
Improving the Energy Efficiency of the
Graphics Pipeline by Reducing Overshading

David Corbalán-Navarro1, Juan L. Aragón1, Mart́ı Anglada2, Enrique de Lucas3,
Joan-Manuel Parcerisa2 and Antonio González2

Resumen— The most common task of GPUs is to
render images in real time. When rendering a 3D sce-
ne, a key step is determining which parts of every
object are visible in the final image. There are dif-
ferent approaches to solve the visibility problem, the
Z-Test being the most common in modern GPUs. A
main factor that significantly penalizes the energy ef-
ficiency of a GPU, especially in the mobile arena, is
the so-called overshading, which happens when a por-
tion of an object is shaded and rendered but finally
occluded by another object. This useless work results
in a waste of energy, however, the conventional Z-Test
only eliminates a fraction of it.

In this paper we present a novel microarchitectural
technique, the Ω-Test, to drastically reduce oversha-
ding on a Tile-Based Rendering (TBR) architecture.
The proposed approach leverages frame-to-frame co-
herence by taking advantage of the costly and valuable
calculations made in previous frames. In particular,
we propose to reuse information from the Z-Buffer of
the previous frame, which is currently discarded. We
make the observation that due to the existing frame-
to-frame coherence, the Z-Buffer of a frame will ha-
ve a high similarity in many areas with that of the
previous frame. As a result, the proposed technique
avoids many costly computations and off-chip memory
accesses. Our experimental evaluation shows that Ω-
Test reduces the average energy consumption of the
overall GPU/Memory system by 15.7 % and the runti-
me of the evaluated benchmarks by 10.6 % on average.

Palabras clave— Graphics processors, Mobile pro-
cessors, Portable devices, Hardware architecture,
Processor architecture, Energy-aware systems, Low-
power design, Hidden line/surface removal, Visibility
determination.

I. Introduction

Mobile devices, such as smartphones, tablets or
smartwatches, have undergone a major evolution
over the recent years. Users increasingly demand mo-
re complex applications on such devices, which requi-
res higher performance designs at the expense of ne-
gatively impacting their autonomy. As a consequen-
ce, the energy efficiency is one of the most impor-
tant aspects in mobile devices [1], [2], especially for
graphics applications such as modern 3D games, for
which visual quality, richer graphics details, higher
screen resolutions, and smooth movements are cru-
cial for the best user experience.

One of the most energy-consuming components on
current SoCs is the GPU (Graphics Processing Unit)

1Dpto. de Ingenieŕıa y Tecnoloǵıa de Computado-
res, Universidad de Murcia, e-mail: {dcorbalan,
jlaragon}@ditec.um.es

2Departament d’Arquitectura de Computadors, Universi-
tat Politècnica de Catalunya, e-mail: {manglada, jmanel,
antonio}@ac.upc.edu

3Esperanto Technologies, Mountain View, CA, US, e-mail:
enrique.delucas@imgtec.com

Fragment ProcessorsDRAM

Vertex
ProcessorsOther

L2
Fig. 1: Power breakdown for the baseline GPU employed in
our experiments.

[3], [4]. To provide a better insight, Figure 1 shows
the power breakdown for a conventional Tile-Based
Rendering (TBR) architecture. In particular, both
the accesses to main memory and the activity of the
Fragment Processors are by far the two major con-
tributors, responsible for 53 % and 42 % respectively
of the overall GPU power whereas the Vertex Pro-
cessors incur a very minor energy consumption (2 %)
[5]. Nevertheless, the fragments processed in a scene
by the Fragment Processors outnumber the amount
of primitives by two orders of magnitude (our experi-
mental results show a ratio of 125:1 for the evaluated
benchmarks).

Given the huge number of fragments to be proces-
sed in every frame and the high computational cost
of rendering one single fragment, it is crucial not to
waste precious resources on shading fragments that
will be later occluded by other primitives. For that
reason, visibility determination is a fundamental task
of the graphics pipeline in order to detect visible and
occluded surfaces [6]. In particular, fragments that
appear behind others, for a given camera viewpoint,
are not visible in the final scene. The solution to the
visibility problem is not unique and multiple approa-
ches can be found in the literature [7], [8], [9] being
the so-called Depth Test (also known as Z-Test) [10],
which performs a visibility test at pixel granularity,
the most widely implemented technique in contem-
porary GPUs.

While using the Depth Test ensures the correct vi-
sibility determination regardless of the order in which
the scene is processed, it does not guarantee that

1



300 cam s3d hwl vcs maz bbr cou gra tru avg
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Shading Overshading

F
ra

gm
en

ts
 (

%
)

Fig. 2: Overshading factor for different games.

each pixel in the final screen is not rendered mul-
tiple times. This problem is commonly referred to
as overshading, which is very common in games with
complex scenes or poorly optimized. Overshading oc-
curs when more than one opaque fragment is drawn
in the same position on the screen, being only visible
the closest to the camera viewpoint. Overshading is
undesirable as it represents useless activity, and an
early and accurate visibility determination can signi-
ficantly improve performance and reduce the energy
consumption. Ideally, the maximum potential that
can be reached is to draw a single fragment per pixel
(or screen position).

However, mobile GPUs (that commonly imple-
ment a TBR architecture [11]) heavily suffer from
overshading since once the geometry stage is com-
plete, all the primitives in a tile are rasterized and
the fragments, before being rendered, perform an
early depth test on-the-fly. In a worst-case scenario,
in which primitives arrive in a back-to-front order,
the Early Depth Test stage cannot avoid the rende-
ring of any occluded fragments.

To provide an insight of the magnitude of this pro-
blem, Figure 2 shows the amount of overshading in a
TBR architecture for a set of modern games (Section
V will detail the evaluation methodology). In this
work we define overshading as the fraction of frag-
ments that are finally occluded over the total amount
of processed fragments. It can be observed that 35 %
of the shaded fragments on average are eventually
occluded, with some games such as Counter Stri-
ke, Gravity, Sniper3D and Hot Wheels reaching an
overshading factor around or over 50 %.

In this paper we propose the Ω-Test1, a novel
micro-architectural technique that attacks oversha-
ding and drastically reduces the amount useless work
performed by the Fragment Processors. Our ap-
proach relies on exploiting the frame-to-frame cohe-
rence [12], [13] by reusing information from the Z va-
lues of the previous frame. Because of the small diffe-
rences from frame to frame, we use information from
the previous one to speculatively detect which frag-
ments are occluded, instead of using only informa-
tion from the current frame’s Z-Buffer. Note, howe-
ver, that our technique does not introduce any error

1Named this way making an analogy with the Greek alpha-
bet, where Ω is the last letter, analogously as Z is in the Latin
alphabet.

in the final rendered image since fragments that are
wrongly identified as occluded are later detected and
rasterized.

Summarizing, the main contribution of this work is
proposing a mechanism aimed at effectively reducing
the overshading factor within a scene, decreasing the
number of fragments processed as well as the costly
memory accesses to textures that they would require.
Hence, improving the energy efficiency of the GPU
while decreasing the execution time. Our experimen-
tal results, for a commercial set of benchmarks, show
the Ω-Test reduces the overall energy consumption of
the GPU/Memory system by 15.7 % and achieves an
average speedup of 1.106x.

The rest of the paper is organized as follows. Sec-
tion II provides some background on the graphics
pipeline of mobile GPUs and how the visibility pro-
blem is commonly solved. Sections III and IV des-
cribe the proposed Ω-Test approach and its imple-
mentation details. Section V describes our evaluation
methodology while Section VI quantifies and analy-
zes the achieved performance and energy efficiency.
Section VII reviews some relevant literature and, fi-
nally, Section VIII summarizes the main conclusions
of the work.

II. Background

A. Tile-Based Rendering Architectures

The architecture of modern GPUs can be catego-
rized into two main classes depending on how they
process a scene: Immediate Mode Rendering (IMR)
and Tile Based Rendering (TBR). While IMR pro-
cesses and renders all of the primitives of a scene at
once and it is the common design choice for high-
end GPUs, TBR is aimed at improving the energy
efficiency, and thus, it is commonly implemented in
mobile GPUs. The key feature of TBR is that the
screen area is divided in small regions of fixed size
called tiles. This partitioning allows the tiles to be
individually rendered and benefits from the use of
much smaller on-chip buffers for storing depths and
output color values, which dramatically reduces the
amount of accesses to main memory and the energy
consumption of the system.

Since our proposal targets mobile GPUs, TBR is
the baseline architecture we have chosen for this
work. Figure 3 shows the graphics pipeline of a TBR
architecture, which is composed of two fundamental
stages: the Geometry Pipeline and the Raster Pipe-
line. Both stages are serialized since there are strong
dependencies between them, and the Tiling Engine
acts as a mediator in between.

The Geometry Pipeline starts with a memory ac-
cess stage to fetch the vertices of the scene. These
vertices are transformed by geometric operations and
assembled into primitives, typically triangles, which
undergo a clipping process: primitives that lay out of
the visible part of the scene (i.e., the part that the
camera captures in its volume of vision also known as
frustum view) are removed and/or cut accordingly.
Additional steps such as backface culling can also be

2



Tile Cache

Polygon
List

Builder

Tile
Fetcher

Z-Test
Fragment

Processors

Z-Buffer
Texture
Cache

Raster Pipeline

Vertex
Cache

Tiling EngineGeometry Pipeline

Vertex
Fetcher

Primitive
Assemby

Vertex
Processors

Rasterizer Blending

Color
Buffer

Fig. 3: Simplified version of the graphics pipeline for a TBR architecture.

applied to further reduce the number of primitives to
be considered. Next, the Tiling Engine sorts primiti-
ves into tiles, i.e., each tile contains all the primitives
that totally or partially fall inside the tile. These pri-
mitive lists are stored in memory and are the input
data of the Raster Pipeline.

The Tiling Engine is in charge of scheduling the
tiles to be processed by the Raster Pipeline (also re-
ferred to as Raster Unit). Note that multiple Raster
Units can be used to process different tiles in para-
llel. The processing of a tile consists of several stages.
First, the rasterizer tests the primitives at pixel gra-
nularity to determine the pixels covered by them. If
a pixel is covered by a primitive, the rasterizer inter-
polates the value of the primitive’s attributes at the
pixel’s position.

Fragments are grouped into quad fragments that
are sent to the next stage of the pipeline, the Depth
Test or Z-Test. The Z-Buffer stores the depths of
all the fragments processed so far. To determine if
the current fragment is occluded, its depth is com-
pared with that stored in the same position of the Z-
Buffer. The resulting visible quad fragments are sent
to the Fragment Stage, which contains the Fragment
Processors. A Fragment Processor executes a sha-
der program which computes the color of each quad
fragment. The resulting colors are stored in the Co-
lor Buffer. A Blending Unit allows for transparency
effects by mixing the resulting colors with those al-
ready present in same Color Buffer position.

B. Visibility Determination

As cited earlier, the most common approach to de-
termine the visibility is the Depth Test, performed
at fragment granularity. Modern GPUs typically im-
plement this test in a stage called Early Depth Test
by using a Z-Buffer that stores a value for each po-
sition of the visible area. Each of these values is the
depth of the nearest fragment of that position. Thus,
when a fragment is going to be processed, this sta-
ge checks whether it is closer to the camera than
the fragment already in the same position by com-
paring both depths. If the current fragment is further
(deeper) than the existing one in the Z-Buffer, it is
discarded, avoiding the costly shading and texturing
process. Otherwise, the current fragment’s depth is
kept in the Z-Buffer (overwriting the previous depth
value) meaning that the current fragment is the clo-
sest to the camera so far. Note the Z-Buffer for a ti-
le is built on-the-fly, therefore, the Z-Test approach
can effectively discard fragments when they arrive in
a front-to-back order (i.e., later fragments that fall
behind a closer one are discarded). However, it is

totally ineffective when fragments arrive in a back-
to-front order. In any case, the major advantage of
the Depth Test is that it always leads to the correct
final image regardless of the order in which fragments
arrived to the Fragment Processors. The main draw-
back, on the other hand, is that it cannot avoid the
high amount of overshading, as it was shown in Fi-
gure 2.

III. The Ω-Test Approach

The proposed Ω-Test slightly modifies the beha-
vior of the Early Depth Test stage, where the visibi-
lity of fragments is determined. After performing the
original Z-Test, and updating the Z-Buffer if neces-
sary, a second test is performed but this time using
an Ω-Buffer, a new structure similar to the Z-Buffer
which holds the Z values corresponding to the pre-
vious frame. If the Ω-Test is passed, the fragment can
proceed to shading. Otherwise, the fragment is dis-
carded as we assume it will be occluded in the current
frame, as it was indeed occluded in the previous fra-
me (according to the contents of the Ω-Buffer which
corresponds to, actually, the Z-Buffer of the previous
frame).

Our technique reduces overshading with respect to
TBR since each fragment has to pass a second test.
This Ω-Test can be seen as a backup test for the cases
when the traditional Z-Test does not work efficiently
(e.g., when primitives arrive in a back-to-front or-
der): we still have a second resort of using the final
Z depth from the previous frame. Due to frame-to-
frame coherence, if a fragment was occluded in the
previous frame, it is highly likely that it will also
be occluded in the current frame. However, this ap-
proach does not guarantee that fragments discarded
in the Ω-Test will not be visible in the final ima-
ge. It might happen that a fragment that does not
pass the Ω-Test is finally visible (e.g., an object that
suddenly appears in front of other objects) leading
to a potential error in the tile. For such cases, our
approach implements a simple error detection and
correction mechanism right after the tile is shaded,
with a small overhead, as it will be further detailed
in Section IV-B.

A major characteristic of a TBR pipeline is that
the working unit is a tile. After finishing a tile, all
of its information is discarded, including the valua-
ble Z-Buffer. If we want to keep a tile’s Z-Buffer to
be used in the next frame, it must be stored so-
mewhere. Thus, we would need additional storage
to keep the individual Z-Buffers of every tile in a fra-
me, which could be a too large overhead. The struc-
ture used to save the information of all the Z values

3



of the entire previous frame is called Ω-Table. If we
decided to store it on on-chip buffers the required
amount of memory for a frame in Full-HD resolu-
tion (1920x1080 pixels) would be around 8 MBytes,
which would contradict the TBR philosophy that en-
courages the use of small memories for better energy
efficiency. A second solution would be to store the Ω-
Table in DRAM. The drawback of the later would be
the intensive use of memory because of the additional
transfers before and after processing each tile, resul-
ting in prohibitive energy costs (recall DRAM consu-
mes more than 50 % of the baseline GPU’s energy, as
reported in Section I). We evaluated this second solu-
tion to quantitatively measure the impact of storing
the Ω-Table in DRAM. Unfortunately, the net effect
in the overall energy consumption was negative, sin-
ce the additional DRAM accesses more than offset
the benefits coming from the overshading reduction.

To efficiently cope with the storage needs associa-
ted to our approach, while not incurring in significant
energy costs, the proposed solution consists of not
storing all the Z values from the previous frame but
a small set of representative ones. Even though this
results in a loss of information, as we will describe
next, we observed that just keeping a few represen-
tative values per tile was as efficient as keeping the
complete tile’s Z-Buffer. Obviously, there is a small
number of induced errors for not using 100 % preci-
se information but the mechanism for detecting and
correcting errors (see Section IV-B for additional de-
tails) fix them whereas the incurred overhead from
the correction phase pays off w.r.t. the energy we
save from neither using large on-chip memories nor
relying on DRAM for storing the previous frame’s
Z values. One alternative approach we have not eva-
luated is a hybrid implementation where Z-values are
stored in DRAM and an on-chip memory is used as
a cache.

There are multiple ways for compressing the Ω-
Table or selecting a set of representative values.
However, we avoided traditional compression algo-
rithms because of their hardware complexity and
energy cost. As cited before, the Ω-Test already ge-
nerates some errors from the fact it relies on depths
from the previous frame, which are later corrected,
so we do not need to be totally precise with the in-
formation to use. A fast and simple algorithm that
loses information can be more appropriate for our
purposes than a complex algorithm that compresses
without losses. Therefore, as a trade-off solution, we
decided to make use of conventional aggregate fun-
ctions (e.g., maximum, minimum, arithmetic mean)
to select the set of representative Z values. Aggregate
functions are simple to implement in hardware.

In addition to using aggregate functions, as we are
compressing a 2-dimensional array, we also define a
coarsening factor that represents the granularity le-
vel (or partitioning) we make to the Ω-Buffer. For
example, assuming tiles of 4x4 pixels, a coarsening
factor of 2x2 will break the tile down into 4 non-
overlapping squares of 2x2 pixels. Then, each of the-

Z-Buffer

max(z[*])

Ω-Buffer
Ω-Table

Fig. 4: Compression scheme overview for a 2x2 coarsening fac-
tor and considering tiles of 4x4 pixels.

2 4 8 16 2 4 8 16 2 4 8 16
min max avg

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

Visible Fragments Errors Occluded Fragments

F
ra

gm
en

ts
 (

%
)

Fig. 5: Effect of using different coarsening factors (from 2x2
to 16x16) for 3 aggregate functions (min, max, average).

se 2x2 squares will go through the aggregate fun-
ction. The result will be a matrix of 2x2 elements
containing the resulting values of the applied aggre-
gate function. Summarizing, we go from a matrix of
4x4 Z values to one of 2x2 Z values, which reduces the
required memory by a factor of 4x. To better illus-
trate this, Figure 4 depicts this compression scheme
based on using a coarsening factor followed by an
aggregate function, assuming tiles of 4x4 pixels.

We have evaluated the effect of using different
coarsening factors along with different aggregate fun-
ctions (maximum, minimum and average). Figure 5
shows a preliminary study of the error rate with res-
pect to the total amount of shaded fragments (visible
and occluded). This preliminary study quantifies the
errors that appear for the different compression sche-
mes used for the Ω-Buffer.

Let us discuss first how the different aggregate fun-
ctions behave. The minimum function keeps the frag-
ments closer to the camera, so the Ω-Test is more res-
trictive and ends up discarding more fragments than
needed. Overshading is reduced at the cost of genera-
ting too many errors, as it can be seen in Figure 5. On
the other hand, using the maximum function makes
the Ω-Test more permissive since we compare against
the deepest Z of the tile. Overshading is not reduced
as much but it produces as few errors as possible.
Finally, using the average as the aggregate function
leads to a trade-off between errors and overshading.
As our goal is to generate as few errors as possible,
due to the high overhead of the correction phase, we
have chosen the maximum as the aggregate function
for the Ω-Buffer, i.e., all the Z values of a group will
be represented by the depth of the visible fragment
most distant to the camera.

Regarding the coarsening factor, Figure 5 also
shows that even going up to the highest one (16x16)
does not incur a significant potential loss. As a re-

4



Tabla I: Ω-Table storage needs for different coarsening factors,
assuming a 1280x720 screen resolution.

Coarsening level Ω-Table size

1x1 3.51 MiB
2x2 900 KiB
4x4 225 KiB
8x8 56.25 KiB
16x16 14.06 KiB

Tile

Cache

Tile

Fetcher
Z-Test

Fragment

Stage
Rasterizer

Corrector Z-BufferΩ-BufferE-Buffer

Bypass

Primitive-IDs
Queue

Positions-XY
Queue

Fig. 6: Ω-Test implementation on a TBR architecture. Darke-
ned boxes correspond to added stuff over the baseline design.

sult, we have chosen the highest coarsening factor
(16x16) which in practice means that each tile will
represented for only one Z value, in particular the
maximum one. This supposes a reduction by a fac-
tor of 256x in the storage needs without hardly pe-
nalizing the potential. Table I shows the memory re-
quired by the Ω-Table depending on the coarsening
factor for a common HD screen resolution (1280x720
pixels). As an example, assuming tiles of 16x16 pi-
xels, there will be 80x45 tiles in the frame, or a total
of 3600 tiles, each needing 4 Bytes for the aggregated
Z value. This totals an amount of 14 KiB for storing
the Ω-Table for the whole frame, which can be easily
implemented as an on-chip buffer.

IV. Ω-Test Implementation Details

The proposed Ω-Test is mainly applied in the Early
Depth Test stage of the graphics pipeline. This test is
similar to the Z-Test, but instead of getting the depth
to compare with from the Z-Buffer, it is provided
by the Ω-Buffer. Figure 6 shows the modifications
made to the base architecture (with a darker color
to differentiate them) to implement our proposal.

The main advantage of our technique is that it
starts with a speculative version of the Z-Buffer, ca-
lled the Ω-Buffer, so it can remove many more frag-
ments. The downside is that it might lead to some
mistakes. They happen, for instance, when a primi-
tive moves away from the camera. A particular frag-
ment of such primitive will have a Z value in frame
i which is kept in the Ω-Table to be used in frame
i+ 1. In this particular case, since the fragment has
moved away (resulting in a Z’ greater greater than
Z) it will pass the regular Z-Test (initialized to −∞).
However, it will fail the Ω-Test since the object has
moved back (Z’ ¿Z).

A second case that might lead to potential errors is
the lateral movement of an object. In this case, as the
object moves (e.g., from left to right) it hides a part
of the background with its right-side border while
making visible the background behind its left-side
border. In this case, fragments from the background
that were occluded in frame i − 1 become visible in

frame i, leading to potential errors in the final image.

With the aim of mitigating the amount of errors
coming from the first case, i.e., objects that move
away from the camera across consecutive frames, we
use a technique which consists of applying a Delta
(δ) margin to the Ω depths, as we will explain in
next Section IV-A.

Finally, any remaining error, either coming from
lateral movements or as a result of using an aggre-
gated Z value for representing a whole tile, is solved
by adding a final correction step detailed in Section
IV-B.

A. Reducing Errors: Delta (δ) Margin

It is very common to have scenes in which most of
the Z-Buffer remains intact. In this case, our techni-
que acts in an ideal way because it does not produce
errors, nor does it draw unnecessary fragments. Ho-
wever, there are other scenes in which objects move,
not necessarily affecting all the tiles in a frame but
a fraction of them. As cited before, a particular ty-
pe of movement that might potentially lead to errors
happen when objects move away from the camera.

To be able to tolerate such movements while re-
ducing the amount of potential errors, we include a
small safety margin for the Ω-Table, called delta (δ)
margin. By doing this, we relax the Ω-Test condition
since it is equivalent to slightly moving the depths of
all the fragments a bit further. The rationale behind
this δ margin is to be more permissive by not eli-
minating fragments that belong to objects that have
slightly moved away from one frame to the next. By
using this safety margin, the Ω-Test becomes more
flexible and incurs in less errors. On the other hand,
the amount of overshading is not significantly hurt
because this δ margin is very small.

In essence, we are trading errors for overshading.
I.e,. the δ margin helps reducing the amount of
errors at the expense of not being able to avoid some
overshading. To better understand the effect of using
this safety margin, we have analyzed a wide range
of δ values and measured how the amount of errors
and the overshading factor are affected. It can be
observed in Figure 7 that as we increase δ, it allows
for more fragments to pass the Ω-Test, resulting in
higher overshading. However, the number of errors is
reduced. Contrarily, smaller δ values give less mar-
gin to depth changes in the Ω-Buffer, causing more
errors but reducing overshading. Figure 7 shows that
the best δ is 0.0005 for many games (recall Zs are
normalized in the range [0,1] where 0 corresponds to
the camera viewpoint and 1 represents the infinite).
Note also that frame-to-frame coherence has a sig-
nificant influence on δ, because the more coherence
the smoother the movements will be and, therefore,
smaller δ values will suffice.

However, using a static δ for all the games does not
provide the best trade-off, given the high variability
that can be found in games. To cope with this inter-
frame variability, we have implemented a very simple
dynamic scheme that defines a δ value for each fra-

5



Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

Ba
se

lin
e

0,
5

0,
05

0,
00

5
0,

00
05 0

dy
n

30
0

ca
m s3
d

hw
l

vc
s

m
az bb

r

co
u

gr
a

tr
u

0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %
Shading Errors Overshading

F
ra

gm
en

ts
 (

%
)

Fig. 7: Study of the ratio overshading/errors for several static δ margins (0.5, 0.05, 0.005, 0.0005 and 0). The last bar (dyn)
corresponds to the dynamic δ implementation.

me, so that this safety margin is adapted depending
on whether the objects within a frame move away or
not. First, we made an experimental study to quan-
tify the cost of correcting an error, and we measured
that it is 3x higher than shading a fragment, so the
adaptive scheme prioritizes reducing the amount of
induced errors.

The adaptive technique changes δ based on frame-
level overshading/error ratios. We define a cost fun-
ction (Equation 1) whose inputs are the number of
overshaded fragments and errors. In (1) wo is the
weighted cost associated to overshading and we is
the weighted cost associated to errors, always spea-
king in terms of energy. Finally, o and e represent
the per-frame amount of overshading and errors.

cost(o, e) = wo ∗ o+ we ∗ e (1)

The scheme uses a table of eight δ values (0.0001,
0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5); an index
pointing to the current δ, a variable that indicates in
which direction we move this index, and two global
counters that account for the number of errors and
overshading for the whole frame. The initial value for
δ is set to 0.0005 (since it was the best static δ). The
adaptive scheme operates as follows. When finishing
rendering a frame the cost function (1) is evaluated
and compared with that of the previous frame (held
in a global register). If the current cost is higher,
we change the direction of the index of the δ table,
otherwise we move the index in the direction shown
by the cited variable. If reaching the table limits, the
index saturates.

To sum up, the dynamic δ scheme is able to ef-
fectively reduce the fraction of errors as intended.
In particular, it can be observed in Figure 7 that
the average fraction of errors (over the total amount
fragments) is just 5.1 % thanks to using the dynamic
δ scheme.

B. Error Detection and Correction

As the Ω-Test might lead to discarding a fragment
which is actually visible in the final image, we need a
mechanism to detect and correct mistakes. Mistakes
are made in the Early Depth Test stage where it is
checked whether a fragment must proceed or not to
the Fragment Processors to be shaded. A fragment
that passes the Z-Test but not the Ω-Test could be
a potential error. However, note that this fragment
can be hidden by another visible fragment rendered
on top of it. In this case, the Ω-Test has avoided
an undesired overshading case, saving some useless
work. However, if no fragment is ever written in that
position of the tile, a gap would be left in the final
Color Buffer. Obviously, these induced gaps cannot
be propagated to the Color Buffer and a corrective
action must take place.

To keep track of the potential errors, some additio-
nal data structures are needed. In particular, we use
a two-dimensional array called E-Buffer, with the sa-
me dimensions of a tile, where each cell represents a
fragment of the tile and stores a primitive’s identifier.
Once the Z-Test is passed, we perform the Ω-Test. If
the Ω-Test fails, we store the primitive ID in its co-
rresponding position in the E-Buffer. This indicates
the primitive might cause an error in that position.
Otherwise, if the Ω-Test successes, we store in the
E-Buffer an special ID (−1 in our case). Therefore, a
final ID of −1 indicates that there is no error in that
position. A global counter is also needed. This global
counter is increased when a primitive ID is stored in
the E-Buffer (overwriting a −1); and it is decreased
when a −1 is stored (overwriting a valid primitive
ID).

When all primitives have been rasterized and the
Early Depth Test has no more fragments to process,
the E-Buffer is in a final state and identifies where
the final errors are located. At this point, the afore-
mentioned global counter is checked, activating the

6



Corrector

6 63 4

E-Buffer

0 01 16

1 00 03

0 10 04

ID Mask

Positions-XY
Queue

0 0
0 0 0
0 0 0

1 1
1
1

X Y
X Y
X Y

MaskPos

Primitive-IDs
Queue

4 1
3 1
6 1

ID Count

1 read

2 decompose quads
3 insert

4 insert

Fig. 8: Overview of the Correction phase.

correction mechanism if greater than 0 (i.e., the E-
Buffer contains at least one error). It is important to
note that we have to wait until all fragments have
passed through the Early Depth Test stage.

To better illustrate the process, Figure 8 shows
how the Corrector works. First, it reads quad frag-
ments from the E-Buffer (step 1○). For each different
primitive ID of the quad, a visibility mask whose ac-
tive bits are the positions it occupies within the quad
is generated (step 2○). This visibility mask determi-
nes which fragments of the quad are valid. Thus, a
quad can generate four visibility masks if its four Pri-
mitive IDs are different (worst case). These masks
along with the quad position are inserted into the
Positions-XY queue (step 3○). If all the valid primi-
tives of the quad (according to the visibility mask)
are equal (best case, and fortunately the most com-
mon) an internal counter is incremented, indicating
the number of quads from the same primitive. When
a different primitive is found, a new entry is inserted
into the Primitive-IDs queue, containing both the ID
of the previous primitive and the value of the internal
counter (step 4○).

As soon as there is a primitive in the Primitive-
ID queue, the Tile Fetcher starts working to perform
the corrections for the current tile. Under this co-
rrection mode, the Tile Fetcher rather than querying
the Tile Cache for a new primitive, gets them from
the Primitive-ID queue. Additionally, the number of
quads of the same primitive is provided to indicate
the Rasterizer how many entries (errors) from the
Positions-XY queue will be corrected.

In the correction mode, the Rasterizer has a
slightly different behaviour as well. In particular,
only the fragments to be corrected are generated for
a given primitive. I.e., if a triangle only has one erro-
neous pixel, this is the only fragment that will be
generated. To do that, the Rasterizer calculates the
barycentric coordinates of the first fragment and the
X and Y increments. Note that the (X,Y) coordina-
tes where the error is located are obtained from the
Positions-XY queue, along with the visibility mask
(refer to Figure 8). Then, the quad fragment is sent to
the Fragment Processors for a proper shading. Also
note these quads for correction do not go through the
Early Depth Test stage because we certainly know
they are visible.

After the correction phase, the graphics pipeline
continues working as usual. When the tile is comple-
tely rendered and the Color Buffer is computed and
flushed, the pipeline is ready to start with a new tile.

Finally, there is a challenging situation that hap-
pens when the Tile Fetcher finds a transparent pri-
mitive. A primitive is considered as transparent if
its blending attribute is active, meaning that all the
fragments from this primitive have to mix their ren-
dered colors with the existing ones in the Color Buf-
fer. Our Ω-Test proposal has to deal with these cases,
otherwise, a blending error would be generated, mi-
xing the transparent fragment with a black fragment.
To overcome this situation, the correction phase is
triggered as soon as the transparent fragment arri-
ves into the Early Depth Test stage. When the co-
rrection of the errors for opaque primitives is done,
the pipeline can continue processing the transparent
fragment and the normal operation of the Tile Fet-
cher is resumed.

V. Evaluation Methodology

A. Simulator Infrastructure

We have used TEAPOT [14], a cycle-accurate si-
mulator framework for GPUs based on Mali’s Utgard
architecture [15], to obtain performance and energy
measurements. This simulator makes use of two well-
known tools: McPAT for [16] for power estimation,
and DRAMSim2 [17] for modelling DRAM and the
memory controllers. The simulator is fed with tra-
ce files that were obtained by running the bench-
marks either in a real smartphone or in an Android
Virtual Device (AVD) [18]. The OpenGL [19] tra-
ces have been obtained with GAPID [20], a graphics
debugger that allows to inspect the graphics com-
mands of animated applications. In particular, the
OpenGL trace is executed with the GAPID replay
tool (gapir) over an instrumented Gallium Softpipe
Driver [21] to obtain the final trace for TEAPOT.
Table II shows the GPU simulation parameters, re-
sembling the ARM Mali-450 GPU, that we have used
to evaluate our proposal.

B. Benchmarks

Table III shows the benchmarks we have used in
our evaluations. They correspond to games selected
based on their popularity in number of downloads in
the Google Play Store [22]. Note that we have only
considered 3D games since our technique does not
apply to 2D games.

VI. Experimental Results

Figure 9 shows the runtime speedup achieved by
the Ω-Test. We can see that the proposed technique
provides an average speedup of 10.6 %, with a ma-
xium speedup of 17.2 % for Maze 3D. Although our
technique dramatically reduces overshading, runtime
is not affected in the same proportion. This is becau-
se of the overheads to correct errors generated by the
Ω-Test and pipeline stalls to wait for that correction.
Such overheads represent, on average, around 6 % of
the total execution time.

In terms of energy consumption, as reported in
Figure 10, the Ω-Test provides average savings of

7



Tabla II: GPU Simulation Parameters.

Baseline GPU Parameters

Frequency 400 MHz
Voltage 1.0 V
Scale Integration 32 nm
Screen Resolution 1280x720
Tile Size 16x16 pixels

Main Memory

Frequency 400 MHz
Voltage 1.5 V
Latency 50-100 cycles
Bandwidth 4 B/cycle (dual channel LPDDR3)
Size 1 GiB

Queues

Vertex (Input & Output) 16 entries, 136 bytes/entry
Triangle & Tile 16 entries, 388 bytes/entry
Fragment 64 entries, 233 bytes/entry
Color 64 entries, 24 bytes/entry

Caches
All of 64 bytes/line, 2-way associativity

Vertex Cache 4 KiB, 1 bank, 1 cycle
Texture Caches (x4) 8 KiB, 1 bank, 1 cycle
Tile Cache 128 KiB, 8 banks, 1 cycle
L2 Cache 256 KiB, 8 banks, 2 cycles
Color Buffer 1 KiB, 1 bank, 1 cycle
Depth Buffer 1 KiB, 1 bank, 1 cycle

Non-programmable stages

Primitive assembly 1 triangle/cycle
Rasterizer 1 attributes/cycle
Early Z test 8 in-flight quad-fragments

Programmable stages

Vertex Processor 4 vertex processor
Fragment Processor 4 fragment processors

Ω-Test hardware

Ω-Buffer 14 KiB
Positions-XY Queue 64 entries, 13 bytes/entry
Primitive-ID Queue 64 entries, 8 bytes/entry
E-Buffer 1 KiB
Corrector 4 quad-fragments/cycle

Tabla III: Evaluated benchmarks set.

Benchmark Alias Description Downloads (M)

300 300 hack & slash 10-50
Captain America cam beat’em up 1-5
Sniper 3D Assassin s3d Shooter 100-500
Hot Wheels: Race Off hwl Racing 50-100
Vegas Crime Simulator vcs Sandbox & Crime 100-500
Maze 3D maz Labyrinth 10-50
Beach Buggy Racing bbr Racing 50-100
Counter Strike cou Shooter 10-50
Gravity gra Action 1-5
Temple Run tru Adventure arcade 100-500

15.7 %, and going up to 22.2 % in Beach Buggy Ra-
cing. Games such as Maze 3D, Vegas Crime Simu-
lator, Gravity or the aforementioned Beach Buggy
Racing get better results because of their textures
sizes. Much of the cost of overshading comes from
DRAM accesses derived from misses in the Texture
Cache. A game with small textures is more likely to
obtain a higher hit rate in the Texture Cache, the-
refore, reducing its overshading factor does not save
as many accesses to main memory. Contrarily, games
with complex, detailed and high-resolution textures,
will exhibit a lower hit rate in Texture Cache, going
more frequently to DRAM memory. Therefore, redu-
cing the overshading factor in such games will have
a much more noticeable impact.

Other benchmarks, such as 300 or Counter Strike,

300 cam s3d hwl vcs maz bbr cou gra tru avg
1

1,02

1,04

1,06

1,08

1,1

1,12

1,14

1,16

1,18

Sp
ee

d-
up

Fig. 9: Ω-Test speedup over the TBR baseline architecture.

300 cam s3d hwl vcs maz bbr cou gra tru avg
0 %

10 %

20 %

30 %

40 %

50 %

60 %

70 %

80 %

90 %

100 %

GPU DRAM

En
er

gy
 C

on
su

m
pt

io
n

Fig. 10: Ω-Test energy consumption over the TBR baseline
architecture.

obtain large energy savings (around 20 %), not be-
cause of the size or complexity of their textures, but
because of the huge volume of overshading that is ex-
posed to the baseline TBR architecture, and which
our proposal is significantly removing.

As for the area overhead, the Ω-Test involves the
use of additional hardware, as detailed in Section
IV, whose area has been measured to be 2.46 mm2,
which represents 2.3 % of the total area of the GPU.
Of all the structures introduced by the proposed Ω-
Test, the largest is the Ω-Table (with 14.06 KiB) that
translates to an area of 1.8 mm2, which represents
1.71 % of the total area of the GPU. Finally, note
that the energy consumption of the new structures
have been properly modeled and accounted for in our
experiments.

VII. Related Work

Z-Prepass [23] is a software technique capable of
eliminate overshading caused by hidden surfaces that
consists on two rendering passes. First, the entire
geometry of the scene is calculated and rasterized
with a null shader fragment, so that only the depth
values are calculated and stored in the Z-Buffer. In
the second pass, the depth values are in their final
state, which allows the Z-Test to reduce the oversha-
ding of opaque surfaces to the minimum. However,
the extra rendering pass introduces a high cost that
is only offset by greater shading savings usually only
possible on desktop applications with costly frag-
ment shaders, which makes this technique not sui-
table for mobile GPUs.

Deferred Rendering (DR) [24] is able to discard
the useless fragments of the final scene like Z-Prepass
does. To do this, a Hidden Surface Removal (HSR)

8



[25]. RE avoids rendering a tile if it has the same pri-
mitives as in the previous frame. The problem with
RE is that a hidden primitive that changes over fra-
mes also results in a different signature, leading to
a considerable loss of potential. EVR overcomes this
situation by removing hidden primitives from the sig-
nature.

VIII. Conclusions

Overshading plays an important role in the per-
formance and energy efficiency of mobile GPUs, and
it is strongly related with the approach used to re-
solve the visibility of the different primitives. In this
work we have proposed the Ω-Test, a novel microar-
chitecture technique that resolves visibility by using
information of the Z-Buffer from the previous frame.
We have shown that our approach is much more ef-
fective for removing overshading than the traditional
Z-Test, which only uses information from the current
frame and whose Z-Buffer must be built from scratch
for every new frame.

Our approach relies on frame to frame coherence,
however, an unexpected depth change in a primitive
could potentially lead to an error in the final ren-
dered image. We have included an error detection
and correction mechanism to fix the small amount
of errors that can appear in certain tiles. Finally, to
dramatically reduce the storage needs of the underl-
ying Ω-Buffer, we have also implemented a coarse-
ning mechanism along with the use of an aggrega-
te function, which is highly effective and hardly im-
pacts accuracy. Overall, the Ω-Test reduces the ave-
rage overshading of scenes by 33.8 %, which results in
an average 15.7 % energy reduction in addition to an
average speedup of 10.6 % for a set of representative
applications.

Acknowledgements

This work has been supported by the the CoCoU-
nit ERC Advanced Grant of the EU’s Horizon 2020
program (grant No 833057), the Spanish State Re-
search Agency under grant TIN2016-75344-R (AEI/-
FEDER, EU) and the ICREA Academia program.
D. Corbalán-Navarro has been supported by a PhD
research fellowship from the University of Murcia.

Referencias

[1] M Shebanow, “An evolution of mobile graphics,” Key-
note talk at High Performance Graphics, 2013.

[2] Shruti Patil, Yeseong Kim, Kunal Korgaonkar, Ibrahim
Awwal, and Tajana S Rosing, “Characterization of user’s
behavior variations for design of replayable mobile wor-
kloads,” in International Conference on Mobile Com-
puting, Applications, and Services. Springer, 2015, pp.
51–70.

[3] Jieun Lim, Nagesh B Lakshminarayana, Hyesoon Kim,
William Song, Sudhakar Yalamanchili, and Wonyong
Sung, “Power modeling for gpu architectures using mc-
pat,” ACM Transactions on Design Automation of Elec-
tronic Systems (TODAES), vol. 19, no. 3, pp. 26, 2014.

[4] Jeff Pool, Energy-precision tradeoffs in the graphics pi-
peline, Ph.D. thesis, The University of North Carolina at
Chapel Hill, 2012.

[5] Enrique De Lucas, Reducing redundancy of real time
computer graphics in mobile systems, Ph.D. thesis, Uni-
versitat Politècnica de Catalunya, 2018.

phase is added to the pipeline just before the Early 
Depth Test stage. The HSR phase iterates over all 
the rasterized fragments just calculating their posi-
tion and depth to build a complete Z-Buffer. After-
wards, the actual visible fragments are known and 
sent to the Fragments Processors. The main overhead 
of DR is the fact that all the primitives have to be 
rasterized twice, and so the fragments are processed 
twice as well: once for calculating the depths in the 
HSR phase, and again for calculating the rest of at-
tributes in order to continue down the pipeline. This 
forces the designers to either increase the pressure 
over the existing hardware (with the subsequent de-
gradation of the execution time and therefore of the 
energy consumption) or to include significant extra 
hardware to perform the extra computations of HSR 
(duplicate rasterizer, Z-Test, and Z-Buffer) [5]. Diffe-
rently, our proposal introduces a small on-chip buffer 
and a fast Ω-Test.

Visibility Rendering Order (VRO) [7] is another 
HSR technique that optimizes the visibility problem 
by sorting the objects of a 3D scene. The order in 
which commands are drawn in a scene can have a 
significant impact on the GPU’s final performance. 
A scene where the farthest objects are drawn first 
will incur a degradation in GPU performance sin-
ce the Z-Buffer will not be able to remove most of 
the fragments it renders. VRO takes advantage of 
the frame-to-frame coherence to arrange objects in 
a front-to-back order, increasing the quad fragments 
discarded by the Z-Test. While VRO solves the vi-
sibility problem at the object level, our Ω-Test ope-
rates at the much finer fragment level, being able to 
overcome not only inter-object overshading but also 
intra-object overshading.

Hierarchical Z-Buffer Visibility [8] is another HSR 
technique that solves the problem of visibility by 
means of a much more complex Z-Buffer organiza-
tion. Apart from frame-to-frame coherence, this tech-
nique takes advantage of object-space coherence and 
image-space coherence. To do that, it uses an octree 
to determine whole visible objects at once. They also 
use a pyramidal Z-Buffer. At the lowest level, they 
have the full-resolution Z-Buffer, while subsequent 
upper levels divide the resolution by 4, until reaching 
to the last level that has a single pixel. Authors claim 
to be more efficient when discarding fragments sin-
ce they can eliminate groups of fragments at once 
instead of individually.

Early Visibility Resolution (EVR) [9] is a very re-
cent HSR technique that speculatively resolves the 
visibility of objects in a scene before the Raster Pi-
peline. On the one hand it optimizes the Z-Test. As 
mentioned above, the order in which primitives arrive 
at the Raster Pipeline can have a noticeable impact 
on GPU performance. EVR compares the depth of 
each primitive against the farthest point resolved for 
each tile in the previous frame. Using that informa-
tion, primitives are reordered in order to make the 
Z-Test capable of removing more fragments. On the 
other hand, it optimizes Rendering Elimination (RE)

9



[6] Jǐŕı Bittner and Peter Wonka, “Visibility in computer
graphics,” Environment and Planning B: Planning and
Design, vol. 30, no. 5, pp. 729–755, 2003.

[7] Enrique De Lucas, Pedro Marcuello, Joan-Manuel Par-
cerisa, and Antonio González, “Visibility rendering or-
der: Improving energy efficiency on mobile gpus through
frame coherence,” IEEE Transactions on Parallel and
Distributed Systems, vol. 30, no. 2, pp. 473–485, 2018.

[8] Ned Greene, Michael Kass, and Gavin Miller, “Hierarchi-
cal z-buffer visibility,” in Proceedings of the 20th annual
conference on Computer graphics and interactive techni-
ques. ACM, 1993, pp. 231–238.

[9] Mart́ı Anglada, Enrique de Lucas, Joan-Manuel Parce-
risa, Juan L Aragón, and Antonio González, “Early vi-
sibility resolution for removing ineffectual computations
in the graphics pipeline,” in 2019 IEEE International
Symposium on High Performance Computer Architectu-
re (HPCA). IEEE, 2019, pp. 635–646.

[10] Tomas Akenine-Moller, Eric Haines, and Naty Hoffman,
Real-time rendering, AK Peters/CRC Press, 2019.

[11] Tomas Akenine-Moller and Jacob Strom, “Graphics pro-
cessing units for handhelds,” Proceedings of the IEEE,
vol. 96, no. 5, pp. 779–789, 2008.

[12] Harold Hubschman et al., “Frame-to-frame coherence
and the hidden surface computation: constraints for a
convex world,” ACM Trans. on Graphics, vol. 1, no. 2,
pp. 129–162, 1982.

[13] Andrew Wilson, Ketan Mayer-Patel, and Dinesh Ma-
nocha, “Spatially-encoded far-field representations for
interactive walkthroughs,” in Proceedings of the ninth
ACM international conference on Multimedia. ACM,
2001, pp. 348–357.

[14] Jose-Maria Arnau, Joan-Manuel Parcerisa, and Polychro-
nis Xekalakis, “Teapot: a toolset for evaluating perfor-
mance, power and image quality on mobile graphics sys-
tems,” in Proceedings of the 27th International ACM
Conference on Supercomputing. ACM, 2013, pp. 37–46.

[15] “Arm mali-450 gpu,” https://developer.arm.com/
products/graphics-and-multimedia/mali-gpus/
mali-450-gpu, accessed August 2019.

[16] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brock-
man, Dean M Tullsen, and Norman P Jouppi, “Mcpat:
an integrated power, area, and timing modeling frame-
work for multicore and manycore architectures,” in Pro-
ceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2009, pp. 469–
480.

[17] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob,
“Dramsim2: A cycle accurate memory system simulator,”
IEEE computer architecture letters, vol. 10, no. 1, pp.
16–19, 2011.

[18] “Android sdk,” https://developer.android.com/
studio, accessed August 2019.

[19] Mark Segal and Kurt Akeley, “The opengl graphics sys-
tem: A specification (version 1.1),” 1999.

[20] “Gapid,” https://developers.google.com/vr/
develop/unity/gapid, accessed August 2019.

[21] “Gallium3d,” https://www.freedesktop.org/wiki/
Software/gallium, accessed August 2019.

[22] “Google play,” https://play.google.com, accessed Au-
gust 2019.

[23] Christopher A Burns and Warren A Hunt, “The visibility
buffer: a cache-friendly approach to deferred shading,”
Journal of Computer Graphics Techniques (JCGT), vol.
2, no. 2, pp. 55–69, 2013.

[24] Imagination Technologies Limited, “PowerVR Hardwa-
re. architecture overview for developers,” http://cdn.
imgtec.com/sdk-documentation/PowerVR+Hardware.
Architecture+Overview+for+Developers.pdf, accessed
August 2019.

[25] Mart́ı Anglada, Enrique de Lucas, Joan-Manuel Par-
cerisa, Juan L Aragón, Pedro Marcuello, and Antonio
González, “Rendering elimination: Early discard of re-
dundant tiles in the graphics pipeline,” in 2019 IEEE
International Symposium on High Performance Compu-
ter Architecture (HPCA). IEEE, 2019, pp. 623–634.

[26] Zhenghong Wang, “Dynamically optimized deferred ren-
dering pipeline,” Dec. 12 2017, US Patent 9,842,428.

[27] Andrew S Glassner, An introduction to ray tracing, El-
sevier, 1989.

[28] Jeffrey Hao CHU, Subrato Kumar De, Dexter Tamio
Chun, Bohuslav Rychlik, and Richard Alan STEWART,

“Transaction elimination using metadata,” Oct. 30 2018,
US Patent App. 10/114,585.

[29] Harry Nyquist, “Certain topics in telegraph transmis-
sion theory,” Transactions of the American Institute of
Electrical Engineers, vol. 47, no. 2, pp. 617–644, 1928.

[30] Nasir Ahmed, T Natarajan, and Kamisetty R Rao, “Dis-
crete cosine transform,” IEEE transactions on Compu-
ters, vol. 100, no. 1, pp. 90–93, 1974.

[31] Zhou Wang, Alan C Bovik, Hamid R Sheikh, Eero P
Simoncelli, et al., “Image quality assessment: from error
visibility to structural similarity,” IEEE transactions on
image processing, vol. 13, no. 4, pp. 600–612, 2004.

[32] “Designware 2d dct,” https://www.synopsys.com/dw/
ipdir.php?c=DW_dct_2d, accessed August 2019.

[33] “Synopsys,” https://www.synopsys.com, accessed Au-
gust 2019.

[34] Kurt Akeley, “Reality engine graphics,” in Proceedings
of the 20th annual conference on Computer graphics and
interactive techniques. ACM, 1993, pp. 109–116.

[35] Lei Yang, Diego Nehab, Pedro V Sander, Pitchaya Sitthi-
amorn, Jason Lawrence, and Hugues Hoppe, “Amorti-
zed supersampling,” in ACM Transactions on Graphics
(TOG). ACM, 2009, vol. 28, p. 135.

[36] Ian Mallett and Cem Yuksel, “Deferred adaptive compu-
te shading,” in Proceedings of the Conference on High-
Performance Graphics. ACM, 2018, p. 3.

[37] Rahul Sathe and Tomas Akenine-Möller, “Pixel merge
unit.,” in Eurographics (Short Papers), 2015, pp. 53–56.

[38] Karthik Vaidyanathan, Marco Salvi, Robert Toth, Tim
Foley, Tomas Akenine-Möller, Jim Nilsson, Jacob Munk-
berg, Jon Hasselgren, Masamichi Sugihara, Petrik Clar-
berg, et al., “Coarse pixel shading,” in Proceedings of
High Performance Graphics. Eurographics Association,
2014, pp. 9–18.

[39] Yong He, Yan Gu, and Kayvon Fatahalian, “Extending
the graphics pipeline with adaptive, multi-rate shading,”
ACM Transactions on Graphics (TOG), vol. 33, no. 4,
pp. 142, 2014.

[40] Karthik Vaidyanathan, Robert Toth, Marco Salvi, Solo-
mon Boulos, and Aaron Lefohn, “Adaptive image space
shading for motion and defocus blur,” in Proceedings of
the Fourth ACM SIGGRAPH/Eurographics conference
on High-Performance Graphics. Eurographics Associa-
tion, 2012, pp. 13–21.

[41] Magnus Andersson, Jon Hasselgren, Robert Toth, and
Tomas Akenine-Möiler, “Adaptive texture space shading
for stochastic rendering,” in Computer Graphics Forum.
Wiley Online Library, 2014, vol. 33, pp. 341–350.

[42] Karl E Hillesland and JC Yang, “Texel shading,” in
Proceedings of the 37th Annual Conference of the Euro-
pean Association for Computer Graphics: Short Papers.
Eurographics Association, 2016, pp. 73–76.

[43] Christopher A Burns, Kayvon Fatahalian, and William R
Mark, “A lazy object-space shading architecture with de-
coupled sampling,” in Proceedings of the Conference on
High Performance Graphics. Eurographics Association,
2010, pp. 19–28.

[44] Petrik Clarberg, Robert Toth, Jon Hasselgren, Jim Nils-
son, and Tomas Akenine-Möller, “Amfs: adaptive multi-
frequency shading for future graphics processors,” ACM
Transactions on Graphics (TOG), vol. 33, no. 4, pp. 141,
2014.

[45] “Nvidia gpu turing architecture,”
https://www.nvidia.com/content/dam/
en-zz/Solutions/design-visualization/
technologies/turing-architecture/
NVIDIA-Turing-Architecture-Whitepaper.pdf, ac-
cessed August 2019.

[46] Enrique De Lucas, “Reducing redundancy of real time
computer graphics in mobile systems,” PhD Thesis, 2018.

[47] Francesco Marcelloni and Massimo Vecchio, “A simple
algorithm for data compression in wireless sensor net-
works,” IEEE communications letters, vol. 12, no. 6, pp.
411–413, 2008.

10


