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Abstract
Spinal cord injury is a neurological disorder that affects millions of people worldwide that can
cause motor disabilities. It seriously affects the patients and the people around them.

Advancements in robotics have developed assistive devices such as wearable exoskeletons for
rehabilitation and assistedmotion. Moreover, research on functional electrical stimulation (FES),
makes it possible to use neuroprostheses to induce muscle contraction using electrical stimula-
tion.

The objective of this bachelor thesis is to use optimal control to design hybrid strategies for as-
sisted walking combining wearable exoskeletons and neuroprostheses for patients with motor
disabilities. Optimal control techniques are used to find and optimize assisted walking strate-
gies.

The first part of this thesis describes the theoretical background of human movement biome-
chanics and analysis, spinal cord injury, and optimal control techniques and applications. It
explains in detail the methods and resources used. Afterward, using the software OpenSim
and Matlab, optimal control problems are designed for assisted walking motion. Lastly, the
results of the different assistive walking cases are presented and discussed.

The results obtained show various combinations of assistive walking. Both exoskeleton and
neuroprosthesis options are analyzed individually and then, different combinations of hybrid
strategies are analyzed. The results present how using more exoskeleton and less neuropros-
thesis and vice versa affects assisted walking. In the long run, further research on the field can
lead to significant improvements in the lives of patients.
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1 Introduction

1.1 Motivation
There are many people with motor disabilities caused by a damaged neural system, such as
spinal cord injury. That can seriously affect their lives and the people around them. Assistive
devices are designed for rehabilitation to recover partial or total mobility of patients. Wearable
robotics like exoskeletons can help patients perform their daily activities. Moreover, recent stud-
ies on functional electrical stimulation (FES), have developed neuroprostheses that can induce
muscle contraction and generate movement.

Themotivation of this project is to explore hybrid strategies of assistedwalking to find improved
solutions for patients with motor disabilities. Combining wearable robotics and neuroprosthe-
ses can have a great improvement on assistive devices and patients’ lives.

1.2 Objectives
The main objective of this thesis is to design hybrid strategies for assisted walking combining
wearable robotics and neuroprostheses using optimal control techniques. More specifically:

• Understanding biomechanics of human motion, different motion analyses, and optimal
control problems.

• Analyzing thewalkingmotion from experimental data from the Biomechanics Laboratory
of the UPC.

• Develop Matlab code using OpenSim Moco to design optimal control problems with a
patient-device model. different assisted walking strategies including wearable exoskele-
tons and neuroprostheses.

1.3 Project Scope
The scope of this project includes the use of optimal control motion prediction techniques to
design hybrid strategies for assisted walking. However, taking into account the timing and
resources of the project, there are some limitations to be considered.

Due to the current circumstances, it has not been possible to obtain the experimental data during
this project, so it is used previously captured data. Themusculoskeletal model does not include
a contact model for the foot-ground contact forces. Regarding the assisted devices, it is only
considered the ability to generate a motor torque for the exoskeleton, and muscle activation for
the neuroprosthesis. The design and control of these devices are out beyond the scope of this
project.

Finally, due to timing and complexity, it is out of scope of the project the energetic analysis of
the different strategies studied. Nonetheless, potential and possible further steps of the project
are presented.
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2 Theoretical Background

2.1 Biomechanics of human motion
The human body is a very complex machine. It has around 200 bones and 600 muscles. Biome-
chanics is the application of mechanics to study the functions andmotions of biological systems
[10]. To use biomechanics to study the different motions of the human body, the human body
is simplified in biomechanical models. A biomechanical model is the description of a biological
system as a mechanical device. The different elements of the biological system are defined as
rigid bodies, joints, and actuators that comply with the laws of physics [27].

Various human models have been created to help understand the dynamics of human motion.
Based on the complexity, each model has its advantages and limitations. For instance, a simpler
model may be computationally cheaper, but it will have certain restrictions with simulation
capabilities. Meanwhile, a more complex model may require the implementation of machine
learning tools such as deep reinforcement learning but it will be more accurate and perform
better [15].

When considering motions where the lower body generates most of the movement, such as
walking, usually the main focus of the study is the lower part of the human body, while the
upper body can be simplified as a single solid calledHAT (head, arms, trunk). This is illustrated
in the OpenSim model "gait2354", where there are only lower body muscles (Figure 1):

Figure 1: OpenSim model "gait2354"

In other words, the biomechanical model used varies depending on the objectives and resources
of the study.
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2.2 Gait cycle
One of the motions studied in biomechanics is the human gait. The normal gait movement con-
sists of a harmonious movement between the upper and lower limb extremities [24]. Amongst
various models that describe the gait motion, there is the PerryModel. The gait cycle (or stride)
is the interval between two consecutive initial floor contacts by the same limb. According to the
Perry Model, it consists of two periods: the stance and the swing, divided in 8 phases shown in
Figure 2. The stance is formed by the first 5 first phases and the swing by the 3 remaining ones.

Figure 2: Normal Gait Cycle [24][9]

The Perry Model is symmetric, meaning that the right gait cycle is identical to the left one, and
its 8 phases of the gait cycle are:

1. Initial contact: When the foot just touches the floor

2. Loading response: The initial double stance period from the initial floor contact until the
other foot is lifted for the swing period.

3. Mid Stance: The first half of the single-limb support interval. It starts as the other foot is
lifted and it ends when the bodyweight is aligned over the forefoot.

4. Terminal Stance: The other half of the single-limb support begins with heel rise until the
other foot strikes the ground.

5. Pre-Swing: The double stance interval and also the final phase of the stance period. It
starts with the initial contact of the opposite limb and ends with an ipsilateral toe-off.

6. Initial Swing: It begins with the lift of the foot from the floor and ends when the swinging
foot is opposite the stance foot.

7. Mid swing: It begins when the swinging leg is opposite the stance limb and ends when
the swinging limb is forward and the tibia is vertical.

8. Terminal Swing: It begins with a vertical tibia and ends when the foot strikes the floor.
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2.3 Analysis of human motion
The generation of movement can be synthesized in the following loop diagram:

Figure 3: Schematic representation of the injured spinal cord [28]

The brain sends a neural command that activates the muscles, performing certain forces and
torques that cause movement, defined by trajectories, velocities, angles, etc. Afterwards, a sen-
sory feedback is sent to the brain.

In order to study the kinematics and dynamics of human motion, there are different methods
developed to approach it. Broadly, they are two main types of analyses, inverse and forward
methods. With the inverse methods, the starting point is the movement, which can be the tra-
jectories of the joints, and from that the forces and movements are predicted (e.g., inverse kine-
matics and dynamics). Meanwhile, the forward methods approach the problem from forces
and torques and from that, they predict movement (e.g., forward dynamics).

A particular analysis is the direct collocation method, that combines inverse and forward dy-
namics analyses and quantifies tasks with an objective function. It is an implicit method where
the state and control variables are discretized. Dynamics equations are converted into algebraic
constraints which makes functions continuous and differentiable so there is no need for explicit
integration and therefore, the optimization converges quicker and more reliably [36].

2.4 Optimal Control Problem
It is a common assumption that natural motions of the human body are optimal, a product of
evolution. Asmentioned earlier, the human body is a very complex machine, so it could be con-
sidered as a control system where dynamic motion tasks such as walking can be formulated as
optimal control problems. This gives the possibility to use optimality to predict human move-
ment and improve performance with motion generation and analysis in rehabilitation [12].

As its name implies, an optimal control problem’s main goal is to optimize a certain movement.
This is achieved by finding the variables thatminimize a determined cost function. Optimal con-
trol problems start with a biomechanical model of the human body, formed by bodies and the
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links between them. The model has state variables such as generalized coordinates and veloci-
ties and control variables such asmuscle activations. These variables are subjected to differential
equations that describe the dynamics of the musculoskeletal system, and other interactions of
the variables from the elements considered in the study (such as the interaction between feet
and the ground). Additionally, they have to satisfy the path constraints and boundary condi-
tions of the problem.

Finally, there is the objective function or cost function of the optimality problem to minimize,
a formula that quantifies the cost of the motion. Depending on the objective of the problem,
this function can consider different aspects, such as the tracking error, the metabolic cost or the
muscle fatigue.

To summarize, an optimal control problem has the objective to find the states and controls that
satisfy dynamics, path constraints and boundary conditions equations that minimize a certain
cost function (see Table 1):

Optimal Control Problem

Variables Equations Objective function Goal

States: x(t)

Controls: u(t)

System dynamics: ẋ(t) = f(x(t), u(t), t)

Path constraints: g(x(t), u(t)) ≥ 0

Boundary conditions: c(xo, x1) = 0

J =
∫ t1
to
f(x(t), u(t))dt minx,u J(x, u)

Table 1: Optimal Control Problem

2.5 Spinal Cord Injury
Spinal cord injury (SCI) is a neurological disorder that disrupts the normal functioning of the
spinal cord such as motor deficit, sensory changes, and autonomic nervous system dysfunction
[25]. It is a severe disease that has very serious effects on the patients and the people that
surround them. The causes of SCIs can be traumatic or non-traumatic, the first one being the
most common (90% of all causes of SCIs [2]). Around the world, there are between 250 000
and 500 000 cases per year [35]. Trauma is mainly a result of motor accidents, falls, violence,
work-related injuries, sports-related injuries, or suicide attempts. Most patients are youngmales
injured in road traffic collisions or elderly populations that have fallen [31].

The spinal cord is nervous tissue that provides communication between the brain and 31 spinal
nerves associated with different parts of the body (shown in Figure 4). Additionally, it also
produces reflexes called the spinal reflexes [16].
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Figure 4: Set of the 31 spinal nerves [16]

As shown in the Figure 4, each spinal nerve is named with a letter and a number (i. e. C1).

Trauma on the spinal cord beginswith the “primary injury”, which can be caused bymechanical
forces such as compression, or infarcted by a vascular injury [14]. Subsequently, neurological
damage in the spinal cord starts (Figure 5 shows a schematic representation of the injured
spinal cord).

Afterward, the physical injury triggers a series of biological events called “secondary injury”,
which can happen immediately or days later [16]. Secondary injuries may include systemic
respiratory, cardiovascular, and immunological consequences of the primary injury [25]. Fur-
thermore, there may be a “chronic phase” leading to neurological impairments [32]. As each
spinal nerve corresponds to different nerves of the body, there is a relation between the spinal
nerves damaged and the dysfunction caused. For example, injuries on the high cervical nerves
are the most severe, causing paralysis in arms, hands, trunk, and legs (tetraplegia when all four
limbs are affected). It can also cause breathing problems and trouble to speak. Whereas injuries
on the sacral nerves (S1-S5) usually cause some loss of function in the hips and legs, but the
patient is more likely able to walk. Most SCIs include loss of function in the hips and legs [29].

Figure 5: Schematic representation of the injured spinal cord [31]
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The different levels of SCI damage are classified alphabetically byASIA (American Spinal Injury
Association). They are the following [25]:

• A: Complete (There is no sensory nor motor function)

• B: Sensory Incomplete (Sensory, but not motor)

• C and D: Motor Incomplete

• E: Normal (Normal sensory and motor functions with prior deficits)

Treatment and recovery/rehabilitation To this day, SCI still is a frequent and traumatic event
without a cure. Nonetheless, a great deal of research has been made to understand SCI and
develop recovery treatments. Rehabilitative, cellular, and molecular therapies have been tested
in animal models, but none has proved to treat SCI successfully [32]. Being a very complex
injury, several therapies are combined to treat the various conditions of SCI. Neuroprotection
aims at protecting the functional neurons, neuroregeneration works towards regulating the le-
sion to regenerate cells and neurons to restore functional connections, and neurorehabilitation is
based on physical training to recover function. Exercise has been demonstrated to be beneficial
at cellular and biochemical levels [8].

Rehabilitation is fundamental to minimize and prevent complications, enhance function, and
help patients deal with their new disability. Physical therapy focuses on strength building and
optimizing mobility, respiratory and cardiovascular training, andmuscle stretching [25]. Reha-
bilitation potential depends on the level of injury. There aremany adaptive and assistive devices
developing and improving, such as wheelchairs and exoskeletons, to allow the patients to live
as independently as possible [25].

2.6 Assistive devices
There is an estimated amount of 65 million people worldwide who suffer from motor disabili-
ties. Consequently, advancements in robotics have developed assistive devices with the ability
to, for instance, cure spinal cord injuries. When implementing assistive devices to rehabilita-
tion techniques, it is fundamental to model the physical properties of the patient and define the
optimal control problem parameters that correspond with the patient [15].

Wearable exoskeletons are robotic devices attached to the human body that combine different
technologies to help execute and improve determined motions. Their performance depends on
many factors, such as the structure, the actuators, or the measurement devices [13].

There is awearable exoskeleton currently being developed called "ABLE". It is an active orthosis
to assist SCI patients when standing up and walking (See Figure 6).
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Figure 6: ABLE weareble exoskeleton [1]

Another technique used for assisted motion is functional electrical stimulation (FES) and it is
used for restoring function in people with motor disabilities. It consists of inducing muscle
contraction with electrical stimulation to generate controlled movement. The nerves are stimu-
lated through surface electrodes applied to the skin. Its functioning is modeled as a hysteresis
curve with a maximum neural excitation value, which is around 40% of the maximum muscle
activation.
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3 Methodology

3.1 OpenSim

3.2 Biomechanical Model
The model used in this thesis is the OpenSim model Gait10dof18musc created by Ajay Seth,
Darryl Thelen, Frank C. Anderson, and Scott L. Delp. This model is oriented towards lower
extremity studies. It is composed of a trunk, pelvis, and leg segments. In total it has 10 de-
grees of freedom (DOF) and 18 muscles, as its name implies. The model is defined in XML
language in a .osim file [19]. The OpenSim model represents the neuromuscular and muscu-
loskeletal dynamics of the human body, each component corresponding to the different parts
of the body, divided into the following categories: reference frames, bodies, joints, constraints,
forces, contact geometry, markers, and controllers.

3.2.1 Bodies

Each body has a name, mass properties, and visible objects associated with it. The model is
formed by 12 rigid bodies and the ground (See Table 2 and Figure 7).

Bodies

Body part OpenSim name

HAT (head, arms and trunk) torso

Pelvis pelvis

Right femur femur_r

Right tibia tibia_r

Right talus talus_r

Right calcaneus calcn_r

Right toes toes_r

Left femur femur_l

Left tibia tibia_l

Left talus talus_l

Left calcaneus calcn_l

Left toes toes_l

Ground ground

Table 2: Model bodies Figure 7: Gait10dof18musc bodies
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3.2.2 Joints

Joints define the kinematic relation between two bodies, the parent and the child. The purpose
of this nomenclature is to set one of the bodies as the referencewhendefining the relativemotion
between the bodies. The parent body is the reference body while the child body moves with
respect to it. The kinematic constraints describe the freedom of movement allowed between
the two bodies. There are defined types of joints available, but they can also be customizable.
Table 3 describes the different joints of themodel with their respective DOFs and corresponding
generalized coordinates. This model is holonomic since the number of DOFs is the same as the
number of generalized coordinates.

Joint
OpenSim

Joint Name
Child Frame Parent Frame DOF

OpenSim

Coordinates

Ground - Pelvis ground_pelvis Pelvis Ground 3

pelvis_tx

pelvis_ty

pelvis_tilt

Lumbar Joint back HAT Pelvis 1 lumbar_extension

Right Hip hip_r Right Femur Pelvis 1 hip_flexion_r

Right Knee knee_r Right Tibia Right Femur 1 knee_angle_r

Right Ankle ankle_r Right Talus Right Tibia 1 ankle_angle_r

Right Subtalar subtalar_r Right Calcn Right Talus 0 -

Right Metatarsal mtp_r Right Toes Right Calcn 0 -

Left Hip hip_l Left Femur Pelvis 1 hip_flexion_l

Left Knee knee_l Left Tibia Left Femur 1 knee_angle_l

Left Ankle ankle_l Left Talus Left Tibia 1 ankle_angle_l

Left Subtalar subtalar_l Left Calcn Left Talus 0 -

Left Metatarsal mtp_l Left Toes Left Calcn 0 -

Table 3: Model Joints
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3.2.3 Forces

The forces applied to the model are also defined in the model file. There are two types of forces:
passive forces like springs, dampers, and contact, and active forces like actuators and muscles.
OpenSim allows ideal actuators that apply pure forces or torques directly proportional to the
input control via is optimal force.

There are multiple models of muscle forces and they usually includemuscle activation and con-
tractiondynamics. The gait10dof18musc uses theHill-typemusclemodel asMillard2012Equilibrium
Muscle made by Dr. Matthew Millard, Tom Uchida, and Ajay Seth (cita1, cita2). It is a con-
figurable equilibrium muscle model, which means that the forces generated by the fiber and
tendon are equal. However, to solve optimal control problems with OpenSim Moco (section),
the muscle model is switched to the DeGrooteFregly2016 Muscle by DeGroote et al. [21][7].

Themodel also includes the acceleration due to gravity so the gravitational forces are also taken
into account.
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3.3 Experimental Data
Due to various circumstances, it has not been possible to collect experimental data in this project.
Nonetheless, this section presents the methodology to obtain the used experimental data.

The data used was obtained at the Biomechanics Laboratory of the Polytechnic University of
Catalonia (amore detailed explanation of thewhole process can be found in [23]). AnOptiTrakTM
motion capture equipment from NaturalPoint Inc was used to capture marker positions in a 3D
space. It uses cameras (V100:R2 model) that emit infrared light, which is reflected on the mark-
ers, and captured by the cameras. The markers consist of small spheres covered by reflective
material and positioned on strategic points of the subject. The capture frequency is 100Hz. Two
captures are obtained with this equipment: a static capture of the subject in a static position and
a motion capture of the subject performing a gait cycle. The cameras are strategically located
around the laboratory to guarantee a precise capture.

Additionally, the laboratory includes twoAMTIAccugait force plates, placed at the center of the
laboratory. They provide the ground reaction forces by measuring the contact wrench applied
to the body in contact. They obtain the ground reaction forces during the gait cycle that are
used in the optimization control problem.

3.4 Scaling
When working with experimental data of motion capture, the model dimensions have to be as
similar as possible as the subject ones. This process is called scaling and it consists of matching
the distances of body markers locations and other parameters such as mass between the model
and the real subject. This process can be done with the OpenSim 4.1 software using the Scale
Model tool [20]. Figure 8 shows a diagram of the files involved in the process.

Figure 8: Files involved in the Scaling tool in OpenSim. (Adapted from [20])

The model (gait10dof18musc.osim) is loaded on the OpenSim graphic user interface (GUI) by
selecting File > Open Model (See Figure 9).
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Figure 9: Loaded model in OpenSim GUI

Then, the ScaleModel window is opened selecting Tools> Scale Model. It is where the input files
and scaling settings are defined.

The experimental markers are the ones on the subject’s body and their locations are obtained
with a static capture using motion capture equipment. The static capture usually is a few cap-
tures of the subject in a static position and it is stored in a .trc file (static-markers.trc).

Selecting the Load button, the setup file (setup-scaling.xml) is added. This file contains the exe-
cution, model, and subject parameters, and scaling and marker placement properties. Among
them are the following:

• The subject mass is specified in the mass property. To maintain the distribution of mass
within the different body segments the preserveMassDistribution property is set to True.

• In theMarkerPlacer tag are the marker placement properties. To find the model configura-
tion thatmatches the static pose of the subject, an inverse kinematics problem is presented.
In the tag, the marker and coordinates weights used to compute the IK problem are spec-
ified (they can be edited and visualized in the Static Pose Weights tab).

• The name of the marker file is in themarkerFile tag, and the time range of the static capture
is in the timeRange tag.

Afterward, a file with the locations of the virtual markers, markerSet.xml, is added with the
add markers from file button. These markers must be in anatomical correspondence with the
experimental ones, as seen in Figure 10.
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Figure 10: Correspondance between experimental and virtual markers [20]

Comparing the distances between the experimental and the virtual markers, scale factors are
computed by dividing the experimental and virtual distances. These factors can also be added
manually and visualized in the Scale factors tab. With these scale factors, the Scale Model tool
algorithm scales the joint frame locations, mass center location, force application points, and
muscle attachment points.

Lastly, before running the scaling, the Preview Static Pose button is checked to be able to visualize
the results of the scaling and to make sure that it has been done accurately. Figure 11 shows
the original and the scaled model. .
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Figure 11: Original (right) and scaled (left) model
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3.5 OpenSimMoco
Moco is a software toolkit, part of OpenSim, focused on solving optimal control problems in an
easy and customizable way. The core library is written in C++, and it has Matlab, Python, and
XML interfaces. It can be downloaded for Windows or Mac ([30]). In this thesis, Moco is used
in Matlab [22].

Using the direct collocation method, it can solve optimal control problems, also the ones with
kinematic constraints, for OpenSim models. This includes motion tracking, motion prediction,
and parameter optimization problems. A diagram of how Moco works is shown in Figure 12.

Figure 12: OpenSim Moco general structure [22]

Moco uses a library of cost and constraint modules, implemented with software classes that
describe the problem and how it must be solved. The MocoStudy class is the main one that
encompasses the optimal control problem (See Figure 13). It’s divided into two other classes,
MocoProblem andMocoSolver, and they don’t depend on each other.

Figure 13: MocoStudy elements diagram [22]
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TheMocoProblem class contains all the elements that describe an optimal control problem: Cost
terms,multibody andmuscle dynamics, kinematic and boundary constraints, model properties,
and variable bounds. Table 10 presents a generalized optimization problem thatMoco can solve
[6]:

minimize
∑

j wjJj(t0, tf , y0, yf , x0, xf , λ0, λf , p, Sc,j) costs

Sc,j =
∫ tf
t0
sc,j(t, y, x, λ, p)dt

subject to q̇ = u

M(q, p)u̇+G(q, p)Tλ = fapp(t, y, x, p)− finertial(q, u, p) multibody dynamics

żex(t) = fż,ex(t, y, x, λ, p) auxiliary dynamics, explicit

0 = fż,im(t, y, żim, x, λ, p) auxiliary dynamics, implicit

0 = φ(q, p) kinematic constraints

VL,k ≤ Vk(t0, tf , y0, yf , x0, xf , λ0, λf , p, Sb,k) ≤ VU,k boundary constraints

Sb,k =
∫ tf
t0
sb,k(t, y, x, λ, p)dtk = 1, ...,K

gL ≤ g(t, y, x, λ, p) ≤ gU path constraints

y0,L ≤ y0 ≤ y0,U ; yf,L ≤ yf ≤ yf,U initial and final states

with x0,L ≤ x0 ≤ x0,U ;xf,L ≤ xf ≤ xf,U initial and final controls

respect to t0ε[t0,L, t0,U ] initial time

tf ε[tf,L, tf,U ] final time

y(t) = (q(t), u(t), z(t))ε[yL, yU ] states

x(t)ε[xL, xU ] controls

λ(t) Lagrange multipliers

pε[pL, pU ] time-invariant parameters

Table 4: Moco optimal problem (extracted from [6])

The main cost function of the problem (J) is the sum of weighed (wj) cost functions (Jj). The
weight terms indicate how important is to minimize its cost function. These cost functions de-
pend on the initial and final time bounds (t0, tf), states (y0, yf), controls (x0, xf), Lagrange
multipliers (λ0, λf), the time-invariant parameters, and integrals (Sb,k). All the variables have
lower (L) and upper (U) bounds, and there are also bounds on the initial and final states and
controls.

As stated in previous sections, the goal of the problem is to find the states (y(t)) and con-
trols (x(t)) that minimize the cost function (J) while being subject to the multibody dynam-
ics (which involve M , the mass matrix), the gravitational, muscle and other forces applied
(fapplied), inertial forces (finertial), and auxiliary dynamics (that can be expressed as explicit
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fż,ex or implicit fż,im differential equations). As mentioned above, the system might include
kinematic constraints caused by forces applied by parts of the modeled system. To solve for
these constraint forces, time-varying Lagrangemultiplier variables (λ) are used. The derivative
of the kinematic constraints (φ) introduces the kinematic constraint Jacobian (G). The system
also includes boundary (Vk) and path (g) constraints with their corresponding lower (VL,k and
gL) and upper (VU,k and gU) bounds.

The MocoSolver class is where the numerical method to solve the problem is detailed. It uses
the CasADI library [3] to transcribe the continuous problem to a finite-dimensional nonlinear
program with gradient-based nonlinear programs such as IPOPT [34] and SNOPT [26].

Moco uses the direct collocation method to solve optimal control problems. It is a nonlinear
optimization technique to solve optimal control problems that approximates state and control
variables using polynomials to simplify the integration calculations. Moco implements two
transcription schemes: the trapezoidal scheme, which implements trapezoidal integration, and
theHermite-Simpson scheme, which uses parabolic integration andHermite interpolation [11].

When solving aMocoStudy, aMocoSolution is generated. ThisMocoSolution is used as the initial
guess of the MocoTrajectory in the next iteration (Shown in Figure 14). This breaks down a
complex study into a series of simpler ones.

Figure 14: OpenSim Moco iteration structure (extracted from [6]).

For standard problems,Moco provides two solving tools,MocoInverse andMocotrack (See Figure
15):

MocoInverse: finds the controls of muscles or actuators that achieve a given motion and mini-
mize the cost function. That is called themuscle/actuator redundancy problem [7]. Prescribing
a motion has the advantages of the problem becoming more robust and faster to solve since the
non-linear multibody dynamics stop taking part. The disadvantages are that it is not possible
to predict deviations from the provided motion or to use contact models, so it must apply mea-
sured external forces instead. That usually requires adding non-existent actuators to resolve
inconsistencies when solving the problem.

MocoTrack: finds themotion (states) and controls thatminimize the error betweenmotion data
and the associated model quantities. It can use contact models and it is useful for predicting
deviations from experimental data. Both solving tools only require the OpenSim model and
motion data as inputs.
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Figure 15: Solving prescribed motion, tracked motion, and predicted motion problems (ex-
tracted from [6]).
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3.6 Inverse Kinematics
After scaling the model and with the experimental walking motion data, an inverse kinematics
process is done. Inverse kinematics (IK) is a tool that finds themodel configurations that fit best
with the recordedmotion over time. More specifically, for every time step of the motion capture
data, it finds the values of the generalized coordinates of the model that best match with the
experimental markers data [18].

An IK problem can be presented as an optimal control problem, where for each time step (ti)
the generalized coordinates (q) are found while minimizing the following cost function:

minq
∑m

i=1wi ‖ xexpi − xi ‖2, i = 1, 2, ...,m

Where xi(q) is the position vector of the ith virtual marker; q is the generalized coordinates
vector; xexpi is the ith experimental marker; m is the number of markers, and wi is the marker’s
weight.

To solve an IK problem with Moco, there is the InverseKinematicsTool, a tool for performing IK
[18]. The inputs necessary are the modelFile (.osim), the markersFile (.trc), and the timeBounds
of the problem. Additionally, markers and coordinates weights can be added. After running
the tool, it returns the output of the IK, which is the coordinatesFile (.sto), which can also be
converted into a statesFile (.sto). The predicted motion can be visualized with Moco or at the
OpenSim GUI. Figure 16 shows captures of the IK solution visualized in the OpenSim GUI:

Figure 16: Inverse kinematics solution (extracted from [6]).
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3.7 Tracking Optimization
Once the IK is finished, the next step is to conduct a tracking optimization problem. As ex-
plained in previous sections, it consists of finding the states and controls that minimize a cost
function that includes a tracking term, among others.

First, the optimization problem is defined. A MocoStudy is created and the MocoProblem and
MocoSolver are defined.

The input files needed for theMocoStudy are:

• The model file: The .osim file of the scaled model.

• The states file: the .sto file obtained after the IK problem that contains the referencemotion
for the tracking goal.

• External force file: a .xml file containing the experimental ground contact forces for the
contact tracking goal.

TheMocoProblem is set with the following parameters:

• The scaled model: gait10dof18musc-scaled.osim

• The initial and final time bounds: the same time bounds used with the IK problem.

• The experimental ground contact forces are added to the model as external loads.

The cost function is defined as the sum of a series of weighted cost functions using MocoGoal
tools [17]:

• StateTrackingGoal (J1): This function computes the difference between the state variable x
and a reference xexp, obtained from the previous IK problem.

J1 =
∫ t1
t0

∥∥∥x2 − x2exp∥∥∥ dt
This cost function can also be applied for tracking activations, forces, etc.

• ControlGoal (J2): This function is the sum of the absolute value of the control variables
(xc), raised to an exponent (p), integrated over the phase (with time bounds ti, tf), and
divided by the displacement of the system (d). The formula used is the following:

J2 =
1
d

∫ tf
ti

∑
c∈C wc | xc(t) |p dt

In this equation d is the displacement of the system, C is the set of control signals, wc is
the weight for control c, xc(t) is the control signal c, and p is the exponent.

In this tracking optimization problem, the weights of the controls vary. The controls that
correspond to reserve, residual, and exoskeleton forces or torques each have their control
weight.
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• ActivationSquaredGoal (J3): This function calculates the sum of squared activations (cita).

• InitialActivationGoal (J4): This function is to ensure that muscle initial activations and
excitations are different. It is an endpoint constraint goal (cita)

The total cost function (Jtotal) is the following:

Jtotal =
∑n

1 wi ∗ Ji

Where n is the number of smaller cost functions andwi is the i-th function’s weight. Depending
of the objective of the optimization, the weights of each function vary. If it is more important to
minimize a function than another, the first one will have a higher function weight.

Once theMocoProblem is all defined, the next step of the tracking optimization problem is to cre-
ate theMocoSolver. The solver used is theMocoCasADiSolver, which uses the CasADi automatic
differentiation and optimization library [5].

The following settings and parameters are added to the MocoSolver:

• The multibody dynamics is set as implicit.

• The transcription scheme, to transform the linear problem to a non-linear one, is set as the
Hermite-Simpson one.

• The optimization convergence and constraint tolerances are set. They determinewhen the
solver will consider that a solution converges, and it is optimal to stop the iterations.

• The optimization sparsity detector is set as random. Sparsity in the derivative matrices in
the problem is what makes the direct collocation method fast. The CasADi solver deter-
mines the sparsity pattern of the matrices, to find “zeros”, and solve the problem faster.
When it is set as random, the trajectories used to detect “zeros” are random.

• The optimization finite difference scheme is set as forward. This scheme uses forward dif-
ferences to approximate derivatives. It is faster than the central difference but less accu-
rate.

• The number of mesh intervals used in the optimization and the optimization maximum
number of iterations are set. When the optimization reaches the maximum amount of
iterations, it stops.

Finally, the tracking optimization problem solver starts running.
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4 Results and Discussion
In this section, the results of this thesis are presented. Three cases have been analyzed for the
simulation of assistive walking: walking with an exoskeleton, walking with electrostimulation,
and walking with a hybrid combination of both.

One of the design factors of each case and simulation is the activation bounds of the muscles
variables. They vary depending on the type of resource is used for walking. The muscles are
divided into three categories:

• Hip: Glutes and iliopsoas

• Knees: Hamstrings, biceps femoris, rectus femoris, and vastus intermedius

• Ankles: Gastrocnemius, soleus, and tibialis anterior

Another design factor is the control weights of the control variables that integrate the Control-
Goal cost function. The controls have the same effort weight, but there are a few exceptions
which are divided into the following types:

• Reserve weight: The weight of the control variables that correspond to extra actuators to
help solve the optimization problem.

• Residual weight: The weight of the control variables of the pelvis.

• Exoskeleton weight: The weight of the control variables that correspond to the reserve
actuators of the exoskeleton.

The simulations have been made with OpenSim Moco, using the gait10dof18musc-scaled.osim,
solving the tracking optimization problem described in Section 3.7. The time bounds used cor-
respond to half a gait cycle since it is considered a symmetric motion. Moco usually spends
between 10-30 minutes solving each simulation.

4.1 Case 1: Walking with Exoskeleton
In this first case, the subject is walking with an exoskeleton. To simulate the subject’s motor
disability, legmuscles are debilitated. This translates to setting themodelmuscles’ activations to
zero. At the same time, the exoskeleton is added to the optimization problem. The exoskeleton
considered is one able to generate torques on the knees and ankles. For that, reserve actuators
are added to the model.

Table 5 shows the parameters of the simulation:
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Activation

Bounds:

Number of

iterations

Time of

simulation
Cost functions

Total cost

function
Hip: [0.01, 1]

Knees: [0.01, 0.01]

Ankles: [0.01, 0.01]

212 19 min 49 sec

ControlEffort = 0.098750

MinActivations=0.000355

StateTracking=0.103452

0.202557

Table 5: Case 1 simulation parameters

TheMinActivations function has the lowest value (0.0003) compared to the other functions, the
ControlEffort and the StateTracking that are around the same value ( 0.1)

Figure 17: Case 1 States (generalized coordinates and velocities) for the right hip, knee, and
ankle
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Figure 18: Case 1 States (generalized coordinates and velocities) for the left hip, knee, and ankle

Figures: Case 1 States (generalized coordinates and velocities) for the right/ left hip, knee, and
ankle Figures 17 and 18 show the plots of the trajectories of the joints and their velocities. The
trajectories in blue are the ones of the full exoskeleton assistance case and the ones in black are
the reference trajectories obtainedwith the inverse kinematics problem. The reference trajectory
is the healthy gait one. Both trajectories are very similar except on the left knee angle, where
the trajectories have a higher offset.

Figure 19: Case 1 Exoskeleton Torques

Figure 19 shows the torque of the reserve actuators of the knees and ankles that correspond to
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the exoskeleton. The torques ranges go from -15 Nm to 8 Nm for the right knee actuator, from
-4 Nm to 11 Nm for the left knee actuator, from -20 Nm to 11 Nm for the right ankle actuator,
and from -8 Nm to 12 Nm for the left ankle actuator, approximately. The right ankle reserve
actuator is the one that generates the higher absolute torque values.

4.2 Case 2: Walking with Neuroprosthesis
In the second case, the subject is walking with a neuroprosthesis assistive device. This means
that the muscles are activated through functional electrical stimulation (FES). To simulate this
case, the leg muscles’ activations are limited since muscles cannot be fully activated with FES.
Table 6 shows the parameters of the simulation:

Activation

Bounds:

Number of

iterations

Time of

simulation
Cost functions

Total cost

function
Hip: [0.01, 1]

Knees: [0.01, 0.4]

Ankles: [0.01, 0.4]

201 21 min 6 sec

ControlEffort = 0. 009669

MinActivations = 0. 009050

StateTracking = 0.028179

0. 046898

Table 6: Case 2 simulation parameters

ControlEffort function and the MinActivations functions have around the same value (0.009..)
which is one-third of the StateTracking function value (0.028..)

Figure 20: Case 2 States (generalized coordinates and velocities) for the right hip, knee, and
ankle
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Figure 21: Case 2 States (generalized coordinates and velocities) for the left hip, knee, and ankle

Figures 20 and 21 show the plots of the trajectories of the joints and their velocities of case 2.
The trajectories in blue are the ones of the full exoskeleton assistance case and the ones in black
are the reference trajectories obtained with the inverse kinematics problem. As in case 2, both
trajectories are very similar. An exception is the right hip angle, where the trajectory has a slight
offset with the healthy gait trajectory.

Figure 22: Case 2 Muscle Activations
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Figure 23: Case 2 Muscle Activations

Figures 22 and 23 show the muscle activations of the muscles that receive FES. The reference
activations are from a simulation without muscle activation bounds. In most graphics, the red
curve values (FES) are higher than the black curve values (reference). There are a few parts
where the reference activation values are higher than the FES ones. That is when the reference
activation values are above or near the FES muscle activation high bound (0.4). This can be
appreciated on the “Right Rectus Femoris Activation” plot. The red curve starts above the black
one but as both reach higher values (1.3 seconds), the reference one goes higher surpassing the
FES one.

4.3 Case 3: Hybrid Assisted Walking
This last case studies different combinations of hybrid assistive walking. The subject walks with
a combination of an exoskeleton and FES in the ankle, and FES in the knee. To simulate the an-
kle assisted combination, different values of muscle activation bounds (that corresponds to the
FES) are applied while using the ankle reserve actuator (that corresponds to the exoskeleton
generated torque). For the knee, the same muscle activation bounds as case 2 are used to sim-
ulate the full use of FES.

Table 7 shows the muscle activation bounds used, where FESact is the ankle muscles activation
bound used:

Activation Bounds:
Hip: [0.01, 1]

Knees: [0.01, 0.4]

Ankles: [0.01, FESact]

Table 7: Case 3 Muscle Activation Bounds



Predicting Human Motion Assisted by Wearable Hybrid Devices That Combine Robotics and
Neuroprostheses pàg. 39

Tables 8 and 9 show the simulation parameters for each FESact used:

FESact Nº iter Sim. time Cost functions Total cost function

0.01 359 19 min 44 sec
ControlEffort = 0.030969
MinActivations = 0.004247
StateTracking = 0.021262

0.056477

0.05 272 17 min 2 sec
ControlEffort = 0.012424
MinActivations = 0.012424
StateTracking = 0.019015

0.034232

0.10 267 16 min 22 sec
ControlEffort = 0.006077
MinActivations = 0.006077
StateTracking = 0.017713

0.027307

0.15 196 11 min 34 sec
ControlEffort = 0.008216
MinActivations = 0.008216
StateTracking = 0.008216

0.008216

0.20 377 23 min
ControlEffort = 0.007824
MinActivations = 0.006503
StateTracking = 0.016850

0.007824

0.25 233 13 min 54 sec
ControlEffort = 0.010336
MinActivations = 0.009524
StateTracking = 0.018061

0.037920

0.30 298 19 min 20 sec
ControlEffort = 0.006999
MinActivations = 0.006696
StateTracking = 0.013049

0.026744

0.35 327 19 min 31 sec
ControlEffort = 0.003652
MinActivations = 0.003168
StateTracking = 0.014777

0.021596

0.40 227 12 min 43 sec
ControlEffort = 0.005815
MinActivations = 0.005256
StateTracking = 0.016495

0.027565

0.45 274 17 min 9 sec
ControlEffort = 0.003913
MinActivations = 0.003704
StateTracking = 0.012829

0.020445

0.50 286 18 min 27 sec
ControlEffort = 0.005057
MinActivations = 0.004268
StateTracking= 0.016694

0.026018

Table 8: Case 3 Simulation Parameters (I)
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FESact Nº iter Sim. time Cost functions Total cost function

0.55 310 18 min 38 sec
ControlEffort = 0.003326
MinActivations = 0.003027
StateTracking = 0.014567

0.020921

0.60 406 29 min 7 sec
ControlEffort = 0.003857
MinActivations = 0.003551
StateTracking = 0.013244

0.020653

0.65 277 16 min 58 sec
ControlEffort = 0.009524
MinActivations = 0.009330
StateTracking = 0.013427

0.032281

0.70 217 13 min 14 sec
ControlEffort = 0.019177
MinActivations = 0.018065
StateTracking = 0.023658

0.060900

0.75 220 15 min 2 sec
ControlEffort = 0.047027
MinActivations = 0.029557
StateTracking = 0.086136

0.162721

0.80 228 12 min 53 sec
ControlEffort = 0.005787
MinActivations = 0.005139
StateTracking = 0.016875

0.027801

0.85 354 22 min 39 sec
ControlEffort = 0.004880
MinActivations = 0.004103
StateTracking = 0.018918

0.027902

0.90 283 19 min 1 sec
ControlEffort = 0.019397
MinActivations = 0.018922
StateTracking = 0.016770

0.055090

0.95 419 25 min 38 sec
ControlEffort = 0.003133
MinActivations = 0.002964
StateTracking = 0.012191

0.018288

0.100 304 19 min 41 sec
ControlEffort = 0.003928
MinActivations = 0.003624
StateTracking = 0.014375

0.021926

Table 9: Case 3 Simulation Parameters (II)

The simulation number of iterations and times vary between 196 and 419 iterations, and 14
and 29 minutes, respectively. The ControlEffort function values vary between 0.003 and 0.047,
the MinActivations ones between 0.003 and 0.019, and the StateTracking ones between 0.008 and
0.021. The total cost function value varies between 0.008 (when FESact = 0.20) and 0.163 (when
FESact = 0.75).



Predicting Human Motion Assisted by Wearable Hybrid Devices That Combine Robotics and
Neuroprostheses pàg. 41

Figure 24: Case 3 Exoskeleton Torques RMS vs FES Activation Bounds

Figure 24 shows the root mean square (RMS) of the right ankle reserve actuator generated
torque for every ankle muscle activation bound. The higher RMS values are of the 0.25 and
0.35 muscle activation bounds, while the lowest ones are of the 0.40 and 0.45 muscle activation
bounds.

There is a visible tendency in the plot where the RMS Right Ankle Actuator Torque decreases
rapidly as theMaximumMuscle Activation Bound (FESact) increases. Until the FESact reaches
around 0.4, where it stays practically stable. It makes sense since more FES used should lead
to needing a smaller exoskeleton torque and vice-versa. The point where the decreasing of
the RMS Torque stabilizes is around the maximum activation bound reachable by using FES
(section 2.6).

This plot is interesting because the relation between the exoskeleton and neuroprosthesis is
shown. Depending on the characteristics of the patient, an optimal personalized hybrid device
could be designed. Several studies link muscle activations to energy expenditure and fatigue
([33] for example). By computing the energy expenditure, of both the patient and the devices,
and the fatigue generated on the patient, a more complex optimal problem could be considered.

Next, two of these cases are more thoroughly analyzed. They are named case 3.1 (FESact=0.1)
and case 3.2 (FESact=0.3).
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Figure 25: Case 3.1 (FESact=0.1) and 3.2 (FESact=0.3) States (generalized coordinates and ve-
locities) for the right hip, knee and ankle

Figure 26: Case 3.1 (FESact=0.1) and 3.2 (FESact=0.3) States (generalized coordinates and ve-
locities) for the left hip, knee and ankle

Figures 25 and 26 show the plots of the trajectories of the joints and their velocities of cases
3.1 and 3.2 and compared to the reference states. The different generalized coordinates and
velocities are almost identical. The state that has the bigger offset between the cases shown is
the “Right Hip Flexion Angle”.
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Figure 27: Case 3.1 (FESact=0.1) and 3.2 (FESact=0.3) Right Ankle FES Muscle Activation
Bounds and Exoskeleton Torque

Figure 27 show the ankle muscle activations and torque generated corresponding to the hybrid
strategy for cases 3.1 and 3.2, and the reference. The muscle activation curves of all cases fol-
low a similar shape but with different offsets. Regarding the “Ankle Torque” generated by the
exoskeleton, the reference one is very uniform, followed by the Case 3.2 torque. Lastly, Case 3.1
torque is the one that follows the least uniform curve. It makes sense since is the case where the
FESact bound is lowest, so the exoskeleton has to generate more "work".
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5 Project Impact

5.1 Social Impact
This project explores hybrid strategies for assisted walking, combining wearable robotics and
neuroprostheses. Further research in this field can have a great impact on the development of
assistive solutions and rehabilitation for patients suffering from motor disabilities.

5.2 Environmental Impact
This thesis has had a low environmental impact since all the research, meetings, simulations,
and writing has been done using a laptop. As a result, the environmental impact has only been
the electricity consumed with the laptop.

5.3 Economic Impact
The economic cost of this project takes into account the resources and time dedicated. To cal-
culate the cost of the resources of the project, the useful life or work time and the cost per hour
are estimated.

The laptop has an estimated life span of 5 years and a price of 750€. A usage of 10h per day, 5
days a week has been considered. It amounts to 13000 hours of useful life. Then, the cost per
hour of the laptop is 0,0577 €/h. The estimated time referred to the project has been 300 hours.

For the software, Moco is completely free and theMatlab license lasts a year and costs 250€. The
Matlab license’s cost per hour amounts to 0,0286€/h while the usage time has been 150 hours.

Regarding the electric energy used by the laptop, the power is 50W and the time used has been
estimated at 300 hours. The price has been considered 0,14€/kWh.

Lastly, the supervisors have dedicated 40 hours earning 50€/h, and the student has dedicated
300 hours, being a student’s salary 8€/h.

The total cost of the project amounts to 4423,7€ (See Table 10):

Cost Price Life span Cost per Working time Cost related to

factor [€] [years] hour [€/h] [hours] the project [€]

Laptop 750 5 0,0577 300 17,31

Matlab license 250 1 0,0286 150 4,29

Electrical energy 0,0070 300 2,1

Supervisors 50 40 2000

Student 8 300 2400

Total Cost 4423,7

Table 10: Cost of the project
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Conclusions
The present Final Project for the Bachelor’s Degree in Industrial Technology Engineering has de-
signed hybrid strategies of assisted walking combining wearable robotics and neuroprostheses
to help patients with a damaged neural system. It has been achieved by programming optimal
control problems of walking motion with a patient-device model. Experimental data obtained
previously at the Biomechanics Laboratory of the Polytechnic University of Catalonia, and the
OpenSim and Matlab software have been used.

Throughout the first part of this project, a lot of research and learning on biomechanics and
optimal control has been done. Afterward, there has been a familiarization with the OpenSim
Moco software toolkit in the Matlab interface. At last, different strategies of assisted walking
have been simulated through optimal control problems.

For the simulations, an OpenSim model adapted with a subject’s experimental data has been
used. Besides, motion captures of a healthy gait cycle have been employed as a starting point
and reference for predicting motion with optimal control.

The results from the strategies simulated have been analyzed and compared to each other and
to a reference motion. The kinematics and dynamics of the predicted motion, along with the
simulation parameters have been evaluated.

All things considered, the results have been found satisfactory. Hybrid-assisted walking strate-
gies have been successfully obtained. The relation between the exoskeleton assistance needed
and the FES used in the hybrid strategy has been analyzed. However, further research should
be done to have a significant impact.

These assisted walking strategies are aimed to help recover or improve the autonomy of pa-
tients with a damaged neural system, such as spinal cord injury patients. Possible next steps of
this thesis would be to analyze the energy expenditure, from the patient and the assistive de-
vices, and the fatigue generated on the patient. From there, more personalized assistivewalking
strategies could be developed. Depending on the patient’s condition and other circumstances,
such as the assistive device potential, the solutions could be more focused on rehabilitation or
just on giving autonomy to the patient.





Predicting Human Motion Assisted by Wearable Hybrid Devices That Combine Robotics and
Neuroprostheses pàg. 49

Acknowledgments
Firstly, Iwould like to expressmy sincere gratitude towardsmy supervisors, Albert PeiretGimenez
and Josep Maria Font Llagunes. This thesis would have been impossible without their guiding,
support, and advice. I am very grateful for the opportunity given to do this project.

I alsowant to thank the BIOMECgroup, for the help and insights provided during themeetings.





Predicting Human Motion Assisted by Wearable Hybrid Devices That Combine Robotics and
Neuroprostheses pàg. 51

Bibliografia
[1] ABLE, ABLE Human Motion, Available at: https://www.ablehumanmotion.com/es/

exoesqueleto-able/ (Accessed 19 June 2021)

[2] Alizadeh Arsalan, Dyck Scott Matthew, Karimi-Abdolrezaee Soheila, Traumatic Spinal
Cord Injury: An Overview of Pathophysiology, Models and Acute Injury Mechanisms, Frontiers
in Neurology, Volume 10, 2019, Page 282, ISSN 1664-2295, DOI: 10.3389/fneur.2019.00282

[3] Andersson, J.A.E., Gillis, J., Horn, G., CasADi: a software framework for nonlinear optimiza-
tion and optimal control, Math. Prog. Comp. 11, Pages 1–36, 2019, DOI: 10.1007/s12532-018-
0139-4

[4] API: OpenSim, InverseKinematicsTool Class Reference, Available at: https://simtk.
org/api_docs/opensim/api_docs/classOpenSim_1_1InverseKinematicsTool.html#
details (Accessed 13 August 2021)

[5] CasADi, CasADi, Available at: https://web.casadi.org/ (Accessed 16 August 2021)

[6] Christopher L. Dembia, Nicholas A. Bianco, Antoine Falisse, Jennifer L. Hicks, Scott
L. Delp, OpenSim Moco: Musculoskeletal optimal control, bioRxiv 839381y, 2019, DOI:
10.1101/839381

[7] De Groote, F., Kinney, A.L., Rao, A.V., Evaluation of Direct Collocation Optimal Control
Problem Formulations for Solving the Muscle Redundancy Problem, Ann Biomed Eng 44, Pages
2922–2936, 2016, DOI: 10.1007/s10439-016-1591-9

[8] Harra R. Sandrow-Feinberg, John D. Houlé, Exercise after spinal cord injury as an agent for
neuroprotection, regeneration and rehabilitation, Brain Research, Volume 1619, Issue 12, 2015,
Pages 12-21, ISSN 0006-8993, DOI: j.brainres.2015.03.052

[9] Hartmann, Matthias Kreuzpointner, Florian Haefner, R Michels, Hartmut Schwirtz,
A Haas, Johannes-Peter, Effects of Juvenile Idiopathic Arthritis on Kinematics and Kinetics
of the Lower Extremities Call for Consequences in Physical Activities Recommendations, HIN-
DAWI, International journal of pediatrics, 2010, DOI: 10.1155/2010/835984

[10] H.Hatze, The meaning of the term ‘biomechanics’, ELSEVIER, Journal of Biomechanics,
Volume 7, Issue 2, 1974, Pages 189-190, DOI: 10.1016/0021-9290(74)90060-8

[11] John T. Betts, Practical Methods for Optimal Control and Estimation Using Nonlinear Program-

https://www.ablehumanmotion.com/es/exoesqueleto-able/
https://www.ablehumanmotion.com/es/exoesqueleto-able/
https://doi.org/10.3389/fneur.2019.00282
https://doi.org/10.1007/s12532-018-0139-4
https://doi.org/10.1007/s12532-018-0139-4
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1InverseKinematicsTool.html#details
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1InverseKinematicsTool.html#details
https://simtk.org/api_docs/opensim/api_docs/classOpenSim_1_1InverseKinematicsTool.html#details
https://web.casadi.org/
https://doi.org/10.1101/839381
https://doi.org/10.1007/s10439-016-1591-9
https://doi.org/j.brainres.2015.03.052
https://doi.org/10.1155/2010/835984
https://doi.org/10.1016/0021-9290(74)90060-8


pàg. 52 Bachelor Thesis - Berta Pons Vilà

ming, 2010, ISBN 978-0-89871-688-7, DOI: 10.1137/1.9780898718577

[12] K. Mombaur, Optimal Control for Applications in Medical and Rehabilitation Technology:
Challenges and Solutions, Advances in Mathematical Modeling, Optimization and Optimal
Control, Springer Optimization and Its Applications 109, 2016, DOI: 10.1007/978-3-319-
30785-55

[13] Maryam Khamar, Mehdi Edrisi, Mohsen Zahiri, Human-exoskeleton control simulation,
kinetic and kinematic modeling and parameters extraction, MethodsX, Volume 6, 2019, Pages
1838-1846, DOI: 10.1016/j.mex.2019.08.014

[14] Michael J. DeVivo DrPhH, Bette K. Go BA Amie B. JacksonMD,Overview Of The National
Spinal Cord Injury Statistical Center Database, The Journal of Spinal Cord Medicine, Volume
25, Issue 4, 2002, Pages 335-338, DOI: 10.1080/10790268.2002.11753637

[15] Mukund Srivastava, Mudit Srivastava, Piyush Sagar, Mamatha T.G, Simulation of human
gait for design of lower extremity exoskeletons – A review, Materials Today: Proceedings,
Volume 44, Part 6, 2021, Pages 4485-4491, DOI: 10.5772/19977

[16] Nuno A. Silva, Nuno Sousa, Rui L. Reis, António J. Salgado, From basics to clinical: A
comprehensive review on spinal cord injury, Progress in Neurobiology, Volume 114, 2014,
Pages 25-57, ISSN 0301-0082, DOI: 10.1016/j.pneurobio.2013.11.002

[17] OpenSim,OpenSim: MocoGoal Class Reference, Available at: https://opensim-org.github.
io/opensim-moco-site/docs/0.4.0/class_open_sim_1_1_moco_goal.html (Accessed
16 August 2021)

[18] OpenSim Documentation, Inverse Kinematics, Available at: https://simtk-confluence.
stanford.edu:8443/display/OpenSim/Inverse+Kinematics (Accessed 13 August 2021)

[19] OpenSim Documentation, Musculoskeletal Models, Available at: https://
simtk-confluence.stanford.edu:8443/display/OpenSim/Musculoskeletal+Models/
#MusculoskeletalModels-OpenSimCoreModels (Accessed 30 March 2021)

[20] OpenSim Documentation, Scaling, Available at: https://simtk-confluence.stanford.
edu:8443/display/OpenSim/Scaling (Accessed 13 August 2021)

[21] OpenSim Moco, DeGrooteFregly2016Muscle Class Reference, Available at: https:
//opensim-org.github.io/opensim-moco-site/docs/0.2.0/class_open_sim_1_1_
de_groote_fregly2016_muscle.html (Accessed 13 August 2021)

https://doi.org/10.1137/1.9780898718577
https://doi.org/10.1007/978-3-319-30785-5_5
https://doi.org/10.1007/978-3-319-30785-5_5
https://doi.org/10.1016/j.mex.2019.08.014
https://doi.org/10.1080/10790268.2002.11753637
https://doi.org/10.5772/19977
https://doi.org/10.1016/j.pneurobio.2013.11.002
https://opensim-org.github.io/opensim-moco-site/docs/0.4.0/class_open_sim_1_1_moco_goal.html
https://opensim-org.github.io/opensim-moco-site/docs/0.4.0/class_open_sim_1_1_moco_goal.html
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Inverse+Kinematics
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Inverse+Kinematics
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Musculoskeletal+Models/#MusculoskeletalModels-OpenSimCoreModels
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Musculoskeletal+Models/#MusculoskeletalModels-OpenSimCoreModels
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Musculoskeletal+Models/#MusculoskeletalModels-OpenSimCoreModels
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Scaling
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Scaling
https://opensim-org.github.io/opensim-moco-site/docs/0.2.0/class_open_sim_1_1_de_groote_fregly2016_muscle.html
https://opensim-org.github.io/opensim-moco-site/docs/0.2.0/class_open_sim_1_1_de_groote_fregly2016_muscle.html
https://opensim-org.github.io/opensim-moco-site/docs/0.2.0/class_open_sim_1_1_de_groote_fregly2016_muscle.html


Predicting Human Motion Assisted by Wearable Hybrid Devices That Combine Robotics and
Neuroprostheses pàg. 53

[22] OpenSim Moco, OpenSim Moco Documentation, Available at: https://opensim-org.
github.io/opensim-moco-site/docs/0.3.0/index.html (Accessed 13 August 2021)

[23] Pallarès, R., Optimal Control Prediction of Dynamic Consistent Walking Motions, Available
at: https://upcommons.upc.edu/handle/2117/111033 (Accessed 8 April 2021)

[24] Perry, Jacquelin, Gait Analysis: Normal and Pathological Function, SLACK Incorporated,
1992, ISBN 978-1-55642-192-1

[25] Phillip Correia Copley, Aimun A.B. Jamjoom, Sadaquate Khan, The management of trau-
matic spinal cord injuries in adults: a review, Orthopaedics and Trauma, Volume 34, Issue 5,
2020, Pages 255-265, ISSN 1877-1327, DOI: 10.1016/j.mporth.2020.06.002

[26] Philip E. Gill, Walter Murray, and Michael A. Saunders, CasADi: a software framework
for nonlinear optimization and optimal control, SIAM Rev. 47(1), Pages 99–131, 2006, DOI:
10.1137/S0036144504446096

[27] Sancho-Bru, Joaquín and Pérez-González, Antonio and Mora, Marta and León,
Beatriz and Vergara, Margarita and Iserte, Jose and Rodríguez-Cervantes, Pablo-Jesús
and Morales, Antonio, Towards a Realistic and Self-Contained Biomechanical Model of the
Hand, Theoretical Biomechanics, 2011, Pages 212–240, ISBN 978-953-307-851-9, DOI:
10.5772/19977

[28] Seth A, Hicks JL, Uchida TK, Habib A, Dembia CL, Dunne JJ, OpenSim: Simulating mus-
culoskeletal dynamics and neuromuscular control to study human and animal movement, PLoS
Comput Biol 14(7): e1006223, 2018, ISSN 0006-8993, DOI: 10.1371/journal.pcbi.1006223

[29] Sheperd Center, Spinal Cord Injury Details: Levels of Injury, 2020, Available at:
https://www.spinalinjury101.org/details/levels-of-injury (Accessed 4 Au-
gust 2021)

[30] SimTK, OpenSim Moco, Available at: https://simtk-confluence.stanford.edu:
8443/display/OpenSim/Scaling (Accessed 13 August 2021)

[31] Singh A, Tetreault L, Kalsi-Ryan S, Nouri A, Fehlings M, Global prevalence and incidence
of traumatic spinal cord injury, Clin Epidemiol, Volume 6, 2014, Pages 309—331, DOI:
10.2147/CLEP.S68889

https://opensim-org.github.io/opensim-moco-site/docs/0.3.0/index.html
https://opensim-org.github.io/opensim-moco-site/docs/0.3.0/index.html
https://upcommons.upc.edu/handle/2117/111033
https://doi.org/10.1016/j.mporth.2020.06.002
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.5772/19977
https://doi.org/10.1371/journal.pcbi.1006223
https://www.spinalinjury101.org/details/levels-of-injury
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Scaling
https://simtk-confluence.stanford.edu:8443/display/OpenSim/Scaling
https://doi.org/10.2147/CLEP.S68889


pàg. 54 Bachelor Thesis - Berta Pons Vilà

[32] Steven C. Cramer, Lindsey Lastra, Michael G. Lacourse, Michael J. Cohen, Brain motor
system function after chronic, complete spinal cord injury, Brain, Volume 128, Issue 12, 2005,
Pages 2941–2950, DOI: 10.1093/brain/awh648

[33] UMBERGER BRIAN, KARIN G.M. GERRITSEN PHILIP E. MARTIN, A Model of Human
Muscle Energy Expenditure, Computer Methods in Biomechanics and Biomedical Engi-
neering, Volume 6:2, Pages 99-111, DOI: 10.1080/1025584031000091678

[34] Wächter, A., Biegler, L., On the implementation of an interior-point filter line-search algo-
rithm for large-scale nonlinear programming, Math. Program 106, Pages 25–57, 2006, DOI:
10.1007/s10107-004-0559-y

[35] World Health Organization, Spinal Cord Injury, 2013, Available at:
https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury (Accessed 4
August 2021)

[36] Yi-Chung Lin, Marcus G. Pandy, Three-dimensional data-tracking dynamic optimization
simulations ofhuman locomotion generated by direct collocation, Journal of Biomechanics,
Volume 59, May 2017, DOI: 10.1016/j.jbiomech.2017.04.038

https://doi.org/10.1093/brain/awh648
https://doi.org/10.1080/1025584031000091678
https://doi.org/10.1007/s10107-004-0559-y
https://www.who.int/news-room/fact-sheets/detail/spinal-cord-injury
https://doi.org/10.1016/j.jbiomech.2017.04.038

	Introduction
	Motivation
	Objectives
	Project Scope

	Theoretical Background
	Biomechanics of human motion
	Gait cycle
	Analysis of human motion
	Optimal Control Problem
	Spinal Cord Injury
	Assistive devices

	Methodology
	OpenSim
	Biomechanical Model
	Bodies
	Joints
	Forces

	Experimental Data
	Scaling
	OpenSim Moco
	Inverse Kinematics
	Tracking Optimization

	Results and Discussion
	Case 1: Walking with Exoskeleton
	Case 2: Walking with Neuroprosthesis
	Case 3: Hybrid Assisted Walking

	Project Impact
	Social Impact
	Environmental Impact
	Economic Impact

	References

