XIX Spanish Meeting on Computational Geometry, Madrid, July 5-7, 2021

On (o, k)-sets and (a, k)-hulls in the plane

Merce Claverol*!, Luis H. Herreral?, Pablo Pérez-Lantero*?, and Carlos Seara$!

!Universitat Politecnica de Catalunya (Spain)
2Universidad de Santiago de Chile (Chile)

Abstract

]
This abstract reports first the study of upper and

lower bounds for the maximum number of all the com-
binatorially different («, k)-sets of an n-point set P in
the plane, 0 < a < 7 and 0 < 2k < n, depending on
the (fixed/variable) values of o and k, relating them
with the known bounds for the maximum number of
k-sets: the O(n</k) upper bound from Dey [5] and the
neV108%) Jower bound from Téth [7]; and showing
also efficient algorithms for generating all of them.

Second we study the depth of a point p € P ac-
cording to the (a, k)-set criterion (instead of the k-set
criterion). We compute the depths of all the points of
P for a given angle «, and also design a data structure
for reporting the angle-interval(s) of a given depth for
a point of P in O(logn) time (if it exists).

Finally, we define the (o, k)-hull of P for fixed val-
ues of « and k, and design an algorithm for computing
the (a, k)-hull of P for given values of « and k. To do
that, we follow the relevant ideas and techniques from
Cole et al. [4]. Unfortunately, the algorithm is still no
so efficient as we wish, and we believe that their com-
plexities strong depends on the fixed values for the
parameters o and k; more concretely, as « is closer to
7 the time complexity is close to the optimal.

1 Preliminaries

Let P be a set of n points in the plane in general po-
sition, i.e., no three points are colinear. A wedge is
the convex region bounded by two rays with common
origin with aperture angle a, 0 < o < 7 and denoted
by an a-wedge. An (o, k)-set of P is a k-subset K of
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P inside an a-wedge which contain no other point of
P, and this a-wedge is denoted by (o, k)-wedge. Each
(o, k)-set K has (a not-unique and directed) associ-
ated line defined by a point of CH(K) and a point
of P, and which contains a ray of the a-wedge. The
associated line facilitates the counting of the number
of combinatorially different («, k)-sets of P.

To study all the different cases for the parameters «
and k, we use the notation ag when « is fixed, and kg
when k is fixed. When these parameters are variable,
we simply use « and k. By f,?(’)“ (n) we denote the
maximum number of («ayg, ko)-set of P overall n-point
sets; and analogously for f;°(n), f (n), and fg*(n).
Related works: The first study of the («,k)-sets
was done by Claverol [I} 2] by determining upper and
lower bounds on the number of («, k)-sets for P. Here,
we reproduce part of the results. Later, Erickson et
al. [6] considered generalizations of the Centerpoint
Theorem in which the half-spaces are replaced with
wedges (or cones) of angle a. There are other papers
in the literature focusing in this topic [5l [7].

2 Upper and lower bounds

The results presented here about the upper and lower
bounds for fg(n) are summarized in Figure |1| and
classified into the four cases for the values (fixed or
variable) of a and k. Almost all of them were obtained
in [I, 2]. Due to the lack of space, we only illustrate
the lower bound for g and k.

a k  Upper bound Lower bound
ag ko O(n?) fol(n)

ag k  O(n?) Q(n?)

(0% kio O(n3 Y k‘o) Q(ano)

a kO Q(n*)

Figure 1: Upper and lower bounds for fg(n), with
1t () being a function of ag and ko.

Theorem 1

feo(n) € 0 ((2” ~1) (n(ko B 1)2)> .

(%)) 20[0

Proof. We construct a set P of n points in convex po-
sition as follows. First, put m—+1 points sq, s1,-..,Sm
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in counterclockwise order on the unit circle C' (red
points in Figure , where m + 1 = [53-]. These
points are equally spaced on C such that the chord
5;8i+1 subtends the angle ag, for i =0,1,...,m — 1.

We add to P the sets S;, i = 0,1,...,m, each
formed by s; together with ky — 2 points of P, all
of them equally spaced, and close enough to the point
si, 1.e., the distance between consecutive points, in-
cluding s;, is €, for a small enough € > 0. Notice
that the length of the arc of the unit circle subtended
by a central angle 2« is exactly 2ag, so we can take
¢ small enough such that all the points in .S; are in
an arc of C' of length less than ag. In total, we are
adding (m+ 1)(ko — 1) points to P. Finally, add to P
aset T of n — (m+ 1)(ko — 1) equally spaced points,
close enough between them to complete the total of
n points (see Figure . Notice that this construction
works for small angles aqg such that m 4+ 1 > 2 and
thus, ;To >2,ie, a0 < 7.

Thus, we have ap-wedges containing one point from
T and kg — 1 points from P\ T, i.e., kg — 1 — u points
from S; and u points from S; 41, for some 0 < i < m—1
and 0 < u < ko — 2 (see Figure [2)). Notice that we
are not selecting the (kg — 1)-subset S,, when u = 0.
Then, for the set P, we know that the total number
of combinatorially different («y, ko)-sets is

Q ((27;0 ~1) <n(k0 1) - i(ko - 1)2>) .

As 5o is constant, fi0(n) grows up with ko. Thus,
for ko = § +1, fg})4+1(n) € Q(n?), which is almost
the obtained upper bound. We assume that kg > 3
since for ko = 2 we have (}) combinatorially different
(g, 2)-sets for some small value of «y. O

3 The a-wedge depth with respect to P

The ap-wedge depth of x € R? with respect to P with
the (av, k)-set criterion, ag-depth for short, denoted
by Depthl (), is defined as follows:

Depthl (z) = min {k=[PNW|},

1<k<n/2

for any possible closed ag-wedge W with apex at x.

This definition is an extension of the depth with
the k-set criterion, where the k-line passes through
point z. In fact, if ag = 7, we obtain the depth with
the k-set criterion. Thus, for any p; € P and ag,
0<ag<m, Depthf0 (pi) < n/2. The points p; € P
in the boundary of the convex hull of P, CH(P), have
DegmfhsO (pi) = 1. By the definition, if x is either in
the exterior of C H (P) or it belongs to the boundary of
CH(P) but 2 ¢ P and ag < , then Depthl, (z) = 0.
Moreover, for g small enough, all the points p; € P
have Depthfo (pi) = 1, and there are no points x with
Depthl (z) > 2.

7)== (m+ ik — 1)

ko — 1 ko —1

Figure 2: Equally spaced groups of points S; on C.

Theorem 2 Given P and o, the sorted list of the
values Depthf0 (pi),i=1,...,n, can be computed in

O(n?logn) time and O(n) space. Then, Depthk (p;)
can be computed in O(logn) time.

3.1 Report « such that Depthl (p;) =k

We consider the problem: Pre-compute a data struc-
ture such that given p; € P and k, 1 < k <n/2, then
the angular interval (af,ad) C [0,27) such that for
any a € (a4, ab) the Depthf (p;) = k can be reported
in O(logn) time.

Theorem 3 In O(n?logn) time and O(n?) space we
can compute a data structure such that for a given
p; € Pand k, 1 < k < n/2, in O(logn) time we
can reported the angular interval (6%, 51-(“1)) C [0,2m)
such that for any o € (0¥, (5§k+1)) the Depth? (p;) = k.

4 The (ag, ko)-hulls

A point x inside CH(P) can be characterized by the
property that any line through z has at least a point
of P in each of the closed half-planes determined by
the line. Generalizing this definition, Cole et al. [4]
defined the k-hull of P, for positive k, as the set of
points x such that for any line through z there are
at least k points of P in each closed half-plane. It
is clear that the k-hull contains the (k + 1)-hull, and
if k is greater than [n/2] then the k-hull is empty.
We extend this definition to the (a, ko)-hull(P) for
0<ap<mand1<ky<n/2 as follows.
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Definition 4 The («g, ko)-hull(P) is the set of points
x € R? such that any closed o-wedge with apex at x
contains at least ko points of P.

Notice that x has to be inside CH (P), and then, the
(v, ko)-hull(P) is contained in CH(P). For ag =,
Definition [4] is equivalent to the kg-hull of P. From
the same definition, we can easily conclude that the

(v, ko)-hull(P) contains the (ag, (ko + 1))-hull(P).
4.1 The (ayp, ko)-hulls for points in convex position

For points in convex position, we select n consecu-
tive sets of ko consecutive points in CH(P), say K,
and compute the corresponding arcs, a; ;, of adjoint
circles defined by apices of the ag-wedges containing
K supported in two points, p; and p;, of CH(K).
The endpoints of the arcs occurs when a ray of the
agp-wedge bumps a point of CH(K). There are O(n)
arcs, and the number of intersections between those
arcs is at most O(n?). Doing a sweep-line we compute
the (av, ko)-hull(P). If ayp is close to m, the number of
intersections between the arcs is O(n), and the com-
plexities decrease accordingly. See Figure

Theorem 5 The (ay, ko)-hull(P) can be computed
in O(n?logn) time and O(n?) space.

Figure 3: Left: (90,4)-hull(P) contains (90,7 + 1)-
hull(P), i = 1,2, 3,4, and (90, 5)-hull(P) is an empty;
Right: the (90,3)-hull(P) as the intersection of re-
gions defined by the three cycles.

4.2 Computing the (ag, 1)-hull(P)

Let e; = p;piy1 be the edges of the boundary of
CH(P). By Definition [4] the vertices CH(P) belong
to the (ag, 1)-hull(P). The two rays of any ag-wedge
with apex at z inside C'H(P) which containing ex-
actly one point of P not in CH(P) has to intersect
the same edge e; of CH(P). Thus, we have the next
fact about the (ap, 1)-hull(P).

Fact 1 The apices of the ag-wedges containing ex-
actly one point which rays cross the edge e; define a
polygonal-curve f; from p; to p;+1. By definition, f;

is not self-intersecting. We call R; the (closed) re-

gion defined by e; and f;, where R; = CH(P) \ R;

(see Figure [4 Up). The (oo, 1)-hull(P) is the region
é Down).

Miz1 . Ri (see Figure

Figure 4: Up: Region R; in red, ag = 90. Down:
(90, 1)-hull(P)= (,_; ,, R in red. In blue the

polygonal-curve f;

The (avp, 1)-hull(P) can have disconnected regions,
as the points in CH(P) N P in Figure In fact, if
ag < mand p € CH(P)N P, pis an isolated point of
(v, 1)-hull(P). Any p € P belongs to (ayg, 1)-hull(P)
because a ap-wedge with apex at p always contains at
least p. Based on Fact [T} we describe the steps of an
algorithm for computing («ayg, 1)-hull(P) for a set P of
n points in general position.

LLIf 5 < ap < m in O(nlogn) time and O(n)
space we compute the (ag,1)-hull(P) as follows:
compute the ag-maximal points of P and the
polygonal-curves f; for the edges e; (see Fig-
ure [4f Right). Alegria-Galicia et al. [3] showed
the algorithm for computing the sequence of O(n)
arcs forming all the f;, i = 1...,m, where m
is the number of edges of CH(P). Then, in
O(nlogn) time and O(n) space we can do a line-
sweep of the arrangement of all f;, and com-
pute (ag, 1)-hull(P) formed by a (possible dis-
connected) region defined by the intersection of
all R;,i=1...,m and CH(P). See Figure

2. If 0 < ap < %, the computation of all the f;,
i=1...,m can be done in O(J-logn) time and
O(3%) space. But the the computation of (c, 1)-
hull(P) can be done in O(n?) time and space be-
cause we compute the (at most) O(n?) intersec-
tion points inside C'H(P) between all the f;.

Theorem 6 If 7/2 < ag < 7, the (ap,1)-hull(P)
can be computed in O(nlogn) time and O(n) space.
If0 < ag < /2, the (ap, 1)-hull(P) can be computed
in O(n?) time and space.
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4.3 The (o, ko)-hulls for points in general position

We adapt ideas in [4] to the (o, ko)-hull(P) concept
as follows. A (directed) line /¢ is a ko-divider for P if £
has at most ko — 1 points of P strictly to its right and
at most n — kg points of P strictly to its left. For any
orientation 6 € [0, 27) of ¢, there is a unique ko-divider
denoted by #y. A special kg-divider is a kq-divider that
contains at least two points. The half-space to the left
of a ko-divider is a special half-space. The kg-hull is
the intersection of the special half-spaces.

The direction of an ag-wedge with apex at x € R?
is defined by the direction of its right ray (in the clock-
wise rotation from its apex x); and it is given by the
angle 6 formed by X-axis with the line containing the
right ray. Let Wgo denote a directed ag-wedge.

Definition 7 A directed ap-wedge W7 , Is a directed
(v, ko)-divider for P, if W? , contains at most ko — 2
points of P strictly in its interior, and at most n — kg
points of P strictly in its exterior. The boundary of
Wgo must contain at least two points of P. A spe-
cial (g, ko)-divider is an («o, ko)-divider for P that
contains at least three points on the boundary.

Given 6 € [0,27), there are at most O(n) different
directed (ap, ko)-dividers WY | e.g., a set P with O(n)
points on the (almost vertical) right chain of CH(P),
ko =4, a9 = /4, and § = 0, see Figure Forag =

and fixed 6, there are only two (7, ko)-dividers.

=

Ve

[ ]

\J

Figure 5: Different directed (ay, ko)-dividers W .

Rotation process: An («p, ko)-divider passing through
p; and p; can be rotated anchored at p; and p; while
its apex traces an arc a; ; on the adjoint circle defined
by o and segment p;p;, until the wedge bumps a
point py, see Figure[6] The poly-curve defined by arcs,
rays, and segments from the wedges at the endpoints
define an unbounded region denoted by A;;. The
region A; ; has the property that for any point x in its
interior there always exists an ag-wedge with apex at
z and direction in the rank between the directions of
the extreme wedges which contains at most kg points,
see Figure[6] Starting with an orientation, say § = 0,

the rotation process end at the initial (ayg, kg )-divider,
and the apices of the ap-wedges trace a cycle, which
interior is the intersection of the complementary of
the union of all the regions A; ;.

Figure 6: Three consecutive (colored) arcs.

Sketch of the algorithm: First, take the orientation
6 = 0, and compute the list £ of the («p, ko)-dividers
with this orientation. For each (ay, ko)-divider, apply
the rotation process above and compute the corre-
sponding cycle, checking the used (ayp, ko)-dividers in
L. There are at most O(n) different cycles, formed
by sets of arcs a; ;. The total number of arcs a; ; is
bounded by the number of (ay, ko)-sets, together with
their rotations. The still no fixed question is the up-
per bound of the number of intersection between those
arcs depending on ag. In any case there are at most
O(n*ky?). We do a line-sweep of the arrangement of
cycles and compute the region(s) of (g, ko)-hull(P).

Theorem 8 The (ag, ko)-hull(P) can be computed
in O(n*ko®logn) time and O(n?ky) space.
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