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Turbulence generally arises in shear flows if velocities and hence inertial forces are sufficiently
large. In striking contrast, viscoelastic fluids can exhibit disordered motion even at vanishing inertia.
Intermediate between these cases, a novel state of chaotic motion, ‘elasto-inertial turbulence’ (EIT),
has been observed in a narrow Reynolds number interval. We here determine the origin of EIT in
experiments and show that characteristic EIT structures can be detected across an unexpectedly
wide range of parameters. Close to onset a pattern of chevron shaped streaks emerges in excellent
agreement with linear theory. However, the instability can be traced to far lower Reynolds numbers
than permitted by theory. For increasing inertia, a secondary instability gives rise to a wall mode
composed of inclined near wall streaks and shear layers. This mode persists to what is known as
the ‘maximum drag reduction limit’ and overall EIT is found to dominate viscoelastic flows across
more than three orders of magnitude in Reynolds number.

Many fluids in nature and applications, such as
paints, polymer melts or saliva have viscous as well as
elastic properties and their flow dynamics fundamentally
differs from that of Newtonian fluids. A standard
example of such viscoelastic fluids are solutions of long
chain polymers and here surprisingly even very dilute
solutions show a drastic suppression of turbulence and
significantly lower drag levels [1, 2]; a phenomenon
commonly exploited in pipeline flows to save pumping
costs. In seeming contradiction to this stabilizing effect
are observations at much lower Reynolds numbers (Re,
the ratio of inertial to viscous forces), where polymers
have the exact opposite effect; they initiate fluctuations
and increase the flow’s drag. The resulting chaotic
motion was first detected in a narrow Reynolds number
interval, 1000 / Re / 2000, just below the onset of
ordinary turbulence [3, 4] and interpreted as a form of
early turbulence. However, it was later shown [5] that
the corresponding elasto-inertial instability can be traced
into the polymer drag reduction regime at larger Re.
The suggestion of a possible connection between these
two seemingly opposing effects has sparked much recent
interest in the phenomenon of elasto-inertial turbulence
(EIT) [3, 6–8, 10–13].

It has additionally been speculated that EIT may be
connected to purely ‘elastic turbulence’; a fluctuating
state driven by a linear elastic instability in the
inertialess limit [14]. This instability requires curved
streamlines [14–16] and is hence not to be expected
in flows through smooth straight pipes. However,
recent findings tend to suggest that a similar instability
mechanism may also occur in planar shear flows following
an array of strong perturbations [17, 18], leading to
pure elastic turbulence through a subcritical transition
scenario.

Although EIT has first been observed in pipe flow
experiments [3, 4], information on the structure and
nature of the resulting state is almost exclusively
based on simulations using polymer models. Such
simulations and theoretical considerations have suggested
a range of possible transition scenarios. In direct

numerical simulations (employing the FENE-P model)
the characteristic features of EIT include near wall
vortical structures oriented perpendicular to the mean
flow direction (i.e. spanwise direction) and elongated
sheets of constant polymer stretch inclined with respect
to the wall. In these simulations, the transition leading
to this state is nonlinear, (i.e. subcritical) and requires
perturbations of finite amplitude [5–7]. In another study
the aforementioned spanwise vortical structures were
suggested to be linked to the well known Tollmien-
Schlichting (TS) instability that occurs in channel flow
of Newtonian fluids at substantially larger Reynolds
numbers. Again here the transition would be subcritical,
however linked to TS waves [8]. Yet other studies
reported a linear instability that gives rise to chevron
shaped streaks [3]. The latter proposed that this
supercritical transition may be the starting point of a
sequence of instabilities that eventually lead to EIT.

In the present study we visualize the onset of EIT
in experiments and show that the flow pattern is in
excellent agreement with the unstable mode predicted
by linear stability analysis [3]. However in experiments
fluctuations are already present close to onset suggesting
that nonlinear effects cannot be neglected. Moreover,
for increasing shear rates the instability can be pushed
to Re an order of magnitude below the parameter
regime predicted by linear analysis. For increasing Re
on the other hand the dominant flow structures adjust
from a centre to a wall mode and fluctuation levels
strongly increase. The resulting three dimensional EIT
flow pattern persists to the so called ‘maximum drag
reduction’ (MDR) regime at much larger Re. Structural
features of EIT can hence be detected across more than
three decades in Re.

Experiments were initially performed using a 50%
water glycerol mixture as solvent and dissolving 600 ppm
polyacrylamide with a molecular weight of 5 × 106 Da.
The resulting solution has a viscosity of ≈ 10.2 times
that of water. The standard deviation of the pressure
fluctuations recorded for increasing Reynolds numbers is
plotted in Fig. 1(a). The fluctuation level is initially zero
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FIG. 1: Fluctuations level and flow structure near
the onset of elasto-inertial instability. Figure (a)
shows the evolution of the pressure fluctuations amplitude
with increasing Re close to the instability threshold for
experiments using 600 ppm of PAAm dissolved in a 50%
water glycerol mixture. The symbol σp denotes the standard
deviation of the pressure fluctuations,

√
< p2 >, whereas σp0

indicates the standard deviation of the background noise level
for the pressure sensor,

√
< p20 >. Figure (b) illustrates

the flow’s structural composition at Reynolds numbers near
transition. The upper and middle panels show streamwise
velocity fluctuations obtained from PIV measurements in
a longitudinal cross section. The upper panel shows flow
structures at Re ≈ 5 and corresponds to an experiment using
a 66% glycerol concentration (β = 0.56, Wi = 96), whereas
the middle panel corresponds to Re ≈ 100 in an experiment
using a 50% glycerol concentration (β = 0.56, Wi = 203).
The lower panel shows the most unstable mode in the linear
stability analysis; the solution plotted was calculated for
Re = 100, Wi = 60, β = 0.9, n = 0 and k = 1 (see SI for the
definitions of these parameters). Flow direction is from right
to left.

(when subtracting the sensor’s background noise level),
meaning that the flow is laminar, but begins to grow
at Re ≈ 18, as the elasto-inertial instability sets in.
After the onset of instability, the fluctuation amplitude
grows continuously with increasing Re; approximately in
proportion to the square root of Re as indicated by the
solid line. Nevertheless, given the small amplitudes and
experimental uncertainties other scaling relations cannot
be ruled out.

Structural information is obtained from the velocity

fields recorded in the pipe’s central plane using
particle image velocimetry (PIV). The instantaneous
snapshots are assembled by applying Taylor’s frozen-
flow hypothesis and the resulting flow structure is
shown in the mid panel of Fig. 1(b) for Re ≈ 100.
For visualization purposes the average cross-sectional
velocity profile Ū is subtracted from the data and areas
with velocities lower (higher) than the mean profile are
shown in green (yellow). These low and high speed
streaks alternate in the streamwise direction and show
a tendency to form a chevron type pattern. The streak
amplitudes are less than 5% of Ub (the mean velocity)
and therefore lower than streak amplitudes in ordinary
turbulent flow. To compare these flow patterns with the
unstable mode predicted by the linear stability theory
we repeated the analysis in [3], however using a different
methodology (see SI for details). The obtained results
are in excellent agreement with those in [3]. The least
stable mode for Re = 100 is shown in the bottom panel
of Fig. 1(b). As seen, here also a chevron type pattern
consisting of alternating low and high speed streaks is
observed. Hence, the least stable mode can be detected in
experiments suggesting that the elasto inertial instability
mechanism described in [3] is indeed central to the onset
of EIT. However, while the stability analysis predicts
a perfectly regular structure (resulting from a super-
critical Hopf bifurcation), in our case the structure is not
singly periodic but fluctuations appear across a range of
frequencies suggesting weakly chaotic flow. Attempts to
resolve the flow field closer to onset of instability for the
same fluid were unsuccessful due to the lower signal to
noise ratio.

In order to probe if the elasto inertial instability
persists to even lower Re additional experiments were
carried out for a 66% glycerol water solution again adding
600 ppm of PAAm. Due to the increased solvent viscosity
(approximately three times higher) the shear rates at a
given Re increase by the same factor compared to the
50% solution. At the same time and as reported in [5], for
a given polymer type and concentration, the onset of the
elasto-inertial instability is dictated by the shear rate and
hence it is expected to set in at lower Re. Indeed, for the
66% glycerol water mixture, fluctuations were detected
at Re as low as five whereas at slightly lower Re ∼ 3
the flow was laminar (not shown). As shown in the top
panel of Fig. 1(b), at Re = 5 the flow again consists
of alternating high and low speed streaks arranged in a
chevron pattern. It is noteworthy that according to the
linear analysis [3] the instability can only be continued
to Re ∼ 80 or so, this however does not rule out the
possibility that the same mode may occur subcritically
at even lower Re. Moreover the flow pattern observed
in our experiments at Re = 5 is again not perfectly
periodic (unlike predicted by linear theory) but still
weakly chaotic. Both these observations are consistent
with a subcritical scenario where the minimum amplitude
threshold to trigger the instability, albeit finite, is low
compared to the disturbance levels induced by typical
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FIG. 2: Flow development far from the instability
onset. (a) Variation of the streamwise velocity fluctuations
at the pipe center with increasing Re in experiments using
600 ppm of PAAm dissolved in water. The symbols σuc and
σuco denote the standard deviation of streamwise velocity
fluctuations at the pipe centerline,

√
< u2

c >, and the standard
deviation of the background noise level for the LDV system,√
< u2

co >, respectively. The inset shows the deviation from
the square root scaling. The red dots indicate the locations
where the flow structures shown in panel (b) were measured.
(b) PIV visualizations of streamwise velocity fluctuations.
From top to bottom: Re = 300, Re = 500, Re = 1000 and
Re = 10,000. With increasing shear large amplitude streaks
(red, blue) arise in the near wall region. Streaks become more
elongated with Re and are separated by inclined shear layers
(indicated by the dashed contours).

experimental imperfections. In such a situation EIT
would arise automatically even though in principle the
laminar state is linearly stable. The irregularities of the
flow pattern observed are an indication that the state has
undergone further bifurcations and the resulting flow is
chaotic and three dimensional in nature.

We next investigate the further development of the
flow pattern with increasing inertia (higher Re). In
order to reach larger Re the solvent was changed to
water, again dissolving 600 ppm of PAAm. Owing to
the reduced solvent viscosity, the onset of instability
shifts to larger Re (& 200). Also for the 600ppm PAAm
solution in water the transition appears to be continuous
(inset of Fig. 2(a)). With increasing Re the fluctuation

FIG. 3: Evolution of friction factors with increasing
Re. At low Re the friction factors of EIT (red points) are
indistinguishable from the laminar friction values (green line).
With increasing Re the friction factors visibly exceed the
laminar level and continuously approach the MDR asymptote
(red curve). The inset shows Reynolds stresses normalized by
the square of the bulk flow velocity for Newtonian turbulence.
EIT and MDR are at the same level, whereas turbulent
Reynolds stresses are an order of magnitude larger.

level does not saturate but instead begins to increase
faster and subsequently the scaling becomes closer to
linear (Fig. 2(a)). At the lowest Re (= 300) where PIV
measurements were carried out, the flow pattern still
bears some resemblance to the chevron pattern (yellow
and green isolevels shown in the top panel of Fig. 2(b)),
however in the near wall region higher amplitude streaks
(red and blue isolevels) have appeared. With a further
increase in Re and as the fluctuation level of the flow
begins to increase more steeply, these near wall streaks
become the predominant structure and the chevron mode
in the central region of the pipe disappears (see second
panel in Fig. 2(b)). Note that this mode change is equally
found in the higher viscosity solvents (50% and 66%
glycerol concentrations) for Re sufficiently larger than
those shown in Fig. 1(b). With increasing shear levels
low and high speed streaks often appear in pairs that
are approximately parallel, signifying strong shear layers
at the respective interface (see dashed black contours in
Fig. 2(b)). Shear layers just like streaks are inclined
with respect to the main flow direction and become
more elongated with increasing Re, often extending over
multiple pipe diameters. We interpret this mode change
as a secondary instability. As Re is further increased to
Re = 1000 (third panel in Fig. 2(b)) there is surprisingly
little change in the overall flow structure and the wall
mode continues to dominate the dynamics. Even for
a tenfold increase, to Re = 10, 000 (bottom panel in
Fig. 2(b)) and hence a value that is well into the classical
polymer drag reduction regime, the wall mode persists
and the flow’s structural composition closely resembles
that of EIT at Re = 1000, while it is clearly distinct
from Newtonian turbulence (Fig. 3 inset).

In addition to velocity measurements, the pressure
drop was recorded as Re = 10, 000 was approached,
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which allows to directly determine fluid drag. The
corresponding friction factors relative to the laminar level
are shown in Fig. 3. At low Reynolds numbers friction
factors of EIT (red points) only marginally exceed the
laminar friction. With increasing Re deviations become
notable and the friction values smoothly approach what is
known as the maximum drag reduction (MDR) or Virk’s
asymptote (red line). Regardless of the type of polymer,
solvent, and relative concentration, Virk’s asymptote
sets a universal limit to the amount of drag reduction
obtainable. Traditionally, MDR has been proposed as
a residual, minimal level of ordinary turbulence and a
relation to the edge state of Newtonian turbulence has
been suggested [1, 2, 19, 20]. An interpretation that
does not readily explain why polymers cannot reduce the
drag beyond this level (reduction beyond MDR can be
achieved in a narrow parameter regime only [10], but
not at high Re). As first suggested in [5], the MDR
scaling may instead be caused by the EIT instability,
i.e. although polymers can largely suppress ordinary
Newtonian type turbulence, eventually when shear
levels are sufficiently large the elasto-inertial instability
necessarily must arise inhibiting laminarisation.

It is noteworthy that in the present study as the high
inertia regime is approached the MDR friction scaling
monotonically arises from low Reynolds number EIT.
Structurally MDR and EIT are equally composed of
elongated inclined streaks and shear layers. In contrast
streaks in Newtonian turbulence are shorter and less
coherent (see panels in Fig. 3). In addition to the
structural composition and the skin friction levels, also
the Reynolds shear stress (see inset of Fig. 3) smoothly
links low Reynolds number EIT and high Reynolds
number MDR whereas Newtonian turbulence levels are
an order of magnitude larger [21]. The same holds for
velocity fluctuations (see also Fig. 2(a)). It should
also be taken into account that Newtonian turbulence
necessarily arises via spatially localized structures (puffs
and slugs) and spatiotemporal intermittency. These
localized structures require finite amplitude fluctuation
and friction levels and hence do not smoothly develop
from low levels. EIT on the other hand is never spatially
localized but always space filling. A feature that persists
during its development to high Re and MDR. Spatio
temporal intermittency, characteristic for the transition
to Newtonian turbulence, is absent.

In summary, we have shown in experiments that EIT
arises from a center mode predicted by linear stability
analysis [3]. From theoretical considerations it is evident
that this mode requires finite inertia [3] and hence the
EIT instability indeed requires both inertia and elasticity.
This observation rules out a direct connection between

EIT and purely elastic turbulence [14]. On the other
hand the transition is considerably more complex than
the instability suggested by linear analysis [3]. Although
fluctuation amplitudes appear to increase continuously
and at first sight seem to support a linear instability and
a super-critical scenario, the onset of EIT can be pushed
to Reynolds numbers more than an order of magnitude
lower than permitted by the linear theory. Moreover
the chaotic three dimensional motion detected even close
to onset testifies that nonlinear effects must be taken
into account. Both these observations are indicative for
a sub-critical scenario. With increasing Re fluctuation
amplitudes eventually strongly increase when the centre
mode is replaced by a wall mode consisting of inclined
streaks and strong shear layers. This structural change
occurs at Re of order 102 and hence far below the inertia
levels required for Newtonian type turbulence. The
resulting flow pattern remains qualitatively unchanged
with increasing Re demonstrating that EIT is active in
the maximum drag reduction limit and hence inhibits
flow laminarisation even if polymers ultimately were to
completely eradicate ordinary turbulence.

Methods
Experiments are carried out in a 1.1 m long smooth

glass pipe with an inner diameter D = 4 mm. A
smooth inlet ensures that the gravity driven water flow
remains laminar to Re greater than 5000. Starting
from 150D downstream of the inlet, the pressure drop
is measured over a pipe length of 75D using a differential
pressure sensor (DP15 – Validyne Engineering). Directly
downstream, an identical sensor is used to measure
pressure fluctuations over a pipe length of 4D. A planar
particle image velocimetry (PIV) system (LaVision
GmbH), located 250D downstream of the pipe inlet, is
employed to monitor the velocity field in a radial-axial
cross section. At the same location and positioned at the
pipe center, a Laser Doppler velocimetry (LDV) system
(Powersight – TSI GmbH) is used to measure the axial
velocity component.

The working fluid is a 600 ppm (parts per million by
weight) PAAm (Polyacrylamide with molecular weight of
5 × 106 Da, Lot#685910 – Polysciences, Inc.) solution
in either water or water glycerol mixtures (50% and 66%
glycerol). The addition of glycerol effectively increases
the viscosity of the Newtonian solvent and allows us to
investigate flows at low Reynolds numbers while keeping
the shear rates and hence elastic forces (or more precisely
the Weissenberg number) high. The chosen polymer
concentration approaches the upper end of the dilute
limit (estimated from the measure of intrinsic viscosity
to be ≈ 700 ppm).
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Supplemental Information: Experimental observation of the origin and structure of
elasto-inertial turbulence

Linear stability analysis: equations and methodology

We consider the motion of an incompressible viscoelastic fluid flowing through a pipe of uniform circular section.
The dynamics in this problem is governed by the continuity and Navier-Stokes equations, along with a constitutive
equation to model polymer dynamics. The latter equation describes the temporal evolution of a polymer conformation
tensor, C, that contains the ensemble average elongation and orientation of all polymer molecules in the flow. A
simple Hookean dumbbell model is used to represent the polymer molecules. Normalizing velocity and length with
the laminar centreline velocity uc and the pipe radius R, the pressure with the dynamic pressure, ρu2c , where ρ is the
fluid’s density, and the polymer conformation tensor with kT/H, where k denotes the Boltzmann constant, T is the
absolute temperature and H is the spring constant, the dimensionless equations read

∇·v = 0, ∂tv+v ·∇v = −∇P +
β

Re
∇2v+

(1− β)

Re
∇·T+

4(1 + α)

Re
êz, ∂tC+v ·∇C = C ·∇v+ (∇v)T ·C−T, (S1)

where v = (u, v, w) is the velocity vector field in cylindrical coordinates (z, r, θ), Re = ucR/ν is the Reynolds number
and α is the fluctuating pressure gradient required to impose a constant flow rate. Polymers are coupled to the
Navier-Stokes equations through the polymer stress tensor T, which is calculated using the Oldroyd-B model [S1],

T =
1

Wi
(C− I), (S2)

where I is the unit tensor and Wi is the Weissenberg number; a dimensionless number measuring the ratio of the
polymer relaxation time λ to the characteristic flow time scale R/uc. Despite the Oldroyd-B model relies on the
unrealistic assumption that polymers have infinite extensibility, it has been shown to be a good model of highly
elastic polymers, i.e. Boger like fluids, such as those considered in this study.

Equations (S1) admit an analytical solution for the steady laminar flow. As in the Newtonian case, the laminar
velocity is the classical Hagen-Poiseuille flow, U = 1 − r2. The nonzero components of the symmetric polymer
conformation tensor under base flow conditions are Czz = 4r2Wi2 + 1, Crz = −2rWi,Crr = 1 and Cθθ = 1.
Equations (S1) were linearized around the analytical base flow to investigate its linear stability. The fluctuating
velocity fields, pressure and polymer conformation tensor were expanded in Fourier series in the axial and azimuthal
directions, whereas eighth order finite differences on a Gauss-Lobatto-Chebyshev grid were used to discretize the radial
derivatives. The largest eigenvalues dictating the stability of the base flow were determined by time integrating the
linearized equations. The simulations were initialized with disturbances of small amplitude satisfying the boundary
conditions, i.e no slip at the wall and zero divergence, and the temporal evolution of the amplitude of these disturbances
was monitored. After an initial transient, the amplitude may exhibit an exponential growth (decay) if the flow is
unstable (stable) or it may remain constant if the flow is neutrally stable, i.e. under critical conditions. In the latter
case, the corresponding eigenvalue is zero, whereas in the other cases the leading eigenvalues are easily obtained by
measuring the growth or decay rates. Note that since nonlinearity is absent in these simulations, a saturated state is
never reached and the kinetic energy keeps growing or decaying at a constant rate as time is evolved in the simulation.
This methodology to calculate the leading eigenvalues is equivalent to the widely used power method. Our code was
validated by reproducing several results published in the literature for both the Newtonian and Non-Newtonian cases.
Some examples are illustrated next.

Figure S1 shows the temporal evolution of the kinetic energy corresponding to the Fourier modes (n,l) = (1,0) and
(1,1) in Newtonian pipe flow for Re = 100 and Re = 1000 in simulations performed with kz = 1. The eigenvalues
estimated from the decay rates (indicated in the figure) are in excellent agreement with those reported in [S2] where
a formal stability analysis was carried out using a Petrov-Galerkin formulation.

To validate the viscoelastic code, several critical cases reported in [S3] were successfully reproduced. Fig S2 (a)
shows the kinetic energy for two combinations of critical parameters taken from Figure 5 in [S3]. As seen, after the
initial transient the kinetic energy neither grow nor decay, confirming that the flow is neutrally stable for these values
of the control parameters. Finally, the growth of the kinetic energy for an unstable case calculated at Wi = 50,
β = 0.5,kz = 1 and Re = 800 is shown in Fig. S2 (b). Contour plots of the radial velocity fluctuation and the polymer
force of the unstable mode are illustrated in figures S3 (a) and (b). These plots replicate the figure 2 in [S3], which
was calculated for the same values of the control parameters following a different methodology.
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FIG. S1: Decay of the kinetic energy of the Fourier modes (n,l) = (1,0) and (1,1) in simulations at Re = 100 (a) and 1000 (b).
Here, n and l indicate azimuthal and axial Fourier modes respectively. The axial wavenumber in these simulations is kz = 1,
i.e. the pipe length is 2π. The leading eigenvalues λ are obtained from exponential fits of these data.
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FIG. S2: (a) Kinetic energy for critical disturbances. The black line corresponds to a simulation with β = 0.25, Re = 5026.14,
Wi = 50.26 and kz = 2.80, whereas the red line was calculated at β = 0.5464, Re = 6871.27, Wi = 68.71 and kz = 5.15. (b)
Growth of the kinetic energy for an unstable case calculated at β = 0.65, Re = 800, Wi = 65 and kz = 1.
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FIG. S3: Contour plots of the radial velocity disturbance (a) and the polymer force (∇ · T ) (b) for the unstable mode at
β = 0.65, Re = 800,Wi = 65 and kz = 1.
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