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Dynamics of equilibration and collisions in ultradilute quantum droplets
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Employing time-dependent density-functional theory, we have studied dynamical equilibration and binary
head-on collisions of quantum droplets taking as a case of study droplets made of a 39K - 39K Bose mixture. The
phase space of collision outcomes is extensively explored by performing fully three-dimensional calculations
with effective single-component Quantum Monte Carlo-based and two-component LHY-corrected mean-field
functionals. We exhaustively explored the important effect—not considered in previous studies—of the initial
population ratio deviating from the optimal mean-field value N2/N1 = √

a11/a22. Both stationary and dynamical
calculations indicate sensitivity to an initial nonoptimal concentration. When three-body losses (3BL) are present
our two-component approach allows to theoretically address situations in which they mainly act on one of the
components of the mixture. Our approach also allows to simultaneously explore the effect on the simulation of
population imbalance and 3BL, which are coupled when they act.

DOI: 10.1103/PhysRevResearch.3.043139

I. INTRODUCTION

The collision of liquid drops is one of the more funda-
mental and complex problems addressed in fluid dynamics,
with implications in basic research and applications, e.g., in
microfluidics, formation of rain drops, ink-jet printing, or
spraying for combustion, painting, and coating [1–4]. Liquid
drop collisions were also used as a model for nucleus-nucleus
reactions [5] and nanoscopic 3He droplets collisions [6].

Generally speaking, on collision droplets may bounce
back, coalesce into a single drop, separate after temporarily
forming a partially fused system, or shatter into a cloud of
small droplets. The main goal of the studies on droplet-droplet
collisions is to determine how the appearance of these regimes
depends on the collision parameters (droplet size, velocity,
impact parameter) and intrinsic properties of the liquid (vis-
cosity, surface tension, etc.).

With the advent of the so-called “helium drop machines”,
it has been possible to generate 4He nanodroplets by the free
expansion of a supercooled gas, as reviewed, e.g., in Ref. [7].
This has allowed to extend the study of liquid droplets to the
quantum regime. Indeed, helium in its two isotopic forms, 3He
(a fermion) and 4He (a boson), is the only element in nature
which may exist at zero temperature as an extended liquid or
in the form of droplets.
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At the experimental droplet temperatures, 0.37 K for 4He
and 0.15 K for 3He[7], 4He is a superfluid and 3He is a normal
fluid. Studies on superfluid 4He droplets collisions are very
scarce, see, e.g., Refs. [8–11]. It has been recently shown
that the merging of superfluid 4He nanodroplets may produce
quantized vortices and turbulence [11–13]

In the field of ultracold Bose gases, there are also very
few studies of cold gas collisions [14–16], since the only
accessible phase until recently was the gaseous, confined
one. The situation has changed quite recently since a self-
bound, low-density liquidlike state composed by ultracold
quantum Bose-Bose mixtures, first theoretically proposed by
Petrov [17], has been experimentally produced [18–21]. In
these mixtures, an adequately tuned interaction can lead to a
regime where the mean-field energy is comparable to the Lee,
Huang, and Yang (LHY) energy. The LHY energy term is a
perturbative correction to the mean-field energy, first calcu-
lated with the single-component Bose gas [22,23], and later
extended to two-component Bose-Bose mixtures [24–26].
This desirable feature of stabilizing the mean-field col-
lapse in an LHY-extended theory (MF+LHY), allowing for
droplet formation, is present also in low-dimensional ge-
ometries [27–29] and accounts for the stability of dipolar
droplets [30,31]. Consequently, the realm of stable quantum
droplets has been extended to densities much lower than those
of helium droplets [32].

As pointed out in Ref. [33], the LHY term suffers from
an intrinsic inconsistency with the appearance of an imag-
inary term in the energy of the Bose-Bose mixture. This
is at variance with a single-component Bose gas, where no
such imaginary term appears and where the LHY term has
proven to be valid up to relatively large densities, as it was
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confirmed by first-principle Quantum Monte Carlo (QMC)
calculations [34,35]. Already in the first experimental real-
ization of a quantum Bose-Bose liquid mixture, composed
by two hyperfine states of 39K, there have been deviations
of observed properties from the predictions of usually em-
ployed theory based on interactions described solely in terms
of s-wave scattering lengths [17]. These effects were properly
explained instead by a QMC-based functional built to in-
clude effective-range corrections [36]. Diffusion Monte Carlo
(DMC) calculations indicate that inclusion of the effective
range allows to extend the universality of the theory [36,37],
providing improved energy functionals when both the s-wave
scattering lengths and the effective ranges are known.

Some progress in the understanding of dynamical proper-
ties of quantum Bose-Bose droplets has been made in a recent
experimental study of head-on collisions between pairs of
39K - 39K droplets [38], providing a new avenue of research. In
Ref. [38], the authors discovered a highly compressible low-
density droplet regime, not present in the world of classical
liquids, when the total atom numbers in colliding droplets
are small. Thus, it is not clear whether the Weber number
theory [39], describing the dynamics of classical liquid col-
lisions, can apply to ultradilute droplets.

Depending on the velocity of each droplet, the outcome of
the experiment was either merging or separating the colliding
droplets [38]. A critical velocity vc is defined [38] as the initial
velocity of each droplet above (below) which the two droplets
separate (merge) on colliding. A significant discrepancy was
observed between the experimental critical velocity vc and the
theoretical analysis of the experiment carried out within the
MF+LHY approach [38]. The disagreement was attributed to
the lack of three-body losses (3BL), which were introduced
in a next step but acting on the total density. This means that
both components lose their atoms such that the density ratio is
constantly kept fixed at the value ρ2/ρ1 = √

a11/a22, which is
the mean-field stability requirement [17,40,41]. By doing so,
the agreement between theory and experiment was found to
be good.

However, on the other hand, it is unclear whether this pro-
cedure may mask interesting details which might be hidden
by the fact that 3BL unavoidably were made to act on the
total density and not on the appropriate component of the
bosonic mixture. We recall that experimental measures [20]
have demonstrated significant differences in intensities of
3BL of different components, which cannot be taken into
account by the approach of Ref. [38]. This approach might
be too restrictive for its applicability to other potentially inter-
esting situations. In particular, it excludes the possibility that
the droplets in the experiment are not fully equilibrated.

In this work we present one such framework for the de-
scription of binary collisions of ultradilute quantum droplets.
It uses a QMC-based functional which takes into account
the effective range of the interactions and a two-component
MF+LHY functional which enables the study of nonequili-
brated drops and a more realistic consideration of 3BL. Our
results show the relevance of the nonoptimal concentration
ratio in the outcome of drop collisions and may disclose the
effect that the presence of evaporated atoms may have on the
collision outcome. This halo of expelled gaseous particles is
known to affect the merging in the case of viscous droplet

collisions [2]. The experimental results of Ref. [38] have been
taken as a case of study.

This work is organized as follows. In Sec. II we lay out
the basic equations of the extended LHY mean-field the-
ory (MF+LHY). In Sec. III we present the details of our
simulations. In Sec. IV we discuss the effects of the nonop-
timal initial atom number ratio and 3BL on the stationary
drop. In Sec. V A, we systematically compare the colli-
sions results obtained within the effective single-component
MF+LHY theory with those obtained using the QMC-based
functional. In Sec. V B, we report results derived within the
two-component framework and we investigate the influence
on the collisions of both the initial population imbalance and
the 3BL acting only on the |F, mF 〉 = |1, 0〉 state. Finally,
Sec. VI comprises the main conclusions of our work.

II. MF+LHY AND QMC DENSITY FUNCTIONALS

The LHY-extended mean-field theory (MF+LHY) is based
on the following density functional per unit volume V [17,41],

E[ρ1, ρ2] = EMF/V + ELHY/V, (1)

where

EMF

V
= 2π h̄2a11

m
ρ2

1 + 2π h̄2a22

m
ρ2

2 + 4π h̄2a12

m
ρ1ρ2, (2)

and

ELHY

V
= 256

√
π h̄2

15m
(a11ρ1)5/2 f

(
1,

a2
12

a11a22
,

a22ρ2

a11ρ1

)
. (3)

We have considered equal masses m1 = m2 = m and the func-
tion f is defined in Ref. [17],

f (1, u, x) = 1

4
√

2
[(1 + x +

√
(1 − x)2 + 4ux)5/2

+ (1 + x −
√

(1 − x)2 + 4ux)5/2]. (4)

Here u = a2
12/(a11a22) and x = a22ρ2/(a11ρ1). The function

f is complex for a2
12 > a11a22, and we use the approximation

a2
12 = a11a22 to keep f real. By doing so, f (1, 1, x) = (1 +

x)5/2 and the LHY functional reads

ELHY

V
= 256

√
π h̄2

15m
(a11ρ1 + a22ρ2)5/2. (5)

The above framework is the most general version of a two-
component equal-masses Bose-Bose energy functional, and it
allows for all possible ρ1 and ρ2 values. This functional can
be reduced to an effective one-component functional, which
is the one mostly used in the study of Bose-Bose mixtures,
if one uses the result that the stability of a dilute Bose-Bose
mixture lies in a very narrow range of optimal partial densities
ρ1/ρ2 = √

a22/a11 [40,41]. Then, for this fixed ratio of ρ1/ρ2

the MF+LHY theory can be written in the compact form

E/N

|E0|/N
= −3

(
ρ

ρ0

)
+ 2

(
ρ

ρ0

)3/2

, (6)
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with ρ being the total density and E0/N and ρ0 the equilibrium
energy per particle and equilibrium total density, respectively,
given by

ρ0 = 25π

1024

(a12/a11 + √
a22/a11)2

(a22/a11)3/2(1 + √
a22/a11)4

1

a3
11

, (7)

E0

N
= −h̄2

ma2
11

25π2

768

|a12/a11 + √
a22/a11|3

a22/a11(1 + √
a22/a11)6

= −h̄2

2mξ 2
. (8)

We have introduced in the last equation the healing length
ξ , obtained by equating the kinetic energy to the energy per
particle at the equilibrium density:

ξ

a11
= 8

√
6

5π

√
a22

a11

(1 + √
a22/a11)3

|a12/a11 + √
a22/a11|3/2

. (9)

The total atom number in the reduced unit Ñ introduced in
Ref. [17] is given by

N

Ñ
= 3

√
6

5π2

(1 + √
a22/a11)5

|a12/a11 + √
a22/a11|5/2

. (10)

To compare with the results of Ref. [38], the velocity v can be
expressed in the universal unit ṽ as

v

ṽ
= 5π h̄

8
√

6ma11

|a12/a11 + √
a22/a11|3/2

√
a22/a11(1 + √

a22/a11)3
. (11)

We have also used a density functional derived from QMC
calculations (QMC functional in the following), which is con-
structed by performing DMC calculations of a 39K mixture
in the homogeneous phase [36]. The QMC functional Eint is
obtained with the relation

Eint = ρ
E

N
, (12)

where E/N is the energy per particle of the extended system,
calculated from QMC. QMC calculations were performed
with the model potentials, which reproduce both the s-wave
scattering lengths and effective ranges, which are known from
the experiment [42]. In this way, the QMC functional correctly
incorporates the two relevant scattering parameters of this
mixture, i.e., the s-wave scattering lengths and the effective
ranges.

III. TIME-EVOLUTION EQUATIONS

For a two-component system, our ansatz for the many-body
wave function is

�(r1, . . . , rN ; t ) =
N1∏

i=1

ψ1(ri, t )
N2∏
j=1

ψ2(r j, t ), (13)

where the number of particles of component 1 (2) is equal to
N1 (N2). The equations of motion for the two components read

ih̄
∂ψi

∂t
= Hiψi =

{
− h̄2

2m
∇2 + Vi(ρ1, ρ2)

}
ψi, (14)

for i = 1, 2, where ρi = |ψi|2, and the potential Vi is obtained
from Eq. (1) [43].

Vi = ∂E[ρ1, ρ2]

∂ρi
. (15)

Explicitly, the coupled equations of motion for the two com-
ponents of the condensate read

ih̄
∂ψ1

∂t
=

(
− h̄2

2m
∇2 + 4π h̄2a11

m
ρ1 + 4π h̄2a12

m
ρ2

+ 128
√

π h̄2a11

3m
(a11ρ1 + a22ρ2)3/2

)
ψ1, (16)

ih̄
∂ψ2

∂t
=

(
− h̄2

2m
∇2 + 4π h̄2a22

m
ρ2 + 4π h̄2a12

m
ρ1

+ 128
√

π h̄2a22

3m
(a11ρ1 + a22ρ2)3/2

)
ψ2. (17)

When the ratio of densities is the optimal one, ρ2/ρ1 =√
a11/a22, fixed by the condition of minimum energy per

particle [17,40,41], the energy functional for the total density
ρ = ρ1 + ρ2 reduces to

Eint = αρ2 + βργ+1, (18)

where α, β, and γ are either the MF+LHY parameters from
Eq. (6), or those that better fit the DMC equation of state [36].
In this case, the problem is thus effectively single component,
meaning that the full many-body wave function (13) reduces
to

�(r1, r2, . . . , rN ; t ) =
N∏

i=1

ψ (ri; t ), (19)

where ψ is the solution of the following equation,

ih̄
∂ψ

∂t
= Hψ =

(−h̄2

2m
∇2 + V (ρ)

)
ψ, (20)

where

V (ρ) = 2αρ + β(γ + 1)ργ . (21)

Equations (16), (17), and (20) are solved numerically by suc-
cessively applying the time-evolution operator

ψ (t + �t ) = e−iH�tψ (t ), (22)

where a Trotter decomposition accurate to second order in the
time step is implemented [44],

e−iH�t/h̄ = e−i�tV (R′ )/2h̄e−i�t K̂/h̄e−ih̄�tV (R)/2h̄ + O(�t3),
(23)

with K̂ = −h̄2∇2/(2m). The kinetic energy propagator is
evaluated in k space by means of Fourier transforms.

Since an important parameter in our study is the deviation
with respect to the optimal atom ratio N2/N1 = √

a11/a22, we
define the atom ratio x as

x = N2

N1

√
a22

a11
, (24)

such that x = 1 corresponds to the optimal mean-field compo-
sition. Note that one only needs to address the case x � 1 due
to the symmetric role of atom numbers.

IV. REAL-TIME RELAXATION OF AN ISOLATED
DROPLET

We first focus our attention on the time evolu-
tion of a 39K - 39K droplet as observed in the Florence
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FIG. 1. Time evolution of the total atom number N in a stationary
droplet. Lines are the results of two-component MF+LHY+3BL cal-
culations, and points are experimental data from Ref. [20]. The initial
atom number is N = 2.5 × 105, with Gaussians of width σr = 3 μm
as density profiles. The values of x = (N2/N1)

√
a22/a11 imposed at

t = 0 are given in the top legend. The 3BL coefficients are shown in
the panels in units of h̄/(mξ 2ρ2

0 ), with ρ0 and ξ being the equilibrium
density and healing length given in Table I.

experiment (Fig. 2 in Ref. [20]). We performed two-
component MF+LHY calculations with the goal to investi-
gate the influence of the initial nonoptimal population ratio
and 3BL on the real-time dynamics. To mimic the experi-
mental setup, at t = 0 we set the shape of a N = 2.5 × 105

atoms droplet as a Gaussian of width σr = 3 μm centered in
the origin and let the system evolve according to the extended
Gross-Pitaevskii Eqs. (16) and (17). The scattering parame-
ters ai j correspond to the magnetic field B = 56.54 G (see
Table I). We denote the |F, mF 〉 = |1, 0〉 state as component

FIG. 2. Time evolution of N1/N2 for the same simulations as in
Fig. 1. Starting atom number imbalances: (a), x = 0.6; (b): x = 0.4.
Points are data from the Ref. [20]. The full black line is the corre-
sponding x = 1 atom ratio.

1 and the |F, mF 〉 = |1,−1〉 state as component 2. Within the
two-component MF+LHY approach, we show in Fig. 1 the
time evolution of the total atom number for different initial
atom ratios within a broad range, namely, from x = 0.2 to
x = 1. This was done changing the normalization of each
component to the desired value at t = 0, keeping fixed the
total number of atoms, N = 2.5 × 105. It is worth noticing
that the size of the whole simulation box is 60 μm, and we
consider only the atoms inside a reduced box of 12 μm to
belong to the droplet and those outside of it as belonging
to the surrounding cloud which arises as a consequence of
the evaporation of the excess atoms in each species as time
advances. We have verified that the total atom number within
about 12 μm box produces similar values, which are compati-
ble with the experimental error bars shown in Fig. 1. We have
included 3BL only in the time evolution of the ψ1 component,
whose 3BL coefficient is reported to be at least 100 times
larger than the 3BL coefficients in the other channels [20,45].
This effect is included by introducing a term −ih̄K111|ψ1|4/2
in Eq. (16). For each initial atom ratio, we have explored
four different values of K111, namely, 0, 4.5 × 10−28 cm6/s,
9 × 10−28 cm6/s and 18 × 10−28 cm6/s, respectively. These
K111 values span a broad range of possibilities, ranging from a
fairly small to a rather large amount of 3BL. acting on the ψ1

component.
Notice that there is a large experimental uncertainty

affecting the actual value of K111: K111 values used in
Figs. 1(b)–1(d) are compatible with the experimental error bar
in the determination of the 3BL term for the 39K - 39K mixture,

TABLE I. Scattering parameters, i.e., s-wave scattering lengths
a, in units of Bohr radius a0, as a function of the magnetic field
B [46]. ξ and ρ0 stand for healing length and equilibrium density
of uniform liquid, respectively [see Eqs. (9) and (7)].

B(G) a11(a0) a22(a0) a12(a0) ξ (μm) ρ0(cm−3)

56.23 63.648 34.587 −53.435 0.496 5.773×1015

56.54 72.960 33.962 −53.293 1.479 1.217×1015

56.55 73.3 33.9 −53.3 1.527 1.164×1015

043139-4



DYNAMICS OF EQUILIBRATION AND COLLISIONS IN … PHYSICAL REVIEW RESEARCH 3, 043139 (2021)

which is 9 × 10−28 cm6/s, with an experimental uncertainty
up to a factor of 2 [20]. For these K111 values [panels (b) to (d)
in Fig. 1], similar to those reported in Ref. [38], we observe
that compared with the atom number imbalance x, 3BL play a
minor role in the equilibration process. The largest of the K111

values Fig. 1(d) was used in the two-component calculations
in Ref. [20] to explain the time evolution of the drop size
observed in the experiment [20]. Looking at Fig. 1(d), it is
clear that this K111 value yields too strong 3BL.

The relative atom number obtained from our calculations is
consistent with the experimental data for some x and several
values of K111, as shown in Fig. 2, where we display the evolu-
tion of relative atom number, starting from x = 0.6 [panel (a)]
and x = 0.4 [panel (b)] for four different K111 values. From
this analysis, we conclude that the observed atom loss can
thus be mainly attributed to the droplet equilibration process
in which the excess component is expelled until the optimal
atom number ratio is eventually reached. A much lesser con-
tribution to the equilibration process arises from 3BL.

V. DROPLET COLLISIONS

We study the phase diagram characterizing the outcome
of head-on binary collisions using the same description as in
Ref. [38], i.e., in terms of (v, Ncoll ), where Ncoll = N (t = tcoll )
is the total atom number evaluated at the collision time tcoll,
and v is velocity of each droplet at the beginning of the sim-
ulation. The collision time tcoll is estimated as tcoll = d/(2v),
where d is the initial distance between the two droplets. The
initial wave function reads

ψ (t = 0) = φ(x − d/2, y, z)e+ikx + φ(x + d/2, y, z)e−ikx,

(25)
where φ and k = mv/h̄ are the wave function and wave num-
ber of each droplet, respectively. Note that in all figures the
total atom number N and velocity v is re-scaled according to
Eqs. (10) and (11).

For all the simulations performed in this work, we have
observed three possible collision outcomes: (i) For small ve-
locities, merging of the droplets into a single one (coalescence
appears after substantial deformation of the droplets); (ii) for
higher velocities, separation, where the two droplets move
away from one another after the collision; and (iii) evapora-
tion, which occurs for very energetic collisions. Shattering is
not observed because BEC drops must have a minimum size
to be bound [17], and instead of a cloud of small droplets,
the process continues until complete evaporation. These pos-
sibilities are illustrated in Fig. 3, where one may see the
three outcomes: Merging [Fig. 3(a)], separation [Fig. 3(b)],
and evaporation [Fig. 3(c)] The simulation corresponds to the
two-component calculations described below.

In the experiments reported in Ref. [38], most of the merg-
ing events are found to lay below the dashed lines in Fig. 4
(the rising branch for low Ncoll and the decreasing one for
higher Ncoll), whereas most of the events leading to separation
are found above these lines. Therefore in the following, when
discussing the agreement between our theoretical predictions
and experiments, we will use visual inspection to discrimi-
nate between good and bad agreement, considering a perfect
agreement the case where the experimental dashed lines

FIG. 3. Three possible outcomes of a collision between quantum
droplets simulated by two-component MF+LHY calculations; 3BL
are not included. From left to right, the simulations correspond to
ṽ = 0.3, 0.5, and 1.1 for Ñcoll = 244 in all three cases at the magnetic
field B = 56.55 G. The panels show the integrated total atom density∫

dzρ(r). The complete time evolution of the collisions is reported
in Ref. [47].

separate the calculated merging points from those represent-
ing separation.

A. Effective single-component calculations

We have collected in Fig. 4 the collision outcomes obtained
using the effective single-component MF+LHY and QMC
functionals without including 3BL. The QMC functional,
which depends on the magnetic field, is that corresponding to
the magnetic field B = 56.23 G. For this B value the difference
between the MF+LHY and the QMC functionals we are using
is the greatest [36]. Explicitly, this QMC functional is given
by Eq. (18) with parameters α = −0.812h̄2/(2ma5

11), β =
5.974h̄2/(2ma5−3γ

11 ), and γ = 1.276, with a11 = 63.648a0.
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FIG. 4. Collision outcomes obtained using the effective single-
component MF+LHY (a) and QMC functional (b) with the
scattering parameters corresponding to a magnetic field B = 56.23 G
(see Table I). In both cases, 3BL is not included. Atom number N and
velocity of each droplet at t = 0 are re-scaled according to Eqs. (10)
and (11), respectively. Points are collision outcomes, while dashed
blue and full green lines are the empirical fits to the experimental and
MF+LHY results without 3BL [38], respectively, for the velocity
threshold above (below) which the droplets separate (merge).

For small N , the two functionals do not yield significantly
different collision outcomes. There are some differences for
big droplets, but not large enough to explain the deviation
between theory and experiment observed in Ref. [38]. Merg-
ing is more likely to occur when using the QMC functional,
which is somewhat expected since QMC functionals yield
more binding [36] than the MF+LHY one, thus preventing
the drops from separating.

From the results shown in Fig. 4 it appears that without
including the 3BL, the effective single-component density
functionals cannot account for the experimental observations
since they predict droplets merging at much higher velocities
than experimentally observed. This was one of the con-
clusions of the theoretical analysis in Ref. [38] within the
MF+LHY approach, which we also find for QMC-based
functionals.

B. Two-component calculations

We have performed collision simulations using the
MF+LHY density functional in the two-component
framework [Eqs. (16) and (17)]. Notice that this is not

FIG. 5. Collision outcome as a function of droplet velocity ṽ and
total atom number evaluated at the instant of collision Ñcoll = Ñ (t =
tcoll ) for the scattering parameters corresponding to B = 56.55 G.
Calculations are performed using two-component MF+LHY theory
without including 3BL. Parameter x = (N2/N1)

√
a22/a11 is the initial

particle ratio at the beginning of collision. Points and lines have the
same meaning as in Fig. 4.

possible with the present QMC functional, as it is written in
terms of the total density alone. For each component, its wave
function is evolved in time with the corresponding propagator
[see Eqs. (14) and (22)].

1. Neglecting 3BL

We summarize in Fig. 5 the collision outcomes for sev-
eral initial atom ratios x. The functional we use is that
obtained from the scattering parameters ai j corresponding to
the magnetic field B = 56.55 G (see Table I), so our value
is slightly above the range used in Ref. [38]. In all cases the
initial droplet separation is d ≈ 3500 a11 ≈ 9 ξ , where ξ is the
corresponding healing length (see Table I). Since at t = 0
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the atom number ratio is not the optimal one, i.e., it does
not correspond to the ground state of the extended Gross-
Pitaevskii approach, the initial profile of each droplet has been
prepared as follows. First, each droplet is equilibrated with
optimal atom composition x = 1 by means of imaginary-time
propagation. Next, the real-time evolution is started and si-
multaneously the normalization of component 1 is changed
to the desired value of x. When the collision is started with
x = 1 [Fig. 5(a)], the predictions within the two-component
framework are in good agreement with the effective single-
component calculations of Ref. [38]. It can be seen that, as
x decreases [Figs. 5(a) and 5(b)], the merging region in the
phase diagram shrinks and hence the x �= 1 results are more
similar to the experimental ones (we recall that 3BL are not
included).

Note that there are small differences between the pre-
dictions obtained using effective single-component and two-
component MF+LHY functionals assuming x = 1. Since we
are dealing with a finite system, the imposed requirement
ρ2/ρ1 = √

a11/a22 satisfied in an effective single-component
functional is not equally fulfilled in each spatial coordinate at
the droplet surface in a two-component approach. Therefore,
colliding drops display local deviations of the density ratio
ρ2/ρ1, which eventually leads to the difference in collision
outcomes.

Since x �= 1 is not the equilibrium configuration, the atoms
of the in-excess component are expelled out of the droplets as
soon as time evolution starts. Therefore, the collision outcome
depends on the initial distance d between the two droplets (the
larger the d , the larger the amount of atoms expelled from the
droplets prior to colliding). Moreover, the evaporated atoms
do not leave the collision region and may also influence the
outcome. To highlight this important effect, we report in Fig. 6
the collision outcomes for nonequilibrated (x = 0.7) droplets
and two different initial distances. Starting the collision at a
large distance (d = 45ξ ), as in Fig. 6(b), the prediction for
the critical velocity coincides with that obtained within the
effective single-component framework. This is quite a natural
result meaning that, by the time the two droplets meet, they
have already reached a quasiequilibrium configuration where
the ratio of atoms in each component corresponds to x = 1.

2. Effect of 3BL and gas halo

We have finally performed calculations including 3BL
using the two-component MF+LHY density functional.
Three-body recombination is assumed to be dominant in the
|F, mF 〉 = |1, 0〉 channel, which we call state 1 [20,45]. Con-
sequently, in our simulations, 3BL act only on ψ1; Eq. (16).

We show in Fig. 7 the collision outcomes when the col-
lision is started with the optimal atom number ratio x = 1
[Fig. 7(a)] and with x = 0.8 [Fig. 7(b)]. The initial density
profiles and the distance between the two droplets is the
same as in Fig. 5. The scattering parameters ai j correspond
to the magnetic field B = 56.55 G. We choose a value of
K111 = 2.73 × 10−28 cm6/s = 0.53h̄/(mξ 2ρ2

0 ), i.e., the same
as in Ref. [38], where it has been observed that the effec-
tive single-component theory, supplemented with a 3BL term
−ih̄Kρ2/2, with K = 0.53h̄/(mξ 2ρ2

0 ) and ρ being the total
atom density, allowed to reproduce the experimental curve
dividing merging from separation. Our calculations within

FIG. 6. Same as Fig. 5 for the nonoptimal atom number ratio x =
0.7 and two different initial droplets distances. Left: Predictions of
collision outcomes. Right: Initial droplets density profiles along the
approaching direction, ρ(x, 0, 0; t = 0). Full green and dashed blue
lines have the same meaning as in Fig. 4. The top panel corresponds
to d = 9ξ and the bottom panel to d = 45ξ .

two-component formalism show that only when the initial
atom number ratio is nonoptimal, namely, x = 0.8, we ob-
serve separationlike outcomes of the collision and only in part
of the phase diagram, for droplet velocities between ṽ = 0.7
and ṽ = 1. We have performed the calculations with the same
initial conditions as in Fig. 7 but using the magnetic field B =
56.3G, which is within the experimental window of magnetic
fields used in Ref. [38], and K111 = 9.10−28 cm6/s, and we see
no significant differences with the results of Fig. 7.

To illustrate the effect of both the 3BL and nonoptimal
atom ratios in more detail, we present in Fig. 8 four types
of collisions obtained within the two-component MF+LHY
functional. In all four cases, the integrated density ρi(x, y) =∫

dzρi(r) is shown, with component 1 (2) shown on the left
(right).

In Figs. 8(a) and 8(b), the time evolution is shown with-
out including three-body losses present in the system. The
droplets are prepared with nonoptimal atom ratio x = 0.7, as
in Fig. 5. In both cases, separation is observed. For the smaller
drops colliding at large velocity [Fig. 8(a)], drops evaporate on
separation since they require a minimum critical atom number
to be self-bound [17]. When atom numbers are slightly higher
[Fig. 8(b)], the remaining part of the drops separates. In both
cases, there is a sizable evaporation in component 1 when
collision starts due to the initial population imbalance.

In Figs. 8(c) and 8(d) we show the influence of the ini-
tial atom ratio on the collision outcome including 3BL with
K̃111 = 0.53 for initial atom ratio equal to x = 1 and x =
0.8, respectively. In this case, the interplay between three-
body losses and atom number imbalance leads to different
geometries during the collision, which eventually yield dif-
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FIG. 7. Same as Fig. (5). Collision outcomes are predicted within
the two-component MF+LHY theory with 3BL included in the
|F, mF 〉 = |1, 0〉 component using K111 = 2.73 × 10−28 cm6/s, for
two values of the initial atom number ratio is x = (N2/N1)

√
a22/a11.

ferent collision outcomes. When the initial atom ratio is x = 1
[Fig. 8(c)], two protrusions are formed, reminiscent of colli-
sions of He droplets [8,11]. The protrusions do not reach the
size to be self-bound and eventually evaporate.

When the density at the droplets contact region increases,
the density of component 1 diminishes due to 3BL. This is
followed by evaporation of component 2 due to the equilibra-
tion mechanism leading toward optimal particle number. This
creates a halo around the droplets. Around t = 30 ms, a shock
wave is formed in component 2 as a result of the interference
of outward expansion of the droplet with the surrounding halo.
Eventually, the shock wave passes through the halo, and the
drops remain at place. This result highlights that evaporated
atoms that remain around the colliding droplets contribute
to the merging process. Indeed, it has been experimentally
found that coalescence of viscous droplets can be facilitated
when the collision region contains atoms in the gas phase [2].
Notice that in order for the droplets to merge, the gas between
them must be expelled, which costs some energy favoring the
merging.

When the collision is started with x = 0.8 [Fig. 8(d)],
evaporation of component 1 in the early stage of collision
takes place. This happens due to equilibration toward optimal
particle composition, which would happen even in the absence
of 3BL (see Fig. 1). Compared with the x(t = 0) = 1 case
[Fig. 8(c)], a different droplet geometry and a thinner halo

of species 2 appear at about t = 24 ms. This is due to the
fact that, when x < 1, there is a time window in which only
component 1 evaporates. The drops form a peanutlike config-
uration which has a much longer time life, also observed in
Ref. [38], during which the large part of component 2 halo
evaporates away. The peanut/cylinder eventually splits into
two pieces. All of the separation collision outcomes observed
in Fig. 7(b) are of the kind displayed in Fig. 8(d), indicating
that this could be a common feature for collisions with initial
population imbalance and 3BL present only in channel 111.

We have also performed collisions using the effective
single-component MF+LHY theory with the same value of
three-body recombination as in Ref. [38], K̃ = 0.53, and we
have found that the collision outcome (and thus the overall
aspect of the v − N phase diagram) is very sensitive to the
initial preparation of the droplets, namely, the distance and
the atom number at the start of the collision. In most cases
our simulations predict separation of the droplet followed
by evaporation, even for (v, N ) values for which merging is
predicted in Ref. [38]. Thus, only a precise knowledge of how
the droplets have been prepared (crucially, the initial droplet
distance) would permit us to make a sensible comparison with
the simulations of Ref. [38].

VI. SUMMARY AND CONCLUSIONS

The recent study of head-on 39K - 39K droplet colli-
sions [38] offers a new avenue of research by extending the
study of quantum droplet collisions—previously restricted to
the case of helium droplets [32] to much lower density and
temperature ranges of ultradilute cold Bose gas mixtures.

In the present work, we have taken this experiment as a
case of study to theoretically analyze the influence of some
elements not considered in the simulations carried out in that
work. In particular, we have improved the density-functional
approach by considering a functional based on QMC calcu-
lations that correctly incorporate the two relevant scattering
parameters of the 39K - 39K mixture, namely, the s-wave scat-
tering length and the effective range, as well as the most
general version of a two-component equal-masses Bose-Bose
energy functional. This two-component functional allows to
introduce the 3BL only in the most affected component of the
mixture instead of in the total density of the system, which
is usually unjustified. This is a crucial improvement over the
effective single-component functionals like the QMC-based
one, or the effective single-component MF+LHY functional
which follows from the requirement that the two components
of the mixture have the density ratio corresponding to the
equilibrium one.

When 3BL are not considered, neither the QMC nor the
effective single-component MF+LHY approaches agree with
experiment. As already noted in the theoretical analysis of
Ref. [38], the MF+LHY approach yields droplets merging at
much higher velocities than observed experimentally. More-
over, the QMC-based and the single-component MF+LHY
functionals meaningfully yield similar results. This is quite
surprising since the QMC-based functional has a rather larger
incompressibility and binding energy per atom than the
single-component MF+LHY functional [36], which was the
reason to use it in this study.
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FIG. 8. Images of the time evolution of ρi = ∫
dzρi(r), for components i = 1 and 2, obtained within the two-component MF+LHY

functional. The complete time-dependent evolution of the collisions is reported in Ref. [47].

It might well be that using a K111 coefficient similar
or compatible with a given experiment, one finds a poor
agreement with the experimental results. In this case, a nat-
ural possibility is that droplets are not fully equilibrated
when the collision is considered to have started. We have
thus completed our analysis, assuming that the droplets are
not in equilibrium at the start of the collision, including
in some cases 3BL but always only in the most affected
component.

If the droplets are not fully equilibrated when they en-
ter the collision region, the outcome sensibly depends on
three key parameters: (i) Initial droplete distance, (ii) initial
atom ratio, and (iii) the value of the 3BL coefficient. Fur-
thermore, when we use nonoptimal atom ratios, we observed
an important additional effect not previously considered,

namely, the halo of the expelled gaseous particles of the
in-excess species that envelop the droplets and increase the
tendency to merge. This effect has also been found in viscous
droplet collisions [2]. Remarkably, the phase diagram changes
even without the introduction of 3BL, as collisions between
nonequilibrated droplets are shown to behave differently from
equilibrated ones in terms of the optimal atom number ratio.
Obviously, the introduction of considerations of 3BL and/or
nonequilibrium configuration at t = 0 in the description of the
collision process has a dramatic impact on the outcome of
the simulations and adds elements of difficult control when
comparing with experiment. We have focused here on zero
temperature description, but it is plausible that thermally ex-
cited droplets [48] could produce similar shifts in the critical
velocity.
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Finally, we want to emphasize that while 3BL and nonequi-
librium effects reduce the number of atoms and the kinetic
energy in the colliding droplets, both effects are by no means
equivalent. The term added to the functional to introduce 3BL
takes atoms and energy out of the computational box, while
the atoms of the in-excess component remain in the collision
region and their presence may affect the collision outcome.
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