
Constraint-Handling Techniques within Differential Evolution
for Solving Process Engineering Problems

Victor H. Cantúa, Catherine Azzaro-Pantela,∗, Antonin Ponsichb

aLaboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS, Université de Toulouse, Toulouse,
France

bDepartamento de Sistemas, Universidad Autónoma Metropolitana Azcapotzalco, Mexico City, Mexico

Abstract

Chemical engineering optimization problems are typically considered as difficult

optimization problems as non-convexities and discontinuities arise, and as they usually

present a high number of constraints to be fulfilled. Differential Evolution algorithm

(DE) has proven to be robust for the solution of highly non-convex and mixed-integer

problems; nevertheless, its performance greatly depends on the constraint-handling

technique used. In this study, numerical comparisons of some state-of-the-art constraint-

handling techniques are performed: static penalty function, stochastic ranking, feasibility

rules, ε constrained method and gradient-based repair. The obtained results show that

the gradient-based repair technique deserves a special attention when solving highly

constrained problems. This technique enables to efficiently satisfy both inequality and

equality constraints, which makes it particularly adapted for the solution of process

engineering optimization problems.

1. Introduction

Complex optimization problems are ubiquitous in chemical engineering, and more

generally, in process engineering (PE). Examples of optimization problems related to this

area encompass batch process design [1, 2], phase equilibrium [3], distillation sequencing

[4], heat exchanger networks [5, 6], reactor network design [7], supply chain design [8, 9],

among others. All these real-world problems are typically represented by a mathematical

model containing both binary and continuous variables, and a set of linear and non-

linear constraints, i.e., leading to a mixed-integer non-linear programming (MINLP)

∗Corresponding author
Email address: catherine.azzaropantel@toulouse-inp.fr (Catherine Azzaro-Pantel)

Preprint submitted to Applied Soft Computing October 3, 2020

*Manuscript
Click here to view linked References

http://ees.elsevier.com/asoc/viewRCResults.aspx?pdf=1&docID=54794&rev=1&fileID=975938&msid={49277A18-D604-4035-BD4F-3796CDE62B48}

formulation. The single-objective formulation of these optimization problems can be

stated as follows:

minimize f(x), (1)

subject to gi(x) ≤ 0, i = {1, . . . , p}
hj(x) = 0, j = {1, . . . , q}
li ≤ xi ≤ ui, i = {1, . . . , n}.

where x = [x1, x2, . . . , xn]T is a n-dimensional vector of decision variables (either discrete

or continuous), f(x) is the objective function to be minimized1, p is the number of

inequality constraints and q is the number of equality constraints. The functions gi and

hj may be linear or non-linear, continuous or not, real-valued functions. Each variable

xi has upper and lower bounds, ui and li, respectively, which define the search space

S ⊆ Rn. Inequality and equality constraints define the feasible region F ⊆ S.

Throughout the years, mathematical programming techniques have been used to

address the solution of these problems. Several algorithms such as Generalized Benders

Decomposition (GBD), Outer-Approximation with the Equality-Relaxation strategy

(OA/ER) and multiple Branch-and-Bound algorithms (BB) have been proposed to solve

to ε-global optimality these problems (i.e. to a given gap between the lower and upper

bounds) [10, 11]. It should be noted, however, that all these Newton’s methods rely

on the initial given solution and on convexity assumptions of the non-linear functions

to guarantee the global optimum solution, and in fact, their performance may depend

strongly on the problem’s formulation, meaning that a different algebraic form of the

same equations might lead to quite different algorithmic performance [12]. That is,

the problem needs to satisfy some specific mathematical characteristics (e.g., convexity,

derivability) so that a valid (automatic) reformulation can be generated, otherwise, the

reformulated convex problem might miss the original global optimum and converge to

a local optimum. For the convex relaxation to be performed, the problem has to be

reduced to a standard form, in which nonlinear terms are linearized (by adding new

variables and constraints), and then each non-convex term is replaced with a convex

envelope obtained as the convex hull of the inequality constraints. Since one of the key

factors to obtain the ε-global optimum depends on computing a tight convex lower bound,

several methods have been proposed depending on the mathematical characteristics of the

studied problems (e.g. McCormick’s envelopes, piecewise-linear underestimators, etc.).

Furthermore, the application of these deterministic techniques can be computationally

expensive to obtain the rigorous global solution of large-scale problems.

1for the case of maximization, a negative sign is just added to the objective function

2

In that context, metaheuristics, and especially evolutionary algorithms techniques

(EAs) have been proposed to solve highly non-convex optimization problems. Some

examples of EAs are Evolutionary Strategies (ES), Genetic Algorithms (GA), Particle

Swarm Optimization (PSO) and Differential Evolution (DE), among others [13]. Even

if these techniques lack of any theoretical convergence proof, it is well recognized that

good quality solutions can be obtained and several advantages can be highlighted : (i)

these population-based algorithms do not require any mathematical property for the

treated problem as they only use the evaluation of the objective function; (ii) due to

their population-based nature, EAs are particularly suited to tackle problems in which

more than one objective is to be optimized. This property is important in PE for which

several kinds of objectives (for instance, environmental or social impacts) need to be

minimized simultaneously with an economic criterion.

However, as EAs have been conceived as directed search engines to work over

unconstrained spaces, their main drawback appears when tackling constrained problems

and thus their applicability has been limited by a deficiency of general techniques to

manage constraints. Consequently, much effort has been made to efficiently incorporate

constraint-handling techniques into EAs, beginning, as in mathematical programming,

by penalty functions. Nevertheless, though penalty functions may work well in some

problems, they involve the tuning of some parameters that may affect significantly

the quality of the final solutions found. For this reason, evolutionary computation

researchers have proposed many other sophisticated approaches for handling constraints.

In [14], the authors proposed a co-evolutionary algorithm for ensuring feasibility of

individuals in problems containing only equality constraints. Equality constraints are

eliminated by substituting an equal number of decision variables, the feasible space

being then a convex set defined by linear inequalities. Thanks to this property, the

genetic operators consist of linear combinations of individuals who ensure the feasibility

of the solutions thus created. Maintaining feasibility can also be obtained through

“decoders”, i.e. instructions contained in the chromosome dictating a way to build a

feasible solution. In [15] an approach for handling inequality constraints in (1+1)-ES

uses an augmented Lagrangian technique (which involves additional quadratic penalty

terms) and the performance of the algorithm is evaluated on sphere and ellipsoid functions

with a single linear constraint. This approach was then extended by [16] to work with

an adaptive covariance matrix adaptation evolution strategy (CMA-ES) exploring the

performance of the algorithm on a set of linearly constrained functions, including convex

quadratic and ill-conditioned objective functions, and observing linear convergence to

the optimum. Diversely, in order to overcome the parameter-setting drawback when

using penalty methods, stochastic ranking was proposed by [17] attempting to perform

3

a useful comparisons between feasible and infeasible solutions, balancing the influence

of the objective function and the penalty function without the need of any penalty

factor; this method showed encouraging results when solving benchmark problems with

multiple (active) constraints. Later, the same authors proposed in [18] a multiobjective

constraint-handling method which conducts to a bias-free search, however, most of

the search was spent in the infeasible region, finding poor feasible solutions. Another

classical approach for handling-constraints in EAs, is to allow constraint relaxation at

some extent at early generations, and then to stress the search to feasible regions in

late generations. The ε-constrained method [19] stands in this framework, in which

a polynomial function is employed for decreasing the relaxation level throughout the

evolutionary process. The same authors also proposed some extensions of this method

[20, 21], suggesting the preservation of elite solutions and the reparation of infeasible

ones by using the constraint gradient information. In [22], another relaxation method is

proposed, in which the relaxation level is computed at each generation considering the

fraction of feasible solutions in the population and the median of the total violation of

constraints; the authors considered in conjunction a self-adaptive differential evolution

algorithm with tabu search, and employed a gradient-based local optimizer at the end

of the search for ensuring convergence. In the context of multiobjective optimization,

a modification of the ε-constrained method has been proposed [23] aiming to improve

the original ε relaxation function, this time enabling the function to increase/decrease

depending on the ratio of feasible solutions in the population. More recently, a two-stage

procedure (called, push and pull) was proposed [24]: in the first stage (push stage), the

algorithm explores the unconstrained search space which allows the population to get

across infeasible disconnected regions, and then, in the pull stage, original constraints

are considered along with the improved ε constrained method to gradually pull the

population towards feasible regions. On the other hand, the solution of multiobjective

problems containing equality constraints has been the question in [25], where authors

proposed a two-phase hybrid algorithm; in the first phase, a rough approximation of

the Pareto front is obtained via NSGA-II algorithm coupled with the ε-constrained

method, and then, in the second phase, each obtained solution is refined using the so-

called Pareto Tracer, which can be viewed as a gradient-based local optimizer capable of

efficiently handle equality constraints. Nevertheless, exploiting the constraints’ gradient

information for solving constrained problems within EAs, was presented for the first time

in [26]; the obtained results indicated a slight superiority of the method over stochastic

ranking. It is important to note that this method does not constitute a local optimizer,

since the search is still performed by the EA; that is, Newton’s method is only employed

on the constraints information for repairing, at some extent, infeasible solutions. In [27],

4

the constraint gradient information has also been employed for repairing solutions that

violate only equality constraints, the basic idea explored in this different method is that,

for a given infeasible solution, some variables are set to a fixed value, while a number of

variables equals to the number of equality constraints in the problem are to be repaired,

by solving the system of equations (constraints).

Surprisingly enough, even if EAs have been widely used in literature for the solution of

process engineering optimization problems, the same constraint-handling techniques are

usually considered: static penalty function and feasibility rules, whereas the performance

of more recent methods has not been investigated in the PE framework, at least not

in a systematic manner. Further, in order to improve the performance of these EAs

in constrained problems, a reformulation of the problem is often done to reduce the

number of decision variables and to remove, as many as possible, equality constraints.

However, despite its efficiency, such an approach may not work properly for large-scale

real-world problems that usually contain a considerable number of constraints. In [28],

authors tackled the solution of chemical engineering MINLP problems using an algorithm

combining simulated annealing (for treating discrete variables) and the non-linear

simplex method (for treating continuous variables), and then, concerning the handling of

constraints, authors employed a dynamic penalizing scheme that considers the maximum

extent of constraint violation in such a way that no penalty parameter is needed. Results

showed that this method, though efficient for most of the treated problems, experiences

difficulties for finding the global optimum in highly constrained problems. In [29], authors

studied the solution of seven chemical engineering optimization problems, comparing the

performance of both genetic algorithms and evolution strategies; equality constraints were

eliminated by reducing the number of decision variables, whereas inequality constraints

were treated using feasibility rules. It is noteworthy that only small problems were

studied. A similar study was carried out in [30], where authors employed differential

evolution algorithm as the search engine; constrains were handled using Deb’s feasibility

rules and, for problems presenting equality constraint, the reformulation of the model

was done in order to eliminated equality constraints. However, conclusions about the

efficiency of this methodology for the solution of real-world problems are not clear,

since only small instances were studied (the biggest instance containing 7 continuous

variables, 3 binary variables and none equality constraints). In [31], authors treated

an important number of problems, implementing DE with tabu search to enhance the

search; all equality constraints were removed by a model reformulation and the static

penalty function was employed for handling inequality constraints, in fact, authors used a

high value of the penalty factor for all problems, which can be viewed as using feasibility

rules. In [32], an enhanced version of PSO algorithm was proposed; constraint handling

5

was performed in two steps: (1) problem reformulation (reduction of decision variables)

is done aiming to remove all equality constraints, and (2) Deb’s feasibility rules are

used for comparing two individuals, and hence to stress the search over feasible regions.

As has been mentioned earlier, a gradient-based reparation procedure was proposed to

efficiently treat equality constraints without the need of reformulating the model [27],

however, the results obtained seem to indicate that this method needs an important

number of function evaluations for converging (approx. 106 for a problem containing 22

variables). Finally, the optimization of dynamic chemical processes was addressed in [33]

using DE with a modification in the mutation process, concerning constraint handling

(both equality and inequality), they are handled by Deb’s feasibility rules.

In reference to the performance comparison of several optimization algorithms, and

by extension, the performance of several constraint-handling techniques, the well-known

no-free lunch theorem (NFL) [34] needs to be mentioned, stating that no algorithm

outperforms any other when its performance is averaged over all possible optimization

problems. This means, for example, that no algorithm is better than random search.

However, this can only be understood on the basis that all possible optimization problems

are considered over a given search space [35]. In this study, only problems related

to process engineering are considered, which are usually formulated as very difficult

optimization problems and, besides, only those constraint-handling techniques that are

usually found in literature are studied, with the addition of a repair method.

Taking into account all the above considerations, the scientific objective and the

main contributions of this work is therefore to explore and compare the performance

of some state-of-the art constraint-handling techniques for the solution of a selection of

problems drawn from the process engineering framework. In particular, we investigate

five constraint-handling techniques, namely penalty functions, stochastic ranking [17],

feasibility rules [36], ε constrained method [19] and gradient-based repair [26]. It is worth

mentioning that this diversity of methods is representative, by their respective working

mode, of those that are typically used in most works found in the specialized literature.

Since the aim is to provide a fair basis for constraint-handling methods comparison, the

same search engine was used in all cases, i.e. a self-adaptive variant of DE, both because

of its simplicity (it does not introduce any sophisticated operator nor any non-uniform

probability distribution) and its claimed superiority over GAs and PSO in terms of its

computational efficiency [37, 38]. The aforementioned constraint-handling strategies have

thus been embedded within DE for the solution of 14 well-known chemical engineering

problems, highlighting the superiority of the gradient-based repair strategy for most of

the treated examples.

The remainder of this article is organized as follows. In the next section, DE is

6

briefly described. Then, some state-of-the-art constraint-handling techniques in EAs are

reviewed. After that, the methodology developed for the computational experiments is

presented along with some information regarding the test problems considered. Then,

the results are presented and discussed. The last section highlights the conclusions and

perspectives of this work.

2. Differential Evolution

Differential Evolution (DE), proposed by Storn and Price [39], is a simple yet efficient

population-based search engine. As typical evolutionary algorithms, it relies on the

Darwinian principle of survival of the fittest to obtain good quality solutions through the

reproduction, mutation, competition and selection processes. DE has been successfully

applied to optimization problems including non-linear, non-differentiable, non-convex

and multi-modal functions. It has been shown that DE is fast and robust for solving

these kinds of functions [39].

In DE, an initial population is randomly generated within the search space. Each

individual in the population represents a solution, i.e., a vector of n decision variables.

At each generation, all individuals are selected as parents to generate new solutions.

The reproduction and mutation processes are carried out as follows: a mutant vector v

is produced choosing randomly 1 + 2nd individuals from the population excluding the

current target parent. The first individual is a base vector, whereas the nd subsequent

individuals are paired to create difference vectors. The difference vectors are scaled by

a factor F and then added to the base vector. The most widely used mutation process

only considers one difference term and involves random vectors, as shown in the following

equation:

vi = xr1 + F · (xr2 − xr3) (2)

where r1 6= r2 6= r3 6= i ∈ {1, . . . , NP} are random indexes. The resulting vector is

then recombined with the parent with a probability CR, the crossover rate factor. This

crossover process produces a trial vector u according to:

ui,j =

vi,j if w ∼ U(0, 1) ≤ CR or j = jrand,

xi,j otherwise
(3)

where j ∈ {1, . . . , n} and jrand is a randomly chosen index ∈ {1, . . . , n} ensuring that

ui gets at least one variable from the mutant vi. Finally, the trial vector is compared

with its parent, that obtaining the best fitness is selected and inserted into the next

population.

7

Depending on the mutation and crossover scheme considered, several variants of

DE exist. They can be denoted as DE/x/y/z, where x specifies the base vector

which can be rand (randomly chosen) or best (the vector with better fitness from the

current population), y denotes the number of difference vectors used, and z denotes the

crossover scheme that can be bin (independent binomial experiments) or exp (exponential

crossover, similar to 1-point crossover in GAs). In this work, the most popular version

of DE is used, that is, DE/rand/1/bin which considers one randomly difference from

the population and performs binomial crossover, as represented in Eqs.(2) and (3),

respectively.

Furthermore, some self-adaptive versions of DE were introduced in the literature, in

which the control parameters F and CR are self-adapted throughout the evolutionary

process, e.g. SaDE [40], JADE [41], jDE[42], SHADE [43], DEPSO [44]. In this work,

the jDE algorithm because of its low computational complexity. jDE has shown good

performance solving numerical benchmark problems and has proven to be robust.

Also, it must be mentioned that DE is a technique devoted to continuous optimization,

although it can easily be extended for the treatment of mixed-integer problems. In this

study, binary variables are encoded as continuous variables, and their values are rounded

to the next integer only for the evaluation of the fitness function.

3. Constraint-handling techniques

In this section, five popular techniques for handling constraints in evolutionary

computation are presented, namely, penalty functions, Deb’s feasibility rules, stochastic

ranking, ε constrained method and gradient-based repair. As has been indicated in the

introduction part, several other techniques exist in the specialized literature [45, 46],

however there is no evidence that they significantly outperform the techniques tackled

here and, in addition, these more sophisticated techniques usually involve the setting of

several control parameters [47, 48, 49, 50, 51].

3.1. Penalty functions

Historically, the most common approach to incorporate constraints (both in

evolutionary algorithms and in mathematical programming) involves penalty functions,

which were originally proposed in the 1940s and later expanded in many research studies

mainly because of their simplicity and efficiency. With this method, the fitness landscape

is modified as some penalty value is added to the objective value of each infeasible

8

individual. In their general form, penalty functions can be represented as:

ψ(x) = f(x) +

p∑
i=1

ri ·max{0, gi(x)}α +

q∑
j=1

cj · |hj(x)|α (4)

where ψ(x) is the new fitness function to be minimized, ri and cj are positive constants

called penalty factors, and α normally takes values of 1 or 2.

As can be noted, this implementation, though quite simple, requires the use of a

number of parameters to be tuned (equals to the number of constraints) which might be

impractical in highly constrained problems. For this reason, the static penalty function,

the simplest form of penalty function, has remained as the most popular one:

ψ(x) = f(x) + r · φ(x) (5)

where r is the penalty coefficient and φ(x) is the overall constraint violation:

φ(x) =

p∑
i=1

max{0, gi(x)}α +

q∑
j=1

|hj(x)|α (6)

Although the static penalty function only needs the tuning of one parameter, its value

is not straightforward to set. On the one hand, if r is too low, the search will be

directed towards regions where the objective function is minimized, but the final obtained

solutions are likely to be infeasible. On the other hand, if r is too high, the minimization

of the overall constraint violation will be prioritized, obtaining a feasible solution in

early generations with the disadvantage that, if the search space is disjointed or highly

constrained, it will be very difficult to escape from the first feasible region found, the

process being thus stuck in a local optimum. Ideally, the penalty should be kept as low

as possible, just above the limit where the found solutions are infeasible, that is called

the minimum penalty rule.

Furthermore, dynamic penalty functions, in which the coefficient r varies throughout

the evolutionary process, have been proposed [52, 53, 54]. The constant idea in dynamic

penalty functions is that allowing low values of r at early generations enables to explore

the regions where the objective function is minimized, whereas a high value of r is desired

at final generations in order to push the search towards the feasible region. Such an idea

would work well for problems for which the unconstrained global optimum is close to its

constrained global optimum, but there is no guarantee that this strategy will be efficient

in all cases. Besides, the additional parameters needed to define the penalty coefficient

schedule make this method less attractive than the simple static penalty function.

Finally, since a good choice of the penalty coefficient is necessary to enable a good

9

balance between the objective function and the overall constraint violation minimizations,

adaptive strategies have been suggested where information gathered from the search

process is used to control the amount of penalty added to infeasible individuals. Adaptive

penalty functions are not difficult to implement and they usually do not require user-

defined parameters. Nevertheless, the results found in literature are not very encouraging

as adaptive penalty methods usually need a lot of iterations to find the optimal solution

as illustrated in [54]. For a more complete review of adaptive penalty techniques the

reader is referred to [55].

3.2. Stochastic ranking

Stochastic ranking (SR) has been proposed by Runarsson and Yao [17] as an attempt

to balance the relative weights of the objective and the constraint violation that occurs

in penalty functions. In this method, the population is sorted following a probabilistic

procedure: two individuals are compared according to their objective function with a

probability Pf , otherwise, the overall constraint violation is used for the comparison as

indicated in the pseudo-code presented in Fig. 1. Once the population has been sorted

by SR, a part of the population assigned with highest rank is selected for recombination,

thus sharing its characteristics to the next generation. In this way, the search is directed

by the minimization of the objective function and by feasibility concepts at the same

time.

10

1 for i = 1 to NP

2 for j = 1 to NP − 1

3 sample u ∼ U(0, 1)

4 if φ(Ij) = φ(Ij+1) = 0 or u < Pf

5 if f(Ij) > f(Ij+1)

6 swap (Ij , Ij+1)

7 end

8 else

9 if φ(Ij) > φ(Ij+1)

10 swap (Ij , Ij+1)

11 end

12 end

13 end

14 if no swap done then break end

15 end

Figure 1: Stochastic ranking procedure. I

is an individual in the population, Pf is the

probability of using only the objective function

for comparisons. The initial ranking is always

generated randomly.

Since stochastic ranking was originally designed to work with Evolution Strategies

(ES), which indeed requires a ranking process in its replacement mechanism, its

implementation within other search paradigms is not straightforward, even if some studies

have extended its use to other EAs [56, 57, 58]. Considering DE, SR could be used in

two different ways: for selecting a part of the population that would participate in

the mutation process, or for selecting the individuals that would survive to the next

generation (after the mutation and crossover processes). In [57], the authors proposed to

rank the population according to SR procedure before the mutation process: they divide

the population into two parts (that they call higher and lower parts), the upper part

containing the better individuals, i.e., the individuals ranked higher after SR. Then, for

every trial vector, vi, the upper part contributes with two good individuals, while the

lower part provides only one less good individual. This procedure was initially considered

in this study, but since the obtained results were not satisfactory, SR was implemented

within the selection process as follows: the new population is generated normally by

DE operator, i.e., using the entire population, and then both populations (parents and

offspring) are ranked according to SR. Finally, each new individual is compared with his

parent, and the one ranked higher survives to the next generation.

11

3.3. Feasibility rules

This constraint handling technique establishes the superiority of feasible solutions

over infeasible ones, that is, as opposite to the penalty functions, feasibility rules do not

merge both information from constraint violation and objective function, but consider

them separately. Proposed by Deb in [36], feasibility rules (also called lexicographical

order) consist in a binary tournament selection according to the following criteria:

1. Any feasible solution is preferred to any infeasible solution.

2. Among two feasible solutions, that with better objective function value is preferred.

3. Among two infeasible solutions, that with smaller constraint violation is preferred.

Deb’s feasibility rules represent an easy-to-implement, parameter-free technique to handle

constraints. Further, due to its simplicity and its overall good performance, feasibility

rules are usually the first constraint-handling technique tested for treating a given

problem with EAs. However, one of the main drawbacks of this method appears when

dealing with problems with a reduced and disconnected feasible region (e.g., problems

with one or several equality constraints). Because any feasible solution is preferred over

an infeasible one, once the algorithm has converged to some feasible region, it may be very

difficult to escape from there in order to explore other regions, i.e., once the constraints

are fulfilled, the algorithm is very likely to get trapped prematurely in some subregion

of the search space. Moreover, considering that there are high probabilities that the

optimum lies close to the feasibility boundary, slightly infeasible solutions might be more

useful to the search process than solutions wide inside the feasible region. However, the

feasibility rules would prefer the latter solution to the former one. In fact, feasibility

rules can be seen as a limiting case of static penalty function when the penalty value

takes a very high value, in this way, when comparing two solutions, that with a lesser

amount of overall constraint violation will be always preferred.

3.4. ε constrained method

In order to tackle the above-mentioned issues related to feasibility rules in severely

constrained problems, the ε constrained method for evolutionary algorithms has been

proposed by Takahama and Sakai in 2005 [19], where a relaxation of constraints is

permitted to explore constrained regions. This tolerance level over the relaxation, called

the ε level, indicates the limit under which solutions are considered as feasible. Once

the feasibility of solutions has been identified by means of the ε level, the lexicographical

order (i.e. Deb’s feasibility rules) is used for selecting the surviving individuals for the

next generation. This technique has proven to be especially efficient in highly constrained

problems, such as those involving equality constraints, because this relaxation, allowed at

12

the early generations within a certain level, promotes exploration of regions that would

be impossible to reach by simple feasibility rules.

The main drawback of this method is the difficulty for setting the ε parameter. It

has been remarked that ε level enables a good exploration of the search space in early

generations but also it is clear that ε must be 0 at some point of the evolutionary process

in order to obtain feasible solutions. In [20], the authors proposed a dynamic control of

ε level, according to:

ε(0) = φ(xθ) (7)

ε(t) =

 ε(0)(1− t
Tc

)cp, 0 < t < Tc,

0, t ≥ Tc

where xθ is the best θ-th individual (in terms of constraint violation) in the first

generation, cp is a parameter to control the speed ε level decrease and Tc represents

the generation after which the ε level is set to 0 (after that, Deb’s feasibility rules are

considered). According to the authors, the following parameter setting works well in

many problems: θ = 0.2NP , cp = 5, Tc ∈ 0.2Tmax. However, their tuning still constitutes

a disadvantage, as it might become a harsh task. Additionally, it is important to recall

that the use of the ε level according to Eq. (7) is only recommended for highly constrained

problems in which the feasibility rules do not work properly, otherwise ε constrained

method may get worse results than the feasibility rules in terms of efficiency and efficacy.

It should be underlined that the ε constrained method obtained the first place in the

competition on constrained optimization of the Congress of Evolutionary Computation

(CEC 2006) and very competitive results in CEC 2010 [20, 21]. Due to this success, ε

constrained method has also been embedded in a number of algorithms for multiobjective

optimization [59, 23, 60]. However, the excellent results obtained by this method in

the two above-mentioned competitions did not only depend on the use of the ε level

relaxation strategy by itself, but also on a additional technique, namely gradient-based

repair method (presented in the next section) [26]. It is difficult to determine which of

both methods contribute the most in obtaining such excellent results. In this study, the

ε constrained method has been implemented with and without the gradient-based repair,

in this way, the performance of both algorithms is compared.

3.5. Gradient-based repair

The gradient-based repair method, proposed by Chootinan and Chen in 2006 [26],

is a constraint-handling technique that uses the gradient information derived from the

constraint set to systematically repair infeasible solutions. Basically, the gradient of

13

constraint violation is used to direct infeasible solutions toward the feasible region. The

vector of constraint violations ∆C(x) is defined as:

∆C(x) = [∆g1(x), . . . ,∆gm(x),

∆h1(x), . . . ,∆hp(x)]T
(8)

where ∆gi(x) = max{0, gi(x)} and ∆hj(x) = hj(x). This information, additionally to

the gradient of constraints ∇C(x), is used to determine the step ∆x to be added to the

solution x, according to:

∇C(x)∆x = −∆C(x) (9)

∆x = −∇C(x)−1∆C(x) (10)

Although the gradient matrix ∇C is not invertible in general, the Moore-Penrose inverse

or pseudoinverse ∇C(x)+ [61], which gives an approximate or best (least square) solution

to a system of linear equations, can be used instead in Eq.(10). Thus, once the step ∆x

has been computed, the infeasible point x is moved to a less infeasible point x + ∆x.

This repair operation is performed with a probability Pg and repeated Rg times while

the point is infeasible.

In this work, the computation of the gradient ∇C(x) is done numerically using

forward finite differences, for all problems. Also, it is worth noting that in the original

article [26] only non-zero elements of ∆C(x) are repaired, i.e., the gradient is only

computed for constraints that are actually being violated. On the contrary, in [20]

all constraints are considered in the repair process, even those that are already satisfied.

The former approach has the disadvantage that a given constraint may be fulfilled at one

iteration but violated in the next one, nevertheless, this is usually more efficient compared

to the latter approach, in terms of number of iterations needed to get to the feasible

region. In this study, the former approach is considered, i.e., only non-zero elements of

∆C(x) are taken into account within the repair process. Note that this procedure can

produce situations where some variables lie outside their allowed variation range, so that

two inequality constraints may be added for each variable, accounting for their bounds.

Due to the associated computational burden in real-world optimization problems, where

the number of variables may be high, these additional constraints are not considered

here. Instead, an additional repair process, performed at each iteration, sets the variable

value to the violated bound if necessary. The pseudo-code of the gradient-based repair

procedure used in this study is presented in Fig. 2.

14

1 for i = 1 to NP

2 t = 0

3 sample u ∼ U(0, 1)

4 while t < Rg and φ(x) > 0 and

u < Pg

5 compute ∇C(x) of violating

constraints

6 compute ∇C(x)+

7 compute ∆x

8 x← x + ∆x

9 repair x to its bounds

10 compute ∆C(x)

11 t = t+ 1

12 end

13 end

Figure 2: Gradient-based repair method

procedure.

Even if the gradient-based repair can be considered as a constraint-handling technique

in itself, using it alone would be computationally expensive, since, in highly constrained

spaces, this procedure might require many iterations to reach the feasible region, and in

extreme cases, a feasible solution could be impossible to obtain and therefore, usually

this technique is coupled with any other constraint-handling technique. In this work,

gradient-based repair is coupled with ε constrained method because, by its working mode,

it presents advantages over feasibility rules when dealing with equality constraints and,

in addition, methods like penalty functions or stochastic ranking might spoil the efforts

made to repair infeasible solutions, due to a bad-tuned penalty factor or to the stochastic

ranking sorting procedure itself. Nevertheless, for illustrative purposes, a preliminary test

experiment is carried out for one instance, by applying the gradient-based repair method

to each of the four constraint-handling techniques. The results are shown in Table 2,

highlighting that every constraint-handling technique, when coupled with gradient-based

repair, performed equally good. The identical results observed for feasibility rules and ε

constrained methods are due to the ε level, which is zero at the first generation.

3.6. Computational complexity

Before any computational experiment, the five constraint-handling methods described

above can be compared in terms of their respective theoretical time complexity (in the

worst case). Regarding the penalty function, the feasibility rules and the ε constrained

method, some constant time operation should be performed for each individual, resulting

15

Table 1: Brief description of example problems

Example
Decision variables Constraints

(active)
Description

Binary Continuous

1 0 6 5(5) Reactor network design
2 0 10 6(6) Flowsheeting
3 1 1 2(1) Process synthesis
4 1 2 2(2) Process synthesis
5 1 2 3(2) Process synthesis
6 3 2 5(3) Process synthesis
7 2 6 8(6) Reactor network design
8 4 3 9(5) Process synthesis
9 3 8 9(7) Planning problem

10 5 7 13(7) Batch plant design
11 5 7 13(8) Batch plant design
12 12 16 61(15) Batch plant design
13 14 19 85(18) Batch plant design
14 16 20 97(16) Batch plant design

in an upper bound O(NP), where NP is the population size. For stochastic ranking,

the procedure described in Figure 1 involves a two-pass sorting mechanism, which is

of order O(NP 2). Finally, the main operations in the gradient-based repair process

are the computation of the Moore-Penrose pseudoinverse matrix and the solution of

equation (10), with respective upper bounds O
(
(p+ q)3

)
and O

(
n3
)
, which are constant

for a given problem. These operations should be carried out several times (the number

of iterations is, however, bounded) for each infeasible individual. So, the order of

the gradient-based repair procedure is O(k · NP) where k is a constant depending of

the instance size (number of variables and constraints) and the maximum number of

iterations allowed for each repair process.

4. Computational experiments

To illustrate the benefits of the above-mentioned constraint-handling techniques in

process engineering applications, 14 problems have been selected as representative in

the specialized literature. These problems present some mathematical characteristics

typically found in engineering, e.g., non-linearities, equality and inequality constraints,

binary and continuous variables. Some characteristics of these examples are provided

in Table 1. In Appendix A, the complete formulation of these problems is presented in

details and additional information concerning local and global optimal solutions is also

given.

16

The algorithms previously presented were implemented with MATLAB R2017b and

all the following computational experiments were carried out with a processor Intel Xeon

E3-1505M v6 at 3.00 GHz and 32 Go RAM.

4.1. Parameters settings

In order to perform a fair comparison of the different constraint-handling methods,

the parameters tuning has been set constant for all the test problems, so that, for a

given technique, the best overall performance is obtained, excepting, obviously, the static

penalty function where the tuning of the parameter r for each problem is intrinsic to this

method. The actual parameters used are:

� Static penalty function. Parameter r is tuned following the minimum penalty rule.

The precision of the parameter is set according to r = x× 10y, where x and y are

integer numbers.

� Stochastic ranking. Pf = 0.45.

� ε constrained method. θ = 0.2NP , cp = 5, Tc = 0.2Tmax.

� Gradient-based repair. Identical parameters as for the ε constrained method above.

Additionally, Pg = 1, Rg = 3.

Regarding the jDE algorithm, the only parameter to be tuned is the population size

(NP), as the scaling factor (F) and crossover rate (CR) are adjusted by the algorithm.

The population size is calculated as NP = min(100, 10n) where n is the number of

decision variables. The algorithm stops if the current best solution is as close as 0.0001%

to the reported global optimal solution or if the number of function evaluations (NFEs)

exceeds 200 000. Due to the stochastic nature of evolutionary algorithms, 50 independent

executions are carried out for each problem and each method.

5. Results and discussion

The results obtained for the 14 optimization test problems are summarized in Tables 3

to 6. The results are analyzed through the best, median and worst objective function

values, “−” means no feasible solution was found. Feasibility and success rates represent

respectively the rates of feasible and optimal solutions found out of 50 independent runs

(considering the best solution found in each run). Please note that the computational

times in Tables 4 and 6 represent the overall elapsed time for the 50 runs. In Tables 3

and 4 the results related for problems 1 to 9 are shown. Since problems 10 to 14 are

different size instances of the same problem (the optimal design of a multi-product batch

plant), their results are shown together in Tables 5 and 6.
17

Table 2: Gradient-based repair coupled with each constraint-handling method. Experimental results for
problem 1 in terms of NFEs needed to achieve convergence.

Problem Constr-handling Best Median Worst Mean Std
Feas.
rate

Succ.
rate

CPU
time(s)

1 St. penalty fcn. 211 1884 4665 1943 1009 100 100 2.6
SR 211 2063 6151 2295 1419 100 100 3.3
Feas. rules 211 2142 5490 2176 1226 100 100 2.9
ε-constrained 211 2142 5490 2176 1226 100 100 2.9

Problem 1 addresses the optimal design of a sequence of two CSTR reactors. It can

be considered as a small size problem, however, from Table 4 it can be appreciated that

only gradient-based repair technique achieved to find the optimum in each single run.

Further, the few NFE needed to converge is to be highlighted. This problem was studied

in [30, 31], but the problem needed to be reformulated removing all equality constraints

and eliminating dependent variables, and then a static penalty function was used. In

contrast, the results obtained by the gradient-based repair method suggest that this

reformulation is not necessary since this method finds the global optimum in short CPU

times (lower than 0.1 second per run).

Problem 2 constitutes a difficult case, containing 6 non-linear equality constraints that

involve all decision variables. Not any one of the tested constraint-handling technique

except gradient-based repair was able to found the optimum in any run. In [62] this

problem was also addressed by DE, considering the constraints as a system of non-

linear equations which is solved by an exact algorithm, so that the original problem is

transformed into an unconstrained one. However, such repair process is computationally

expensive, as it is performed for every individual at each generation. In this study, the

same approach has been carried out for comparison purposes. The system of non-linear

equations has been solved using the Levenberg-Marquardt algorithm embedded in the

MATLAB software. This approach took approximately 40 seconds per run, i.e., about

20 times more than the gradient-based repair procedure.

Problems 3 and 5 consist in small and rather simple MINLP examples. All constraint-

handling methods obtained an overall good performance in terms of success rate.

Regarding problem 4, this problem is modelled as a MINLP involving one non-

linear equality constraint and one binary variable, which together, yield a rather high

difficulty for the solution by feasibility rules, since this technique gets trapped in an

“easy-to-access” local optimum. In addition, all the other techniques obtain a very good

performance. It is noteworthy that in [29, 32], the problem is reformulated by reducing

one continuous variable and thus eliminating the equality constraint. This approach,

although efficient, is problem-devoted and may not be practical in highly constrained

18

Table 3: Experimental results in terms of objective function values.

Problem
(optimum)

Constr-handling Best Median Worst Mean Std

St. penalty fcn. −0.38881 −0.38871 −0.38802 −0.38870 1.42e-04
1 SR −0.38881 −0.38871 −0.37867 −0.38813 1.87e-03

(-0.38881) Feas. rules −0.38881 −0.38871 −0.38377 −0.38854 7.77e-04
ε-constrained −0.38881 −0.38871 −0.38720 −0.38848 4.24e-04
Grad-based repair −0.38881 −0.38876 −0.38872 −0.38878 3.92e-05

St. penalty fcn. 10 041 455 12 562 687 16 932 972 12 626 104 1.32e+06
2 SR — — — — —

(9490593) Feas. rules 10 148 136 12 421 765 18 043 019 12 667 483 1.40e+06
ε-constrained 10 603 444 — — 13 457 709 1.88e+06
Grad-based repair 9 490 594 9 490 600 9 490 603 9 490 600 2.51e+00

St. penalty fcn. 2.000 2.000 2.236 2.005 3.34e-02
3 SR 2.000 2.000 2.000 2.000 3.00e-05

(2.000) Feas. rules 2.000 2.000 2.236 2.019 6.47e-02
ε-constrained 2.000 2.000 2.236 2.014 5.66e-02
Grad-based repair 2.000 2.000 2.000 2.000 3.03e-05

St. penalty fcn. 2.124 2.124 2.558 2.168 1.31e-01
4 SR 2.124 2.124 2.558 2.142 8.58e-02

(2.124) Feas. rules 2.124 2.558 2.558 2.549 6.13e-02
ε-constrained 2.124 2.124 2.558 2.150 1.04e-01
Grad-based repair 2.124 2.124 2.124 2.124 1.71e-05

St. penalty fcn. 1.0766 1.0766 1.2500 1.0801 2.45e-02
5 SR 1.0766 1.0766 1.2500 1.0835 3.43e-02

(1.0765) Feas. rules 1.0766 1.0766 1.2500 1.0880 4.19e-02
ε-constrained 1.0766 1.0766 1.0766 1.0766 1.80e-05
Grad-based repair 1.0765 1.0766 1.0766 1.0766 3.14e-05

St. penalty fcn. 7.667 7.667 7.931 7.688 7.22e-02
6 SR 7.667 7.667 7.931 7.693 7.99e-02

(7.667) Feas. rules 7.667 7.931 8.240 7.928 1.07e-01
ε-constrained 7.667 7.931 7.931 7.846 1.24e-01
Grad-based repair 7.667 7.667 7.667 7.667 1.49e-05

St. penalty fcn. 99.238 99.240 107.374 101.355 3.60e+00
7 SR 99.238 99.239 107.374 100.703 3.16e+00

(99.238) Feas. rules 99.238 107.374 — 111.974 2.30e+01
ε-constrained 99.238 107.374 107.374 103.795 4.08e+00
Grad-based repair 99.238 99.240 99.240 99.239 2.69e-04

St. penalty fcn. 4.57958 4.57962 4.57968 4.57962 3.18e-05
8 SR 4.57958 4.57967 4.57968 4.57966 1.69e-05

(4.57958) Feas. rules 4.57958 4.57966 4.57968 4.57966 1.86e-05
ε-constrained 4.57958 4.57966 4.57968 4.57966 2.14e-05
Grad-based repair 4.57958 4.57958 4.57964 4.57958 8.95e-06

St. penalty fcn. −1.9231 −1.7236 −1.4125 −1.6925 1.95e-01
9 SR −1.9231 −1.7235 −0.2202 −1.5924 4.51e-01

(-1.9231) Feas. rules −1.4125 −1.2138 0.7607 −0.8621 6.70e-01
ε-constrained −1.4099 −0.0011 0.7431 −0.0370 3.71e-01
Grad-based repair −1.9231 −1.9231 −1.9230 −1.9230 1.31e-04

19

Table 4: Experimental results in terms of NFEs needed to achieve convergence.

Problem Constr-handling Best Median Worst Mean Std
Feas.
rate

Succ.
rate

CPU
time(s)

1 St. penalty fcn. 14 340 64 230 200 000 88 734 73 334 100 90 10.1
SR 45 480 156 840 200 000 153 434 44 795 100 70 91.6
Feas. rules 27 660 149 490 200 000 136 008 53 187 100 86 15.6
ε-constrained 32 700 193 320 200 000 156 421 61 826 100 54 19.1
Grad-based repair 211 2142 5490 2176 1226 100 100 2.9

2 St. penalty fcn. 200 000 200 000 200 000 200 000 0 100 0 19.8
SR 200 000 200 000 200 000 200 000 0 0 0 142.2
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 19.3
ε-constrained 200 000 200 000 200 000 200 000 0 20 0 21.0
Grad-based repair 15 300 19 100 22 800 19 094 1366 100 100 90.3

3 St. penalty fcn. 500 870 200 000 4851 28 162 100 98 1.2
SR 640 1350 2640 1423 444 100 100 1.2
Feas. rules 520 1110 200 000 17 006 54 511 100 92 4.3
ε-constrained 420 1550 200 000 13 583 47 582 100 94 3.8
Grad-based repair 33 203 387 226 89 100 100 0.3

4 St. penalty fcn. 1680 2775 200 000 22 441 59 792 100 90 3.6
SR 3540 6825 200 000 14 887 38 229 100 96 6.6
Feas. rules 10 200 200 000 200 000 196 214 26 843 100 2 31.2
ε-constrained 24 090 28 245 200 000 38 545 41 240 100 94 7.4
Grad-based repair 100 108 676 197 151 100 100 0.2

5 St. penalty fcn. 1830 2895 200 000 6804 27 885 100 98 1.2
SR 4620 6465 200 000 14 212 38 332 100 96 6.0
Feas. rules 2610 4065 200 000 19 623 53 738 100 92 3.2
ε-constrained 22 800 28 575 31 200 27 988 2182 100 100 6.0
Grad-based repair 93 175 1046 244 173 100 100 0.3

6 St. penalty fcn. 2400 4125 200 000 19 780 53 686 100 92 2.5
SR 10 150 14 500 200 000 33 204 56 229 100 90 15.8
Feas. rules 3900 200 000 200 000 184 422 53 365 100 8 22.2
ε-constrained 14 550 200 000 200 000 143 018 83 935 100 32 18.2
Grad-based repair 195 198 360 207 37 100 100 0.3

7 St. penalty fcn. 16 880 22 280 200 000 68 891 78 739 100 74 6.1
SR 39 120 69 600 200 000 92 301 52 791 100 82 60.9
Feas. rules 92 720 200 000 200 000 190 869 23 914 86 22 16.4
ε-constrained 35 280 200 000 200 000 128 550 81 429 100 44 11.8
Grad-based repair 3761 9591 20 639 10 082 3574 100 100 10.3

8 St. penalty fcn. 5810 6720 8540 6891 714 100 100 0.9
SR 8330 11 480 14 770 11 739 1485 100 100 8.2
Feas. rules 7840 9415 11 270 9362 785 100 100 1.3
ε-constrained 8120 25 760 30 730 23 408 6563 100 100 3.3
Grad-based repair 407 2133 9879 3691 3276 100 100 3.3

9 St. penalty fcn. 47 800 200 000 200 000 159 822 65 129 100 28 16.0
SR 149 200 200 000 200 000 197 052 9930 100 18 149.5
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 20.8
ε-constrained 200 000 200 000 200 000 200 000 0 100 0 20.9
Grad-based repair 16 197 41 450 77 610 41 982 10 260 100 100 66.3

20

real-world problems.

Problem 6 takes into account a MINLP problem with 3 binary variables and 2 equality

constraints. Although this problem can be considered as a small one, its characteristics

are not easy to overcome by feasibility rules, meaning that the first feasible solution is

likely to be found far from the global minimum region. Further, the relaxation done by

ε constrained method does not manage to obtain acceptable success rates, at least not

with the parameters used here. Regarding stochastic ranking, static penalty function

and gradient-based repair, they solve the problem efficiently, with much lower CPU

times reported for the gradient-based repair technique. In [28, 31], the same problem

was tackled, but the model was simplified by eliminating the continuous variables by

means of the equality constraints.

For problem 7, feasibility rules and ε constrained method present a poor performance

due to the existence of 2 binary variables and 4 equality constraints. Stochastic ranking

and static penalty function present a fairly good performance. On the contrary, gradient-

based repair method enables the algorithm to search in the whole search space before

converging to an optimum. Again, this example was addressed in previous works

[28, 29, 32, 31] by reformulating the problem in order to eliminate equality constraints

and simultaneously, reducing the number of decision variables, and then, the remaining

constraints are handled by a static penalty function.

For problem 8 all constraint-handling techniques performed excellently, finding the

global optimum in all runs. For this problem the first feasible region found coincide with

the region where the global optimal solution lies, even though the problem present some

difficulties regarding its mathematical properties (4 binary variables with 9 constraints.

Problem 9 constitutes a planning problem in which several alternatives are proposed

for obtaining one desired product. Since it contains 3 binary variables and 5 equality

constraints involving all the continuous variables, the resulting problem results difficult

if the global optimum is required. For SR technique, the balance between feasible and

infeasible solutions is not enough to reach the global optimum region in most cases. With

respect to Deb’s feasibility rules, convergence to the global optimum is highly unlikely,

since this technique always prefers feasible solutions over the infeasible ones, whatever

the quality of the objective function value. For the ε constrained method, the relaxation

conducted on the equality constraints seems not to be sufficient to reach the global

optimum. On the other hand, when this relaxation is combined with the gradient-based

repair, the algorithm is able to search over the entire space so that the global optimum

is found.

Problems 10–14 consider the optimal design of a multi-product batch plant consisting

of a given number of processing stages M through which several products N have

21

to be manufactured. The objective is to minimize the investment cost and then, for

each processing stage j, the number of parallel units Nj and their sizes Vj need to be

determined, as well as the batch sizes Bi and cycle times TLi for each product i. Thus,

increasing the number of stages M , the number of products N and the possible number

of parallel units Nu
j , results in a large non-convex MINLP. Note that the mathematical

formulation of the problem implemented in this study presents multiple non-convexities

in the objective function and in several inequality constraints (see Appendix A). Also, in

order to explore the scalability of the studied constraint-handling techniques, problems

13 and 14 have been artificially created increasing the size of problem 12, both in number

of variables and in number of constraints. Thus, since no global optimum is reported in

the literature for these problems, a convexified formulation of the problem was solved

using BARON solver in GAMS environment, which obtained solutions are reported in

Table 5. In this way, once the optimum has been computed, a better comparison of the

constraint-handling techniques can be performed.

Problem 10 and 11 are equivalent in size, their only difference is the quantity Qi

of product i that needs to be manufactured. Nevertheless, performance of constraints-

handling techniques like ε constrained, feasibility rules and SR are significantly different

for both problems. It seems that this slight modification makes problem 11 much more

difficult for these techniques, the feasible region has been modified in such a way that the

global optimum lies now in a region that is difficult to reach. Besides, the consistency

of the static penalty function and gradient-based repair methods is observed in both

problems, as their performance remained unchanged in terms of success rate.

Problem 12 can be viewed as a medium size instance, it contains 6 integer variables

(processing stages) with 4 possible values each (the equivalent to 12 binary variables), so

the problem size is equivalent to solving 4 096 NLP subproblems. Additionally, it has 16

continuous variables and 61 inequality constraints. The global optimum corresponds to

an ill-conditioned point, since variations as small as 0.01% in any of the 16 continuous

variables produce infeasibility. For this problem, no constraint-handling technique could

obtain the reported optimal solution. However, stochastic ranking and gradient-based

repair were able to locate the global optimum region: SR in 20% of the runs and 100%

of the runs for gradient-based repair. It seems that once the global optimal region has

been identified, new solutions generated by DE operator are very likely to be infeasible,

and even if the repair process acts upon them, the direction in which constraint violation

is minimized is not necessarily the same as the direction in which the objective function

decreases, so that the optimization process gets very slow.

For problem 13, an additional processing stage and an additional product are

considered with respect to problem 12. The pattern in performance observed in previous

22

Table 5: Experimental results for problems 10–14 in terms of objective function values.

Problem
(optimum)

Constr-handling Best Median Worst Mean Std

St. penalty fcn. 38 499.5 38 500.1 38 500.2 38 500.1 5.33e-02
10 SR 38 499.5 38 499.8 38 499.8 38 499.8 2.39e-02

(38499.5) Feas. rules 38 499.5 38 500.1 38 500.2 38 500.1 5.84e-02
ε-constrained 38 499.5 38 500.2 40 977.5 38 747.9 7.51e+02
Grad-based repair 38 499.5 38 499.7 38 499.8 38 499.7 8.77e-02

St. penalty fcn. 106 755.8 106 756.8 106 756.9 106 756.8 8.69e-02
11 SR 106 755.8 106 755.9 112 947.6 107 009.4 1.23e+03

(106755.8) Feas. rules 106 755.8 112 947.2 122 607.8 110 739.1 4.28e+03
ε-constrained 106 755.8 122 607.8 136 009.7 126 123.0 1.02e+04
Grad-based repair 106 755.8 106 755.8 106 755.9 106 755.8 1.67e-02

St. penalty fcn. 304 660.5 310 155.0 311 349.9 308 282.6 2.66e+03
12 SR 286 826.0 308 092.0 — 313 469.9 1.54e+04

(285506.5) Feas. rules 310 350.1 322 711.5 332 793.1 322 466.2 7.04e+03
ε-constrained 305 311.9 330 042.1 370 131.6 330 407.5 1.48e+04
Grad-based repair 285 550.6 285 868.6 286 497.8 285 911.8 2.41e+02

St. penalty fcn. 431 403.9 455 438.4 — 452 197.8 9,27E+03
13 SR 450 347.2 — — 476 650.0 3.40E+04

(430324.5) Feas. rules 457 559.5 461 764.5 479 289.1 463 844.8 5.35E+03
ε-constrained 444 914.7 467 524.0 576 092.0 470 245.2 1.99E+04
Grad-based repair 430 418.2 431 809.4 444 650.7 432 786.3 2.99E+03

St. penalty fcn. 550 965.5 564 520.4 — 564 746.7 3.72E+03
14 SR — — — — —

(546998.6) Feas. rules 563 508.1 574 875.2 592 240.3 574 459.7 7.68E+03
ε-constrained 562 878.8 584 552.9 663 862.1 585 503.9 1.64E+04
Grad-based repair 549 496.6 553 317.3 562 335.7 555 301.5 4.53E+03

23

Table 6: Experimental results for problems 10–14 in terms of NFEs needed to achieve convergence.

Problem Constr-handling Best Median Worst Mean Std
Feas.
rate

Succ.
rate

CPU
time(s)

10 St. penalty fcn. 41 600 47 300 59 100 48 120 3810 100 100 5.8
SR 66 000 76 900 105 000 79 904 9492 100 100 66.1
Feas. rules 54 900 62 650 84 600 63 884 5679 100 100 7.9
ε-constrained 68 400 85 850 200 000 95 892 35 719 100 90 12.3
Grad-based repair 31 684 48 641 63 401 47 392 7172 100 100 61.9

11 St. penalty fcn. 43 100 48 150 58 500 48 542 3222 100 100 6.2
SR 136 000 183 700 200 000 178 034 21 151 100 68 153.1
Feas. rules 69 000 200 000 200 000 144 760 60 730 100 46 17.6
ε-constrained 87 900 200 000 200 000 191 724 28 443 100 8 24.2
Grad-based repair 2744 18 337 32 626 18 142 9130 100 100 27.3

12 St. penalty fcn. 200 000 200 000 200 000 200 000 0 100 0 84.4
SR 200 000 200 000 200 000 200 000 0 62 0 177.2
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 72.5
ε-constrained 200 000 200 000 200 000 200 000 0 100 0 88.1
Grad-based repair 200 000 200 000 200 000 200 000 0 100 0 1136.7

13 St. penalty fcn. 200 000 200 000 200 000 200 000 0 96 0 72.4
SR 200 000 200 000 200 000 200 000 0 10 0 268.5
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 67.0
ε-constrained 200 000 200 000 200 000 200 000 0 100 0 71.1
Grad-based repair 200 000 200 000 200 000 200 000 0 100 0 944.3

14 St. penalty fcn. 200 000 200 000 200 000 200 000 0 88 0 70.6
SR 200 000 200 000 200 000 200 000 0 0 0 269.3
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 76.3
ε-constrained 200 000 200 000 200 000 200 000 0 100 0 74.4
Grad-based repair 200 000 200 000 200 000 200 000 0 100 0 994.2

24

problem is highlighted here since this time 26 additional constraints need to be fulfilled

and one integer variable has been added. Table 6 shows that no constraint-handling

technique achieves the optimum in any run. However, in can be appreciated in Table 5

that static penalty function and gradient-based repair found near-optimal solutions, and

besides, according to the median solution obtained for each constraint-handling technique

those obtained with gradient-based repair can be considered as good quality solutions.

Finally, problem 14 is the biggest instance considered here. It considers 6 different

products to be manufactured in 8 processing stages, the resulting problem contains 97

inequality constraints and is equivalent to solving 65 536 NLP subproblems. Considering

the results from Table 5, it can be observed that SR was unable to find any single

feasible solution in any run; considering both the best and median solutions obtained

using the feasibility rules, it can be concluded that this technique does not allow to

obtain near-optimal solutions. Besides, the performance of ε constrained method is

quite similar to that of feasibility rules, and even more, if their mean solutions are

compared, it is observed that ε constrained worsens the performance of Deb’s rules.

The static penalty function presents an overall good performance, even if the global

optimum was not found in any run. Nevertheless, since, according to the minimum

penalty rule, the best quality solutions are obtained using the lowest possible value

for the penalty factor, this also implies that infeasible solutions are more likely to be

obtained, as it was the case for this problem in 12% of executions. Again, gradient-based

repair yields the best results according to the quality of solutions obtained (comparing

for example the median solution in Table 5). However, due to the high number of

constraints in the problem, the computation of the pseudoinverse of the gradient is

very expensive, requiring approximately twice more computational time than a classical

constraint-handling technique.

As it has been pointed out above, problems 12, 13 and 14 constitute difficult problems

in part because of the high number of variables and constraints. For these problems,

not one constraint-handling technique was able to find the global optimum in any run.

However, some techniques obtained good-quality solutions, which are presumably located

in the global optimum region. Thus, in order to further investigate the performance of

these techniques and to evaluate their ability to identify sub-optimal solutions lying in

the region of the global optimum, the use of an additional local search is explored. The

local optimizer Successive Quadratic Programming (SQP) is applied with a probability

0.1/NP for each individual, in this way, one individual is improved on average every

10 generations. For ε constrained and gradient-based repair, this local search procedure

is carried out only after the ε level is equal to 0, i.e., once the algorithm has likely

identified the optimal region. The obtained results are displayed in Tables 7 and 8.

25

Table 7: Experimental results for problems 10–14 in terms of objective function values using a local
search (SQP).

Problem
(optimum)

Constr-handling Best Median Worst Mean Std

St. penalty fcn. 285 506.5 300 301.8 310 130.8 295 823.4 9.30e+03
SR 285 506.5 285 506.5 — 288 383.8 1.41e+04

12 Feas. rules 285 506.5 304 660.0 329 222.0 308 645.8 1.03e+04
(285506.5) ε-constrained 285 506.5 315 532.8 — 314 852.7 1.23e+04

Grad-based repair 285 506.5 285 506.5 300 804.9 285 812.5 2.16e+03

St. penalty fcn. 430 324.5 430 324.5 — 433 012.9 5,18E+03
SR 430 324.5 430 324.5 575 159.2 443 431.2 2,64E+04

12 Feas. rules 430 324.5 454 395.7 458 842.3 452 870.8 7,67E+03
(430324.5) ε-constrained 430 324.5 454 395.7 466 127.0 449 351.8 1,02E+04

Grad-based repair 430 324.5 430 324.5 441 482.2 430 547.7 1,58E+03

St. penalty fcn. 546 998.6 547 468.5 561 584.7 551 817.9 5,74E+03
SR 546 998.6 — — 617 325.4 7,46E+04

12 Feas. rules 558 256.9 563 403.0 576 658.5 563 573.9 4,04E+03
(546998.6) ε-constrained 547 468.5 563 403.0 611 740.9 564 695.0 9,35E+03

Grad-based repair 546 998.6 547 468.5 558 256.9 549 355.9 3,83E+03

Table 8: Experimental results for problems 10–14 in terms of NFEs needed to achieve convergence using
a local search (SQP).

Problem Constr-hand. Best Median Worst Mean Std
Feas.
rate

Succ.
rate

SQP
calls

CPU
time(s)

12 St. penalty fcn. 31 165 200 000 200 000 153 508 60 053 100 42 128.5 148.0
SR 4660 96 226 200 000 100 980 45 765 98 94 84.9 278.9
Feas. rules 158 731 200 000 200 000 198 708 6665 100 6 162.8 198.4
ε-constrained 135 830 200 000 200 000 198 782 9085 98 2 133.8 162.5
Grad-based rep. 42 565 60 063 119 588 63 144 19 097 100 100 6.1 217.0

13 St. penalty fcn. 2140 84 187 200 123 98 076 64 780 100 78 76.0 198.8
SR 130 502 200 000 200 000 195 854 14 052 36 10 167.0 1201.2
Feas. rules 130 979 200 000 200 000 197 779 10 963 100 6 152.6 332.3
ε-constrained 101 029 200 000 200 000 193 700 19 877 100 12 151.7 576.8
Grad-based rep. 43 794 63 815 200 000 75 436 31 327 100 98 8.9 429.3

14 St. penalty fcn. 54 784 200 000 200 000 178 757 43 890 100 28 122.7 452.0
SR 162 276 200 000 200 000 199 317 5346 14 2 171.1 1422.8
Feas. rules 200 000 200 000 200 000 200 000 0 100 0 140.2 368.8
ε-constrained 200 000 200 000 200 000 200 000 0 100 0 146.4 524.3
Grad-based rep. 91 052 200 000 200 000 188 084 30 139 100 20 35.9 979.1

26

The NFEs reported in Table 8 take into account the evaluations of the objective function

performed by both jDE and SQP. The column “SQP calls” represents the average number

of individuals on which the local search is carried out before the algorithm stops. For

example in problem 12, using gradient-based repair, the SQP solver needed to operate

on average 6 individuals before finding the global optimum, whereas for feasibility rules,

SQP was called on average 162 times before the algorithm attains the maximum NFE

(more likely than finding the optimum, from table 8).

Outstanding results for problem 12 are obtained by stochastic ranking and gradient-

based repair, obtaining success rates of 94% and 100%, respectively. Conversely, a poor

performance considering the success rate is still observed for static penalty, feasibility

rules and ε constrained methods. These results are in agreement with those of Table 5

where no local search is employed, that is, the local search is beneficial only if the global

region has been identified. This feature is also observed for problems 13 and 14. For

problem 13, those constraint-handling techniques that showed a poor performance before

the use of SQP (SR, feasibility rules and ε constrained) present now the same tendency,

with a significant additional CPU time, due to the use of local search. In addition, static

penalty function obtains an acceptable success rate (78%) and gradient-based repair

solved to optimality this problem in all runs, excepting one. On the contrary, problem

14 still constitutes a difficult problem, even if local search is applied. The high number

of binary variables suggests that using a higher number of function evaluations might be

necessary to solve this problem.

With respect to the use of the local search, it can be concluded that it can be

advantageous only when the population-based algorithm succeeds to find promising

regions, otherwise, significant improvements in performance will likely not be observed.

Further, the computational costs associated to the use of a local search must also be

taken into account.

Summarizing, the above empirical study highlighted the importance of using an

efficient constraint-handling technique when solving PE optimization problems, which

are in general highly constrained problems. The numerical results obtained point out

that gradient-based repair method is the most robust and thus promising method among

the techniques studied here. Also, as mentioned previously, one of the main motivations

for using metaheuristics in PE area is their ability to simultaneously optimize multiple

criteria. To illustrate this, in the next subsection, the gradient-based repair method is

used to solve a biobjective version of the flow sheet example (Problem 2).

5.1. Additional example: Biobjective case study

This problem, presented in [62], considers the maximization of two objectives:

the profit before taxes (PBT) and the net present value (NPW) for the Williams &
27

6.4 6.5 6.6 6.7 6.8 6.9 7 7.1 7.2 7.3

·106
2.28

2.3

2.32

2.34

2.36

2.38

2.4

2.42

·106

NPW

P
B
T

Gradient-based repair
Reformulation approach

Figure 3: Approximation of the Pareto front of the biobjective Williams & Otto process example using
NSGA-II with gradient-based repair method (about 1.5 s) and the reformulation approach (about 45 s).

Otto process problem. The nondominated sorting genetic algorithm II (NSGA-II)[63]

coupled with gradient-based repair as constraint-handling technique is used as a solution

technique. Also, for comparison purposes, the constraint-handling strategy presented in

[62], in which all equality constraints are eliminated by means of solving a system of

nonlinear equations, is explored. The obtained approximations to the Pareto front of

this problems are presented in Figure 3.

The non-dominated solutions are obtained in one single run, unlike mathematical

programming techniques in which multiple runs are needed to produce an approximation

of the Pareto front. The importance of an efficient constraint-handling technique is also

to be highlighted: no other constraint-handling technique studied in this work was able to

find a non-dominated solution in the real Pareto front, actually no feasible solutions could

be found except with the gradient-based repair procedure. Besides, the reformulation

approach proposed in [62] was time consuming, taking approximately 45 seconds per

run (since the solution of the system of nonlinear equations has to be performed for

every evaluation of the objective function) while, in contrast, the gradient-based repair

approach takes approximately 1.5 seconds per run. Also, it is worth mentioning that

the Pareto front approximations obtained by both approaches are comparable, i.e., no

approach outperforms the other.

28

6. Conclusions and perspectives

In this study, the performance of several constraint-handling techniques for EAs has

been compared for the solution of a set of 12 test bench problems from the PE area.

The empirical analysis conducted showed that the results’ quality greatly depends on

the constraint-handling technique used for the solution of problems with high number of

constraints or binary variables.

The analysis of the dedicated literature has shown that the most widely used approach

within EAs considers the reformulation of the model and the use of static penalty

functions or feasibility rules as constraint-handling techniques. However, the results

obtained in this work highlighted that the performance of this strategy, though acceptable

in some cases, proved to be poor in others. Besides, among the constraint-handling

techniques considered in this study, the gradient-based repair method deserves a special

attention, as this constraint-handling technique was the only one capable of finding the

global optimum region in all test problems. Coupled with ε constrained method, the

search algorithm promotes the exploration of promising regions over the entire search

space instead of getting trapped into a local optimum. It is worth emphasizing that, even

if this method needs supplementary information (computation of constraints’ gradient),

its excellent results both in terms of computational time and solution quality encourage

its use. In addition, the use of gradient-based repair method in highly constrained

mixed-integer problems seems to be not only adequate, but necessary in order to obtain

satisfactory results. Finally, this work highlighted the unquestionable benefits obtained

using this constraint-handling method, usually under-estimated in the devoted literature.

Therefore, these conclusions allow reconsidering evolutionary algorithms as a serious

approach for solving highly-constrained real-world optimization problems.

Besides, the good performance exhibited in the solution of the biobjective case study,

allows to contemplate the solution of bigger instances of PE multi-objective problems.

Also, as the gradient-based repair method can be coupled with any multi-objective

evolutionary algorithm (MOEA), the solution of multi-objective MINLP problems related

to PE, using more sophisticated MOEAs is under the scope of future work.

Acknowledgments

The first author gratefully thanks the Mexican Council of Science and Technology

(CONACyT) for scholarship support to pursue PhD studies.

29

Appendix A. Test problems

This appendix describes the 12 global optimization test problems considered in this

study. For all problems, the global optimum solution is reported as found in the literature.

Additional information related to local optima and active constraints is also given.

Example 1. Reactor network design. Proposed in [64], this problem involves the design

of a sequence of two reactors of type CSTR, where the consecutive reactions A → B →
C takes place. The objective is to maximize the concentration of product B (x4) in the

exit stream. The mathematical model is as follows:

min f(x) = −x4
s.t. g1(x) = x0.55 + x0.56 − 4 ≤ 0

h1(x) = x1 + k1x1x5 − 1 = 0

h2(x) = x2 − x1 + k2x2x6 = 0

h3(x) = x3 + x1 + k3x3x5 − 1 = 0

h4(x) = x4 − x3 + x2 − x1 + k4x4x6 = 0

0 ≤ xi ≤ 1, i = {1, 2, 3, 4}
1e− 5 ≤ xi ≤ 16, i = {5, 6}

where k1 = 0.09755988, k2 = 0.99k1, k3 = 0.0391908, k4 = 0.9k3. The global optimum

is at x∗ = [0.771462, 0.516997, 0.204234, 0.388812, 3.036504, 5.096052], with f(x∗) =

−0.388812 . Constraint g1 is active. This example possesses a local minimum with

an objective function value that is very close to that of the global solution. This local

solution is at x = [1, 0.393, 0, 0.3881, 0, 16] with f = −0.3881. Interestingly, this

solution utilizes only one of the two reactors whereas the global solution makes use of

both reactors.

Example 2. Flowsheeting. This problems considers the optimization of a flow sheet

example of the Williams & Otto process [65, 66]. Reactants A and B and the recycle

stream enter the continuous-flow stirred-tank reactor, where the main product P is

produced together with one by-product E and the waste product G, while C is an

intermediate.

A + B→ C

C + B→ P + E

P + C→ G

30

In the decanter, component G is entirely removed from the other components. Product

P is removed from the overhead of the distillation column, but some of the product is

retained in the bottom due to the formation of an azeotrope. Part of the bottom stream

is purged in order to avoid accumulation of the by-product, while most of it is recycled to

the reactor. The purge stream has a substantial fuel value and can be sold on the market.

The optimization variables account for the reactor volume, the reaction temperature, the

purge fraction and the mass flow for each component, except for component P which is

equal to 2160 kg/h. The objective is to minimize the total annual cost. The model is

formulated as:

min f(x) =
1

0.453

[
168x5 + 252x1 + 2.22

[
x1 + x5 +

8∑
i=6

(1− x4)xi + 1.1(1− x4)x9
]

+ 84x10 + 60x2ρ
]

+ 1041.6

s.t.

h1(x) = x5 + x6(1− x4)− k1x6x7x2ρ

q23
− x6 = 0

h2(x) = x1 + x7(1− x4)− (k1x6 + k2x8)x7x2ρ

q23
− x7 = 0

h3(x) = x8(1− x4) +
(2k1x6x7 − 2k2x7x8)x2ρ

q23

+
(−k3x8(2160 + 0.1x9))x2ρ

q23
− x8 = 0

h4(x) = x9(1− x4) +
2k2x7x8x2ρ

q23
− x9 = 0

h5(x) =
x9(1− x4)

10
+

(k2x7 − 0.5k3(2160 + 0.1x9))x8x2ρ

q23

− 2160 + 0.1x9 = 0

h6(x) =
1.5k3(2160 + 0.1x9)x8x2ρ

q23
− x10 = 0

1e4 ≤ x1 ≤ 1.5e4

0.85 ≤ x2 ≤ 10

322 ≤ x3 ≤ 378

0 ≤ x4 ≤ 0.99

0 ≤ xi ≤ 1e5 ∀i ∈ {5, . . . , 10}

31

where

q3 = x6 + x7 + x8 + 1.1x9 + x10 + 2160

k1 = 5.9755e9 · exp

(−1.2e4

x3

)
k2 = 2.5962e12 · exp

(−1.5e4

x3

)
k3 = 9.6283e15 · exp

(−2e4

x3

)
ρ = 801

The optimum lies at x∗ = [10878.60, 7.90, 342.11, 0.102, 4807.37, 11122.40, 39668.61,

2874.52, 61925.59, 1101.336] with f(x∗) = 9490592.6.

Example 3. Process synthesis MINLP. This is a little process synthesis problem with

only two decision variables. It was proposed by [67], and also found in [64]:

min f(x) = 2x1 + x2

s.t. g1(x) = 1.25− x21 − x2 ≤ 0

g2(x) = x1 + x2 − 1.6 ≤ 0

0 ≤ x1 ≤ 1.6

x2 = {0, 1}

The global minimum is [0.5, 1] with f = 2. There is a local minimum at [1.118, 0] with

f = 2.236. Constraint g1 is active.

Example 4. MINLP. This example is taken from [68]:

min f(x) = 2x1 + x2 − x3
s.t. g1(x) = −x1 + x2 + x3 ≤ 0

h1(x) = x1 − 2 exp(−x2) = 0

0.5 ≤ x1 ≤ 1.4

0 ≤ x2 ≤ 2

x3 = {0, 1}

There is one local optimum at [0.853, 0.853, 0] with f = 2.558. The global minimum is

{x∗; f(x∗)} = {1.375, 0.375, 1; 2.124}. Constraint g1 is active.

32

Example 5. MINLP. Problem taken from [69]:

min f(x) = −0.7x3 + 5(x1 − 0.5)2 + 0.8

s.t. g1(x) = − exp(x1 − 0.2)− x2 ≤ 0

g2(x) = x2 + 1.1x3 + 1 ≤ 0

g3(x) = x1 − 1.2x3 − 0.2 ≤ 0

0.2 ≤ x1 ≤ 1

−2.22554 ≤ x2 ≤ −1

x3 = {0, 1}

The global minimum is at [0.94194,−2.1, 1] where f(x∗) = 1.07654. Constraints g1 and

g2 are active.

Example 6. MINLP. Proposed in [67], and also reported in [70, 64, 28]:

min f(x) = 2x1 + 3x2 + 1.5x3 + 2x4 − 0.5x5

s.t. g1(x) = x1 + x3 − 1.6 ≤ 0

g2(x) = 1.333x2 + x4 − 3 ≤ 0

g3(x) = −x3 − x4 + x5 ≤ 0

h1(x) = x21 + x3 − 1.25 = 0

h2(x) = x1.52 + 1.5x4 − 3 = 0

0 ≤ x1 ≤ 1.5

0 ≤ x2 ≤ 2.2

xi = {0, 1}, i = {3, 4, 5}

There are 23 different combinations of the binary variables, of these only one combination

is infeasible because it violates the pure integer constraint. The global solution is x∗ =

[1.118, 1.3310, 0, 1, 1] with f(x∗) = 7.667. Constraint g3 is active.

Example 7. Reactor network design. This problem, taken from [71] and also studied

in [28], is a two-reactor problem, where selection is to be made among two candidate

reactors the one that minimizes the cost of producing a desired product. The MINLP

formulation is given as:

min f(x) = 7.5x5 + 5.5x6 + 7x1 + 6x2 + 5(x3 + x4)

33

s.t. g1(x) = x1 − 10x5 ≤ 0

g2(x) = x2 − 10x6 ≤ 0

g3(x) = x3 − 20x5 ≤ 0

g4(x) = x4 − 20x6 ≤ 0

h1(x) = x5 + x6 − 1 = 0

h2(x) = x7 − 0.9x3(1− exp(−0.5x1)) = 0

h3(x) = x8 − 0.8x4(1− exp(−0.4x2)) = 0

h4(x) = x7 + x8 − 10 = 0

xi ≥ 0, i = {1, 2, 3, 4, 7, 8}
xi = {0, 1}, i = {5, 6}

The global minimum is x∗ = [3.514, 0, 13.428, 0, 1, 0, 10, 0.0001] with f = 99.238.

Constraints g2 and g4 are active.

Example 8. Process synthesis MINLP. This example is taken from [72], and is also found

in [70, 64, 28, 32]:

min f(x) = (x4 − 1)2 + (x5 − 2)2 + (x6 − 1)2

− ln (x7 + 1) + (x1 − 1)2 + (x2 − 2)2 + (x3 − 3)2

s.t. g1(x) =

6∑
i=1

xi − 5 ≤ 0

g2(x) =

4∑
i=1

x2i − 5.5 ≤ 0

g3(x) = x4 + x1 − 1.2 ≤ 0

g4(x) = x5 + x2 − 1.8 ≤ 0

g5(x) = x6 + x3 − 2.5 ≤ 0

g6(x) = x7 + x1 − 1.2 ≤ 0

g7(x) = x25 + x22 − 1.64 ≤ 0

g8(x) = x26 + x23 − 4.25 ≤ 0

g9(x) = x25 + x23 − 4.64 ≤ 0

xi ≥ 0, i = {1, 2, 3}
xi = {0, 1}, i = {4, 5, 6, 7}

34

The global minimum is {x∗; f(x∗)} = {0.2, 0.8, 1.9079, 1, 1, 0, 1; 4.579582}. Constraints

g3, g4, g6, g7 and g9 are active.

Example 9. Planning problem. First introduced in [67], this example represents a small

planning problem, in which several alternatives are proposed for obtaining product C.

The goal is to produce the profitable product C from B that is purchased from a market

or produced from raw material A. There are also two paths to produce B from A. The

problem is modelled as a MINLP:

min f(x) = 3.5x1 + x2 + 1.5x3 + 7x5 + x6

+ 1.2x7 + 1.8x8 − 11x11

s.t. g1(x) = x4 − 5x1 ≤ 0

g2(x) = x9 − 5x2 ≤ 0

g3(x) = x10 − 5x3 ≤ 0

g4(x) = x11 − 1 ≤ 0

h1(x) = x6 − ln (1 + x9) = 0

h2(x) = x7 − 1.2 ln (1 + x10) = 0

h3(x) = x11 − 0.9x4 = 0

h4(x) = −x4 +

7∑
i=5

xi = 0

h5(x) = −x8 + x9 + x10 = 0

xi = {0, 1}, i = {1, 2, 3}
xi ≥ 0, ∀i
x6 ≤ 5

x11 ≤ 1

The model contains three binary variables and five continuous variables. The global

minimum is x∗ = [1, 0, 1, 1.11111081, 0, 0, 1.11111081, 1.5242038, 0, 1.5242038,

0.99999978] and f(x∗) = −1.9231. Constraints g2 and g4 are active. There is a local

optimum at x = [1, 1, 1, 1.111, 0, 0.446744, 0.664156, 1.30208, 0.563058, 0.739121, 1]

with f(x) = −1.41252645.

Examples 10–14. Multi-product batch plant design. The multi-product batch plant

consists of M processing stages in series where fixed amounts Qi of N products have

to be manufactured. The objective is to determine for each stage j the number of

parallel units Nj and their sizes Vj and for each product i the corresponding batch sizes
35

Bi and cycle times TLi. The problem data are the horizon time H, the size factors

Sij and processing times tij of product i in stage j, the required productions Qij , and

appropriate cost functions αj and βj . The mathematical formulation of this problem is

as follows [67]:

min

M∑
j=1

αjNjV
βj

j

s.t.

N∑
i=1

QiTLi
Bi

−H ≤ 0

SijBi − Vj ≤ 0

tij −NjTLi ≤ 0

1 ≤ Nj ≤ Nu
j

V l
j ≤ Vj ≤ V u

j

T l
Li ≤ TLi ≤ T u

Li

Bl
j ≤ Bj ≤ Bu

j

Nj integer

The bounds Nu
j , V l

j , V uj are specified by the problem and appropriate bounds for TLi

and Bi can be determined as follows:

T l
Li = max

j

tij
Nu
j

T u
Li = max

j
tij

Bl
i =

Qi
H
T l
Li

Bu
i = min

(
Qi,min

j

V u
j

Sij

)
The number of inequality constraints for each problem depends on the number of

products N and the number of processing stages M , according to 2MN + 1. The

data corresponding to these problems are presented in Table A.9. For all examples

the parameters αj , βj and H are 250, 0.6 and 6000, respectively. For problems 10 and

11, the parameters V l
j and V u

j take values of 250 and 2500, respectively. For problems

12 to 14, the parameters V l
j and V u

j are 300 and 3000, respectively.

36

Table A.9: Input data for Examples 10–14.

Example M N Nu
j Sij tij Qi

10 3 2 3

[
2 3 4
4 6 3

] [
8 20 8
16 4 4

] [
40000
20000

]
11 3 2 3

[
2 3 4
4 6 3

] [
8 20 8
16 4 4

] [
200000
100000

]

12 6 5 4

7.9 2.0 5.2 4.9 6.1 4.2
0.7 0.8 0.9 3.4 2.1 2.5
0.7 2.6 1.6 3.6 3.2 2.9
4.7 2.3 1.6 2.7 1.2 2.5
1.2 3.6 2.4 4.5 1.6 2.1

6.4 4.7 8.3 3.9 2.1 1.2
6.8 6.4 6.5 4.4 2.3 3.2
1.0 6.3 5.4 11.9 5.7 6.2
3.2 3.0 3.5 3.3 2.8 3.4
2.1 2.5 4.2 3.6 3.7 2.2

250000
150000
180000
160000
120000

13 7 6 4

7.9 2.0 5.2 4.9 6.1 4.2 3.6
0.7 0.8 0.9 3.4 2.1 2.5 0.6
0.7 2.6 1.6 3.6 3.2 2.9 3.8
4.7 2.3 1.6 2.7 1.2 2.5 3.5
1.2 3.6 2.4 4.5 1.6 2.1 3.6
5.2 3.0 1.8 4.2 4.0 2.4 1.6

6.4 4.7 8.3 3.9 2.1 1.2 6.4
6.8 6.4 6.5 4.4 2.3 3.2 2.6
1.0 6.3 5.4 11.9 5.7 6.2 6.2
3.2 3.0 3.5 3.3 2.8 3.4 6.1
2.1 2.5 4.2 3.6 3.7 2.2 1.8
2.6 4.2 3.8 4.1 5.8 3.8 6.9

250000
150000
180000
160000
120000
200000

14 8 6 4

7.9 2.0 5.2 4.9 6.1 4.2 3.6 2.4
0.7 0.8 0.9 3.4 2.1 2.5 0.6 2.0
0.7 2.6 1.6 3.6 3.2 2.9 3.8 1.4
4.7 2.3 1.6 2.7 1.2 2.5 3.5 2.3
1.2 3.6 2.4 4.5 1.6 2.1 3.6 2.7
5.2 3.0 1.8 4.2 4.0 2.4 1.6 6.2

6.4 4.7 8.3 3.9 2.1 1.2 6.4 5.2
6.8 6.4 6.5 4.4 2.3 3.2 2.6 8.0
1.0 6.3 5.4 11.9 5.7 6.2 6.2 7.1
3.2 3.0 3.5 3.3 2.8 3.4 6.1 8.2
2.1 2.5 4.2 3.6 3.7 2.2 1.8 1.4
2.6 4.2 3.8 4.1 5.8 3.8 6.9 4.6

250000
150000
180000
160000
120000
200000

References

[1] V. T. Voudouris, I. E. Grossmann, Mixed-integer linear programming reformulations for batch

process design with discrete equipment sizes, Industrial & Engineering Chemistry Research 31 (5)

(1992) 1315–1325.

[2] A. Ponsich, C. Azzaro-Pantel, S. Domenech, L. Pibouleau, Mixed-integer nonlinear programming

optimization strategies for batch plant design problems, Industrial & engineering chemistry research

46 (3) (2007) 854–863.

[3] A. W. Dowling, L. T. Biegler, A framework for efficient large scale equation-oriented flowsheet

optimization, Computers & Chemical Engineering 72 (2015) 3–20.

[4] Z. Zhu, D. Xu, X. Liu, Z. Zhang, Y. Wang, Separation of acetonitrile/methanol/benzene ternary

azeotrope via triple column pressure-swing distillation, Separation and purification technology 169

(2016) 66–77.

[5] T. F. Yee, I. E. Grossmann, A screening and optimization approach for the retrofit of heat-exchanger

networks, Industrial & Engineering Chemistry Research 30 (1) (1991) 146–162.

[6] H. V. H. Ayala, P. Keller, M. de Fátima Morais, V. C. Mariani, L. dos Santos Coelho, R. V. Rao,

Design of heat exchangers using a novel multiobjective free search differential evolution paradigm,

Applied Thermal Engineering 94 (2016) 170–177.

[7] N. M. Kaiser, R. J. Flassig, K. Sundmacher, Probabilistic reactor design in the framework of

elementary process functions, Computers & Chemical Engineering 94 (2016) 45–59.

[8] S. D.-L. Almaraz, C. Azzaro-Pantel, L. Montastruc, M. Boix, Deployment of a hydrogen supply

chain by multi-objective/multi-period optimisation at regional and national scales, Chemical

Engineering Research and Design 104 (2015) 11–31.

[9] Y.-b. Woo, S. Cho, J. Kim, B. S. Kim, Optimization-based approach for strategic design and

operation of a biomass-to-hydrogen supply chain, International Journal of Hydrogen Energy 41 (12)

(2016) 5405–5418.

[10] M. Tawarmalani, N. V. Sahinidis, N. Sahinidis, Convexification and global optimization

37

in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and

applications, Vol. 65, Springer Science & Business Media, 2002.

[11] C. A. Floudas, C. E. Gounaris, A review of recent advances in global optimization, Journal of

Global Optimization 45 (1) (2009) 3–38.

[12] L. Liberti, Introduction to global optimization, Ecole Polytechnique.

[13] O. Bozorg-Haddad, M. Solgi, H. A. Loaiciga, Meta-heuristic and evolutionary algorithms for

engineering optimization, Vol. 294, John Wiley & Sons, 2017.

[14] Z. Michalewicz, C. Z. Janikow, GENOCOP: A genetic algorithm for numerical optimization

problems with linear constraints, Communications of the ACM 39 (12es) (1996) 175–es.

[15] D. V. Arnold, J. Porter, Towards an augmented Lagrangian constraint handling approach for

the (1+1)-ES, in: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary

Computation, 2015, pp. 249–256.

[16] A. Atamna, A. Auger, N. Hansen, Augmented Lagrangian constraint handling for CMA-ES—case

of a single linear constraint, in: International Conference on Parallel Problem Solving from Nature,

Springer, 2016, pp. 181–191.

[17] T. P. Runarsson, X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE

Transactions on Evolutionary Computation 4 (3) (2000) 284–294.

[18] T. P. Runarsson, X. Yao, Search biases in constrained evolutionary optimization, IEEE Transactions

on Systems, Man, and Cybernetics, Part C (Applications and Reviews) 35 (2) (2005) 233–243.

[19] T. Takahama, S. Sakai, Constrained optimization by ε constrained particle swarm optimizer with

ε-level control, in: A. Abraham, Y. Dote, T. Furuhashi, M. Köppen, A. Ohuchi, Y. Ohsawa (Eds.),

Soft Computing as Transdisciplinary Science and Technology, Springer Berlin Heidelberg, Berlin,

Heidelberg, 2005, pp. 1019–1029.

[20] T. Takahama, S. Sakai, Constrained optimization by the ε constrained differential evolution with

gradient-based mutation and feasible elites, in: 2006 IEEE International Conference on Evolutionary

Computation, IEEE, 2006, pp. 1–8.

[21] T. Takahama, S. Sakai, Constrained optimization by the ε constrained differential evolution with an

archive and gradient-based mutation, in: Evolutionary Computation (CEC), 2010 IEEE Congress

on, IEEE, 2010, pp. 1–9.

[22] H. Zhang, G. P. Rangaiah, An efficient constraint handling method with integrated differential

evolution for numerical and engineering optimization, Computers & Chemical Engineering 37 (2012)

74–88.

[23] Z. Fan, H. Li, C. Wei, W. Li, H. Huang, X. Cai, Z. Cai, An improved epsilon constraint handling

method embedded in MOEA/D for constrained multi-objective optimization problems, in: 2016

IEEE Symposium Series on Computational Intelligence (SSCI), IEEE, 2016, pp. 1–8.

[24] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, K. Deb, E. Goodman, Push and pull search for

solving constrained multi-objective optimization problems, Swarm and evolutionary computation

44 (2019) 665–679.

[25] O. Cuate, A. Ponsich, L. Uribe, S. Zapotecas-Mart́ınez, A. Lara, O. Schütze, A new hybrid

evolutionary algorithm for the treatment of equality constrained mops, Mathematics 8 (1) (2020)

7.

[26] P. Chootinan, A. Chen, Constraint handling in genetic algorithms using a gradient-based repair

method, Computers & operations research 33 (8) (2006) 2263–2281.

[27] S. Kheawhom, Efficient constraint handling scheme for differential evolutionary algorithm in solving

chemical engineering optimization problem, Journal of Industrial and Engineering Chemistry 16 (4)

(2010) 620–628.

[28] M. Cardoso, R. Salcedo, S. F. de Azevedo, D. Barbosa, A simulated annealing approach to the

38

solution of MINLP problems, Computers & Chemical Engineering 21 (12) (1997) 1349–1364.

[29] L. Costa, P. Oliveira, Evolutionary algorithms approach to the solution of mixed integer non-linear

programming problems, Computers & Chemical Engineering 25 (2-3) (2001) 257–266.

[30] B. Babu, R. Angira, Modified differential evolution (MDE) for optimization of non-linear chemical

processes, Computers & Chemical Engineering 30 (6-7) (2006) 989–1002.

[31] M. Srinivas, G. Rangaiah, Differential evolution with tabu list for solving nonlinear and mixed-

integer nonlinear programming problems, Industrial & Engineering Chemistry Research 46 (22)

(2007) 7126–7135.

[32] L. Yiqing, Y. Xigang, L. Yongjian, An improved PSO algorithm for solving non-convex

NLP/MINLP problems with equality constraints, Computers & chemical engineering 31 (3) (2007)

153–162.

[33] X. Chen, W. Du, F. Qian, Solving chemical dynamic optimization problems with ranking-based

differential evolution algorithms, Chinese journal of chemical engineering 24 (11) (2016) 1600–1608.

[34] D. H. Wolpert, W. G. Macready, No free lunch theorems for optimization, IEEE transactions on

evolutionary computation 1 (1) (1997) 67–82.

[35] D. Corne, J. Knowles, Some multiobjective optimizers are better than others, in: The 2003 Congress

on Evolutionary Computation, 2003. CEC’03., Vol. 4, IEEE, 2003, pp. 2506–2512.

[36] K. Deb, An efficient constraint handling method for genetic algorithms, Computer Methods in

Applied Mechanics and Engineering 186 (2-4) (2000) 311–338.

[37] J. Vesterstrom, R. Thomsen, A comparative study of differential evolution, particle swarm

optimization, and evolutionary algorithms on numerical benchmark problems, in: Proceedings of

the 2004 Congress on Evolutionary Computation (IEEE Cat. No. 04TH8753), Vol. 2, IEEE, 2004,

pp. 1980–1987.

[38] A. Ponsich, C. C. Coello, Differential evolution performances for the solution of mixed-integer

constrained process engineering problems, Applied Soft Computing 11 (1) (2011) 399–409.

[39] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization

over continuous spaces, Journal of Global Optimization 11 (4) (1997) 341–359.

[40] A. K. Qin, P. N. Suganthan, Self-adaptive differential evolution algorithm for numerical

optimization, in: Evolutionary Computation, 2005. The 2005 IEEE Congress on, Vol. 2, IEEE,

2005, pp. 1785–1791.

[41] J. Zhang, A. C. Sanderson, JADE: Adaptive differential evolution with optional external

archive, IEEE Transactions on Evolutionary Computation 13 (5) (2009) 945–958.

doi:10.1109/TEVC.2009.2014613.

[42] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control parameters in

differential evolution: A comparative study on numerical benchmark problems, IEEE Transactions

on Evolutionary Computation 10 (6) (2006) 646–657.

[43] R. Tanabe, A. Fukunaga, Success-history based parameter adaptation for differential evolution, in:

Evolutionary Computation (CEC), 2013 IEEE Congress on, IEEE, 2013, pp. 71–78.

[44] S. Wang, Y. Li, H. Yang, Self-adaptive mutation differential evolution algorithm

based on particle swarm optimization, Applied Soft Computing 81 (2019) 105496.

doi:https://doi.org/10.1016/j.asoc.2019.105496.

URL http://www.sciencedirect.com/science/article/pii/S1568494619302662

[45] E. Mezura-Montes, C. A. C. Coello, Constraint-handling in nature-inspired numerical optimization:

past, present and future, Swarm and Evolutionary Computation 1 (4) (2011) 173–194.

[46] C. A. Coello Coello, Constraint-handling techniques used with evolutionary algorithms, in:

Proceedings of the 2016 on Genetic and Evolutionary Computation Conference Companion, ACM,

2016, pp. 563–587.

39

[47] E. Mezura-Montes, C. A. C. Coello, A simple multimembered evolution strategy to solve constrained

optimization problems, IEEE Transactions on Evolutionary computation 9 (1) (2005) 1–17.

[48] R. Mallipeddi, P. N. Suganthan, Ensemble of constraint handling techniques, IEEE Transactions

on Evolutionary Computation 14 (4) (2010) 561–579.

[49] N. Padhye, P. Mittal, K. Deb, Feasibility preserving constraint-handling strategies for real parameter

evolutionary optimization, Computational Optimization and Applications 62 (3) (2015) 851–890.

[50] F. Samanipour, J. Jelovica, Adaptive repair method for constraint handling in multi-objective

genetic algorithm based on relationship between constraints and variables, Applied Soft Computing

90 (2020) 106143. doi:https://doi.org/10.1016/j.asoc.2020.106143.

URL http://www.sciencedirect.com/science/article/pii/S1568494620300831

[51] Y. Yang, J. Liu, S. Tan, A constrained multi-objective evolutionary algorithm based on

decomposition and dynamic constraint-handling mechanism, Applied Soft Computing 89 (2020)

106104. doi:https://doi.org/10.1016/j.asoc.2020.106104.

[52] C. A. C. Coello, Use of a self-adaptive penalty approach for engineering optimization problems,

Computers in Industry 41 (2) (2000) 113–127.

[53] P. Nanakorn, K. Meesomklin, An adaptive penalty function in genetic algorithms for structural

design optimization, Computers & Structures 79 (29-30) (2001) 2527–2539.

[54] B. Tessema, G. G. Yen, A self adaptive penalty function based algorithm for constrained

optimization, in: Evolutionary Computation, 2006. CEC 2006. IEEE Congress on, IEEE, 2006,

pp. 246–253.

[55] H. J. Barbosa, A. C. Lemonge, H. S. Bernardino, A critical review of adaptive penalty techniques

in evolutionary computation, in: Evolutionary constrained optimization, Springer, 2015, pp. 1–27.

[56] M. Zhang, W. Luo, X. Wang, Differential evolution with dynamic stochastic selection for constrained

optimization, Information Sciences 178 (15) (2008) 3043–3074.

[57] Z. Fan, J. Liu, T. Sorensen, P. Wang, Improved differential evolution based on stochastic ranking for

robust layout synthesis of MEMS components, IEEE Transactions on Industrial Electronics 56 (4)

(2009) 937–948.

[58] L. Ali, S. L. Sabat, S. K. Udgata, Particle swarm optimisation with stochastic ranking for

constrained numerical and engineering benchmark problems, International Journal of Bio-Inspired

Computation 4 (3) (2012) 155–166.

[59] Z. Yang, X. Cai, Z. Fan, Epsilon constrained method for constrained multiobjective optimization

problems: some preliminary results, in: Proceedings of the Companion Publication of the 2014

Annual Conference on Genetic and Evolutionary Computation, ACM, 2014, pp. 1181–1186.

[60] Z. Fan, W. Li, X. Cai, H. Huang, Y. Fang, Y. You, J. Mo, C. Wei, E. Goodman, An improved epsilon

constraint-handling method in MOEA/D for CMOPs with large infeasible regions, Soft Computing

(2017) 1–20.

[61] S. L. Campbell, C. D. Meyer, Generalized inverses of linear transformations, SIAM, 2009.

[62] G. P. Rangaiah, Multi-objective optimization: techniques and applications in chemical engineering,

Vol. 1, World Scientific, 2009.

[63] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic

algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation 6 (2) (2002) 182–197.

doi:10.1109/4235.996017.

[64] H. S. Ryoo, N. V. Sahinidis, Global optimization of nonconvex NLPs and MINLPs with applications

in process design, Computers & Chemical Engineering 19 (5) (1995) 551–566.

[65] L. T. Biegler, I. E. Grossmann, A. W. Westerberg, Systematic methods for chemical process design,

Prentice Hall, Old Tappan, NJ (United States), 1997.

[66] Z. N. Pintaric, Z. Kravanja, Selection of the economic objective function for the optimization of

40

process flow sheets, Industrial & engineering chemistry research 45 (12) (2006) 4222–4232.

[67] G. R. Kocis, I. E. Grossmann, Global optimization of nonconvex mixed-integer nonlinear

programming (MINLP) problems in process synthesis, Industrial & Engineering Chemistry Research

27 (8) (1988) 1407–1421. doi:10.1021/ie00080a013.

[68] G. R. Kocis, I. E. Grossmann, Relaxation strategy for the structural optimization of process flow

sheets, Industrial & Engineering Chemistry Research 26 (9) (1987) 1869–1880.

[69] C. A. Floudas, Nonlinear and mixed-integer optimization: fundamentals and applications, Oxford

University Press, 1995.

[70] C. Floudas, A. Aggarwal, A. Ciric, Global optimum search for nonconvex NLP and MINLP

problems, Computers & Chemical Engineering 13 (10) (1989) 1117–1132.

[71] G. R. Kocis, I. E. Grossmann, A modelling and decomposition strategy for the MINLP optimization

of process flowsheets, Computers & Chemical Engineering 13 (7) (1989) 797–819.

[72] X. Yuan, S. Zhang, L. Pibouleau, S. Domenech, Une methode d’optimization nonlineaire en variables

mixtes pour la conception de procedes, RAIRO - Operations Research.

41

