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Abstract

Chemical engineering optimization problems are typically considered as difficult optimization problems as non-convexities
and discontinuities arise, and as they usually present a high number of constraints to be fulfilled. Differential Evolution
algorithm (DE) has proven to be robust for the solution of highly non-convex and mixed-integer problems; nevertheless,
its performance greatly depends on the constraint-handling technique used. In this study, numerical comparisons of
some state-of-the-art constraint-handling techniques are performed: static penalty function, stochastic ranking, feasi-
bility rules, ε constrained method and gradient-based repair. The obtained results show that the gradient-based repair
technique deserves a special attention when solving highly constrained problems. This technique enables to efficiently sat-
isfy both inequality and equality constraints, which makes it particularly adapted for the solution of process engineering
optimization problems.

1. Introduction

Complex optimization problems are ubiquitous in chem-
ical engineering, and more generally, in process engineering
(PE). Examples of optimization problems related to this
area encompass batch process design, phase equilibrium
(Dowling and Biegler, 2015), distillation sequencing (Zhu
et al., 2016), heat exchanger networks (Ayala et al., 2016),
reactor network design (Kaiser et al., 2016), supply chain
design (Almaraz et al., 2015; Woo et al., 2016), among
others. All these real-world problems are typically rep-
resented by a mathematical model containing both binary
and continuous variables, and a set of linear and non-linear
constraints, i.e., leading to a mixed-integer non-linear pro-
gramming (MINLP) approach. A single-objective formu-
lation of these optimization problems can be stated as fol-
lows:

minimize f(x), (1)

subject to gi(x) ≤ 0, i = {1, . . . ,m}
hj(x) = 0, j = {1, . . . , q}
li ≤ xi ≤ ui, i = {1, . . . , n}

where x = [x1, x2, . . . , xn]T is a n-dimensional vector of
decision variables (either discrete or continuous), f(x) is
the objective function to be minimized1, m is the number
of inequality constraints and q is the number of equality

∗Corresponding author
Email address: catherine.azzaropantel@toulouse-inp.fr

(Catherine Azzaro-Pantel)
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constraints. The functions gi and hj may be linear or
non-linear, continuous or not, real-valued functions. Each
variable xi has upper and lower bounds, ui and li, respec-
tively, which define the search space S ⊆ Rn. Inequality
and equality constraints define the feasible region F ⊆ S.

Throughout the years, mathematical programming tech-
niques have been used to address the solution of these
problems. Branch and Bound methods (BB), decompo-
sition algorithms such as Generalized Benders Decompo-
sition (GBD) and Outer-Approximation (OA) have been
proposed to solve to global optimality these problems
(Tawarmalani et al., 2002; Floudas and Gounaris, 2009). It
should be noted, however, that all these Newton’s methods
rely on the initial given solution and on convexity assump-
tions of the non-linear functions to guarantee the global
optimum solution. That is, the problem needs to satisfy
some specific mathematical characteristics (e.g., convex-
ity, derivability) so that a valid reformulation can be gen-
erated, otherwise, the reformulated convex problem might
miss the original global optimum and converge to a local
optimum. Furthermore, the application of these determin-
istic techniques can be computationally expensive to ob-
tain the rigorous global solution of large-scale problems.

In that context, metaheuristics, and especially evolu-
tionary algorithms techniques (EAs) have been proposed
to solve highly non-convex optimization problems. Some
examples of EAs are Evolutionary Strategies (ES), Genetic
Algorithms (GA), Particle Swarm Optimization (PSO)
and Differential Evolution (DE), among others (Bozorg-
Haddad et al., 2017). Even if these techniques lack of any
theoretical convergence proof, it is well recognized that
good quality solutions can be obtained and several advan-
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tages can be highlighted : (i) these population-based algo-
rithms do not require any mathematical property for the
treated problem as they only use the evaluation of the ob-
jective function; (ii) due to their population-based nature,
EAs are particularly suited to tackle problems in which
more than one objective is to be optimized. This property
is important in PE for which several kinds of objectives
(for instance, environmental or social impacts) need to be
minimized simultaneously with an economic criterion.

However, as EAs have been conceived as directed search
engines to work over unconstrained spaces, their main
drawback appears when tackling constrained problems
and thus, their applicability has been limited by a defi-
ciency of general techniques to manage constraints. Con-
sequently, much effort has been made to efficiently in-
corporate constraint-handling techniques into EAs, be-
ginning, as in mathematical programming, by penalty
functions. Nevertheless, though penalty functions may
work well in some problems, they involve the tuning
of parameters that may affect significantly the final so-
lutions found. For this reason, evolutionary compu-
tation researchers have proposed many other sophisti-
cated approaches for handling constraints, e.g., stochastic
ranking(Runarsson and Yao, 2000), feasibility rules(Deb,
2000), ε constrained method (Takahama and Sakai, 2005),
gradient-based repair(Chootinan and Chen, 2006), etc.
Surprisingly enough, even if EAs have been widely used
in literature for the solution of process engineering op-
timization problems, the same constraint-handling tech-
niques are usually considered: static penalty function or
feasibility rules, whereas the performance of more recent
methods has not been investigated in the PE framework.
Further, in order to improve the performance of these EAs
in constrained problems, a reformulation of the problem is
often done to reduce the number of decision variables and
to remove the equality constraints. However, despite its
efficiency, this approach may not work properly for large-
scale real-world problems that usually contain many con-
straints.

The scientific objective of this work is therefore to ex-
plore the performance of some state-of-the art constraint-
handling techniques for the solution of these particularly
difficult optimization problems. A self-adaptive variant of
DE is considered as the search engine, both because of
its simplicity (it does not introduce any sophisticated op-
erator nor any non-uniform probability distribution) and
its claimed superiority over GAs and PSO in terms of its
computational efficiency (Vesterstrom and Thomsen, 2004;
Ponsich and Coello, 2011). The literature review led us to
consider and compare five constraint-handling techniques,
i.e., static penalty function, stochastic ranking, feasibil-
ity rules, ε constrained method and gradient-based re-
pair. The aforementioned constraint-handling strategies
have thus been embedded within DE for the solution of 12
well-known chemical engineering problems.

The remainder of this article is organized as follows.
In the next section, DE is briefly described. Then, some

state-of-the-art constraint-handling techniques in EAs are
reviewed. After that, the methodology developed for the
computational experiments is presented along with some
information regarding the test problems considered. Then,
the results are presented and discussed. The last section
highlights the conclusions and perspectives of this work.

2. Differential Evolution

Differential Evolution (DE), proposed by Storn and
Price (Storn and Price, 1997), is a simple yet efficient
population-based search engine. As typical evolutionary
algorithms, it relies on the Darwinian principle of sur-
vival of the fittest to obtain good quality solutions through
the reproduction, mutation, competition and selection pro-
cesses. DE has been successfully applied to optimization
problems including non-linear, non-differentiable, non-
convex and multi-modal functions. It has been shown that
DE is fast and robust for solving these kinds of functions
(Storn and Price, 1997).

In DE, an initial population is randomly generated
within the search space. Each individual in the population
represents a solution, i.e., a vector of n decision variables.
At each generation, all individuals are selected as parents
to generate new solutions. The reproduction and muta-
tion processes are carried out as follows: a mutant vector
v is produced choosing randomly 1 + 2nd individuals from
the population excluding the current target parent. The
first individual is a base vector, whereas the nd subsequent
individuals are paired to create difference vectors. The dif-
ference vectors are scaled by factor F and then added to
the base vector. The most widely used mutation process
only considers one difference term and involves random
vectors, as shown in Eq.(2):

vi = xr1 + F · (xr2 − xr3) (2)

where r1 6= r2 6= r3 6= i ∈ {1, . . . , NP} are random in-
dexes. The resulting vector is then recombined with the
parent with a probability CR, the crossover rate factor.
This crossover process produces a trial vector u according
to:

ui,j =

{
vi,j if w ∼ U(0, 1) ≤ CR or j = jrand,

xi,j otherwise
(3)

where j ∈ {1, . . . , n} and jrand is a randomly chosen index
∈ {1, . . . , n} ensuring that ui gets at least one variables
from the mutant vi. Finally, the trial vector is compared
with its parent, that obtaining the best fitness is selected
and inserted into the next population.

Depending on the mutation and crossover scheme con-
sidered, several variants of DE exist. They can be de-
noted as DE/x/y/z, where x specifies the base vector
which can be rand (randomly chosen) or best (the vec-
tor with better fitness from the current population), y de-
notes the number of difference vectors used, and z denotes
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the crossover scheme that can be bin (independent bino-
mial experiments) or exp (exponential crossover, similar
to 1-point crossover in GAs). In this work, the most pop-
ular version of DE is used, that is, DE/rand/1/bin which
considers one randomly difference from the population and
performs binomial crossover, as represented in Eqs.(2) and
(3), respectively.

Furthermore, some self-adaptive versions of DE were in-
troduced in the literature, in which the control parameters
F and CR are self-adapted throughout the evolutionary
process, e.g. SaDE (Qin and Suganthan, 2005), JADE
(Zhang and Sanderson, 2009), jDE(Brest et al., 2006),
SHADE (Tanabe and Fukunaga, 2013). In this work, the
jDE algorithm because of its low computational complex-
ity. jDE has shown good performance solving numerical
benchmark problems and has proven to be robust.

Also, it must be mentioned that DE is a technique de-
voted to continuous optimization, although it can easily
be extended for the treatment of mixed-integer problems.
In this study, binary variables are encoded as continuous
variables, and their values are rounded to the next integer
only for the evaluation of the fitness function.

3. Constraint-handling techniques

In this section, the most popular techniques for handling
constraints in evolutionary computation are presented,
namely, penalty functions, Deb’s feasibility rules, stochas-
tic ranking, ε constrained method and gradient-based re-
pair. Several other techniques exist in the specialized lit-
erature (Mezura-Montes and Coello, 2011; Coello Coello,
2016), however there is no evidence that they significantly
outperform the techniques tackled here. In addition, these
more sophisticated techniques usually involve the setting
of several parameters(Mezura-Montes and Coello, 2005;
Mallipeddi and Suganthan, 2010; Padhye et al., 2015).

3.1. Penalty functions

Historically, the most common approach to incorporate
constraints (both in evolutionary algorithms and in math-
ematical programming) involves penalty functions, which
were originally proposed in the 1940s and later expanded
in many research studies mainly because of their simplicity
and efficiency. With this method, the fitness landscape is
modified as some penalty value is added to the objective
value of each infeasible individual. In their general form,
penalty functions can be represented as:

ψ(x) = f(x) +

m∑
i=1

ri ·max{0, gi(x)}p+

q∑
j=1

cj · |hj(x)|p
(4)

where ψ(x) is the new fitness function to be minimized, ri
and cj are positive constants called penalty factors, and p
normally takes values of 1 or 2.

As can be noted, this implementation, though quite sim-
ple, requires the use of a number of parameters to be tuned
(equals to the number of constraints) which might be im-
practical in highly constrained problems. For this reason,
the static penalty function, the simplest form of penalty
function, has remained as the most popular one:

ψ(x) = f(x) + r · φ(x) (5)

where r is the penalty coefficient and φ(x) is the overall
constraint violation:

φ(x) =

m∑
i=1

max{0, gi(x)}p +

q∑
j=1

|hj(x)|p (6)

Although the static penalty function only needs the tun-
ing of one parameter, its value is not straightforward to
set. On the one hand, if r is too low, the search will be
directed towards regions where the objective function is
minimized, but the final obtained solutions are very likely
to be infeasible. On the other hand, if r is too high, the
minimization of the overall constraint violation will be pri-
oritized, obtaining a feasible solution in early generations
with the disadvantage that, if the search space is disjointed
or highly constrained, it will be very difficult to escape
from the first feasible region found, the process being thus
stuck in a local optimum. Ideally, the penalty should be
kept as low as possible, just above the limit where the
found solutions are infeasible, that is called the minimum
penalty rule.

Furthermore, dynamic penalty functions, in which the
coefficient r varies throughout the evolutionary process,
have been proposed (Coello, 2000; Nanakorn and Mee-
somklin, 2001; Tessema and Yen, 2006). The constant idea
in dynamic penalty functions is that allowing low values
of r at early generations enables to explore the regions
where the objective function is minimized, whereas a high
value of r is desired at final generations in order to push
the search towards the feasible region. Such an idea would
work well for problems for which the unconstrained global
optimum is close to its constrained global optimum, but
there is no guarantee that this strategy will be efficient
in all cases. Besides, the additional parameters needed to
define the penalty coefficient schedule make this method
less attractive than the simple static penalty function.

Finally, since a good choice of the penalty coefficient
is necessary to enable a good balance between the objec-
tive function and the overall constraint violation minimiza-
tions, adaptive strategies have been suggested where infor-
mation gathered from the search process is used to con-
trol the amount of penalty added to infeasible individuals.
Adaptive penalty functions are not difficult to implement
and they usually do not require user-defined parameters.
Nevertheless, the results found in literature are not very
encouraging as adaptive penalty methods usually need a
lot of iterations to find the optimal solution as illustrated
in (Tessema and Yen, 2006).
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3.2. Stochastic ranking

Stochastic ranking (SR) has been proposed by Runars-
son and Yao (Runarsson and Yao, 2000) as an attempt to
balance the relative weights of the objective and the con-
straint violation that occurs in penalty functions. In this
method, the population is sorted following a probabilis-
tic procedure: two individuals are compared according to
their objective function with a probability Pf , otherwise,
the overall constraint violation is used for the comparison
as indicated in the pseudo-code presented in Fig. 1. Once
the population has been sorted by SR, a part of the popu-
lation assigned with highest rank is selected for recombina-
tion, thus sharing its characteristics to the next generation.
In this way, the search is directed by the minimization of
the objective function and by feasibility concepts at the
same time.

1 for i = 1 to NP
2 for j = 1 to NP − 1
3 sample u ∼ U(0, 1)
4 if φ(Ij) = φ(Ij+1) = 0 or u < Pf

5 if f(Ij) > f(Ij+1)
6 swap (Ij , Ij+1)
7 end
8 else
9 if φ(Ij) > φ(Ij+1)

10 swap (Ij , Ij+1)
11 end
12 end
13 end
14 if no swap done then break end
15 end

Figure 1: Stochastic ranking procedure. I is an individual
in the population, Pf is the probability of using only the
objective function for comparisons. The initial ranking is always
generated randomly.

It is worth noting that stochastic ranking was originally
designed to work with Evolutionary Strategies (ES), which
indeed requires a ranking process in its replacement mech-
anism, however, its implementation within other search
paradigms is not straightforward, even if some studies have
extended its use to other EAs (Zhang et al., 2008; Fan
et al., 2009; Ali et al., 2012). Considering DE, SR could
be used in two different ways: for selecting a part of the
population that would participate in the mutation pro-
cess, or for selecting the individuals that would survive
to the next generation (after the mutation and crossover
processes). In (Fan et al., 2009), the authors proposed
to rank the population according to SR procedure before
the mutation process: they divide the population into two
parts (that they call higher and lower parts), the upper
part containing the better individuals, i.e., the individu-
als ranked higher after SR. Then, for every trial vector,
vi, the upper part contributes with two good individuals,
while the lower part provides only one less good individ-
ual. This procedure was initially considered in this study,
but since the obtained results were not satisfactory, SR

was implemented within the selection process as follows:
the new population is generated normally by DE operator,
i.e., using the entire population, and then both popula-
tions (parents and offspring) are ranked according to SR.
Finally, each new individual is compared with his parent,
and the one ranked higher survives to the next generation.

3.3. Feasibility rules

This constraint handling technique establishes the supe-
riority of feasible solutions over infeasible ones, that is, as
opposite to the penalty functions, feasibility rules do not
merge both information from constraint violation and ob-
jective function, but consider them separately. Proposed
by Deb in (Deb, 2000), feasibility rules (also called lexico-
graphical order) consist in a binary tournament selection
according to the following criteria:

1. Any feasible solution is preferred to any infeasible so-
lution.

2. Among two feasible solutions, that with better objec-
tive function value is preferred.

3. Among two infeasible solutions, that with smaller con-
straint violation is preferred.

Deb’s feasibility rules represent an easy-to-implement,
parameter-free technique to handle constraints. Further,
due to its simplicity and its overall good performance, fea-
sibility rules are usually the first constraint-handling tech-
nique tested for treating a given problem with EAs. How-
ever, one of the main drawbacks of this method appears
when dealing with problems with a reduced and discon-
nected feasible region (e.g., problems with one or several
equality constraints). Because any feasible solution is pre-
ferred over an infeasible one, once the algorithm has con-
verged to some feasible region, it may be very difficult
to escape from there in order to explore other regions,
i.e., once the constraints are fulfilled, the algorithm is very
likely to get trapped prematurely in some subregion of the
search space. Moreover, considering that there are high
probabilities that the optimum lies close to the feasibil-
ity boundary, slightly infeasible solutions might be more
useful to the search process than solutions wide inside the
feasible region. However, the feasibility rules would prefer
the latter solution to the former one. In fact, feasibility
rules can be seen as a limiting case of static penalty func-
tion when the penalty value takes a very high value, in
this way, when comparing two solutions, that with a lesser
amount of overall constraint violation will be always pre-
ferred.

3.4. ε constrained method

In order to tackle the above-mentioned issues related
to feasibility rules in severely constrained problems, the ε
constrained method for evolutionary algorithms has been
proposed by Takahama and Sakai in 2005 (Takahama and
Sakai, 2005), where a relaxation of constraints is permitted
to explore constrained regions. This tolerance level over
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the relaxation, called the ε level, indicates the limit under
which solutions are considered as feasible. Once the fea-
sibility of solutions has been identified by means of the ε
level, the lexicographical order (i.e. Deb’s feasibility rules)
is used for selecting the surviving individuals for the next
generation. This technique has proven to be especially effi-
cient in highly constrained problems, such as those involv-
ing equality constraints, because this relaxation, allowed
at the early generations within a certain level, promotes
exploration of regions that would be impossible to reach
by simple feasibility rules.

The main drawback of this method is the difficulty for
setting the ε parameter. It has been remarked that ε level
enables a good exploration of the search space in early
generations but also it is clear that ε must be 0 at some
point of the evolutionary process in order to obtain feasible
solutions. In (Takahama and Sakai, 2006), the authors
proposed a dynamic control of ε level, according to:

ε(0) = φ(xθ) (7)

ε(t) =

{
ε(0)(1− t

Tc
)cp, 0 < t < Tc,

0, t ≥ Tc

where xθ is the best θ-th individual (in terms of constraint
violation) in the first generation, cp is a parameter to con-
trol the speed ε level decrease and Tc represents the gen-
eration after which the ε level is set to 0 (after that, Deb’s
feasibility rules are considered). According to the authors,
the following parameter setting works well in many prob-
lems: θ = 0.2NP , cp = 5, Tc ∈ 0.2Tmax. However, their
tuning still constitutes a disadvantage, as it might become
a harsh task. Additionally, it is important to recall that
the use of the ε level according to Eq.(7) is only recom-
mended for highly constrained problems in which the fea-
sibility rules do not work properly, otherwise ε constrained
method may get worse results than the feasibility rules in
terms of efficiency and efficacy.

It should be underlined that the ε constrained method
obtained the first place in the competition on constrained
optimization of the Congress of Evolutionary Computa-
tion (CEC 2006) and very competitive results in CEC 2010
(Takahama and Sakai, 2006, 2010). Due to this success, ε
constrained method has also been embedded in a number
of algorithms for multiobjective optimization (Yang et al.,
2014; Fan et al., 2016, 2017). However, it is worth noting
that the excellent results obtained by this method in the
two above-mentioned competitions did not only depend
on the use of the ε level relaxation strategy by itself, but
also on a additional technique, namely gradient-based re-
pair method (presented in the next section) (Chootinan
and Chen, 2006). It is difficult to determine which of both
methods contribute the most in obtaining such excellent
results. In this study, the ε constrained method has been
implemented with and without the gradient-based repair,
this way, the performance of both algorithms can be com-
pared.

3.5. Gradient-based repair

The gradient-based repair method, proposed by Chooti-
nan and Chen in 2006 (Chootinan and Chen, 2006), is a
constraint-handling technique that uses the gradient in-
formation derived from the constraint set to systemati-
cally repair infeasible solutions. Basically, the gradient of
constraint violation is used to direct infeasible solutions
toward the feasible region. The vector of constraint viola-
tions ∆C(x) is defined as:

∆C(x) = [∆g1(x), . . . ,∆gm(x),

∆h1(x), . . . ,∆hp(x)]T
(8)

where ∆gi(x) = max{0, gi(x)} and ∆hj(x) = hj(x). This
information, additionally to the gradient of constraints
∇C(x), is used to determine the step ∆x to be added
to the solution x, according to:

∇C(x)∆x = −∆C(x) (9)

∆x = −∇C(x)−1∆C(x) (10)

Although the gradient matrix ∇C is not invertible in gen-
eral, the Moore-Penrose inverse or pseudoinverse ∇C(x)+

(Campbell and Meyer, 2009), which gives an approximate
or best (least square) solution to a system of linear equa-
tions, can be used instead in Eq.(10). Thus, once the step
∆x has been computed, the infeasible point x is moved
to a less infeasible point x + ∆x. This repair operation
is performed with a probability Pg and repeated Rg times
while the point is infeasible.

In this work, the computation of the gradient ∇C(x)
is done numerically using forward finite differences, for all
problems. Also, it is worth noting that in (Chootinan and
Chen, 2006) only non-zero elements of ∆C(x) are repaired,
i.e., the gradient is only computed for constraints that are
actually being violated. On the contrary, in (Takahama
and Sakai, 2006) all constraints are considered in the re-
pair process, even those that are already satisfied. The
former approach has the disadvantage that a given con-
straint may be fulfilled at one iteration but violated in
the next one, nevertheless, this is usually more efficient
compared to the latter approach, in terms of number of it-
erations needed to get to the feasible region. In this study,
the former approach is considered, i.e., only non-zero ele-
ments of ∆C(x) are taken into account within the repair
process. Note that this procedure can produce situations
where some variables lie outside their allowed variation
range, so that two inequality constraints may be added
for each variable, accounting for their bounds. Due to
the associated computational burden in real-world opti-
mization problems, where the number of variables may be
high, these additional constraints are not considered here.
Instead, an additional repair process, performed at each
iteration, sets the variable value to the violated bound if
necessary. The pseudo-code of the gradient-based repair
procedure used in this study is presented in Fig. 2.
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1 for i = 1 to NP
2 t = 0
3 sample u ∼ U(0, 1)
4 while t < Rg and φ(x) > 0 and u < Pg

5 compute ∇C(x) of violating constraints
6 compute ∇C(x)+

7 compute ∆x
8 x← x + ∆x
9 repair x to its bounds

10 compute ∆C(x)
11 t = t+ 1
12 end
13 end

Figure 2: Gradient-based repair method.

Even if the gradient-based repair can be considered as a
constraint-handling technique itself, using it alone would
be computationally expensive, since, in highly constrained
spaces, this procedure might require many iterations to
reach the feasible region, and in extreme cases, a fea-
sible solution could be impossible to obtain. Therefore,
usually this technique is coupled with another constraint-
handling technique, e.g., stochastic ranking or Deb’s feasi-
bility rules. In this work, gradient-based repair is coupled
with the ε constrained method.

4. Computational experiments

To illustrate the benefits of the above-mentioned
constraint-handling techniques in process engineering ap-
plications, 12 problems have been selected as represen-
tative in the specialized literature. Some trivial or sim-
ple examples have been excluded from this study. These
problems present some mathematical characteristics typ-
ically found in engineering, e.g., non-linearities, equality
and inequality constraints, binary and continuous vari-
ables. Some characteristics of these examples are provided
in Table 1. In Appendix AAppendix A, the complete for-
mulation of these problems is presented in details and ad-
ditional information concerning local and global optimal
solutions is also given.

The algorithms previously presented were implemented
with MATLAB R2017b and all the following computa-
tional experiments were carried out with a processor Intel
Xeon E3-1505M v6 and 32 Go RAM.

4.1. Parameters settings

In order to perform a fair comparison of the different
constraint-handling methods, the parameters tuning has
been set constant for all the test problems, so that, for a
given technique, the best overall performance is obtained,
excepting, obviously, the static penalty function where the
tuning of the parameter r for each problem is intrinsic to
this method. The actual parameters used are:

• Static penalty function. Parameter r is tuned follow-
ing the minimum penalty rule. The precision of the
parameter is set according to r = x × 10y, where x
and y are integer numbers.

• Stochastic ranking. Pf = 0.45.

• ε constrained method. θ = 0.2NP , cp = 5, Tc =
0.2Tmax.

• Gradient-based repair. Identical parameters as for the
ε constrained method above. Additionally, Pg = 1,
Rg = 3.

Regarding the jDE algorithm, the only parameter to be
tuned is the population size (NP ), as the scaling factor
(F ) and crossover rate (CR) are adjusted by the algorithm.
The population size is calculated as NP = min(100, 10n)
where n is the number of decision variables. The algorithm
stops if the current best solution is as close as 0.01% to
the reported global optimal solution or if the number of
function evaluations (NFEs) exceeds 200 000. Due to the
stochastic nature of evolutionary algorithms, 50 indepen-
dent executions are carried out for each problem and each
method.

5. Results and discussion

The results obtained for the 12 optimization test prob-
lems are summarized in Table 2. The results are analyzed
through the best, median and worst objective function
value, “−” means no feasible solution was found. Fea-
sibility and success rates represent respectively the rates
of feasible and optimal solutions found out of 50 indepen-
dent runs (considering the best solution found in each run).
Complementary results regarding NFEs needed to achieve
convergence are presented in Table 3. The computational
times in Table 3 represent the overall elapsed time for the
50 runs.

For problem 1, the static penalty function and feasibility
rules present a good performance, achieving an acceptable
success rate. Even if the success rate of SR is acceptable,
this method needs higher times for solving the problem.
The constraint relaxation done by ε constrained method
seems to have a negative effect on feasibility rules for this
problem. It is worth nothing that in (Babu and Angira,
2006; Srinivas and Rangaiah, 2007), in order to efficiently
obtain the global optimal solution, this problem was refor-
mulated removing all equality constraints and eliminating
dependent variables, and then a static penalty function
was used. In contrast, the results obtained by the gradient-
based repair method suggest that this reformulation is not
necessary since this method finds the global optimum in
all runs, with short CPU times (lower than 1 second per
run).

Problem 2 constitutes a difficult case, containing 6 non-
linear equality constraints that involve all the decision
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Table 1: Brief description of example problems

Example
Decision variables Constraints

(active)
Description

Binary Continuous

1 0 6 5(5) Reactor network design
2 0 10 6(6) Flowsheeting
3 1 1 2(1) Process synthesis
4 1 2 2(2) Process synthesis
5 1 2 3(2) Process synthesis
6 3 2 5(3) Process synthesis
7 2 6 8(6) Reactor network design
8 4 3 9(5) Process synthesis
9 3 8 9(7) Planning problem

10 5 7 13(7) Batch plant
11 5 7 13(8) Batch plant
12 12 16 61(15) Batch plant

variables. Indeed, not any one of the tested constraint-
handling technique except gradient-based repair was able
to found the optimum in any run. It is worth highlight-
ing that, in (Rangaiah, 2009), this problem was also ad-
dressed by DE, considering the constraints as a system of
non-linear equations which is then solved by an exact algo-
rithm, so that the original problem is transformed into an
unconstrained one. However, such repair process is compu-
tationally expensive, as it is performed for every individual
at each generation. In this study, the same approach has
been carried out for comparison purposes. The system of
non-linear equations has been solved using the Levenberg-
Marquardt algorithm embedded in the MATLAB software.
This approach took approximately 40 seconds per run, i.e.,
about 20 times more than the gradient-based repair pro-
cedure.

Problems 3 and 5 consist in small and rather simple
MINLP examples. All constraint-handling methods ob-
tained an overall good performance in terms of success
rate.

Regarding problem 4, this problem is modelled as a
MINLP involving one non-linear equality constraint and
one binary variable, which together, yield a rather high
difficulty for the solution by feasibility rules, since this
technique gets trapped in an “easy-to-access” local opti-
mum. In addition, all the other techniques obtain a very
good performance. It is noteworthy that in (Costa and
Oliveira, 2001; Yiqing et al., 2007), the problem is reformu-
lated by reducing one continuous variable and thus elim-
inating the equality constraint. This approach, although
efficient, is problem-devoted and may not be practical in
highly constrained real-world problems.

Problem 6 takes into account a MINLP problem with 3
binary variables and 2 equality constraints. Although this
problem can be considered as a small one, its characteris-
tics are not easy to overcome by feasibility rules, meaning
that the first feasible solution is likely to be found far from
the global minimum region. Further, the relaxation done

by ε constrained method does not manage to obtain ac-
ceptable success rates, at least not with the parameters
used here. Regarding stochastic ranking, static penalty
function and gradient-based repair, they solve the prob-
lem efficiently, with much lower CPU times reported for
the gradient-based repair technique. In (Cardoso et al.,
1997; Srinivas and Rangaiah, 2007), the same problem was
tackled, but the model was simplified by eliminating the
continuous variables by means of the equality constraints.

For problem 7, feasibility rules and ε constrained
method present a poor performance due to the existence
of 2 binary variables and 4 equality constraints. Stochas-
tic ranking and static penalty function present a fair to
good performance. On the contrary, gradient-based repair
method enables the algorithm to search in the whole search
space before converging to an optimum. Again, this exam-
ple was addressed in previous works (Cardoso et al., 1997;
Costa and Oliveira, 2001; Yiqing et al., 2007; Srinivas and
Rangaiah, 2007) by reformulating the problem in order to
eliminate equality constraints and simultaneously, reduc-
ing the number of decision variables. Then, the remaining
constraints are then handled by a static penalty function.

For problems 8 and 10, all constraint-handling tech-
niques performed excellently, finding the global optimum
in almost all runs. Indeed, these problems are easier in-
stances in which the first feasible solutions found coincide
with the region where the global optimal solution lies, even
if the problem may present some difficulties regarding its
mathematical properties (4 binary variables with 9 con-
straints and 5 binary variables with 7 constraints, respec-
tively).

Problem 9 constitutes a difficult problem with 3 binary
variables and 5 equality constraints involving all the con-
tinuous variables. For SR, the balance between feasible
and infeasible solutions that have been stochastically gen-
erated is not sufficient to reach the global optimum region
in most cases. According to Deb’s feasibility rules, con-
vergence to the global optimum is highly unlikely, since
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Table 2: Experimental results in terms of objective function values

Problem
(optimum)

Constr-handling Best Median Worst Mean Std

St. penalty fcn. −0.38881 −0.38871 −0.38802 −0.38870 1.4E-04
1 SR −0.38881 −0.38871 −0.37867 −0.38813 1.9E-03

-0.38881 Feas. rules −0.38881 −0.38871 −0.38377 −0.38854 7.8E-04
ε-constrained −0.38877 −0.38871 −0.38720 −0.38848 4.2E-04
Grad-based repair −0.38881 −0.38876 −0.38872 −0.38878 3.9E-05

St. penalty fcn. 10 041 455 12 562 687 16 932 972 12 626 104 1.3E+06
2 SR − − − − −

9490593 Feas. rules 10 148 136 12 421 765 18 043 019 12 667 483 1.4E+06
ε-constrained 10 603 444 − − 13 457 709 1.9E+06
Grad-based repair 9 490 594 9 490 600 9 490 603 9 490 600 2.5E+00

St. penalty fcn. 2.000 2.000 2.236 2.005 3.3E-02
3 SR 2.000 2.000 2.000 2.000 3.0E-05

2.000 Feas. rules 2.000 2.000 2.236 2.019 6.5E-02
ε-constrained 2.000 2.000 2.236 2.014 5.7E-02
Grad-based repair 2.000 2.000 2.000 2.000 3.0E-05

St. penalty fcn. 2.124 2.124 2.558 2.168 1.3E-01
4 SR 2.124 2.124 2.558 2.142 8.6E-02

2.124 Feas. rules 2.124 2.558 2.558 2.549 6.1E-02
ε-constrained 2.124 2.124 2.558 2.150 1.0E-01
Grad-based repair 2.124 2.124 2.124 2.124 1.7E-05

St. penalty fcn. 1.0766 1.0766 1.2500 1.0801 2.5E-02
5 SR 1.0766 1.0766 1.2500 1.0835 3.4E-02

1.0765 Feas. rules 1.0766 1.0766 1.2500 1.0880 4.2E-02
ε-constrained 1.0766 1.0766 1.0766 1.0766 1.8E-05
Grad-based repair 1.0765 1.0766 1.0766 1.0766 3.1E-05

St. penalty fcn. 7.667 7.667 7.931 7.688 7.2E-02
6 SR 7.667 7.667 7.931 7.693 8.0E-02

7.667 Feas. rules 7.667 7.931 8.240 7.928 1.1E-01
ε-constrained 7.667 7.931 7.931 7.846 1.2E-01
Grad-based repair 7.667 7.667 7.667 7.667 1.5E-05

St. penalty fcn. 99.239 99.240 107.374 101.355 3.6E+00
7 SR 99.238 99.239 107.374 100.703 3.7E+00

99.238 Feas. rules 99.240 107.374 − 111.974 2.3E+01
ε-constrained 99.239 107.374 107.374 103.795 4.1E+00
Grad-based repair 99.239 99.240 99.240 99.239 2.7E-04

St. penalty fcn. 4.57958 4.57962 4.57968 4.57962 3.2E-05
8 SR 4.57960 4.57967 4.57968 4.57966 1.7E-05

4.57958 Feas. rules 4.57959 4.57966 4.57968 4.57966 1.9E-05
ε-constrained 4.57959 4.57966 4.57968 4.57966 2.1E-05
Grad-based repair 4.57958 4.57958 4.57964 4.57958 9.0E-06

St. penalty fcn. −1.9231 −1.7236 −1.4125 −1.6925 2.0E-01
9 SR −1.9231 −1.7235 −0.2202 −1.5924 4.5E-01

-1.9231 Feas. rules −1.4125 −1.2138 0.7607 −0.8621 6.7E-01
ε-constrained −1.4099 −0.0011 0.7431 −0.0370 3.7E-01
Grad-based repair −1.9231 −1.9231 −1.9230 −1.9230 1.3E-04

St. penalty fcn. 38 500.0 38 500.1 38 500.2 38 500.1 5.3E-02
10 SR 38 499.7 38 499.8 38 499.8 38 499.8 2.4E-02

38499.5 Feas. rules 38 499.9 38 500.1 38 500.2 38 500.1 5.8E-02
ε-constrained 38 499.8 38 500.2 40 977.5 38 747.9 7.5E+02
Grad-based repair 38 499.5 38 499.7 38 499.8 38 499.7 8.8E-02

St. penalty fcn. 106 756.6 106 756.8 106 756.9 106 756.8 8.7E-02
11 SR 106 755.9 106 755.9 112 947.6 107 009.4 1.2E+03

106755.8 Feas. rules 106 756.6 112 947.2 122 607.8 110 739.1 4.3E+03
ε-constrained 106 756.8 122 607.8 136 009.7 126 123.0 1.0E+04
Grad-based repair 106 755.8 106 755.8 106 755.9 106 755.8 1.7E-02

St. penalty fcn. 304 660.5 310 155.0 311 349.9 308 282.6 2.7E+03
12 SR 286 826.0 308 092.0 − 313 469.9 1.5E+04

285509.6 Feas. rules 310 350.1 322 711.5 332 793.1 322 466.2 7.0E+03
ε-constrained 305 311.9 330 042.1 370 131.6 330 407.5 1.5E+04
Grad-based repair 285 550.6 285 868.6 286 497.8 285 911.8 2.4E+02
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Table 3: Experimental results in terms of NFEs needed for the algorithm to achieve convergence

Example Constr-handling Best Median Worst Mean Std Feas. rate Succ. rate CPU Time(s)

1 St. penalty fcn. 14 340 64 230 200 000 88 734 73 334 100 90 10.12
SR 45 480 156 840 200 000 153 434 44 795 100 70 91.58
Feas. rules 27 660 149 490 200 000 136 008 53 187 100 86 15.61
ε-constrained 32 700 193 320 200 000 156 421 61 826 100 54 19.06
Grad-based repair 211 2142 5490 2176 1226 100 100 2.90

2 St. penalty fcn. 200 000 200 000 200 000 200 000 0 100 0 19.77
SR 200 000 200 000 200 000 200 000 0 0 0 142.17
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 19.31
ε-constrained 200 000 200 000 200 000 200 000 0 20 0 20.96
Grad-based repair 15 300 19 100 22 800 19 094 1366 100 100 90.29

3 St. penalty fcn. 500 870 200 000 4851 28 162 100 98 1.24
SR 640 1350 2640 1423 444 100 100 1.06
Feas. rules 520 1110 200 000 17 006 54 511 100 92 4.25
ε-constrained 420 1550 200 000 13 583 47 582 100 94 3.79
Grad-based repair 33 203 387 226 89 100 100 0.31

4 St. penalty fcn. 1680 2775 200 000 22 441 59 792 100 90 3.57
SR 3540 6825 200 000 14 887 38 229 100 96 6.63
Feas. rules 10 200 200 000 200 000 196 214 26 843 100 2 31.19
ε-constrained 24 090 28 245 200 000 38 545 41 240 100 94 7.41
Grad-based repair 100 108 676 197 151 100 100 0.24

5 St. penalty fcn. 1830 2895 200 000 6804 27 885 100 98 1.16
SR 4620 6465 200 000 14 212 38 332 100 96 6.02
Feas. rules 2610 4065 200 000 19 623 53 738 100 92 3.20
ε-constrained 22 800 28 575 31 200 27 988 2182 100 100 5.96
Grad-based repair 93 175 1046 244 173 100 100 0.25

6 St. penalty fcn. 2400 4125 200 000 19 780 53 686 100 92 2.48
SR 10 150 14 500 200 000 33 204 56 229 100 90 15.80
Feas. rules 3900 200 000 200 000 184 422 53 365 100 8 22.18
ε-constrained 14 550 200 000 200 000 143 018 83 935 100 32 18.23
Grad-based repair 195 198 360 207 37 100 100 0.31

7 St. penalty fcn. 16 880 22 280 200 000 68 891 78 739 100 74 6.05
SR 39 120 69 600 200 000 92 301 52 791 100 82 60.87
Feas. rules 92 720 200 000 200 000 190 869 23 914 86 22 16.41
ε-constrained 35 280 200 000 200 000 128 550 81 429 100 44 11.82
Grad-based repair 3761 9591 20 639 10 082 3574 100 100 10.30

8 St. penalty fcn. 5810 6720 8540 6891 714 100 100 0.91
SR 8330 11 480 14 770 11 739 1485 100 100 8.20
Feas. rules 7840 9415 11 270 9362 785 100 100 1.25
ε-constrained 8120 25 760 30 730 23 408 6563 100 100 3.28
Grad-based repair 407 2133 9879 3691 3276 100 100 3.33

9 St. penalty fcn. 47 800 200 000 200 000 159 822 65 129 100 28 15.96
SR 149 200 200 000 200 000 197 052 9930 100 18 149.53
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 20.78
ε-constrained 200 000 200 000 200 000 200 000 0 100 0 20.90
Grad-based repair 16 197 41 450 77 610 41 982 10 260 100 100 66.25

10 St. penalty fcn. 41 600 47 300 59 100 48 120 3810 100 100 5.83
SR 66 000 76 900 105 000 79 904 9492 100 100 66.11
Feas. rules 54 900 62 650 84 600 63 884 5679 100 100 7.93
ε-constrained 68 400 85 850 200 000 95 892 35 719 100 90 12.28
Grad-based repair 31 684 48 641 63 401 47 392 7172 100 100 61.88

11 St. penalty fcn. 43 100 48 150 58 500 48 542 3222 100 100 6.23
SR 136 000 183 700 200 000 178 034 21 151 100 68 153.10
Feas. rules 69 000 200 000 200 000 144 760 60 730 100 46 17.57
ε-constrained 87 900 200 000 200 000 191 724 28 443 100 8 24.21
Grad-based repair 2744 18 337 32 626 18 142 9130 100 100 27.32

12 St. penalty fcn. 200 000 200 000 200 000 200 000 0 100 0 84.35
SR 200 000 200 000 200 000 200 000 0 62 0 177.20
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 72.45
ε-constrained 200 000 200 000 200 000 200 000 0 100 0 88.10
Grad-based repair 200 000 200 000 200 000 200 000 0 100 0 1136.68
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this technique always prefers feasible solutions over the
infeasible ones, whatever the quality of the objective func-
tion value. For the ε constrained method, the relaxation
conducted on the equality constraints seems not to be suf-
ficient to reach the global optimum. However, when this
relaxation is combined with a reparation based on the con-
straint gradient, the algorithm is able to search over the
entire space before converging to a suboptimal solution.

Problem 11 is the same as problem 10, just changing one
parameter (see Appendix AAppendix A). Nevertheless,
it seems that this slight modification makes the problem
much more difficult, since SR, Deb’s feasibility rules and
ε constrained methods exhibit very different performance
levels from those observed for problem 10. The feasible
space has been modified in such a way that the global op-
timum lies now in a region that is difficult to reach. Yet,
Table 3 highlights that the robustness of the static penalty
function and gradient-based repair methods remained un-
changed for the solution of this problem.

Problem 12 represents the optimization of a multi-
product batch plant (this is also the case for problems
10 and 11). This bigger instance of the problem is the
most difficult example treated in this study. It is mod-
elled as a MINLP problem involving 6 integer variables
with 4 possible values each (equivalent to 12 binary vari-
ables). Additionally, it has 16 continuous variables and 61
inequality constraints. The global optimum corresponds to
an ill-conditioned point, since variations as small as 0.01%
in any of the 16 continuous variables produce infeasibility.
For this problem, no constraint-handling technique could
obtain the reported optimal solution. However, stochas-
tic ranking and gradient-based repair techniques are the
only ones to be able to find the global optimum region:
SR in 20% of the runs and 100% of the runs for gradient-
based repair. It seems that once the global optimal region
has been identified, new solutions generated by DE oper-
ator are very likely to be infeasible, and even if the repair
process acts upon them, the direction in which constraint
violation is minimized is not necessarily the same as the
direction in which the objective function decreases, so that
the optimization process gets very slow.

Thus, in order to speed up the convergence to the global
optimum, a local search is performed: the local optimizer
Successive Quadratic Programming (SQP) is applied with
a probability 0.1/NP for each individual once the ε level
is equal to 0, i.e., once the algorithm has likely identified
the optimal region. In this way, one individual is improved
on average every 10 generations. The results obtained are
reported in Table 4. It can be noted that the use of the
local search greatly improves the performance of the algo-
rithm. The global optimum is now found in all the runs
with an acceptable computational time (approx. 7 seconds
per run). The NFEs reported in Table 4 takes into ac-
count the evaluations of the objective function performed
by both jDE and SQP. It is worth highlighting that the
local search is carried out on average only on 5 individuals
before solving the problem.

6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3
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Figure 3: Approximation of the Pareto front of the biobjective
Williams & Otto process example using NSGA-II with gradient-
based repair method and the reformulation approach.

Summarizing, the above empirical study highlighted the
importance of using an efficient constraint-handling tech-
nique when solving PE optimization problems, which are
in general highly constrained problems. The numerical re-
sults obtained point out that gradient-based repair method
is the most robust and thus promising method studied
here. Also, as mentioned previously, one of the main mo-
tivations for using metaheuristics in PE area is their abil-
ity to simultaneously optimize multiple criteria. To illus-
trate this, in the next subsection, the gradient-based repair
method is used to solve a biobjective version of the flow
sheet example (Problem 2).

5.1. Additional example: Biobjective case study

This problem, presented in (Rangaiah, 2009), considers
the maximization of two objectives: the profit before taxes
(PBT) and the net present value (NPW) for the Williams
& Otto process problem. The nondominated sorting ge-
netic algorithm II (NSGA-II)(Deb et al., 2002) coupled
with gradient-based repair as constraint-handling tech-
nique is used as a solution technique. Also, for compar-
ison purposes, the constraint-handling strategy presented
in (Rangaiah, 2009), in which all equality constraints are
eliminated by means of solving a system of nonlinear equa-
tions, is explored. The obtained approximations to the
Pareto front of this problems are presented in Figure 3.

The non-dominated solutions are obtained in one sin-
gle run, unlike mathematical programming techniques in
which multiple runs are needed to produce an approxima-
tion of the Pareto front. The importance of an efficient
constraint-handling technique is also to be highlighted: no
other constraint-handling technique studied in this work
was able to find a non-dominated solution in the real
Pareto front, actually no feasible solutions can be found
except with the gradient-based repair procedure. Besides,
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Table 4: NFEs for Problem 12 using gradient-based repair with local search.

Best Median Worst Mean Std Feas. rate Succ. rate CPU Time(s)

40424 52658 129562 59368 18061 100 100 335.37

the reformulation approach proposed in (Rangaiah, 2009)
is time consuming, taking approximately 45 sec per run
(since the solution of the system of nonlinear equations
has to be performed for every evaluation of the objective
function) while, in contrast, the gradient-based repair ap-
proach takes approximately 1.5 sec per run. Also, it is
worth mentioning that the Pareto front approximations
obtained by both approaches are comparable, i.e., no ap-
proach outperforms the other.

6. Conclusions and perspectives

In this study, the performance of several constraint-
handling techniques for EAs has been compared for the
solution of a set of 12 test bench problems from the PE
area. The empirical analysis conducted showed that the
results’ quality greatly depends on the constraint-handling
technique used for the solution of problems with high num-
ber of constraints or binary variables.

The analysis of the dedicated literature has shown that
the most widely used approach within EAs considers the
reformulation of the model and the use of static penalty
functions or feasibility rules as constraint-handling tech-
niques. However, the results obtained in this work high-
lighted that the performance of this strategy, though ac-
ceptable in some cases, proved to be poor in others. Be-
sides, among the constraint-handling techniques consid-
ered in this study, the gradient-based repair method de-
serves a special attention, as this constraint-handling tech-
nique is the only one capable of finding the global optimum
region in all test problems. Coupled with ε constrained
method, the search algorithm promotes the exploration of
promising regions over the entire search space instead of
getting trapped into a local optimum. It is worth empha-
sizing that, even if this method needs supplementary infor-
mation (computation of constraints gradient), its excellent
results both in terms of computational time and solution
quality encourage its use. In addition, the use of gradient-
based repair method in highly constrained mixed-integer
problems seems to be not only adequate, but necessary
in order to obtain satisfactory results. Finally, this work
highlighted the unquestionable benefits obtained using this
constraint-handling method, usually under-estimated in
the devoted literature. Therefore, these conclusions al-
low reconsidering evolutionary algorithms as a serious ap-
proach for solving highly-constrained real-world optimiza-
tion problems.

Besides, the good performance exhibited in the solution
of the biobjective case study, permits to contemplate the
solution of bigger instances of PE multi-objective prob-
lems. Also, as the gradient-based repair method can be

coupled with any multi-objective evolutionary algorithm
(MOEA), the solution of multi-objective MINLP problems
related to PE, using more sophisticated MOEAs is under
the scope of future work.

Appendix A. Appendix A. Test problems

This appendix describes the 12 global optimization test
problems considered in this study. For all problems, the
global optimum solution is reported as found in the liter-
ature. Additional information related to local optima and
active constraints is also given.

Example 1. Reactor network design. Proposed in (Ryoo
and Sahinidis, 1995), this problem involves the design of
a sequence of two reactors of type CSTR, where the con-
secutive reactions A → B → C takes place. The objective
is to maximize the concentration of product B (x4) in the
exit stream. The mathematical model is as follows:

min f(x) = −x4
s.t. g1(x) = x0.55 + x0.56 − 4 ≤ 0

h1(x) = x1 + k1x1x5 − 1 = 0

h2(x) = x2 − x1 + k2x2x6 = 0

h3(x) = x3 + x1 + k3x3x5 − 1 = 0

h4(x) = x4 − x3 + x2 − x1 + k4x4x6 = 0

0 ≤ xi ≤ 1, i = {1, 2, 3, 4}
1e− 5 ≤ xi ≤ 16, i = {5, 6}

where k1 = 0.09755988, k2 = 0.99k1, k3 = 0.0391908,
k4 = 0.9k3. The global optimum is x∗ = [0.771462,
0.516997, 0.204234, 0.388812, 3.036504, 5.096052] and
f(x∗) = −0.388812 . Constraint g1 is active. This exam-
ple possesses a local minimum with an objective function
value that is very close to that of the global solution. This
local solution is at x = [1, 0.393, 0, 0.388, 0, 16] with
f = −0.3881. Interestingly, this solution utilizes only one
of the two reactors whereas the global solution makes use
of both reactors.

Example 2. Flowsheeting. This problems considers the
optimization of a flow sheet example of the Williams &
Otto process (Biegler et al., 1997; Pintaric and Kravanja,
2006). Reactants A and B and the recycle stream enter
the continuous-flow stirred-tank reactor, where the main
product P is produced together with one by-product E and
the waste product G, while C is an intermediate.

A + B→ C
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C + B→ P + E

P + C→ G

In the decanter, component G is entirely removed from
the other components. Product P is removed from the
overhead of the distillation column, but some of the prod-
uct is retained in the bottom due to the formation of an
azeotrope. Part of the bottom stream is purged in order to
avoid accumulation of the by-product, while most of it is
recycled to the reactor. The purge stream has a substantial
fuel value and can be sold on the market. The optimiza-
tion variables account for the reactor volume, the reaction
temperature, the purge fraction and the mass flow for each
component, except for component P which is equal to 2160
kg/h. The objective is to minimize the total annual cost.
The model is formulated as:

min f(x) = 2.2
[
168x5 + 252x1 + 2.22

[
x1+

x5 +

8∑
i=6

(1− x4)xi + 1.1(1− x4)x9
]

+ 84x10 +
1041.6

2.2
+ 60x2ρ

]
s.t.

h1(x) = x5 + x6(1− x4)− k1x6x7x2ρ

q23
− x6 = 0

h2(x) = x1 + x7(1− x4)− (k1x6 + k2x8)x7x2ρ

q23
− x7 = 0

h3(x) = x8(1− x4)

+
(2k1x6x7 − 2k2x7x8)x2ρ

q23

+
(−k3x8(2160 + 0.1x9))x2ρ

q23
− x8 = 0

h4(x) = x9(1− x4) +
2k2x7x8x2ρ

q23
− x9 = 0

h5(x) =
x9(1− x4)

10

+
(k2x7 − 0.5k3(2160 + 0.1x9))x8x2ρ

q23
− 2160 + 0.1x9 = 0

h6(x) =
1.5k3(2160 + 0.1x9)x8x2ρ

q23
− x10 = 0

1e4 ≤ x1 ≤ 1.5e4

0.85 ≤ x2 ≤ 10

322 ≤ x3 ≤ 378

0 ≤ x4 ≤ 0.99

0 ≤ xi ≤ 1e5 ∀i ∈ {5, . . . , 10}

where

q3 = x6 + x7 + x8 + 1.1x9 + x10 + 2160

k1 = 5.9755e9 · exp

(−1.2e4

x3

)
k2 = 2.5962e12 · exp

(−1.5e4

x3

)
k3 = 9.6283e15 · exp

(−2e4

x3

)
ρ = 801

The optimum lies at x∗ = [10878.60, 7.90, 342.11, 0.102,
4807.37, 11122.40, 39668.61, 2874.52, 61925.59, 1101.336]
with f(x∗) = 9490592.6.

Example 3. Process synthesis MINLP. This is a little pro-
cess synthesis problem with only two decision variables. It
was proposed by (Kocis and Grossmann, 1988), and also
found in (Ryoo and Sahinidis, 1995):

min f(x) = 2x1 + x2

s.t. g1(x) = 1.25− x21 − x2 ≤ 0

g2(x) = x1 + x2 − 1.6 ≤ 0

0 ≤ x1 ≤ 1.6

x2 = {0, 1}

The global minimum is [0.5, 1] with f = 2. There is a
local minimum at [1.118, 0] with f = 2.236. Constraint g1
is active.

Example 4. MINLP. This example is taken from (Kocis
and Grossmann, 1987):

min f(x) = 2x1 + x2 − x3
s.t. g1(x) = −x1 + x2 + x3 ≤ 0

h1(x) = x1 − 2 exp(−x2) = 0

0.5 ≤ x1 ≤ 1.4

0 ≤ x2 ≤ 2

x3 = {0, 1}

There is one local optimum at [0.853, 0.853, 0] with f =
2.558. The global minimum is {x∗; f(x∗)} = {1.375, 0.375,
1; 2.124}. Constraint g1 is active.

Example 5. MINLP. Problem taken from (Floudas, 1995):

min f(x) = −0.7x3 + 5(x1 − 0.5)2 + 0.8

s.t. g1(x) = − exp(x1 − 0.2)− x2 ≤ 0

g2(x) = x2 + 1.1x3 + 1 ≤ 0

g3(x) = x1 − 1.2x3 − 0.2 ≤ 0

0.2 ≤ x1 ≤ 1

−2.22554 ≤ x2 ≤ −1

x3 = {0, 1}
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The global minimum is at [0.94194,−2.1, 1] where f(x∗) =
1.07654. Constraints g1 and g2 are active.

Example 6. MINLP. Proposed in (Kocis and Grossmann,
1988), and also reported in (Floudas et al., 1989; Ryoo and
Sahinidis, 1995; Cardoso et al., 1997):

min f(x) = 2x1 + 3x2 + 1.5x3 + 2x4 − 0.5x5

s.t. g1(x) = x1 + x3 − 1.6 ≤ 0

g2(x) = 1.333x2 + x4 − 3 ≤ 0

g3(x) = −x3 − x4 + x5 ≤ 0

h1(x) = x21 + x3 − 1.25 = 0

h2(x) = x1.52 + 1.5x4 − 3 = 0

0 ≤ x1 ≤ 1.5

0 ≤ x2 ≤ 2.2

xi = {0, 1}, i = {3, 4, 5}

There are 23 different combinations of the binary variables,
of these only one combination is infeasible because it vio-
lates the pure integer constraint. The global solution is x∗

= [1.118, 1.3310, 0, 1, 1] with f(x∗) = 7.667. Constraint g3
is active.

Example 7. Reactor network design. This problem, taken
from (Kocis and Grossmann, 1989) and also studied in
(Cardoso et al., 1997), is a two-reactor problem, where se-
lection is to be made among two candidate reactors the
one that minimizes the cost of producing a desired prod-
uct. The MINLP formulation is given as:

min f(x) = 7.5x5 + 5.5x6 + 7x1 + 6x2

+ 5(x3 + x4)

s.t. g1(x) = x1 − 10x5 ≤ 0

g2(x) = x2 − 10x6 ≤ 0

g3(x) = x3 − 20x5 ≤ 0

g4(x) = x4 − 20x6 ≤ 0

h1(x) = x5 + x6 − 1 = 0

h2(x) = x7 − 0.9x3(1− exp(−0.5x1)) = 0

h3(x) = x8 − 0.8x4(1− exp(−0.4x2)) = 0

h4(x) = x7 + x8 − 10 = 0

xi ≥ 0, i = {1, 2, 3, 4, 7, 8}
xi = {0, 1}, i = {5, 6}

The global minimum is x∗ = [3.514, 0, 13.428, 0, 1, 0, 10,
0.0001] with f = 99.238. Constraints g2 and g4 are active.

Example 8. Process synthesis MINLP. This example is
taken from (Yuan et al., 1989), and is also found in
(Floudas et al., 1989; Ryoo and Sahinidis, 1995; Cardoso
et al., 1997; Yiqing et al., 2007):

min f(x) = (x4 − 1)2 + (x5 − 2)2 + (x6 − 1)2

− ln (x7 + 1) + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

s.t. g1(x) =

6∑
i=1

xi − 5 ≤ 0

g2(x) =

4∑
i=1

x2i − 5.5 ≤ 0

g3(x) = x4 + x1 − 1.2 ≤ 0

g4(x) = x5 + x2 − 1.8 ≤ 0

g5(x) = x6 + x3 − 2.5 ≤ 0

g6(x) = x7 + x1 − 1.2 ≤ 0

g7(x) = x25 + x22 − 1.64 ≤ 0

g8(x) = x26 + x23 − 4.25 ≤ 0

g9(x) = x25 + x23 − 4.64 ≤ 0

xi ≥ 0, i = {1, 2, 3}
xi = {0, 1}, i = {4, 5, 6, 7}

The global minimum is {x∗; f(x∗)} = {0.2, 0.8, 1.9079, 1,
1, 0, 1; 4.579582}. Constraints g3, g4, g6, g7 and g9 are
active.

Example 9. Planning problem. First introduced in (Ko-
cis and Grossmann, 1988), this example represents a small
planning problem, in which several alternatives are pro-
posed for obtaining product C. The goal is to produce the
profitable product C from B that is purchased from a mar-
ket or produced from raw material A. There are also two
paths to produce B from A. The problem is modelled as a
MINLP:

min f(x) = 3.5x1 + x2 + 1.5x3 + 7x5 + x6

+ 1.2x7 + 1.8x8 − 11x11

s.t. g1(x) = x4 − 5x1 ≤ 0

g2(x) = x9 − 5x2 ≤ 0

g3(x) = x10 − 5x3 ≤ 0

g4(x) = x11 − 1 ≤ 0

h1(x) = x6 − ln (1 + x9) = 0

h2(x) = x7 − 1.2 ln (1 + x10) = 0

h3(x) = x11 − 0.9x4 = 0

h4(x) = −x4 +

7∑
i=5

xi = 0

h5(x) = −x8 + x9 + x10 = 0

xi = {0, 1}, i = {1, 2, 3}
xi ≥ 0, ∀i
x6 ≤ 5

x11 ≤ 1

The model contains three binary variables and five con-
tinuous variables. The global minimum is x∗ = [1, 0,
1, 1.11111081, 0, 0, 1.11111081, 1.5242038, 0, 1.5242038,
0.99999978] and f(x∗) = −1.9231. Constraints g2 and g4
are active. There is a local optimum at x = [1, 1, 1, 1.111,

13



0, 0.446744, 0.664156, 1.30208, 0.563058, 0.739121, 1] with
f(x) = −1.41252645.

Examples 10/11/12. Multi-product batch plant design.
The multi-product batch plant consists of M processing
stages in series where fixed amounts Qi of N products
have to be manufactured. The objective is to determine
for each stage j the number of parallel units Nj and their
sizes Vj and for each product i the corresponding batch
sizes Bi and cycle times TLi. The problem data are the
horizon time H, the size factors Sij and processing times
tij of product i in stage j, the required productions Qij ,
and appropriate cost functions αj and βj . The mathemat-
ical formulation of this problem is as follows (Grossmann
and Sargent, 1979; Kocis and Grossmann, 1988):

min

M∑
j=1

αjNjV
βj

j

s.t.

N∑
i=1

QiTLi
Bi

−H ≤ 0

SijBi − Vj ≤ 0

tij −NjTLi ≤ 0

1 ≤ Nj ≤ Nu
j

V l
j ≤ Vj ≤ V u

j

T l
Li ≤ TLi ≤ T u

Li

Bl
j ≤ Bj ≤ Bu

j

Nj integer

The bounds Nu
j , V l

j , V uj are specified by the problem and
appropriate bounds for TLi and Bi can be determined as
follows:

T l
Li = max

j

tij
Nu
j

T u
Li = max

j
tij

Bl
i =

Qi
H
T l
Li

Bu
i = min

(
Qi,minj

V u
j

Sij

)
The data corresponding to these problems are presented
in Table A.5. For all examples the parameters αj , βj and
H are 250, 0.6 and 6000, respectively.
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