is linear, hence, it
is a slow optimization algorithm. However, researchers have developed extensions
of this method to speed up convergence that consist of adapting the step-length or
learning rate as convenience, Adagrad, RMSProp and Adam among others ([20],
[21] and [22]). The last optimizer is the one used in this work.

2.2. ARTIFICIAL NEURAL NETWORKS 8

Training an ANN might not be trivial. The number of hidden layers, the number
of neurons at each layer and the activation functions are a personal choice and the
architecture is specific to each problem. Training is done by epochs, a term used
in machine learning that makes reference to the number of passes that have been
completed using the whole dataset for updating the model’s weights. Epochs are
divided into batches, subsets of the dataset of a fixed size. It is important to take
into account that a very deep ANN can achieve better results but training will be
hard due to the difficulties when optimizing the weights. However, according to the
Universal Approximation Theorem of Neural Networks [23], almost any function
can be represented by a Neural Network.

In what applications of ANNs concern, they have been implemented and successfully
used in very diverse areas. ANNs have been used in cancer diagnosis [24], malware
detection in Android apps [25], solving partial differential equations [26] and game
playing [27].

ANNs try to predict an output value by analyzing its input information, however,
they do not consider the temporality of the input data. What is more, ANNs do
not mix information between executions, that is, they do not remember anything
about previous executions. To face the limitations of ANNs, researchers developed
the Recurrent Neural Networks (RNN).

2.2.1. Recurrent Neural Networks (RNN). Recurrent Neural Networks are
another type of algorithm from deep learning that is characterized by treating
sequential data efficiently. This efficiency is due to an internal memory unit that
stores information about previous outputs and uses them as input. They are able
to treat long sequences element-wise. With the rise of deep learning models, RNNs
have become very important to analyze sequential data like time series [28] and text
or speech data [29] among others. For example, they are used in voice recognition
from large companies like Google Translate and Apple with Siri.

···Input
layer

x 1 x 2 x n

Hidden
layer

Output
layer

···

Fig. 3. Recurrent Neural Network

2.2. ARTIFICIAL NEURAL NETWORKS 9

RNNs can be very accurate when making predictions about what is coming next in a
sequence because, thanks to their internal memory, they store relevant information
about previous inputs. As shown in Figure 3, these networks have got two inputs:
the current input of the previous layer (black arrows) and the information about
previous inputs (red arrows).

Training a RNN can be expensive because each neuron takes the elements from the
input sequence element by element. This process can be simplified by unrolling the
network in as many layers as time steps. The longer the temporal sequence the
more layers are needed to unroll the network. As a consecuence, when optimizing
the weights of the network using backpropagation, depending on the number of
time steps the method can become very expensive and time consuming.

As explained previously in Section 2.2, to optimize weights, the gradient of the loss
function is needed. If the values of the gradients decrease until they become very
small, the network stops learning because the values of the weights do not move
towards the optimum values. This problem is called the vanishing gradient prob-
lem. It consists of having problems when retaining the learned information from
previous steps. When using backpropagation, at each neuron, the gradient must
be computed to calibrate the internal weights according to Equation 1. However, if
the calibrations are too small the next calibrations will be even smaller and there-
fore the gradient will reduce exponentially leading to a decrease in the long-term
memory of the network.

To avoid the problem of the vanishing gradient, mechanisms known as Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) can be used. LSTMs
and GRUs use a memory cell to store information from previous elements from the
sequences.

2.2.2. Long Short-Term Memory unit (LSTM). LSTMs were presented by
Hochreiter et al. in 1997 [30] in order to face the problem of the vanishing gradient
efficiently. This gradient based method, uses gates which control the flow of infor-
mation in the network. A gate is defined as a barrier that controls the entrance to a
separated space, therefore, in this context, a gate is a threshold that decides when
to store or discard information for the next layers. These gates select important in-
formation from each input and store it in the memory cell to later make predictions
that take into account information form previous time steps in the sequence.

As mentioned above, the main advantage of LSTM units is that the relevant infor-
mation from previous inputs from the sequence is stored and used once and again
for prediction. To that end, the LSTM cells have a cell state and a hidden state,
the part of the LSTM units that are in charge of storing the information, which are
updated at each time step of the sequence and decide which information should be
saved and which forgotten. The number of sequential LSTM cells can be fixed by
the user.

2.3. GENERATIVE ADVERSARIAL NETWORK 10

The cell state and hidden state contain the information from previous inputs and
at each time step it is joined with the input of that time step and they are updated
by pointwise multiplication and addition (element-wise reduction of two vectors in
one by multplying or adding respectively), sigmoid activation function and tanh
activation function.

At each LSTM cell, that is, at each time step, the information passes throughout
three gates: the forget gate, the input gate and the output gate, see Figure 4.

(1) Forget gate: The input from the corresponding time step joined with the infor-
mation in the hidden state is transformed by means of the sigmoid activation
function. In this gate, stored information from previous time steps is filtered
in order to only save relevant information and discard the rest.

(2) Input gate: The main aim of this gate is to update the information from the
cell state. It filters the information from the combination of the input and the
hidden state using the sigmoid and the tanh activation function separately
and combines the results by means of the pointwise multiplication. Last,
the output of the pointwise multiplication is used to update the information
coming from the cell state using the pointwise addition.

(3) Output gate: It decides which information will be taken to the hidden state
of the next LSTM cell. To that end, on the one hand, the combined infor-
mation from the hidden state and the input is once again filtered using the
sigmoid activation function. On the other hand, the recently updated cell
state is transformed by means of the tanh activation function. Last, both out-
puts are used to obtain the updated hidden state by means of the pointwise
multiplication.

LSTM cells avoid the vanishing gradient to occur because they avoid the gradient of
the loss function being flat and hence the weights will be updated at every iteration
of the weight optimization process.

Since they were presented in 1997, LSTMs have been used in many studies, such
as in flood forecasting [31] and in language modelling [32] among others.

2.3. Generative Adversarial Network

Generative Adversarial Networks (GAN) are a type of generative modelling from
deep learning introduced by Ian Goodfellow [33]. They make use of two Neural
Networks that compete with each other during their training: the generator (G)
and the discriminator (D). The idea is that, through this adversarial training, both
networks improve their performances. The generator’s aim is to generate synthetic
data departing from normally distributed random noise (z), that is, G(z) = p(x),
whereas the discriminator needs to be trained in order to distinguish between real
or generated (synthetic) samples (x) (see Figure 5). These networks play a zero-
sum or min-max game, that is, the two networks play an adversarial game, one
looses when the other wins and the other way round. However, the aim of GANs is

2.3. GENERATIVE ADVERSARIAL NETWORK 11

LSTM LSTM LSTM ···LSTM LSTM

Cell state

Hidden
state

Cell state

Hidden
state

Input

X

S

+

X

TS

X

S

T
X

Cell state

Hidden
state

Input

Forget
gate

Input
gate

Output
gate

T

S

+

Pointwise
multiplication
Pointwise
addition

Sigmoid activation

Hyperbolic tangent
activation

Fig. 4. LSTM cell visualization

to generate synthetic data, by modelling the distribution of the training data and
generating new fake samples with a similar distribution.

For generative models, specifically for GANs, the training aim is to reach an equi-
librium in the min-max game. This equilibrium, often called Nash equilibrium [34],
means the whole network is stable, not the discriminator nor the generator wins
the game or learns more than the other.

(2) min
G∈G

max
D∈D

F (G,D), where F ∈ C1

Due to the difficulty of training GANs, it was thought that GANs may not always
reach such equilibrium and Farnia et al. have recently obtained theoretical and
numerical results that prove this thought [35]. In their paper, they propose a new
approach, called proximal equilibrium to solve this problem which is based on an
extension of GANs known as Wasserstein GAN.

Apart from the previously mentioned non-convergence problem, training a GAN
may also result in mode collapse [36]. Mode collapse consists of having a generator
that generates a subset of all possible outputs. This problem lies on the fact that
the generator is unable to focus on the whole data distribution and considers only
part of it. Finally, the vanishing gradient problem, as its name suggests, occurs
when during an optimization of the weights from some model, the value of the
gradient gets smaller and smaller and consequently the weights cannot be updated

2.3. GENERATIVE ADVERSARIAL NETWORK 12

R
eal/fake sam

ple (x)R
andom

 noise (z)

GENERATOR

DISCRIMINATOR

Training
data

R
eal sam

ples (x)
G

enerated fake
sam

ples (p(x))

R
eal or Fake

Fig. 5. General Adversarial Network (GAN).

to reach the optimum value. All these common GAN problems are summarized
in [37].

GANs are widely used to create or generate new samples of data that are as re-
alistic as the samples in the original dataset. Since this new framework was pro-
posed, GANs have been used for very diverse applications and due to the difficulty
when training, many extensions of GANs have been developed. They have been
used for image creation [38] by means of Deep Convolutional Generative Adver-
sarial Networks (DCGAN), data augmentation using Vanilla-GANs [39], image-
to-image translation by means of Conditional Generative Adversarial Networks
(cGAN) [40] and CycleGANs [41], melody generation from lyrics with Conditional
LSTM-GANs [42]. What is more, in 2016, Zhang et al. proposed the StackGAN,
another extension of GANs that transforms text descriptions to realistic images. In
2017, Karras et al. proposed a new methodology for GANs to improve in training
stability and speed it up by means of a Progressive Growing of GANs [43].

In the last years, new GAN extensions have been also used to generate synthetic
sequential data. In 2017, Esteban et al. proposed the Recurrent GAN and the
Recurrent Conditional GAN to generate synthetic multi-dimensional time series
[44]. The same year, Press et al. used the same GAN extension for language
generation with Recurrent GANs that had one GRU layer [45]. In 2019, Mogren
et al. proposed a way to train RNNs in an adversarial way to generate music that
sounded better as the model was trained [46]. Among these GAN structures, in
this study, we implement the Conditional GAN (or cGAN).

2.3. GENERATIVE ADVERSARIAL NETWORK 13

2.3.1. Most common unstable adversarial models. In the previous section
the generative adversarial networks that have been trained have been explained
in detail. However, as previously mentioned in section 2.3, training generative
adversarial networks can be very difficult because convergence or stability might
not always be reached. Note that during the training of GANs, both the generator
and the discriminator compete against each other to optimize their weights and
minimize the loss function. Up to date, there is no literature about any correlation
between the loss of the discriminator or the loss of the generator with whether the
GAN game is learning to produce realistic samples or not.

The failure of this training procedure can be due to different causes. However, in
what solutions concern, there is no universal rule that fits every model. According
to Ian Goodfellow [37], the tips that are given to solve GAN training problems can
be useful for some and harmful for other models. In this section, the three most
common problems of training stability will be explained.

1. Convergence failure. The failure of convergence is probably the most common
failure type when training a GAN. This failure occurs when the generator and
the discriminator do not find an equilibrium and the loss of one of them (usu-
ally discriminator’s loss) decreases towards zero and the other increases nonstop
throughout training.

This problem happens when the generator is not able to learn and simulate the
training data distribution. The generator generates synthetic samples that can eas-
ily be detected as generated by the discriminator and consequently, discriminator’s
loss falls to zero. However, non convergence can also happen when the generator’s
loss falls to zero. This means that the generator is fooling the discriminator too
easily by generating garbage samples. This non convergence problem might occur
at any moment of the training process, however, it usually happens at the beginning
of the training and continues diverging until some stopping criteria is satisfied.

Convergence failure might occur because of many different reasons such as, the
model architecture is not able to learn the data distribution or the optimizer is too
agressive (learning rate of one or both optimizers is too high).

Looking at Figure 6, we can observe that at first it seems that the GAN is converg-
ing, but when the training reaches epoch 4000 (note that during training, this plot
has been updated every 50 epoch, hence, epoch 4000 is on the value 2000 of the axis
of abscissas) we can observe that the generator’s loss starts to increase nonstop and
the accuracy of the discriminator is very high for both real and fake samples. In
addition, it can be observed that the discriminator’s loss is almost zero throughout
the whole training process. Therefore, we can conclude that the generator is not
generating realistic samples to fool the discriminator.

In what the architecture details of the GAN trained in Figure 6 concern, it is im-
portant to outline that this model differs on the final model in various aspects.
Alike the architecture of the LSTM-cGAN (see Figure 16), the generator and the

2.3. GENERATIVE ADVERSARIAL NETWORK 14

discriminator have both two LSTM layers with 400 units each and tanh activation
function. However, the example presented in this section, has got a dropout layer
(rate of 0.4) between the two LSTM layers, the last layer of the generator has got
1575 units instead of 75. In addition, the random noise vector input of the gener-
ator receives an array with dimension 50 and it’s distribution follows a standard
normal distribution. It is important to outline that in this approach, the output of
the generator has not the same dimension as the final model. This is due to the at-
tempt to generate the typing times along with the KEYCODE and the introduced
character embedding. Therefore, in this case, the shape of the generated samples
is (15, 105).

Loss functions and
accuracy of the discriminator

Fig. 6. Example of non convergence in training a GAN.

2. Mode collapse. Sometimes, the generator manages to prank the discriminator by
generating realistic samples of a subset of all posible samples. Then, the discrimina-
tor is fooled and it seems that the adversarial network has reached an equilibrium,
however, the generator is not capable of considering the whole data distribution.
According to the tutorial presented by Ian Goodfellow in 2016 [37], “mode collapse,
also known as the scenario, is a problem that occurs when the generator learns to
map several different input z values to the same output point”.

In order to realize that the training is on mode collapse the loss of the subnetworks
in the model can be observed, specially the generator’s loss. If throughout training
time the generator’s loss makes jumps or waves, it might mean that it is generating
once and again a subset of realistic samples that have different loss values. As the
majority of the literature for GANs generates images, another option to visualize if
the model has this limitation is to generate a large sample of generated samples and
observe whether there is a low variety of different samples or not. Note that in this
project, as the generated samples are not samples that can be visually evaluated,
in order to identify mode collapse, the plots of the subnetworks’ losses are needed.

2.3. GENERATIVE ADVERSARIAL NETWORK 15

A factible solution for mode collapse is increasing the latent dimension, that is,
increasing the dimension of the random noise vector in the generator’s input. Mode
collapse might occur because the model cannot generate a wide variety of different
samples with a random noise input with a small dimension.

Loss functions and
accuracy of the discriminator

Fig. 7. Example of mode collapse in training a GAN. In this par-
ticular case, the model has been trained for 60,000 epochs, the x
axis of the plot corresponds to the number of epochs.

Looking at Figure 7, we can observe that the behaviour of the generator’s loss
function is quite meaningful. It can be observed that the loss of the generator falls
down rapidly quite often and then, returns to a higher loss. Whenever the loss
of the discriminator increases and the accuracy of the discriminator decreases, the
generator’s loss decreases momentarily.

In what the architecture details of the presented example concern, this model is
similar to the non convergence example presented in the previous failure example.
It also has a dropout layer (rate of 0.4) between the two LSTM layers both in the
generator and the discriminator with 400 units and tanh activation function. On
the contrary, the generator receives 100 dimensional input vectors for random noise
and the last layer in the generator is a dense layer with 42 units. Note that the
output shape of the generator in this case is (14, 3). This difference is based on the
fact that, during the first attempts to build the final model, only 2 typing times
were considered. Hence, the Conditional LSTM-GAN from this example generated
sequences with 14 keystrokes with three features each, KEYCODE, HL and IL.

3. Vanishing gradients. In this section, the vanishing gradient problem is explained.
Sometimes, the architecture of the discrimininator is optimal or too good, then the
gradient value in the backpropagation is very low and the generator learns very
slowly or even it does not learn anymore. If this occurs, then the weights of the
layers in the generator do not change at all during training, and hence, equilibrium
is not reached because the generator cannot learn to fool the discriminator.

2.3. GENERATIVE ADVERSARIAL NETWORK 16

Usually, in order to detect the vanishing gradient problem it can be very useful to
check the weights. If the weights are decreasing to zero, then the gradient can be
vanishing. Also, it can be useful to chech if the loss function’s are constant. If
so, it might be a sign of vanishing gradient because subnetworks are not learning
anymore.

In order to solve this vanishing gradient problem, according to the recommendations
made by Ian Goodfellow [37], the activation functions can be changed, or the loss
function can be changed. There are two loss function changes that are commonly
used when dealing with the vanishing gradient which are the Wasserstein loss and
the modified minimax loss, both designed to deal with the vanishing gradient.

2.3.2. Tips and tricks to train a stable GAN. According to Soumith Chin-
tala (AI researcher at Facebook) and Ian Goodfellow (ML director at Apple), there
are some tips and tricks that can be used to solve the most common GAN training
problems. They number several changes that can be made to the model in order to
increase the chances to reach nash equilibrium. Among others, they mention the
tips listed below. However, it is important to outline, these points are only recom-
mendations that might not work for every model and do not have any theoretical
proved background.

• Normalize inputs: Normalize inputs before giving samples to the discriminator
between −1 and 1 and use tanh in the generator’s output layer. To normalize
the inputs, it is enough to substract the mean and divide by the standard
deviation.

• Flip the target labels. During training, the labels in the discriminator for real
samples are 1, and 0 for the synthetic samples. However, to train the generator
it is recommended to flip the target of the generated samples, that is, to train
the discriminator with a batch of generated samples with label 1.
• Use spherical random noise. To generate random noise input for the genera-

tor, generate random samples of a normal distribution instead of a random
uniform distribution.
• Train with batches. When training the discriminator, do not mix generated

and real samples. It is recommended to train the discriminator with a whole
batch of samples from the same group (real or synthetic).
• Avoid sparse gradients. Use softer activation functions such as LeakyReLu

instead of ReLu or MaxPool.
• Use soft or noisy labels. When training the discriminator, instead of using 0

and 1 for synthetic and real samples, use some random value between [0, 0.1]
and [0.9, 1], and occasionally, flip the label values. This change neither will
mislead the discriminator nor decrease discriminator’s accuracy (it will only
decrease the confidence of the discriminator).
• Use Adam optimizer. According to Radford et al. [38] the most popular and

stable optimizer for GANs is Adam with a learning rate of 0.002 and the rest
of the parameters in their default value.
• Different learning rates. Use a larger learning rate (step-length) for the dis-

criminator than for the generator, for example a step-length of 0.0004 for the
discriminator and 0.0001 for the generator.

2.4. CONDITIONAL GENERATIVE ADVERSARIAL NETWORK (CGAN) 17

• Do not balance depending on loss values. It is not recommended to try to
invent some heuristics that train the discriminator or the generator depending
on which of them has got the highest loss value to try to reach an equilibrium.
• If possible, use labels. Conditional GANs are demonstrated to be more stable

(Section 2.4). They use some extra information that can be a class label, or
for text data, an embedding. If embeddings are used, it is recommended on
the one hand, that both the generator and the discriminator share the same
embedding, and on the other hand, to keep dimensionality of the embeddings
low.
• Track failure early. Usually if discriminator’s loss decreases to zero, the norm

of the gradient is too big (bigger than 100 for example) or the generator’s
loss decreases too fast, it probably means that the GAN is not stable or will
not converge. Usually the discriminator’s loss function has got lower variance
when the GAN is training properly and it decreases with epochs.

2.4. Conditional Generative Adversarial Network
(cGAN)

Conditional Generative Adversarial Networks (cGAN) are an extension of the GANs
presented by Mehdi Mirza in 2014, [47]. The main difference is that cGANs can
generate data from a previously specified category or class. In contrast with GANs,
the user has control of the type of data that will be obtained from the generation
process. Consequently, cGANs are, according to Mirza et al., the most influential
GAN innovation for targeted data generation.

The generator in cGANs has got two inputs: random noise (z) and the extra
information (y) that will condition the generated sample (see Figure 8). This
condition can be a class label, a numerical value or an embedding vector. Therefore,
the generator will try to generate samples from the corresponding data distribution
of that class, that is, G(z, y) = p(x|y) where the function p represents the generated
probability distribution of the synthetic data.

The discriminator also receives two inputs: real (x, y) or generated data samples
and their corresponding additional information that matches the sample (p(x|y), y).
The discriminator will learn to decide whether the given pair (sample and label) is
a matching real sample or has been artificially generated by the generator. Hence,
the discriminator returns a probability of how realistic is the given pair.

Since, in our implementation, the cGAN starts the generation from embedding
values extracted from phrases. In the next section, we introduce several concepts
related to embeddings.

2.5. EMBEDDINGS 18

E
m

bedding (y)

R
eal/fake sam

ple (x)

R
andom

 noise (z)

E
m

bedding (y)

GENERATOR

DISCRIMINATOR

Training
data

R
eal sam

ples (x)
G

enerated fake
sam

ples (p(x|y))

R
eal or Fake

Extra
information

Fig. 8. Conditional Generative Adversarial Network

2.5. Embeddings

Embeddings are numerical representations in relatively low-dimensional spaces that
are used to translate high-dimensional vectors (or text data). They are widely used
in Machine Learning models because they make training easier and more efficient.

It is known that ANNs do not work with text, they only work with numerical values
and vectors. Therefore, when working with text, strings or characters, they have
to be converted into numbers in order to be analyzed by means of ANNs or other
deep learning models. It is important to outline that these type of models do not
understand text as humans, they only consider the statistical structure of the given
data.

The technique of converting text into numerical representation is known as text
vectorization. This can be done by dividing text into words, characters or n-grams
(sequences of text with a fixed length of characters, n). These short sequences
of text are called tokens. Hence, after dividing text into tokens, those are con-
verted into numerical vectors known as embeddings. There are several techniques
to transform words into embeddings such as one-hot-encoding, word embedding
and character embedding. They mainly differ in the fact that word and charac-
ter embeddings usually take semantic or spelling information into account whereas
one-hot encoding does not.

2.6. KEYSTROKE DYNAMICS 19

• One-hot encoding: They are sparse high-dimensional vectors that are hard-
coded, in other words, they are assigned by the software and are not obtained
by learning from data.
• Word embeddings: This embeddings take semantic information from text and

convert it into numeric vectors. Therefore, if two words have a similar mean-
ing, they will be converted to two numerical vectors that are near from each
other with a fixed distance. Word embeddings are dense lower dimensional
vectors that are obtained by learning from data. They can be trained for each
specific model by adding an embedding layer to the ANN. There are previ-
ously trained and successful word embeddings that are widely used, the most
common are Word2Vec by Thomas Mikolov at Google in 2013 [48] [49] and
GloVe by Standford researchers in 2014 [50] .
• Character embedding: They are very similar to word embeddings but un-

like word embeddings, character embeddings take word spelling into account.
Therefore, two words with similar spelling will differ less in distance than words
with different spelling no matter the meaning of the words. In 2016, Cao et
al. presented a pre-trained character embedding model called Char2Vec [51]

In our study, we use character embeddings (Char2Vec) for converting the infor-
mation in the phrases typed by each user, to information that can be used and
processed by our cGAN. This way, the adversarial network learns the keystroke
dynamics of the users.

2.6. Keystroke dynamics

Keystroke biometric typing dynamics refer to the speed, rhythm, common errors
and typing pattern information of a specific user. It is a biometric measurement that
analyzes the behaviour of a user when typing. In computer science, researchers have
found that thanks to the uniqueness of the typing features of each user, keystroke
dynamics can be used to verify the identity of the person behind the machine. For
example, it is thought that a user will type its name faster than a different name
due to the habit of typing it many more times. Despite being unique, keystroke
dynamics are inimitable. It is very difficult to type using other users rhythms,
speeds and typing patterns to fool authentication systems for keystroke biometrics.
However, it is necessary to take into account that the behaviour of a user strongly
depends on the ergonomics, mood and tiredness of the moment [52].

Keystroke dynamics market is growing very fast in the last years due to the rise
of online fraud and it is expected to continue growing in the following years. It
seems to be a very effective method to authenticate users while typing in their
machines without them being aware that the machine is continuously verifying
their identity [53]. The main advantage of keystroke dynamics is that a standard
computer with a keyboard is enough to collect data and no special hardware is
needed to capture these typing times [54].

2.6. KEYSTROKE DYNAMICS 20

The typing times can be measured in some previously fixed-text or in free-text,
that is, the text the user is typing can be unknown and random or previously fixed.
However, the majority of the literature in the research area has been done with
fixed-text data and free-text dynamics has not been studied at large scale yet, only
with hundreds of user datasets.

2.6.1. TypeNet. As regards the latter quote, in a study called TypeNet, a large
scale free-text database from Aalto University was used for keystroke behaviour
analysis [6]. This database is the largest free-text keystroke database captured
with more than 136M keystrokes from 168K users. In particular, in order to find
out the typing patterns of a user, at each press, two times have to be registered
apart from the pressed keycode: the press time and the release time. However
Acient et al. used four variables to describe each typing pattern. These are: Hold
Latency (HL), Press Latency (PL), Release Latency (RL) and Inter-Key Latency
(IL), see Figure 9.

Time

A
A

B
B

Press
time

Press
time

Release
time

Release
time

Hold Latency (HL) Inter-Key Latency (IL)

Press Latency (PL)

Release Latency (RL)

Fig. 9. Keystroke dynamics times representation.

As previously mentioned, Ancien et al. presented the model that has been used to
validate the results in [6]. This model has been newly trained and improved for
this study. The model corresponds to a Siamese Network. Siamese Networks are
a type of ANN that are characterized by containing at least two subnetworks in it
that have exactly the same architecture. In this case, each subnetwork consists of
a RNN.

The input of each subnetwork corresponds to a keystroke sequence of length 15. For
each keystroke, 5 features were taken into account: HL (hold latency), PL (press
latency), RL (release latency), IL (inter-key latency) and KEYCODE. Therefore,
this model receives two inputs of size 15 × 5 and after several layers in the archi-
tecture of each subnetwork, a distance is returned as output. The threshold of the
distance for classifying the two given sequences is 0.5. In other words, if distance
is larger than the threshold, it is assumed that the sequences correspond to two
different users and if lower, the sequences are considered to belong to the same
user.

2.6. KEYSTROKE DYNAMICS 21

The architecture of the model has two subnetworks that are identical. It is shown
below in Figure 10. It can be observed that each subnetwork uses a LSTM layer to
treat keystroke sequences sequentially. Once batch normalization and dropout are
computed to avoid overfitting, it has got another LSTM layer to obtain two embed-
ding vectors of size 1 × 128. Note that both LSTM layers have got an additional
dropout of 0.2. Finally, in the subtract and euclidean distance layers, the distance
from one embedding to the other is obtained.

Sequence 1

LSTM layer
128 units, tanh

Batch Normalization

Dropout layer (0.5)

Euclidean distance

Sequence 2

LSTM layer
128 units, tanh

Subtract layer

LSTM layer
128 units, tanh

Batch Normalization

Dropout layer (0.5)

LSTM layer
128 units, tanh

Fig. 10. TypeNet architecture.

In this study to validate the results, the generated sequences have been given to
this validation model as input sequences. The aim was to detect if this model was
capable to distinguish between generated and real data.

This model has been trained with 25 different users including Alice. It has been
observed that this model does not behave accurately enough to validate users that
were not in the training data and consequently, only users that were previously
known by this model have been used in the study.

Chapter 3

Experimental Design

3.1. Context

To position this project, let us assume it is wanted to access a service which is
protected by an identity provider called, Keyrock. To access this service, the user’s
identity is doubly verified. On the one hand, the Keyrock verifies the correctness of
the password and on the other hand, it validates the way in which such password
has been typed (keystroke pattern).

Alice, a registered user in the Keyrock protection system, wants to access the
service with her credentials. Hence, Alice types the password and the identity
provider verifies the password and keystroke pattern and enables access. See Step
A in Figure 11 and Figure 12.

However, Bob, a non registered user, wants to access the service by impersonating
Alice by means of a presentation attack. To that end, let us assume Bob already
knows Alice’s password. However, due to the double verification of the keyrock,
Bob needs to learn Alice’s typing behaviour spoofing the communication. In this
context, the project is divided in two use cases.

• Use case 1: In this use case, it is assumed that Bob captures data directly,
without noise. That is, he captures the typing patterns and knows exactly the
order of all the words Alice has typed. See step B on Figure 11.
• Use case 2: In this use case, it is assumed that Bob captures data that contains

noise. That is, he captures the typing patterns but does not know the order
of the captured keystrokes. See step B on Figure 12.

In this framework, the aim of this project is to help Bob to develop the presenta-
tion attack. See step C in Figure 11 and Figure 12. In particular, the idea is to
implement a generative model able to learn Alice’s behaviour and then generate
realistic synthetic data to fool the identity provider. In particular, in our study, we
assume that the TypeNet model introduced in [6] (see section 2.6.1) is used by the
Keyrock for verifying the user behaviour and allow the user to access to a certain

22

3.1. CONTEXT 23

service. So, in this sense, the idea is that the implemented cGANs can learn Alice’s
behaviour for cheating directly the TypeNet model.

Password

Keystroke
pattern

A

Keystroke
pattern

Password

C

Service

Keystroke
pattern

Password

Service

001101
110100
011100

B

Service
ALICE

ALICE

ALICE

BOB

BOB

Fig. 11. Use case 1.

Password

Keystroke
pattern

A

Keystroke
pattern

Password

C

Keystroke
pattern

Password

001101
110100
011100

B

Service

Service

Service
ALICE

BOB

ALICE

ALICE

BOB

Fig. 12. Use case 2.

3.2. DATA 24

3.2. Data

This study has been carried out with the dataset provided by the Aalto University
in Finland [55]. They collected data from 168K volunteers in an online study. It is
a large scale dataset that contains information of the keystroke patterns of each of
the volunteers. Each volunteer typed 15 sentences in English that were shown in
their screen and had to memorize and type as quickly and accurately as possible.
The displayed sentences were chosen randomly from a sample of 1, 525 sentences
and contained more than 3 words and less than 70 characters, 5 special characters
at most and only simple punctuation marks.

For all users, for each keystroke, each time the user pressed any keycode they
recorded information about they key that was pressed, the time they pressed it and
the time they released it. This times were registered via JavaScript’s date.now()

which its expected precision is 10 − 15 milliseconds. Hence, they recorded more
than 136M keystrokes.

The dataset contains the following 9 variables:

• Participant ID : Identification number of each participant in the study.
• Test section ID : Identification number of each sentence.
• Sentence: String that was displayed in the screen for typing.
• User input : String that the user actually typed.
• Keystroke ID : Identification number of each keystroke.
• Press time: Timestamps in which each keystroke has been pressed in millisec-

onds.
• Release time: Timestamps in which each keystroke has been released in mil-

liseconds.
• Letter : The letter that corresponds to each keystroke. They can be special

characters or punctuation marks.
• Keycode: The keycode that corresponds to each keystroke according to the

ASCII code.

Of course, not the entire dataset was used in our implementation, in fact, since we
are only interested in learning and replicating Alice’s typing behaviour, we have
used only one user for training our cGANs. More precisely, the dataset used for
training the models, has got 825 keystrokes that belong to 215 words grouped in 15
sentences. In order to choose this specific user, the performance of each user with
the identity provider has been measured. For the final validation, other users have
been used.

Below, a histogram of the keycodes registered by this user is shown, Figure 13. The
histogram shows how frecuently was each keycode pressed in the data corresponding
to user Participant ID = 100182. Looking at Figure 13, the most frequent keycode
is the one that corresponds to the space in the keyboard (according to the ASCII
code the space corresponds to the number 32). Note however that the keycodes 8,
69 and 84 are pressed more than 50 times (blue horizontal line). According to the

3.2. DATA 25

ASCII code, those keycodes correspond to the backspace and the letters E and T
respectively.

32
 -

8

- �
69

 -
E

84
 -

T
20

 -
�

65
 -

A
73

 -
I

78
 -

N
68

 -
D

83
 -

S
82

 -
R

79
 -

O
72

 -
H

87
 -

W
85

 -
U

76
 -

L
67

 -
C

77
 -

M
19

0
- ¾

71
 -

G
70

 -
F

89
 -

Y
80

 -
P

75
 -

K
86

 -
V

22
2

- Þ
66

 -
B

19
1

- ¿
74

 -
J

18
9

- ½
81

 -
Q

18
6

- º
55

 -
7

48
 -

0

Keycode according to ASCII code

0

20

40

60

80

100

Fr
eq

ue
nc

y
Keycode frequencies

Fig. 13. Keycode frequencies of Alice (Participant ID = 100182).

HL PL RL IL
Mean 92 270 269 179
Median 88 184 184 96
Standard deviation 29 285 282 283
Min 8 0 -8 -64
Max 224 4032 4032 3960
Range 216 4032 4040 4024

Table 1. Statistics of keystroke dynamics times of the user
Participant ID = 100182

In Table 1, the most important statistics of the collected times are shown for each
keystroke. Looking at Table 1, taking into account the difference between the mean

3.3. THE MODELS 26

and the median, we can conclude that the four variables are not biased. However,
the variables PL, RL and IL have values that range in a wide interval because they
have some extreme values. In contrast, the variable HL does not have extreme
values and has a narrower range. Also, it can be observed that the variables RL
and IL have negative values. This negative values are obtained when either the
second keycode is released before releasing the first one (negative RL) or when the
second keycode is pressed before releasing the first one (negative IL).

It is important to outline that although the original dataset is composed of sen-
tences, sequences of 15 keystrokes have been used to validate and try to fool Type-
Net. What is more, the training of the cGANs has been done by words, that is, the
cGANs learn to generate the typing behaviour of words instead of sequences or sen-
tences. Once the synthetic word typing behaviours have been obtained, sequences
have been reconstructed in order to validate the results.

After preprocessing the original dataset, as mentioned before, a dataset composed
of 215 words has been used to train the models. In Figure 14, the histogram of the
frequencies of the lenghts of the words in the dataset is shown. By looking at Figure
14, it can be observed that the most abundant words are the words with only one
keystroke, they are more than half of the words (53% of the words) in the dataset.
Note that the space between two words has been considered a word. What is more,
in English the words “I ” and “a” are also one keystroke words. Also, according to
the histogram, it can be concluded that the majority of the words length less than
7 keystrokes, only 9.8% of the words length more than 6 keystrokes.

3.3. The Models

To solve the problem presented in Section 3.1, different architectures of cGANs have
been used. Two models have been built: a Conditional Vanilla-GAN (i.e. a cGAN
composed of two ANN for G and D) and a Conditional LSTM-GAN (i.e. a cGAN
composed of two RNNs with LSTM units for G and D). Both models have been
designed, implemented, validated and improved. They both generate synthetic data
in an adversarial way about the typing behaviour of a user, hence, the output of the
three approaches are the typing times of the user. However, the main difference lies
on the fact that unlike the Vanilla-cGAN, the LSTM-cGAN considers the temporal
relation of the provided information (in this case the characters in a word, words
in a phrase, and so on). It is important to outline that they have been trained for
one specific user and therefore, they learn to generate data that corresponds to the
typing behaviour of that user.

Both models (Vanilla-cGAN and LSTM-cGAN), for both subnetworks receive a
100 dimensional character embedding that corresponds to a word in the train-
ing dataset. These embeddings have been obtained from the pre-trained model
Char2Vec which is already included in a Python package called char2vec. To that
end, both subnetworks learn how should Alice’s typing times and KEYCODE se-
quences be for that exact word. In the case of the discriminator, it learns whether

3.3. THE MODELS 27

1 4 2 5 3 6 11 7 10 9 8 13 15 14 12
Word length

0

20

40

60

80

100

Fr
eq

ue
nc

y

Word lenght frequencies

Fig. 14. Word length frequencies of Alice (Participant ID = 100182).

the introduced sample corresponds to that word and if this sequence is realistic
enough to be real or it has been generated by G. However, G learns to gener-
ate synthetic samples for each embedding. In what the generator of both models
concern, it is important to outline that in both cases the random noise vector,
corresponds to a 500 dimensional vector that follows a N(0, 0.1) distribution.

3.3.1. Conditional Vanilla-GAN. This cGAN is composed of two ANNs with
two inputs and one single output (see Figure 15). On the one hand, the generator
receives as input a 500 dimensional random vector and a 100 dimensional vector
that corresponds to a character embedding from a word. These two vectors are
concatenated and transformed three times with three dense hidden layers with 256,
512 and 256 neurons respectively. The three hidden layers use the LeakyReLU
activation function with α = 0.2 (a modified function of the ReLU activation
function that has a small slope in the negative values). Last, the output layer is
a dense layer with 75 neurons (it returns a 75 dimensional vector) and the tanh
activation function to range the elements in the output between −1 and 1.

3.3. THE MODELS 28

On the other hand, the discriminator also receives two vectors as input to the
model: a 75 dimensional array that corresponds to a real or synthetic sample and a
100 dimensional character embedding mentioned above. This input is transformed
by means of 4 dense layers of which three are hidden layers and the last one is
the output layer. The hidden layers are composed of 512, 256 and 128 neurons
respectively and all use the LeakyReLU activation function with α = 0.2. However,
after the last hidden layer a dropout with a rate of 0.4 is applied before transferring
the information to the output layer. Last, a one neuron dense layer is used with
the sigmoid activation function to return a value that ranges between 0 and 1.

500 dimensional
array

Dense layer, 256, LeakyReLU

G
E

N
E

R
AT

O
R

D
IS

C
R

IM
IN

AT
O

R

Training
data

Synthetic samples Real samples

100 dimensional
embedding

75 dimensional
array

100 dimensional
embedding

Dense layer, 512, LeakyReLU

Dense layer, 256, LeakyReLU

Dense layer, 75, tanh

Dense layer, 512, LeakyReLU

Dense layer, 256, LeakyReLU

Dense layer, 128, LeakyReLU

Dense layer, 1, Sigmoid

Fig. 15. Architecture of the Vanilla-cGAN.

3.3.2. Conditional LSTM-GAN. This model is composed of two RNNs with
two inputs and one output each (see Figure 16). The generator receives a 500
dimensional random noise vector and a 100 dimensional vector that corresponds to
a character embedding of a word as input. This information is first transformed by
a dense layer with 400 neurons and ReLU activation function. Two LSTM layers
receive the output of the dense layer and transform it by means of 400 units each
using the tanh activation with a dropout with a rate of 0.4 between the layers. Last,
output is obtained by another dense layer with 75 neurons and linear activation
function to be reshaped to a 15× 5 dimensional array.

3.4. USE CASES 29

In what the discriminator concerns, the architecture is very similar to the gener-
ator’s architecture. It only has two LSTM layers separated by a dropout layer
in between, followed by a dense output layer with one neuron with the sigmoid
activation function.

500 dimensional
array

Dense layer, 400, ReLU

G
E

N
E

R
AT

O
R

D
IS

C
R

IM
IN

AT
O

R
Training

data

Synthetic samples Real samples

100 dimensional
embedding

75 dimensional
array

100 dimensional
embedding

LSTM layer, 400 units, tanh

LSTM layer, 400 units, tanh

Dense layer, 75, linear

LSTM layer, 400 units, tanh

LSTM layer, 400 units, tanh

Dense layer, 1, Sigmoid

Fig. 16. Architecture of the Conditional LSTM-GAN.

3.3.3. Optimizers. In what training optimizer details concern, both models have
been trained with the Adam optimizer and the binary_crossentropy loss function.
In the case of the Vanilla-cGAN the learning rate of both the generator and the
discriminator used is 0.0002 and the default values for the rest of the parameters
in the optimizer (beta_1=0.9 beta_2=0.999 and epsilon=1e-07). In the case of
the LSTM-cGAN the learning rate for the discriminator used is 0.0004 and 0.0001
for the generator, beta_1 has been fixed to 0.5 and the rest of the parameters were
used in their default value (beta_2=0.999 and epsilon=1e-07). With respect to
the batch size both models have been trained with the batch size fixed to 32.

3.4. Use cases

3.4.1. Use case 1. In this section, the details of the first use case are explained.
As previously mentioned, this use case assumes Bob has captured data directly,
without noise. That is, Bob knows exactly the order in which Alice has typed
all the keystrokes, words and sentences. Therefore, by means of the implemented
models, Bob can recreate the same keystroke sequences to impersonate Alice.

3.4. USE CASES 30

Note that both models have been trained by words, therefore, in order to validate
the results, the sentences need to be recreated word by word taking into account the
order in the original dataset. To reconstruct the sequences and validate them with
the external model, TypeNet (see section 2.6.1), sequences of length 15 keystrokes
are required. To that end, each word in the sequence has been generated separately
and then concatenated in the corresponding order to recreate realistic samples
considering the original order of the words.

For a better understanding of the process, let us consider the sentence “we would
have waited up all night”. In this example, it is assumed that the user has typed
the sentence without making any mistake (without using the backspace key). To
generate a sample that corresponds to the first 15 keystrokes (“we would have
w”), as both experiments generate samples by words, the sequence needs to be
divided into words. Then, by means of the corresponding 100 dimensional character
embedding and a 500 dimensional random noise vector for each word, the synthetic
samples are generated using the generators (G) in the cGANs. Last, the initial
sequence is reconstructed supressing the padding for each generated data for all
words. Hence, the times and KEYCODE sequences are obtained without padding
and can be validated directly by the external model. See Figure 17.

“we would have waited up all night”

1 - Separate sequence into words. 2 - Generate synthetic data for each word
and remove padding.

3 - Reconstruct 15x5
dimensional sequence

concatenating the
generated sequences.

w e - - - - - - - - - - - - -

- - - - - - - - - - - - - -

1

2

w o u l d - - - - - - - - - -3

- - - - - - - - - - - - - -4

h a v e - - - - - - - - - - -5

- - - - - - - - - - - - - -6

w a i t e d - - - - - - - - -7

w e

w o u l d

h a v e

w

w e w o u l d h a v e w

1 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

3 4 5 6 7

15 keystrokes

15 x 5

15 x 5

15 x 5

15 x 5

15 x 5

15 x 5

15 x 5

2 x 5

1 x 5

5 x 5

1 x 5

4 x 5

1 x 5

1 x 5

Fig. 17. Example of generation and reconstruction of a sequence
in use case 1.

3.4.2. Use case 2. In what the second use case concerns, it is assumed that Bob
captures data on Alice’s keystroke dynamics affected by some noise that does not

3.5. METRICS 31

allow Bob to know the order the words that have been typed. Therefore, after
generating synthetic samples with the captured words, Bob is not able to recreate
exactly the sequences written by Alice.

In this use case, after training the models in both models, in order to validate
the results, the captured words are concatenated randomly to create sequences
that length 15 keystrokes. Unlike in the use case 1, the order of the words in the
sequences is not the order in which Alice has typed them. However, when recreating
realistic sequences with 15 keystrokes, after every word a space has been added.

3.5. Metrics

A metric is a measurement number that gives information about the performance of
a model. Depending on the output of the model there are different metrics that can
be used to measure the performance. In this study, because of the binary output of
the GAN model, that is, the output of the discriminator p̂i (see Section 3.3) that
ranges between 0 and 1, some metrics for binary classification have been used. In
addition, in what external model of the validation model concerns, as the output
ranges between 0 and ∞, a threshold has been fixed (0.5) to decide whether the
distance was small to consider that the sequences belong to the same user (0) or
big enough to consider that they belonged to two different users (1).

When the output of the model p̂i which performance is to be measured is binary,
a threshold is defined to divide the outputs in two groups: estimated real samples
and estimated fake samples. Let c ∈ (0, 1) be the threshold and n the number of
estimated values. Therefore, the criteria to divide the outputs in two groups is the
following:

(3) Ŷi =

{
0 p̂i ≥ c
1 p̂i < c

∀i = 1, . . . , n

Let us build the confusion matrix of the observed and estimated values of the
response variable Y which depend on the fixed threshold.

Estimated
0 1 Total

Observed
0 TN(c) FP(c) TN(c)+FP(c)
1 FN(c) TP(c) FN(c)+TP(c)

Total TN(c)+FN(c) FP(c)+TP(c) n
Table 2. Confusion matrix of the estimated and observed values
depending on the threshold c.

Once the confusion matrix has been built, some common metrics for binary classi-
fication can be computed, such as, accuracy, recall, precision and F1 Score.

3.6. VALIDATION 32

• Accuracy: the most common metric. It explains what percentage of the pre-
dictions are correctly classified. Accuracy ranges between 0 and 1, the closer
to one the better.

Accuracy(c) =
TP (c) + TN(c)

TP (c) + TN(c) + FP (c) + FN(c)

• Recall or True Positive Rate: It explains how accurately were the ones classi-
fied. It ranges between 0 and 1 and the closer to one the better.

Recall(c) =
TP (c)

FN(c) + TP (c)

• Precision or Positive Predictive Value: It explains the how many of the pre-
dicted positives were in fact true positives. This also ranges between 0 and 1
and the closer to 1, the better.

Precision(c) =
TP (c)

TP (c) + FP (c)

• F1 Score: It corresponds to the harmonic mean between the precision and
recall. This metric is recommended when the positives and negatives are
unbalanced.

F1 Score(c) = 2
Precision(c) ·Recall(c)
Precision(c) +Recall(c)

=
2TP (c)

2TP (c) + FN(c) + FP (c)

3.6. Validation

As previously mentioned, unlike in discriminative modelling, a drawback of gener-
ative modelling is that it can be difficult to validate the synthetic results generated
by those models. In this work, two types of validation approaches have been applied
to measure the goodness-of-fit of the results.

3.6.1. First validation. The first validation approach uses the discriminator in
the cGANs. As this subnetwork decides whether a given sample is a real sample or
has been generated by the generator, during the training procedure of the cGAN,
this model can be used to evaluate if the generated samples are realistic enough.
To that end, every 50 epochs, training has been stopped and 5 subsets of 32 real
and 32 synthetic samples each were given to the discriminator as input. Hence,
the accuracy of the discriminator was measured. If in mean (with the 5 subsets),
more than 85% of the real samples were classified as real and more than 85% of
the generated samples were classified as real, training was stopped. Note that this
condition can be satisfied even when the generator is generating garbage samples
and the discriminator has not been trained enough.

Next, the steps taken to generate the samples for each of the 5 subsets are explained
in detail.

(1) Generate as many random noise vectors as the batch size (in our case 32).

3.6. VALIDATION 33

(2) Obtain a subset of the training dataframe with as many rows as the batch
size (in our case 32).

(3) With the random noise vectors and the character embeddings of the words in
the subset generate fake samples (HL, PL, RL, IL and KEYCODE) using
the trained generator.

(4) Evaluate the generated samples with the trained discriminator and save
predictions.

(5) Evaluate the real samples in the subset (obtained in step 2) with the
trained discriminator and save predictions.

(6) Count the number of times the prediction of the discriminator has been above
0.5 for both generated and real samples and compute the accuracy of the
discriminator to classify the samples as real. Save accuracies.

3.6.2. Second validation. The second validation approach has been done by
means of the model presented at section 2.6.1, TypeNet. As mentioned in such
section, this model receives two keystroke sequences of length 15 with the corre-
sponding times (HL, PL, RL and IL) and KEYCODE values. Hence, it recevies two
15 × 5 sized inputs. This model returns an euclidean distance of two embeddings
(one for each sequence) that ranges between 0 and∞. If the distance is higher than
0.5, the threshold, then it will be considered that the two input sequences corre-
spond to different users. In contrast, if the output distance of the input sequences
is lower or equal to 0.5, then, it will be considered that both sequences correspond
to the same user.

TypeNet has been used to validate the generated results with three different tests,
see Figure 18.

TypeNet TypeNet TypeNet

Test 3Test 2Test 1

Same
user

Same
user

Different
user

Fig. 18. Ilustration for the three tests in the second validation approach.

3.7. SYSTEM ARCHITECTURE 34

(1) Test 1: Real vs. Fake (Acc rf). 20 real sequences and 20 generated se-
quences from the same user are validated to try to fool the external model.
The correct classification for computing accuracy in this test are considered
to be the predictions that are below 0.5, that is, they belong to the same user.
This test is repeated with 10 different subsets, that is, with 200 different real
vs. generated sequence pairs. The aim of this test is to measure how similar
are the real sequences and the synthetic sequences.

(2) Test 2: Fake vs. Fake (Acc ff). 20 generated sequences used in test 1 and
another 20 generated sequences from the same user are validated with the ex-
ternal model, TypeNet. The correct classification for computing the accuracy
in this second test are considered to be the predictions that are below 0.5,
that is, they belong to the same user. This test is repeated with 10 different
subsets, that is, with 200 different generated vs. generated sequence pairs.
The aim of this test is to measure how similar are the synthetic sequences
between them.

(3) Test 3: Real other vs. Fake (Acc rof). 20 generated sequences used in test
1 and 20 real sequences that belong to other users (the other 24 users for which
TypeNet has been trained) are validated with the external model. Hence, in
this case, the sequence pairs that are validated belong to different users. In
this test, the correct classification for computing accuracy are considered to
be the predictions that are above 0.5, that is, they belong to different users.
This test is repeated with 10 different subsets, that is, with 200 different real
vs. generated sequence pairs. The aim of this test is to measure how different
are the real sequences from other users to the synthetic sequences from our
user.

3.7. System architecture

To develop this project Python 3.7.6 has been used as programming language.
Tensorflow 2.6 is used for implementing the Machine Learning algorithms, to-
gether with Keras 2.6 and Skikit-learn 0.22.1. All the experiments - data
preprocessing, training, validations and testing of the models - were executed in a
server (Virtual Machine) with 32GB RAM memory, Intel Xeon Silver 4114 CPU
2.20GHz, and 428GB of disk size.

Chapter 4

Analysis

In this chapter, first, the data preprocessing is explained. Then, the obtained results
for each use case and model are presented. Hence, for each use case, both models
that have been mentioned in section 3.3 have been used and validated.

4.1. Data preprocessing

In order to prepare the data to train the both models, the original dataset presented
in section 3.2 has been preprocessed. To that end, data has been filtered, divided
into words and normalized.

First, data has been filtered by user and the user with the PARTICIPANT ID =
100182 has been chosen to perform the analysis as if it was Alice. Once the sentences
that Alice typed were selected, they have been divided into words. For that purpose,
each time Alice typed the space (32 according to the ASCII code), a new word was
recorded. It is important to outline that the space itself has been considered a word
because the typing times of this keystroke also contribute to the typing pattern of
Alice.

The data samples that the generative models will try to imitate, contain information
about four typing times (HL, PL, RL and IL) and the corresponding KEYCODE
for those times. In order to prepare the values to train the cGANs, training data
has been normalized. To normalize it, on the one hand, the four typing times
have been converted from milliseconds to seconds (they have been multiplied by
0.001). On the other hand, as the variable KEYCODE ranges between 0 and
255 according to the ASCII code, it has been divided by 255 to obtain values that
range between 0 and 1. Last, because of the fact that in ANNs, the input dimension
has to be fixed, a padding with value −1 for all variables has been added to the
words at the end. Hence, all the word sequences have a maximum length of 15
keystrokes. Those words that length more than 15 keystrokes have been supressed
from the training data. Therefore, for each word, the models receive 5 normalized
and padded sequences of length 15.

35

4.2. RESULTS 36

In order to validate the synthetic data generated by the cGANs, first, it is needed to
denormalize. That is, the typing times (HL, PL, RL and IL) need to be converted
back into milliseconds multiplying them by 1000 (as in the original dataframe) and
the KEYCODE values need to be multiplied by 255 (the maximum value for a
KEYCODE value according to the ASCII code). However, as TypeNet receives
typing times in milliseconds and KEYCODE values normalized (divided by 255),
in order to use the generated samples from the cGANs, in the end, only the typing
times need to be converted to milliseconds and KEYCODE values stay the same.
Last, it is needed to reconstruct the 15 × 5 sequences concatenating words and
spaces without any padding as the input of TypeNet requires. This last process is
different in each use case, because unlike in use case 1, in use case 2, the order of
the typed words is not known (see Section 3.4).

4.2. Results

The aim of this project was to access a protected service by impersonating a regis-
tered user. To that aim, two models have been designed and implemented. In order
to validate the models, two validation approaches have been used, one during the
training process and the other after the training process was stopped. However, it is
important to outline that during training the trained models have only been saved
if the first validation condition (the accuracy of the discriminator classifying for
both real and synthetic samples as real samples was higher than 0.85) was satisfied.

The Vanilla-cGAN, has satisfied the first validation condition after being trained for
163, 000 epochs. In contrast, in what the second model concerns, the LSTM-cGAN,
it has satisfied the first validation condition after being trained for 3600 epochs.
As the difference in epoch number might have had an impact in the results of the
second validation procedure, we have continued training the LSTM-cGAN model
until the first validation condition was satisfied after more than 10, 000 epochs. In
this case, the first validation condition was satisfied at epoch 10, 150. Subsequently,
this model will be referenced as LSTM-cGAN 2.

As mentioned previously (see section 3.6), in order to measure the performance of
each model three tests have been made with 10 different repetitions each. Hence, in
Figure 19, the results obtained for each repetition with the three models (Vanilla-
cGAN, LSTM-cGAN and LSTM-cGAN 2) are shown.

In Figure 19, it can be observed that the Vanilla-cGAN and the LSTM-cGAN 2
are the models with the highest accuracy in which all the accuracy values for all
repetitions in both cases are above 0.8. Nevertheless, it can be observed that the
LSTM-cGAN does not behave that well because the accuracy values for the 10
repetitions range between 0.3 and 0.55. In addition, the values of the LSTM-cGAN
present more variability, that is, bigger differences between repetitions than in the
case of the other two models.

4.2. RESULTS 37

1 2 3 4 5 6 7 8 9 10
Repetition

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Use case 1

Vanilla-cGAN
LSTM-cGAN
LSTM-cGAN 2

Test 1: Real vs. Fake

Fig. 19. Side-by-side barplot with accuracies of the Vanilla-GAN,
the LSTM-cGAN and the LSTM-cGAN 2 for each repetition in
use case 1.

In order to compare the results from use case 1, with the results in use case 2, the
side-by-side barplot in Figure 20 shows the accuracy of the predictions of each of
the 10 repetitions in use case 2.

By looking at Figure 20, we can observe a similar behaviour to the results in use case
1, but in general, with slightly lower values. It can be observed, that once again, the
Vanilla-cGAN and the LSTM-cGAN 2 have a high accuracy, they range between
0.8 and 1. Note that in terms of accuracy, despite the case of the repetitions 1, 4
and 7, the LSTM-cGAN 2 has got a better performance than the Vanilla-cGAN.
By looking at the results of the LSTM-cGAN, it can be observed that the accuracy
for the repetitions also ranges between 0.3 and 0.55 but the results are lower.

Table 3 and Table 4, show the mean accuracy values for each test.

Looking at Table 3, the one that shows the results from use case 1, it can be
observed that comparing both models that satisfied the first validation condition
for the first time, the Vanilla-cGAN has got a much higher accuracy comparing
to the LSTM-cGAN. In the case comparison between the Vanilla-cGAN and the
LSTM-cGAN 2, it can be observed that the TypeNet on a very high percentage
(90%−91% for the Vanilla-cGAN and 91%−93% for the LSTM-cGAN 2) considers
the samples as if they belonged to the same user. However, by looking at the results

4.2. RESULTS 38

1 2 3 4 5 6 7 8 9 10
Repetition

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
Use case 2

Vanilla-cGAN
LSTM-cGAN
LSTM-cGAN 2

Test 1: Real vs. Fake

Fig. 20. Side-by-side barplot with accuracies of the Vanilla-GAN,
the LSTM-cGAN and the LSTM-cGAN 2 for each repetition in
use case 2.

Mean accuracy

Use case 1
Test 1:

Real vs. Fake
Test 2:

Fake vs. Fake
Test 3:

Real other vs. Fake
Vanilla-cGAN 0.90 0.91 0.94
LSTM-cGAN 0.44 0.45 0.94
LSTM-cGAN 2 0.91 0.93 0.96

Table 3. Accuracy of the classification of TypeNet for the gener-
ated data in use case 1.

Mean accuracy

Use case 2
Test 1:

Real vs. Fake
Test 2:

Fake vs. Fake
Test 3:

Real other vs. Fake
Vanilla-cGAN 0.89 0.87 0.95
LSTM-cGAN 0.41 0.5 0.97
LSTM-cGAN 2 0.89 0.88 0.97

Table 4. Accuracy of the classification of TypeNet for the gener-
ated data in use case 2.

of the LSTM-cGAN, it is evident that they are worse than the results of the other
two models. Probably, this is because although according to the discriminator

4.2. RESULTS 39

in the LSTM-cGAN the generator has learned the typing behaviour of our user,
the generator has not learned to generate samples that resemble real data. When
looking at the results of test 3, all three models have got very good results in terms
of accuracy. Thus, all three models generate synthetic data that do not resemble
any other user in the training data used to train TypeNet (any of the rest 24 users).
Note that in the case of the LSTM-cGAN, even if not having a high accuracy tests
1 and 2, according to the results in test 3, the generated samples are not similar to
other users real samples.

If we compare the results obtained for the Vanilla-cGAN and the LSTM-cGAN 2,
we can observe that in spite of being both models quite good at impersonating
Alice, the model LSTM-cGAN 2 behaves better than the Vanilla-cGAN because in
all three tests accuracy is higher.

In what the results in use case 2 concern, Table 4 shows the results of all three
tests from the second validation approach. Alike in use case 1, in the three models,
the accuracy values are similar in test 1 and test 2. Once again, it is evident that
the LSTM-cGAN is the worst model because it has obtained an accuracy of 0.41
at test 1 and 0.5 at test 2. In contrast, the LSTM-cGAN 2 has got the best results
in both tests with accuracies 0.89 and 0.88 at test 1 and test 2 respectively. Alike
in use case 1, in use case 2, test 3 has got very high accuracy values for all three
models. Once again, it can be observed that the generated samples, in spite of
not having similar results in test 1 and test 2, all three models generate synthetic
data that does not resemble to the rest 24 users registered in TypeNet. Therefore,
there are no significant differences between models when comparing the synthetic
samples with real samples from other users.

Next, the results for other metrics (see section 3.5) for all three tests together are
presented for both use cases.

Use case 1 Recall Precision F1 Score
Vanilla-cGAN 0.94 0.83 0.88
LSTM-cGAN 0.94 0.46 0.61
LSTM-cGAN 2 0.97 0.86 0.91

Table 5. Recall, precision and F1 score values for the three mod-
els in use case 1.

Use case 2 Recall Precision F1 Score
Vanilla-cGAN 0.95 0.83 0.87
LSTM-cGAN 0.97 0.47 0.63
LSTM-cGAN 2 0.97 0.80 0.88

Table 6. Recall, precision and F1 score values for the three mod-
els in use case 2.

4.2. RESULTS 40

By looking at Table 5 and Table 6, it can be observed that the values for recall
are high in both use cases, this means that the positives, in our case, the different
user classification cases, have been sucessfully classified. Thus, once again, it is
confirmed that all three models generate synthetic data that does not resemble
to any other known user of TypeNet. In what precision concerns, the values are
lower in the case of the LSTM-cGAN. This might be due to the abundance of false
positives, that is, two sequences that belonged to the same user, have been classified
as different, and consequently, lower values of precision have been obtained in these
cases (use case 1 and use case 2). In the case of the Vanilla-cGAN and the LSTM-
cGAN 2, the values for precision have been higher on account of a lower amount of
false positives and high accuracy values. In what the F1 score concerns, as it is a
harmonic mean between the precision recall, if the value is low, then the classifier
has been optimized to increase one and discredit the other. In our case, the F1 score
is high for the Vanilla-cGAN and the LSTM-cGAN 2. However, as the precision
of the LSTM-cGAN is low in both use cases, then the F1 score decreases in these
cases.

With regards to the difference between use cases, according to the results of tests
1 and 2, slightly better results have been obtained when more prior information
was known about the order of the typed words. However, there are no significant
differences between use cases when the sequences that are being compared belong
to two different users.

According to the tables and barplots above, it can be concluded that the Vanilla-
cGAN performs better than the LSTM-cGAN. However, by looking at the results
of the LSTM-cGAN 2, it has been observed that this difference can be reduced
by training the model for more epochs ignoring the first validation condition. It
is important to outline that the model LSTM-cGAN 2 has been trained for more
epochs (10, 150 epochs) in spite of having satisfied the first validation condition
at epoch 3600. What is more, when training the LSTM-cGAN for more epochs,
(LSTM-cGAN 2), better results have been obtained comparing to the results of the
Vanilla-cGAN trained for 163, 000 epochs.

4.2.1. Summary. After analyzing the performance of the synthetic data obtained
from the implemented models in both real use cases, it can be concluded that:

• In what the effect of the prior information on the order of the words that have
been typed concerns, that is, in what the difference between the two analyzed
use cases concerns, in spite of having better results when the order of the
typed words was known (more prior information was known), there are no
significant differences. Hence, it can be concluded that the relevance of the
order of the typed words does not affect the typing behaviour of the user.
• Both architectures Vanilla-cGAN and LSTM-cGAN are valid architectures to

generate realistic synthetic data.
• Treating data on keystroke dynamics as sequential data, that is, using LSTM

units and RNNs is more efficient because with less training than with a “tra-
ditional” ANN, better results can be obtained.

4.3. DISCUSSION AND FUTURE WORK 41

• The internal discriminator’s accuracy from the cGANs cannot always be reli-
able in order to decide when to stop training and external models are of great
advantage when measuring how realistic are the generated samples.

4.3. Discussion and future work

The key findings in this study on synthetic data generation on keystroke dynam-
ics present promising results with high performance at impersonating a user. The
two designed Conditional Generative Adversarial Networks have shown that these
architectures are able to learn the typing behaviour of a determined user and im-
personate it. The Vanilla-cGAN performed better than the LSTM-cGAN in spite
of being trained for many more epochs to fulfill the same stopping criteria. How-
ever, when this stopping criteria was removed for the LSTM-cGAN and training
continued longer, better results were obtained with still less training epochs than
the Vanilla-cGAN. Therefore, it can be concluded that the RNN subnetworks with
LSTM units in the architecture of the cGANs have played an important role when
generating synthetic data on keystroke dynamics. Consequently, it has been proved
that treating keystroke dynamics as sequential data can lead to better results.

In line with the hypothesis of the importance of biometrics in digital security user
authentication systems, this experiment provides a new insight into the data gen-
eration on keystroke dynamics in an adversarial way. Not only it has been demon-
strated that it is possible to generate this type of data in an adversarial way, but
also, it is valid data to access some secure authentication system by impersonating
a user with the generated data.

The methodological choices were constrained by the amount of data on the key-
stroke dynamics of each of the users used in this study. Due to the lack of data on
the number of words typed by each user, the results cannot confirm generalizability
of the typing behaviour of the user in its integrity when it comes to typing other
words that are not in the training data. In addition, the reliability of this results is
impacted by the goodness-of-fit of the external model TypeNet used to validate the
generated samples. Thus, future studies should take into account that more data
on each user can make a big difference in data generation.

Further research is needed to determine a proved condition/recommendation in
which the training of the Generative Adversarial Networks should stop because
either the whole adversarial game will not converge or the generator has already
learned the distribution of the given training data.

Future research should consider the potential of keystroke dynamics data generation
in an adversarial way. This study is the key component in future attempts to
improve adversarial data generation on the area. Not only for the state of the
art, but also for the Protection&Trust line at Vicomtech, it would be interesting
to examine a cGAN composed of two Convolutional Neural Networks, and work is
already being done in this direction with a future scientific article coming soon.

Chapter 5

Conclusion

It is widely known that user authentication systems are coming to power on this
era of technology growth, and to that aim, biometrics are to date, the most re-
liable user authentication system. However, presentation attacks have become of
great consequence of this development. In line with this hypothesis, in this work
a keystroke presentation attack has been implemented by means of Conditional
Generative Adversarial Networks.

The main goal of this work has been to generate synthetic data on keystroke dy-
namics in an adversarial way. Throughout this work, two different architectures
of cGANs have been designed, implemented, validated and improved. In order to
validate the results, two validation approaches have been used. On the one hand,
a stopping criteria has been fixed using the internal discriminator of the designed
architectures to decide throughout training when the models were trained enough.
On the other hand, an external model, TypeNet, has been trained to detect whether
the synthetic samples could be distinguished from real samples or not. This anal-
ysis has been done in two different use cases considered to implement and validate
the models in two real scenarios that differed in the captured information about
the order of the typed words.

Results indicate that keystroke dynamics patterns can be adversarially generated
and promising results can be obtained in the two different real scenarios. Evidence
suggests that using LSTM units, and thereupon, RNNs can lead to better results
with less training than “traditional” ANNs. In contrast, on account of the accuracy
of the internal discriminator of the models, findings show that at the beginning of
the training, the generator in the LSTM-cGAN can generate samples that success-
fully fool the discriminator in spite of not being realistic samples. Consequently, it
can be concluded that the discriminator’s accuracy throughout training cannot be
always reliable in terms of realistic data generation.

This project shows the relevance of typing behaviour data generation using ad-
versarial networks with several approaches. It has been proved that valid data to
impersonate users can be generated using generative modelling from ML. A future

42

5. CONCLUSION 43

analysis using more GAN extensions would be of great continuity, such as a cGAN
using Convolutional Neural Networks.

Indeed, Bob can now benefit from Alice’s service accessing with her credentials as
if he was Alice without the system recognizing him.

References

[1] Recognizing faces [and discussion]. 302(1110):423–436, 1983.

[2] Ya-Ping Huang, Si-Wei Luo, and En-Yi Chen. An efficient iris recognition system. In Pro-
ceedings. International Conference on Machine Learning and Cybernetics, volume 1, pages

450–454 vol.1, 2002.

[3] Le Hoang Thai and Ha Nhat Tam. Fingerprint recognition using standardized fingerprint
model, 2011.

[4] G.K. Venayagamoorthy, V. Moonasar, and K. Sandrasegaran. Voice recognition using neural
networks. In Proceedings of the 1998 South African Symposium on Communications and

Signal Processing-COMSIG ’98 (Cat. No. 98EX214), pages 29–32, 1998.

[5] Eladio Alvarez Valle and Oleg Starostenko. Recognition of human walking/running actions
based on neural network. In 2013 10th International Conference on Electrical Engineering,

Computing Science and Automatic Control (CCE), pages 239–244, 2013.

[6] Alejandro Acien, Aythami Morales, Ruben Vera-Rodriguez, Julian Fierrez, and John V
Monaco. Typenet: Scaling up keystroke biometrics. In 2020 IEEE International Joint Con-

ference on Biometrics (IJCB), pages 1–7. IEEE, 2020.

[7] Faseela Abdullakutty, Eyad Elyan, and Pamela Johnston. A review of state-of-the-art in
face presentation attack detection: From early development to advanced deep learning and

multi-modal fusion methods. Information fusion, 2021.

[8] Abhinav Muley and Vivek Kute. Prospective solution to bank card system using fingerprint.
In 2018 2nd International Conference on Inventive Systems and Control (ICISC), pages

898–902, 2018.
[9] Andrew Bud. Facing the future: The impact of apple faceid. Biometric technology today,

2018(1):5–7, 2018.

[10] Ioannis Stylios, Spyros Kokolakis, Olga Thanou, and Sotirios Chatzis. Behavioral biometrics
& continuous user authentication on mobile devices: A survey. Information Fusion, 66:76–99,
2021.

[11] Jonathan Ness. Presentation attack and detection in keystroke dynamics.
[12] Christian Rathgeb, Pawel Drozdowski, and Christoph Busch. Makeup presentation attacks:

Review and detection performance benchmark. IEEE Access, PP:1–1, 12 2020.

[13] Athos Antonelli, Raffaele Cappelli, Dario Maio, and Davide Maltoni. Fake finger detection by
skin distortion analysis. Information Forensics and Security, IEEE Transactions on, 1:360 –

373, 10 2006.
[14] Deian Stefan, Xiaokui Shu, and Danfeng Daphne Yao. Robustness of keystroke-dynamics

based biometrics against synthetic forgeries. computers & security, 31(1):109–121, 2012.

[15] Itay Hazan, Oded Margalit, and Lior Rokach. Securing keystroke dynamics from replay at-
tacks. Applied Soft Computing, 85:105798, 2019.

[16] Enzhe Yu and Sungzoon Cho. Keystroke dynamics identity verification—its problems and

practical solutions. Computers & Security, 23(5):428–440, 2004.
[17] Sungzoon Cho, Chigeun Han, Dae Hee Han, and Hyung-Il Kim. Web-based keystroke dy-

namics identity verification using neural network. Journal of Organizational Computing and

Electronic Commerce, 10(4):295–307, 2000.
[18] Sonali B Maind, Priyanka Wankar, et al. Research paper on basic of artificial neural network.

International Journal on Recent and Innovation Trends in Computing and Communication,

2(1):96–100, 2014.

44

REFERENCES 45

[19] Claude Lemaréchal. Cauchy and the gradient method, 2012.

[20] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. Journal of machine learning research, 12(7), 2011.
[21] Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for machine learning,

4(2):26–31, 2012.
[22] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

[23] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an un-

known mapping and its derivatives using multilayer feedforward networks. Neural networks,
3(5):551–560, 1990.

[24] N Ganesan, K Venkatesh, MA Rama, and A Malathi Palani. Application of neural networks

in diagnosing cancer disease using demographic data. International Journal of Computer
Applications, 1(26):76–85, 2010.

[25] Robin Nix and Jian Zhang. Classification of android apps and malware using deep neural
networks. In 2017 International Joint Conference on Neural Networks (IJCNN), pages 1871–

1878, 2017.

[26] Lucie P Aarts and Peter Van Der Veer. Neural network method for solving partial differential
equations. Neural Processing Letters, 14(3):261–271, 2001.

[27] David Silver, Aja Huang, Christopher J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,

Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hass-

abis. Mastering the game of go with deep neural networks and tree search. Nature, 529:484–
503, 2016.

[28] Murat Cihan Sorkun, Christophe Paoli, and Özlem Durmaz Incel. Time series forecasting

on solar irradiation using deep learning. In 2017 10th International Conference on Electrical
and Electronics Engineering (ELECO), pages 151–155, 2017.

[29] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and

signal processing, pages 6645–6649. Ieee, 2013.

[30] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9:1735–80, 12 1997.

[31] Xuan-Hien Le, Hung Viet Ho, Giha Lee, and Sungho Jung. Application of long short-term

memory (lstm) neural network for flood forecasting. Water, 11(7):1387, 2019.
[32] Daniel Soutner and Luděk Müller. Application of lstm neural networks in language modelling.

In International Conference on Text, Speech and Dialogue, pages 105–112. Springer, 2013.

[33] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural

information processing systems, 27, 2014.

[34] William Fedus, Mihaela Rosca, Balaji Lakshminarayanan, Andrew M Dai, Shakir Mohamed,
and Ian Goodfellow. Many paths to equilibrium: Gans do not need to decrease a divergence

at every step. arXiv preprint arXiv:1710.08446, 2017.
[35] Farzan Farnia and Asuman Ozdaglar. Do GANs always have Nash equilibria? In Hal Daumé

III and Aarti Singh, editors, Proceedings of the 37th International Conference on Machine

Learning, volume 119 of Proceedings of Machine Learning Research, pages 3029–3039. PMLR,
13–18 Jul 2020.

[36] Divya Saxena and Jiannong Cao. Generative adversarial networks (gans): Challenges, solu-
tions, and future directions. ACM Comput. Surv., 54(3), May 2021.

[37] Ian Goodfellow. Nips 2016 tutorial: Generative adversarial networks.

[38] Soumith Chintala Alec Radford, Luke Metz. Unsupervised representation learning with deep

convolutional generative adversarial networks.
[39] Francesco Zola, Jan Lukas Bruse, Xabier Etxeberria Barrio, Mikel Galar, and Raul Or-

duna Urrutia. Generative adversarial networks for bitcoin data augmentation. In 2020 2nd
Conference on Blockchain Research & Applications for Innovative Networks and Services
(BRAINS), pages 136–143. IEEE, 2020.

[40] Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation

with conditional adversarial networks. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1125–1134, 2017.

REFERENCES 46

[41] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image

translation using cycle-consistent adversarial networks. In Proceedings of the IEEE interna-

tional conference on computer vision, pages 2223–2232, 2017.
[42] Simon Canales Yi Yu, Abhishek Srivastava. Conditional lstm-gan for melody generation from

lyrics.

[43] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. Progressive growing of gans for
improved quality, stability, and variation. CoRR, abs/1710.10196, 2017.

[44] Cristóbal Esteban, Stephanie L. Hyland, and Gunnar Rätsch. Real-valued (medical) time

series generation with recurrent conditional gans, 2017.
[45] Ofir Press, Amir Bar, Ben Bogin, Jonathan Berant, and Lior Wolf. Language generation with

recurrent generative adversarial networks without pre-training. CoRR, abs/1706.01399, 2017.

[46] Olof Mogren. C-RNN-GAN: continuous recurrent neural networks with adversarial training.
CoRR, abs/1611.09904, 2016.

[47] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

[48] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
[49] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-

sentations of words and phrases and their compositionality. In Advances in neural information

processing systems, pages 3111–3119, 2013.
[50] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global vectors for

word representation. In Proceedings of the 2014 conference on empirical methods in natural

language processing (EMNLP), pages 1532–1543, 2014.
[51] Kris Cao and Marek Rei. A joint model for word embedding and word morphology. arXiv

preprint arXiv:1606.02601, 2016.

[52] André Pimenta, Davide Carneiro, José Neves, and Paulo Novais. Analysis of mental fatigue
and mood states in workplaces. In Paulo Novais, David Camacho, Cesar Analide, Amal

El Fallah Seghrouchni, and Costin Badica, editors, Intelligent Distributed Computing IX,
pages 111–119, Cham, 2016. Springer International Publishing.

[53] Fabian Monrose and Aviel D Rubin. Keystroke dynamics as a biometric for authentication.

Future Generation computer systems, 16(4):351–359, 2000.
[54] Basma Hassan, Khaled Fouad, and Mahmoud Hassan. Keystroke Dynamics Authentication

in Cloud Computing, pages 923–945. 01 2019.

[55] Vivek Dhakal, Anna Maria Feit, Per Ola Kristensson, and Antti Oulasvirta. Observations on
Typing from 136 Million Keystrokes, page 1–12. Association for Computing Machinery, New

York, NY, USA, 2018.

Statement of independent work

”I certify that to the best of my knowledge, this project is my own work and all
support has been acknowledged.”

47

	Aknowledgements
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Vicomtech

	Chapter 2. Preliminaries
	2.1. Presentation attack
	2.2. Artificial Neural Networks
	2.2.1. Recurrent Neural Networks (RNN)
	2.2.2. Long Short-Term Memory unit (LSTM)

	2.3. Generative Adversarial Network
	2.3.1. Most common unstable adversarial models
	2.3.2. Tips and tricks to train a stable GAN

	2.4. Conditional Generative Adversarial Network (cGAN)
	2.5. Embeddings
	2.6. Keystroke dynamics
	2.6.1. TypeNet

	Chapter 3. Experimental Design
	3.1. Context
	3.2. Data
	3.3. The Models
	3.3.1. Conditional Vanilla-GAN
	3.3.2. Conditional LSTM-GAN
	3.3.3. Optimizers

	3.4. Use cases
	3.4.1. Use case 1
	3.4.2. Use case 2

	3.5. Metrics
	3.6. Validation
	3.6.1. First validation
	3.6.2. Second validation

	3.7. System architecture

	Chapter 4. Analysis
	4.1. Data preprocessing
	4.2. Results
	4.2.1. Summary

	4.3. Discussion and future work

	Chapter 5. Conclusion
	References
	Statement of independent work

