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 
Abstract- Multi-terminal high voltage direct current (HVDC) 

systems, together with AC transmission systems and voltage 
source converters (VSCs), form hybrid AC/DC grids with 
complex dynamic and transient interactions. VSCs 
characterization taking into account DC- and AC-side dynamics 
in order to study these interactions is not yet well solved. This 
paper presents a three-port transfer admittance-based matrix 
model of VSCs that can be applied for such purpose. It is derived 
from dq-complex space vectors and characterizes both AC- and 
DC-side dynamics by relating AC- and DC-side current and 
voltages in a three-dimensional admittance transfer matrix which 
considers the VSC outer control loops. The paper also proposes a 
systematical procedure for studying multi-terminal HVDC 
hybrid AC/DC transmission grids by the Norton admittance 
method, where the proposed VSC model can be easily included in 
the Norton admittance matrix. This procedure allows the study 
of grid dynamics using impedance-based stability criteria. The 
proposed model and procedure are applied to a stability study in 
a multi-terminal HVDC hybrid AC/DC transmission grid. 
PSCAD/EMTDC simulations are used to validate the application.  

Index Terms— Impedance modeling, voltage source 
converters, HVDC transmission. 

I.  INTRODUCTION 

ulti-Terminal high voltage direct current (HVDC) 
systems have emerged as a promising power 

transmission technology because of their ability to increase 
power transfer capability and improve power system operation 
flexibility and energy source interconnection. These HVDC 
systems are linked to AC transmission grids by means of line 
commutated converters (LCCs), voltage source converters 
(VSCs) and modular multilevel converters (MMCs), building 
hybrid AC/DC grids with complex dynamic and transient 
interactions [1], [2]. Novel phenomena such as oscillatory 
instabilities appear in hybrid AC/DC systems with VSCs and 
MMCs [2]. However, their assessment, prediction and 
solution have not yet been well studied. State space [3], [4] 
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and frequency domain [5]  [11] methods are common 
approaches for analyzing instability phenomena in these 
systems [12]  [15]. Frequency domain methods based on the 
impedance-based characterization of power systems are also 
widely used to assess system stability because they can be 
applied from either analytical models or measurements and 
with less computing effort than the state space method [14], 
[15]. 

The AC- and DC-side admittance-based models of VSCs 
are typically studied separately to include the VSC admittance 
transfer function in AC- and DC-side stability studies, 
respectively. These AC- and DC-side admittance-based 
models are derived from dq-real transfer function-based 
[5], [8]  [10], [12]  [15], dq-complex transfer function-
based [16], [17] and phasor-based [18] methods. DC-side 
admittance-based models of VSCs considering AC-side 
dynamics have recently been published [12], [13]. The dq-
complex approach is becoming a powerful tool for VSC 
admittance modeling because it can be used to systematically 
determine and program VSC admittance-based models, as 
well as to characterize sequence-component coupling and 
mirror frequency effect dynamics [7], [19], [20]. This is also 
studied in [19], [21], where the modified sequence-domain 
(MSD) impedance matrix model is proposed on the basis of 
the Park (dq-real) and Ku (dq-complex) transformations [22], 
[23]. The above methods are widely applied to single VSC 
systems, but only a few works analyze stability in large-scale 
AC and DC systems composed of multiple VSCs [15], 
[24], [25]. The admittance matrix approach is used in these 
studies as it provides a simple and accurate way to 
characterize large-scale power system behavior in frequency 
domain. Recently, a worthy AC-side stability study of multi-
terminal VSC power systems based on the nodal admittance 
matrix approach and the AC-side 2x2 input admittance-based 
matrix of VSCs has been presented in [26]. 

Hybrid AC/DC grid issues cannot be studied when AC- and 
DC-side dynamics are modeled separately, as in the above 
references. Moreover, although AC- and DC-side dynamics 
could be included in these models, the AC-side admittance-
based model is a two-port model that only relates AC-side 
voltages and currents, and the DC-side admittance-based 
model is a single port model that only relates DC-side 
voltages and currents. A three-port transfer admittance-based 
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matrix model of VSCs relating AC- and DC-side voltages and 
currents is necessary to study hybrid AC/DC HVDC grids 
from the nodal admittance matrix approach. There are multi-
terminal HVDC hybrid AC/DC transmission grids which 
cannot be reduced to the AC or DC side and must be studied 
from the three-port transfer admittance-based matrix model of 
VSCs and the nodal admittance matrix of the hybrid grid to 
assess stability. A dq-real [27], [28] and -domain [29] 
three-port equivalent circuits of VSCs considering AC- and 
DC-side dynamics are presented in the literature. However, 
these equivalent circuits take into account the VSC 
modulation function only. These equivalent circuits are used 
to derive the AC-side admittance matrix model of VSCs 
considering the phase-locked loop (PLL), VSC time delay and 
current control [27], and to derive a block diagram of the 
closed-loop small signal model for VSCs including AC- and 
DC-side dynamics and considering the direct-voltage control 
loop, PLL, VSC time delay and current control [28], [29]. 
Additionally, the AC-side admittance matrix model of VSCs 
[28], [29] and the 1x2 gain matrix that relates AC- and DC-
side voltages [29] are derived from the block diagram. Three-
port transfer admittance-based matrix models that consider 
AC and DC dynamics and can be applied in hybrid AC/DC 
grid studies have recently been presented [14], [18], [20]. 
However, they neither consider all VSC control blocks nor are 
applied to multi-terminal HVDC hybrid AC/DC transmission 
grids. In [14], an MSD three-port AC/DC admittance-based 
model is presented. This model considers the P  Q, Vdc  Q 
and V  f operation modes of VSCs but does not include the 
grid voltage feedforward low-pass filter of the VSC current 
control loop and the VSC time delay. The grid voltage 
feedforward low-pass filter bandwidth and VSC time delay 
are the main parameters to achieve VSC passivity at harmonic 
frequencies [9]. The grid voltage feedforward low-pass filter 
bandwidth also affects the VSC non-passivity region caused 
by outer control loops at near-synchronous frequencies [9], 
[10]. The non-consideration of these parameters in the three-
port AC/DC admittance-based model is a drawback to 
characterizing the VSC negative-damping region, which 
defines near-synchronous and harmonic stability conditions 
[9], [10]. A simple AC/DC coupled system is analyzed by 
Kirchhoff laws in order to study the properties and impacts of 
impedance rotation on the AC/DC coupled system in [14] but 
no general methodology for assessing multi-terminal HVDC 
hybrid AC/DC transmission grid stability based on the three-
port AC/DC admittance-based model is provided. The Norton 
admittance methodology is used for comparing different 
stability criteria but this methodology is applied to an AC 
interconnected system with VSCs where DC-side dynamics 
are not considered, i.e., no three-port AC/DC admittance-
based model is used in this study. In [18], the three-port 
AC/DC matrix is modeled in dq, sequence and phasor 
domains by considering only the inner current controller and 
the PLL. A simple VSC HVDC link with an impedance 
connected at the AC or DC side is analyzed. The VSC AC- 
and DC-side impedance model is also derived from the three-

port matrix. In [20], the proposed three-port VSC model only 
considers the direct-voltage control loop and is only applied to 
study the stability of a point-to-point HVDC transmission 
system from the control block diagram of the AC- and DC-
side system. As far as the authors know, stability of large-
scale hybrid VSC-HVDC grids has not yet been studied on the 
basis of three-port transfer admittance-based matrix of VSCs 
and the nodal admittance matrix approach. 

This paper presents a novel VSC three-port admittance-
based model using dq-complex space vectors for multi-
terminal VSC-HVDC hybrid AC/DC transmission grid 
studies. The model extends systematically and rigorously the 
three-port transfer admittance-based matrix models in [14], 
[18] and [20] by considering the grid voltage feedforward, 
VSC time delay and main outer control loops (including the 
control loops of the operation modes Vdc  Eac and P  Eac). 
Moreover, the VSC AC- and DC-side impedance models are 
derived from the three-port matrix model. The paper also 
extends the Norton admittance method used for AC-side 
stability analysis of multi-terminal VSC power systems in [26] 
to study AC- and DC-side stability of multi-terminal HVDC 
hybrid AC/DC transmission grids, where the proposed three-
port admittance matrix model is easily included in the nodal 
admittance matrix of large-scale hybrid AC/DC grids handling 
VSCs as independent components. This methodology allows 
the assessment of multi-terminal HVDC hybrid AC/DC 
transmission grid stability using impedance-based stability 
criteria (e.g., Generalized Nyquist Criterion, GNC). Stability 
issues in a multi-terminal HVDC hybrid AC/DC grid are 
studied to show the paper’s contribution.  The results obtained 
are validated with PSCAD/EMTDC simulations. 

II.  THREE-PORT GRID-CONNECTED VSC SYSTEM MODELING 

The three-port small signal admittance-based model of the 
grid-connected VSC in Fig. 1 is derived in this Section [9], 
[10], [14]. The VSC control is represented by the inner current 
controller (CC) and the following outer control loops: 
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Fig. 1. Grid-connected VSC circuit. 
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alternating-power control (APC), direct-voltage control 
(DVC), reactive-power control (QPC) and alternating-voltage 
control (AVC). These outer control loops make it possible to 
characterize the main VSC operation modes (i.e., modes 
P  Q, Vdc  Q, Vdc  Eac and P  Eac) [9], [10]. The PLL is 
also considered in the control modeling, and the superscript 
“c” denotes the converter dq-domain. No super index is used 
on the grid dq-domain variables for simplicity. All the VSC 
admittance-based models in this Section are numerically 
validated but this is not shown for space reasons. 

Complex transfer functions (see Appendix A) are used to 
model grid-connected VSCs with dq-complex space vectors 
from the dq-real small signal impedance model [16], [17] and 
obtain the three-port small signal admittance-based model. 
The dq-real small signal impedance model of VSCs is 
summarized in Appendix B to follow clearly the three-port 
small signal admittance-based model in the next Subsections. 

A.  AC grid relation 

According to (30) and (32), the voltage balance across the 
converter Rc – Lc filter is expressed with dq-complex space 
vectors as 
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where Edq = (Ed + jEq)/2, Vdq = (Vd + jVq)/2, Idq = 
(Id + jIq)/2, Z+

c = Rc + Lc(s + j1), (Z+
c)

* = Rc + Lc(s  j1), 
Z

c = 0 and 1 = 2f1 is the fundamental angular frequency of 
the grid. 

B.  AC-DC converter relations 

According to (33), the VSC output voltage Vdq can be 
related to the DC voltage Vdc by using the modulation function 
mdq = [md mq]

T and dq-complex space vectors (30) as the small 
signal relation 

 
0

0 ,

dc dc

dc dc

V V

V V

      
       

           

     

dq dq dq0

* * *
dq dq dq0

m m m
dq dq dq0

V m m

V m m

V m m

 (2) 

where mdq = (md + jmq)/2 and Vdc0 and mdq0 are the steady-
state operating points of the DC voltage and the modulation 
function, respectively.  

According to (35), the small signal relation between the DC 
current Idc and the AC current can be expressed by using the 
dq-complex space vectors (30) as the small signal relation  
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where the superscript H indicates the  transpose and complex 
conjugate (Hermitian conjugate). Note that the three-phase set 

of modulation functions {ma, mb, mc} = 
M{cos(1t + ϕm),cos(1t + ϕm – 2/3), cos(1t + ϕm + 2/3)} is 
transformed into the dq-complex space vector 
mdq = (3/2)Mϕm by applying the normalized Ku (dq-
complex) transformation [16], [22], [23]. 

C.  PLL relations 

The AC current, AC voltage and modulation function in the 
converter and grid dq-domains (36) can be expressed with dq-
complex space vectors from the following small signal 
relations obtained by applying the complex transfer functions 
(30):  
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where GPLL(s) = FPLL(s)/(s+Ed0FPLL(s)) and FPLL(s) is the 
transfer function of the PLL control (see (36) in Appendix B). 
Note that the dq-complex space vectors in the converter dq-
domain have the superscript “c” whereas no super index is 
used on the grid dq-domain variables. 

D.   Inner CC loop relations 

The control law of the inner CC loop (37) is expressed with 
dq-complex space vectors (30) as  

 , ,( ) ,         cm ± cm cm ± cm ± cm
dq r cc dq r dq ω dq f dqV F I I Z I H E  (7) 

where F+
cc = D(s)Fcc(s), Z+

 = D(s)·jLc1, H+
f = D(s)Hf(s), 

F
cc = Z

 = H
f = 0 and Fcc(s), D(s) and Hf(s) are the transfer 

function of the CC, VSC time delay and grid voltage 
feedforward low-pass filter (see (37) in Appendix B). 
According to (33), the dq-complex space vector of the VSC 
reference voltage is expressed as Vcm

dq, r = Vdc0mcm
dq. 

E.  Outer control loop relations 

The reference currents generated by the outer control loops 
can be related to the DC voltage and the AC voltage and 
current at the PCC with dq-complex space vectors as the 
following general expression: 

  ,dcV       cm m ± cm ± cm
dq,r o o dq o dqI F G I Y E  (8) 

where the complex transfer matrices Fm
o, G

±
o and Y±

o depend 
on the VSC outer control loops (see Appendix B). 

F.  Link between inner, PLL and outer control loop relations 

The following relation is obtained by substituting the outer 
control loop law (8) and the PLL relations (4), (5) and (6) in 
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the control law of the inner current control loop (7): 
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G.  Three-port small signal admittance-based model 

The DC voltage is related to the AC voltage and current at 
the PCC by substituting (9) and (1) in (2):  
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where I2 = diag(1, 1) is the 2x2 identity matrix. 
The DC current is related to the DC voltage and the AC 

voltage and current at the PCC by substituting (9) in (3): 
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The relations between voltages and currents can be directly 
obtained from (11) and (12): 
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Considering that Im
dq = [Idq  I*

dq]T and Em
dq = 

[Edq  E*
dq]T, (13) characterizes the three-port small signal 

admittance matrix of VSCs, as follows: 
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According to [14], the non-consideration of the grid voltage 
feedforward low-pass filter Hf(s) or VSC time delay leads to 
D(s) = Hf(s) = 1 in (7) and simplifies the three-port small 
signal admittance-based model (14). However, these 
assumptions could also lead to inaccurate assessment of near-
synchronous and harmonic instabilities [9], [10]. 

Fig. 2 shows the three-port small signal circuit model of 
VSCs derived from (14). 

H.  AC- and DC-side small signal admittance-based model 

The VSC AC- and DC-side equivalent admittance models 
can be easily derived from (14). The AC-side equivalent 
admittance Y(AC)(s) is obtained by imposing in (14) the DC-
side relation Idc = YEdcVdc: 
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The DC-side equivalent admittance Y(DC)(s) is obtained by 
imposing in (14) the following AC-side relation: 

 
* *

.
( ) ( )

     
      

         
±
Th

+ -
dq dqTh Th
* *- +
dq dqTh Th

Y

I EY Y

I EY Y
 (16) 

The DC-side equivalent admittance is expressed as 
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I.  Three-port small signal admittance-based model validation 

The circuit in Fig. 3(a) and the data in Table I are used to 
numerically validate the three-port small signal admittance-
based model (14) in Fig. 3(b), where the DC-side equivalent 
impedance Z(DC)(s) = 1/Y(DC)(s) (17) is compared to 
PSCAD/EMTDC simulations. The DC-side test is the simplest 
procedure to validate the three-port small signal admittance 
matrix because the determination of all the terms in this matrix 
is avoided (note that Y(DC)(s) (17) is derived from the three-
port small signal admittance-based model (14)). The AC grid 
is characterized by an AC voltage source in series with an 
Rac – Lac impedance and a shunt capacitor Cf connected to the 
VSC terminals (see Fig. 3(a)). The VSC operates in mode 
Vdc  Q. In the PSCAD/EMTDC simulations, a series 
perturbation of voltage Vdc at frequency f is applied on the DC 
side of the VSC while the 50 Hz AC-side voltage source is a 
short-circuit at frequency f. The DC-side consumed current Idc 
is determined from the Fast Fourier Transform (FFT) of the 
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Fig. 2. Three-port small signal circuit model of VScs. 
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PSCAD/EMTDC simulation currents when they reach the 
steady state. Subsequently, the value of the DC-side 
equivalent impedance is calculated from the previous results 
as Z(DC)(s) = Vdc/Idc and is represented versus frequency f 
(circles in Fig. 3(b)). The accurate results provided by the 
model are highlighted. Similar results are obtained with the 
other VSC operation modes.  

According to the circuit in Fig. 4(a) and the data in Table I, 
the three-port small signal admittance-based model (14) is 
also validated in Fig. 4(b), where the AC-side equivalent 
admittance matrix Y(AC)(s) (15) is compared to 
PSCAD/EMTDC simulations. 

III.  STABILITY OF HVDC HYBRID AC/DC GRIDS 

The circuit of Fig. 5 shows the schematic diagram of multi-
terminal HVDC transmission grids linked to AC transmission 
grids by VSCs. The incremental symbol  of the small signal 
variables is omitted for the sake of simplicity. The multi-
terminal HVDC hybrid AC/DC transmission grid (i. e., AC 
and HVDC transmission grids) is characterized by its 
admittance matrix YG(s) and the different components 
connected at the AC and DC grid buses which are represented 
by their equivalent circuits.  

The AC grid components are the following: 

 AC grids characterized by the current balance at their 
Norton equivalent circuit buses:  
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Fig. 3. DC test for model validation:  a) Test circuit. b) DC-side equivalent
impedance Z(DC)(s) = 1/ Y(DC)(s) [Lines: (17). Circles: PSCAD/EMTDC
simulations]. 
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Fig. 4. AC test for model validation:  a) Test circuit. b) AC-side equivalent 
admittances Y(AC)(s) [Lines: (15). Circles: PSCAD/EMTDC simulations]. 
 

TABLE  I 
MODEL VALIDATION DATA 

BASE VALUES: UB, AC = 220 KV, UB, DC = 440 KV, SB = 1000 MVA 

 Parameters Data 

AC grid Rac, Lac 0.0025 pu, 0.05 pu 

AC filter Cf  0.304 pu 

DC load Rdc, Ldc 0.00051 pu, 0.0032 pu 

DC filter Cdc 1.824 pu 

VSC data Pvsc, N, Vdc, 0 1000 MW, 440 kV 

VSC control 

fs, Td, f 2 kHz, 0.3 ms, 106.8 rad/s 

Rc, Lc  0.025 pu, 0.25 pu  

kp,cc , ki,cc 1 pu, 0.031 pu 

kp,pll, ki,pll 0.48 pu, 0.031pu 

kp,dc, ki,dc 0.15 pu, 0.058 pu 

kp, p, ki,p 0.15 pu, 0.058 pu 
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 (18) 

where Z+
g (s) = Rg + Lg(s + j1) and Z

g = 0 [16].  
 AC loads characterized by their dq-complex admittance 

matrix Yi
(AC)(s) (i = 1, … b). These loads can be the 

impedance loads whose admittance matrix is obtained from 
their dq-real admittance matrix and transformation (30) or 
VSC applications (e.g., in distributed generation), whose 
admittance matrix is derived from the models (38) and (2) 
in [9] and [10], respectively, and transformation (30). 

 Terminals without any connected external components 
represented as open-circuit buses characterized by zero 
values of the current source and admittance of the Norton 
equivalent circuit, i.e., Ii

(AC) = 02x1 and Yi
(AC) = 02x2 

(i = 1, … c).  

The DC grid components are the following: 

 DC grids characterized by the current balance at their 
Norton equivalent circuit buses:  

 (DC) (DC) (DC) (DC)
, ( ) ( 1,... ).i g i i iI I Y s V i d    (19) 

 DC loads characterized by their admittance transfer 
function Yi

(DC)(s) (i = 1, … e). 
 Terminals without any connected external components 

represented as open-circuit buses characterized by zero 
values of the current source and admittance of the Norton 
equivalent circuit, Ii

(AC) = Yi
(AC) = 0 (i = 1, … g).  

Note that the VSCs are modeled by their three-port small 
signal admittance matrix Yi

(AC/DC)(s) (i = 1, … h) in (14). VSC 
models are locally evaluated in the dq- reference frame of 
each VSC and a matrix rotation is required to refer all of them 
to the same dq-global or common reference frame, which can 
be arbitrarily chosen [14]. 

System stability is commonly assessed by applying 

frequency domain methods such as the Nyquist stability 
criterion to the impedance ratio of the source and load 
equivalent systems (i.e., to the loop transfer function 
L(s) = Zsource(s)·Yload(s)) partitioned at some point of the 
studied grid. However, it must be borne in mind that this 
criterion is a local stability approach sensitive to system 
partitions, which can lead to inaccurate stability predictions 
[14]. If and only if the impedance ratio Zsource(s)·Yload(s) does 
not have any right-half-plane (RHP) poles, stability of the 
closed loop system can be assessed by encirclements of 
Zsource(s)·Yload(s) in clockwise direction around the –1 point. 
Otherwise, the number of RHP poles of Zsource(s)·Yload(s) must 
also be considered. Commonly, these RHP poles are not 
assessed in frequency domain studies and the encirclements of 
Zsource(s)·Yload(s) are only checked when the Nyquist stability 
criterion is applied. According to this, the criterion fails when 
the source or the load equivalent systems are unstable (i.e., 
when Zsource(s) or Yload(s) have RHP poles). This instability can 
occur when the source and load equivalent systems come from 
a grid with VSCs due to the interaction between the VSC 
controls and the passive components of the grid [14]. To avoid 
the above issue and according to [26], system stability is 
assessed by considering the whole system without any 
partition.  

Considering the rotation issue of VSC frames addressed, 
the relations between voltages and currents at the multi-
terminal HVDC hybrid AC/DC transmission grid are 
expressed as 

   1( )
( ) ( ) ,

( )

s
s s

s
 

    
G

G E E
E E

i Y v
v Y Y i

i i Y v
 (20) 

where YG(s) is admittance matrix of the multi-terminal HVDC 
hybrid AC/DC transmission grid. The voltage v at the grid 
terminals and the current source iE and the equivalent 
admittance YE(s) of the external components are  
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Fig. 5. Schematic diagram of multi-terminal HVDC hybrid AC/DC transmission grids. 
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where the voltage vector at the VSC terminals is 
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Stability can be analyzed in frequency domain by rewriting 

(20) as, 

   1
( ) ( ) ( ) ,s s s

  G E G Ev I Z Y Z i  (23) 

where I is the identity matrix and ZG(s) = YG
–1(s) is the grid 

impedance matrix. Stability of the closed loop system in (23) 
is assessed by the GNC, which extends the traditional Nyquist 
criterion to the Nyquist curves of the eigenvalues of the loop 
transfer function L(s) = ZG(s)YE(s) [12], [18]. Although the 
absence of RHP poles in the loop transfer functions is a 
special case, the proposed approach ensures that L(s) does not 
have any RHP poles because the multi-terminal HVDC hybrid 
AC/DC transmission grid ZG(s) is passive and the external 
components in the diagonal of YE(s) are individual 
subsystems without any interaction with other grid 
components (i.e., ZG(s) and YE(s) do not have any RHP poles) 
[14]. Therefore, system stability can be assessed by 
encirclements of the eigenvalues of L(s) around the –1 point. 

Fig. 6 shows the flowchart of the systematic procedure 
proposed for stability assessment. 

IV.  APPLICATION 

Stability problems in the multi-terminal AC/DC grid of 
Fig. 7(a) are analyzed to show the paper’s contribution. The 
110 kV 50 Hz main AC grid supplies two 1000 MW 220 kV 
HVDC transmission grids through two step-up 110/220 kV 
transformers and two VSCs operating in mode Vdc  Q at 
unity power factor, which is common in normal operation 
conditions [9], [10]. The HVDC transmission grids connect 
the main AC grid with two AC grids through the DC cables 
and the VSC3 and VSC4, which operate in mode P  Q. VSC1 
and VSC2 are characterized by their three-port small signal 
admittance matrices (14) while VSC3 and VSC4 are 
considered as constant power consumption P20 and P30 

characterized by the fictive resistance Ri0 = –(Vdci, 0)
2/Pi0 

(i = 2, 3), which consumes a current Vdci/Ri0 under the small 
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Fig. 7. Application: a) Multi-terminal HVDC hybrid AC/DC transmission system. b) HVDC hybrid AC/DC transmission grid. 
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signal voltage Vdci [11]. These converters could also be 
modeled with their three-port small signal admittance 
matrices, but a simpler model is used in the stability study for 
the sake of simplicity. The AC grid is chosen as the dq-global 
reference frame of the multi-terminal HVDC hybrid AC/DC 
transmission grid. VSC1 and VSC2 have the same data as in 
Table I and the multi-terminal AC/DC grid data are in 
Table II. In order to study stability, the relations between 
voltages and currents at the multi-terminal HVDC hybrid 
AC/DC transmission grid are expressed as (23) where 

 Impedance matrix of the HVDC hybrid AC/DC 
transmission grid in Fig. 7(b),  

 

m dc dc dc m dc m

2 1 2 1 2 1 2 1

1 2 2 1 1 24 1 2 1 1 1 2

1 2 1 1 3 1 1 1 2 35 1 2

1 2 24 1 1 4 1 2 1 1 1 2

2 1 2 1 2 1 2 1 2 2

1 2 1 1 35 1 1 1 2 5 1 2

2 1 2 1

Bus # 1 2 3 4 4 5 5

0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0

x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x x x x

x x

Y Y

Y Y

Y Y

Y Y

 










± ± ±
1 14 15

G
± ±

14 4

±
15

Y Y Y

Z

Y Y

Y

1

2 1 2 2 2 1 5

,

0 0x x x


 
 
 
 
 
 
 
 
 
 
  

±Y

 (24) 
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 Admittance matrix of the external components,  
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where Y4
(AC/DC) and Y5

(AC/DC) are the VSC1 and VSC2 three-
port small signal admittance matrices (14) and 
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The example studies four cases: 
 Case #1: this is the stable reference case, which 

corresponds to the steady-state operating point with data in 
Tables I and II, and with the power consumed by VSC3 and 
VSC4 being half the nominal power (i.e., Pi0 = 500 MW 
i = 2, 3).  

 Case #2: the influence of VSC filter capacitors Cf1 and Cf2 
on system harmonic stability is analyzed. Stability of the 
steady-state operating point of Case #1 with 
Cf1 = Cf2 = 10 µF is assessed. 

 Case #3: the influence of the VSC3 and VSC4 consumed 
powers on system harmonic stability is analyzed. Stability 
of the steady-state operating point of Case #1 with 
P20 = P30 = 1000 MW is assessed. 

 Case #4: the influence of the short-circuit ratio (SCR) on 
system subsynchronous stability is analyzed. Stability of the 
steady-state operating point of Case #1 with SCR = 1 pu is 
assessed. 
Small signal system stability around the previous steady-

state operating points is investigated from the GNC of the 
loop transfer function L(s) = ZG(s)YE(s) and PSCAD/EMTDC 
time-domain simulations. In these simulations, the variables of 
the AC/DC transmission grid of VSC1 and VSC3 are only 
shown because the results are the same for the variables of the 
AC/DC transmission grid of VSC2 and VSC4 due to the 
symmetry of the circuit. 

In Case #1, the GNC verifies system stability because the 
curves of the eigenvalues of L(s) in Fig. 8 do not encircle the 
1 point (for the sake of clarity, only the curves of 
eigenvalues related to system instability are plotted). In this 
steady-state operating point, the resonance frequencies of the 
system are damped by the system resistances.  

In Case #2, the value of the filter capacitors Cf1 and Cf2 is 
reduced from 20 µF to 10 µF at 0.4 s. According to the 
PSCAD/EMTDC simulations in Fig. 9(a), the system becomes 

TABLE  II 
HYBRID AC/DC TRANSMISSION GRID DATA 

BASE VALUES: UB, AC = 220 KV, UB, DC = 440 KV, SB = 1000 MVA 

 Parameters Data 

AC Main grid 
U0 (f1) 

SCR = Scc/(2·Pvsci, N) 

Xg/Rg 

110 kV (50 Hz) 
20 pu 
20 pu 

Transformers 
(i = 1, 2) 

SNi, UN1, i/UN2, i  1000 MVA, 110/220 kV 

 cci, Xtri/Rtri 2.5 %, 20 pu 

VSC AC filters Cfi  (i = 1, 2) 20 F 

VSC DC filters Ccvi (i = 1 to 4) 30 F 

DC cables 
(i = 1, 2) 

Rdci, Ldci 10.8 mΩ/km, 0.149 mH/km 

Cdci, Length 0.145 F/km, 25 km 
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unstable after the capacitor value ramp down. This is because 
the frequencies of the system resonances are shifted and the 
resonance at f ≈ 820 Hz (i.e., the frequency of the unstable 
harmonic oscillations captured in the frequency spectrum in 
Fig. 9(a)) is in the VSC negative-damping region which is not 
compensated by the system resistances. This VSC negative-
damping region is mainly affected by the grid voltage 
feedforward low-pass filter bandwidth and VSC time delay, 
which could be modified to achieve VSC passivity at this 
frequency. The GNC verifies the instability results because the 
curves of one eigenvalue intersect the unit circle 
approximately at 813 Hz, enclosing the 1 point in clockwise 
direction, Fig. 10(a). The frequency of the intersection points 
is verified in the Bode plot of this eigenvalue (middle and 
bottom plots in Fig. 10(a)).  

In Case #3, the VSC3 and VSC4 consumed active powers 
are raised from 500 MW (P20 = P30 = 500 MW) to the nominal 
value (P20 = P30 = 1000 MW) at 0.1 s. According to the 
PSCAD/EMTDC simulations in Fig. 9(b), the system becomes 
unstable after the active power consumptions are ramp up. 
This is because the value of the fictive resistance R30 is 
modified and the DC resonance at f ≈ 630 Hz (i.e., the 
frequency of the unstable harmonic oscillations captured in 
the frequency spectrum in Fig. 9(b)) is not damped by the 
system resistances. The GNC verifies the instability results 
because the curve of two eigenvalues intersects the unit circle 
approximately at 638 and 641 Hz, enclosing the 1 point in 
clockwise direction, Fig. 10(b). The frequency of the 
intersection point is verified in the Bode plot of these 
eigenvalues (middle and bottom plots in Fig. 10(b)). 

In Case #4, the short-circuit ratio SCR is reduced from 
20 pu to 1 pu at 0.3 s (i.e., VSC1 and VSC2 are connected to a 
very weak AC grid at 0.3 s). According to the 

PSCAD/EMTDC simulations in Fig. 9(c), the system becomes 
unstable after the SCR value is stepped down. This is because 
the weak AC grid shifts the system resonance to the 
subsynchronous frequency f ≈ 15 Hz (i.e., the frequency of the 
unstable subsynchronous oscillations captured in the 
frequency spectrum in Fig. 9(c)), where the VSCs have a 
negative resistance due to the PLL and the outer loops. A 
small grid voltage feedforward low-pass filter bandwidth 
could be used to keep as narrow as possible the VSC non-
passivity region caused by outer control loops at near-
synchronous frequencies [4], [9]. The GNC verifies the 
instability results because the curve of one eigenvalue 
intersects the unit circle approximately at 15.2 Hz, enclosing 
the 1 point in clockwise direction, Fig. 10(c). The frequency 
of the intersection point is verified in the Bode plot of this 
eigenvalue (middle and bottom plots in Fig. 10(c)). 

V.  CONCLUSIONS 

The paper presents two contributions to the study of multi-
terminal HVDC hybrid AC/DC transmission grid stability: (i) 
a new VSC three-port admittance-based model, which extends 
the VSC models in the literature, and (ii) a systematic 
procedure based on the Norton admittance method for 
modeling these grids. The proposed model characterizes both 
the AC- and DC-side dynamics by relating the AC- and DC-
side currents and voltages from a three-port admittance 
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transfer matrix (one port for the DC-side and two dq-complex 
ports for the AC-side) independent of the AC and DC grids 
connected to these ports. The proposed procedure is rigorous, 
understandable and easy to program and can be used to 
analyze multi-terminal HVDC hybrid AC/DC transmission 
grid stability using impedance-based stability criteria. Both 
contributions are shown in a multi-terminal HVDC hybrid 
AC/DC transmission grid application.  

APPENDIX 

A.  Complex Transfer Functions 

Complex transfer functions are used in Section II to model 
grid-connected VSC systems with dq-complex space vectors 
[14], [16], [17].  

A dq-domain impedance matrix of dq-real space vectors,  

 
   
    ,

d ddd dq

q qqd qq

U IZ s Z s

U IZ s Z s

    
     

    
 (29) 

can be transformed into another dq-frame matrix based on dq-
complex space vectors as [16], [17], [19]  
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where  
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 (31) 

The dq-complex space vectors are defined as 
Udq = (Ud + jUq)/2 and Idq = (Id + jIq)/2. Transformation 
(31) is also true for any dq-domain matrix of dq-real space 
vectors, e. g., admittance matrices. 

B.  VSC Modeling 

The dq-real small signal impedance-based model of the 
VSC in Fig. 1 is briefly reviewed in this Section [9], [10], 
[12]. The VSC control is characterized by the inner current 
controller (CC) and the outer control loops, which make it 
possible to characterize the main VSC operation modes (i.e., 
mode P  Q, mode Vdc  Q, mode Vdc  Eac and mode P  Eac) 
[9], [10]. The PLL is also considered in the control modeling 
and the superscript “c” indicates the converter dq-domain 
variables whereas no superscript is used on the grid dq-
domain variables.  

    1)  AC grid relation 

According to Fig. 1, the small signal voltage balance in grid 
dq-domain across the converter Rc – Lc filter is 
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1

,
d d dc c c

q q qc c c

E I VR sL L

E I VL R sL
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
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               

 (32) 

where 1 = 2f1 is the fundamental angular frequency of the 
grid, Vdq = [Vd Vq]

T is the VSC output voltage and 
Edq = [Ed Eq]

T and Idq = [Id Iq]
T are the voltage and the current 

at the point of common coupling. 

    2)  AC-DC converter relations 

The modulation function mdq = [md mq]
T is used to relate the 

VSC output voltage Vdq and the DC voltage Vdc as [12] 

 0
0

0
,

d d d d d
dc dc dc

q q q q q

V m V m m
V V V

V m V m m
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 (33) 

where Vdc0 and mdq0 are the steady-state operating points of the 
DC voltage and the modulation function, respectively. 

Assuming a lossless VSC and disregarding the homopolar 
component, the instantaneous power balance between the AC 
and DC sides of the VSC in Fig. 1 and (33) impose the 
following relation between the DC current Idc and the AC 
current [12]:  

 ,
d

dc ac dc dc d q dc
q

I
P P V I m m V

I

 
       

 
 (34) 

which can be expressed as the small signal relation, 
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      

 (35) 

where Idq0 is the steady-state operating point of the AC 
current. 

    3)  PLL relations 

The AC current and voltage and the modulation function in 
the converter (Ic

dq, Ec
dq and mc

dq) and grid (Idq, Edq and mdq) 
dq-domains are related as [12]  
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 (36) 

where GPLL(s) = FPLL(s)/(s+Ed0FPLL(s)), FPLL(s) = 
kp, PLL+ki, PLL/s and kp, PLL and ki, PLL are the proportional and 
integral gains of the PLL control. 

    4)   Inner CC loop relations 

The small signal control law of the inner CC loop in the 
converter dq-domain is [9], [12] 
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 (37) 

where Vc
dq, r = [Vc

d,r Vq,r]
T = Vdc0[md mq]

T and Ic
dq,r = [Ic

d,r I
c
q,r]

T 
are the reference voltage and current, D(s) = esTd is the VSC 
time delay transfer function, Fcc(s) = kp, cc + ki, cc/s and 
Hf(s) = f /(s + f), with kp, cc and ki, cc being the proportional 
and integral gains of the inner CC, f  the low-pass filter 
bandwidth and Td the VSC time delay.  

    5)  Outer control loop relations 

According to Fig. 1, the following outer control loops are 
characterized in the VSC modeling [9], [10], [14]: 

Direct-voltage control (DVC) loop: The control law of the 
DVC is considered as 

 
,

, ,

,

( )
( )( ) ,

0

c
d r dcc

d r dc dc r dc dcc
q r

I F s
I F s V V V

I

              
(38) 

which is expressed with dq-complex space vectors (30) as 

 
( )1

,
( )2

dc
dc

dc

F s
V

F s

 
      

 
cm m m
dq,r o,DVC o,DVCI F F  (39) 

where Fdc(s) = kp, dc + ki, dc/s, with kp, dc and ki, dc being the 
proportional and integral gains of the DVC. 

Alternating-power control (APC) loop: Since Eq0 = 0, the 
control law of the APC is considered as 
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which is expressed with dq-complex space vectors (30) as 
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where Fp(s) = kp, p + ki, p/s, with kp, p and ki, p being the 
proportional and integral gains of the APC. 

Alternating-voltage control (AVC) loop: The control law of 
the DVC is considered as 
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 (42) 

which is expressed with dq-complex space vectors (30) as 
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where Fv(s) = kp, v + ki, v/s, with kp, v and ki, v being the 
proportional and integral gains of the AVC. 

Reactive-power control (QPC) loop: Since Eq0 = 0, the 
control law of the QPC is considered as 
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which is expressed with dq-complex space vectors (30) as 
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where Fq(s) = kp, q + ki, q/s, with kp, q and ki, q being the 
proportional and integral gains of the QPC. 

The complex transfer matrices Fm
o, G

±
o and Y±

o in (8) are 
the sum of the above complex transfer matrices depending on 
the VSC operation mode. 
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