On ($\alpha, k)$-sets and (α, k)-hulls in the plane

Mercè Claverol ${ }^{* 1}$, Luis H. Herrera ${ }^{\dagger 2}$, Pablo Pérez-Lantero ${ }^{\ddagger 2}$, and Carlos Seara ${ }^{\S 1}$
${ }^{1}$ Universitat Politècnica de Catalunya (Spain)
${ }^{2}$ Universidad de Santiago de Chile (Chile)

Abstract

-

This abstract reports first the study of upper and lower bounds for the maximum number of all the combinatorially different (α, k)-sets of an n-point set P in the plane, $0<\alpha \leq \pi$ and $0<2 k<n$, depending on the (fixed/variable) values of α and k, relating them with the known bounds for the maximum number of k-sets: the $O(n \sqrt[3]{k})$ upper bound from Dey [5] and the $n e^{\Omega(\sqrt{\log k})}$ lower bound from Tóth [7; and showing also efficient algorithms for generating all of them.

Second we study the depth of a point $p \in P$ according to the (α, k)-set criterion (instead of the k-set criterion). We compute the depths of all the points of P for a given angle α, and also design a data structure for reporting the angle-interval(s) of a given depth for a point of P in $O(\log n)$ time (if it exists).

Finally, we define the (α, k)-hull of P for fixed values of α and k, and design an algorithm for computing the (α, k)-hull of P for given values of α and k. To do that, we follow the relevant ideas and techniques from Cole et al. 4. Unfortunately, the algorithm is still no so efficient as we wish, and we believe that their complexities strong depends on the fixed values for the parameters α and k; more concretely, as α is closer to π the time complexity is close to the optimal.

1 Preliminaries

Let P be a set of n points in the plane in general position, i.e., no three points are colinear. A wedge is the convex region bounded by two rays with common origin with aperture angle $\alpha, 0<\alpha \leq \pi$ and denoted by an α-wedge. An (α, k)-set of P is a k-subset K of

[^0]

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie SkłodowskaCurie grant agreement No 734922.
P inside an α-wedge which contain no other point of P, and this α-wedge is denoted by (α, k)-wedge. Each (α, k)-set K has (a not-unique and directed) associated line defined by a point of $C H(K)$ and a point of P, and which contains a ray of the α-wedge. The associated line facilitates the counting of the number of combinatorially different (α, k)-sets of P.

To study all the different cases for the parameters α and k, we use the notation α_{0} when α is fixed, and k_{0} when k is fixed. When these parameters are variable, we simply use α and k. By $f_{k_{0}}^{\alpha_{0}}(n)$ we denote the maximum number of $\left(\alpha_{0}, k_{0}\right)$-set of P overall n-point sets; and analogously for $f_{k}^{\alpha_{0}}(n), f_{k_{0}}^{\alpha}(n)$, and $f_{k}^{\alpha}(n)$.
Related works: The first study of the (α, k)-sets was done by Claverol [1, 2] by determining upper and lower bounds on the number of (α, k)-sets for P. Here, we reproduce part of the results. Later, Erickson et al. [6] considered generalizations of the Centerpoint Theorem in which the half-spaces are replaced with wedges (or cones) of angle α. There are other papers in the literature focusing in this topic [5, 7].

2 Upper and lower bounds

The results presented here about the upper and lower bounds for $f_{k}^{\alpha}(n)$ are summarized in Figure 1 and classified into the four cases for the values (fixed or variable) of α and k. Almost all of them were obtained in [1, 2]. Due to the lack of space, we only illustrate the lower bound for α_{0} and k_{0}.

α	k	Upper bound	Lower bound
α_{0}	k_{0}	$O\left(n^{2}\right)$	$f_{k_{0}}^{\alpha_{0}}(n)$
α_{0}	k	$O\left(n^{3}\right)$	$\Omega\left(n^{3}\right)$
α	k_{0}	$O\left(n^{3} \sqrt[3]{k_{0}}\right)$	$\Omega\left(n^{2} k_{0}\right)$
α	k	$O\left(n^{4}\right)$	$\Omega\left(n^{4}\right)$

Figure 1: Upper and lower bounds for $f_{k}^{\alpha}(n)$, with $f_{k_{0}}^{\alpha_{0}}(n)$ being a function of α_{0} and k_{0}.

Theorem 1

$f_{k_{0}}^{\alpha_{0}}(n) \in \Omega\left(\left(\frac{\pi}{2 \alpha_{0}}-1\right)\left(n\left(k_{0}-1\right)-\frac{\pi}{2 \alpha_{0}}\left(k_{0}-1\right)^{2}\right)\right)$.
Proof. We construct a set P of n points in convex position as follows. First, put $m+1$ points $s_{0}, s_{1}, \ldots, s_{m}$
in counterclockwise order on the unit circle C (red points in Figure 22), where $m+1=\left\lfloor\frac{\pi}{2 \alpha_{0}}\right\rfloor$. These points are equally spaced on C such that the chord $s_{i} s_{i+1}$ subtends the angle α_{0}, for $i=0,1, \ldots, m-1$.

We add to P the sets $S_{i}, i=0,1, \ldots, m$, each formed by s_{i} together with $k_{0}-2$ points of P, all of them equally spaced, and close enough to the point s_{i}, i.e., the distance between consecutive points, including s_{i}, is ε, for a small enough $\varepsilon>0$. Notice that the length of the arc of the unit circle subtended by a central angle $2 \alpha_{0}$ is exactly $2 \alpha_{0}$, so we can take ε small enough such that all the points in S_{i} are in an arc of C of length less than α_{0}. In total, we are adding $(m+1)\left(k_{0}-1\right)$ points to P. Finally, add to P a set T of $n-(m+1)\left(k_{0}-1\right)$ equally spaced points, close enough between them to complete the total of n points (see Figure 2). Notice that this construction works for small angles α_{0} such that $m+1 \geq 2$ and thus, $\frac{\pi}{2 \alpha_{0}} \geq 2$, i.e, $\alpha_{0} \leq \frac{\pi}{4}$.

Thus, we have α_{0}-wedges containing one point from T and $k_{0}-1$ points from $P \backslash T$, i.e., $k_{0}-1-u$ points from S_{i} and u points from S_{i+1}, for some $0 \leq i \leq m-1$ and $0 \leq u \leq k_{0}-2$ (see Figure 22). Notice that we are not selecting the $\left(k_{0}-1\right)$-subset S_{m} when $u=0$. Then, for the set P, we know that the total number of combinatorially different $\left(\alpha_{0}, k_{0}\right)$-sets is

$$
\Omega\left(\left(\frac{\pi}{2 \alpha_{0}}-1\right)\left(n\left(k_{0}-1\right)-\frac{\pi}{2 \alpha_{0}}\left(k_{0}-1\right)^{2}\right)\right) .
$$

As $\frac{\pi}{2 \alpha_{0}}$ is constant, $f_{k_{0}}^{\alpha_{0}}(n)$ grows up with k_{0}. Thus, for $k_{0}=\frac{n}{4}+1, f_{n / 4+1}^{\alpha_{0}}(n) \in \Omega\left(n^{2}\right)$, which is almost the obtained upper bound. We assume that $k_{0} \geq 3$ since for $k_{0}=2$ we have $\binom{n}{2}$ combinatorially different ($\alpha_{0}, 2$)-sets for some small value of α_{0}.

3 The α-wedge depth with respect to P

The α_{0}-wedge depth of $x \in \mathbb{R}^{2}$ with respect to P with the (α_{0}, k)-set criterion, α_{0}-depth for short, denoted by $\operatorname{Depth}_{\alpha_{0}}^{P}(x)$, is defined as follows:

$$
\operatorname{Depth}_{\alpha_{0}}^{P}(x)=\min _{1 \leq k \leq n / 2}\{k=|P \cap W|\}
$$

for any possible closed α_{0}-wedge W with apex at x.
This definition is an extension of the depth with the k-set criterion, where the k-line passes through point x. In fact, if $\alpha_{0}=\pi$, we obtain the depth with the k-set criterion. Thus, for any $p_{i} \in P$ and α_{0}, $0<\alpha_{0} \leq \pi$, $\operatorname{Depth}_{\alpha_{0}}^{P}\left(p_{i}\right) \leq n / 2$. The points $p_{i} \in P$ in the boundary of the convex hull of $P, C H(P)$, have $\operatorname{Depth}_{\alpha_{0}}^{P}\left(p_{i}\right)=1$. By the definition, if x is either in the exterior of $C H(P)$ or it belongs to the boundary of $C H(P)$ but $x \notin P$ and $\alpha_{0}<\pi$, then $\operatorname{Depth}_{\alpha_{0}}^{P}(x)=0$. Moreover, for α_{0} small enough, all the points $p_{i} \in P$ have $\operatorname{Depth}_{\alpha_{0}}^{P}\left(p_{i}\right)=1$, and there are no points x with $\operatorname{Depth}_{\alpha_{0}}^{P}(x) \geq 2$.

Figure 2: Equally spaced groups of points S_{i} on C.

Theorem 2 Given P and α_{0}, the sorted list of the values Depth $\alpha_{\alpha_{0}}^{P}\left(p_{i}\right), i=1, \ldots, n$, can be computed in $O\left(n^{2} \log n\right)$ time and $O(n)$ space. Then, $\operatorname{Depth}_{\alpha_{0}}^{P}\left(p_{i}\right)$ can be computed in $O(\log n)$ time.

3.1 Report α such that $\operatorname{Depth}_{\alpha}^{P}\left(p_{i}\right)=k$

We consider the problem: Pre-compute a data structure such that given $p_{i} \in P$ and $k, 1 \leq k \leq n / 2$, then the angular interval $\left(\alpha_{1}^{i}, \alpha_{2}^{i}\right) \subseteq[0,2 \pi)$ such that for any $\alpha \in\left(\alpha_{1}^{i}, \alpha_{2}^{i}\right)$ the $\operatorname{Depth}_{\alpha}^{P}\left(p_{i}\right)=k$ can be reported in $O(\log n)$ time.

Theorem 3 In $O\left(n^{2} \log n\right)$ time and $O\left(n^{2}\right)$ space we can compute a data structure such that for a given $p_{i} \in P$ and $k, 1 \leq k \leq n / 2$, in $O(\log n)$ time we can reported the angular interval $\left(\delta_{i}^{k}, \delta_{i}^{(k+1)}\right) \subseteq[0,2 \pi)$ such that for any $\alpha \in\left(\delta_{i}^{k}, \delta_{i}^{(k+1)}\right)$ the $\operatorname{Depth}_{\alpha}^{P}\left(p_{i}\right)=k$.

4 The $\left(\alpha_{0}, k_{0}\right)$-hulls

A point x inside $C H(P)$ can be characterized by the property that any line through x has at least a point of P in each of the closed half-planes determined by the line. Generalizing this definition, Cole et al. 4] defined the k-hull of P, for positive k, as the set of points x such that for any line through x there are at least k points of P in each closed half-plane. It is clear that the k-hull contains the $(k+1)$-hull, and if k is greater than $\lceil n / 2\rceil$ then the k-hull is empty. We extend this definition to the $\left(\alpha_{0}, k_{0}\right)$-hull (P) for $0<\alpha_{0} \leq \pi$ and $1 \leq k_{0} \leq n / 2$, as follows.

Definition 4 The (α_{0}, k_{0})-hull (P) is the set of points $x \in \mathbb{R}^{2}$ such that any closed α_{0}-wedge with apex at x contains at least k_{0} points of P.

Notice that x has to be inside $C H(P)$, and then, the $\left(\alpha_{0}, k_{0}\right)$-hull (P) is contained in $C H(P)$. For $\alpha_{0}=\pi$, Definition 4 is equivalent to the k_{0}-hull of P. From the same definition, we can easily conclude that the $\left(\alpha_{0}, k_{0}\right)$-hull (P) contains the $\left(\alpha_{0},\left(k_{0}+1\right)\right)$-hull (P).

4.1 The $\left(\alpha_{0}, k_{0}\right)$-hulls for points in convex position

For points in convex position, we select n consecutive sets of k_{0} consecutive points in $C H(P)$, say K, and compute the corresponding arcs, $a_{i, j}$, of adjoint circles defined by apices of the α_{0}-wedges containing K supported in two points, p_{i} and p_{j}, of $C H(K)$. The endpoints of the arcs occurs when a ray of the α_{0}-wedge bumps a point of $C H(K)$. There are $O(n)$ arcs, and the number of intersections between those arcs is at most $O\left(n^{2}\right)$. Doing a sweep-line we compute the $\left(\alpha_{0}, k_{0}\right)$-hull (P). If α_{0} is close to π, the number of intersections between the arcs is $O(n)$, and the complexities decrease accordingly. See Figure 3 .

Theorem 5 The (α_{0}, k_{0})-hull(P) can be computed in $O\left(n^{2} \log n\right)$ time and $O\left(n^{2}\right)$ space.

Figure 3: Left: $(90, i)-\operatorname{hull}(P)$ contains $(90, i+1)-$ $\operatorname{hull}(P), i=1,2,3,4$, and $(90,5)$-hull (P) is an empty; Right: the $(90,3)$-hull (P) as the intersection of regions defined by the three cycles.

4.2 Computing the $\left(\alpha_{0}, 1\right)$-hull (P)

Let $e_{i}=p_{i} p_{i+1}$ be the edges of the boundary of $C H(P)$. By Definition 4, the vertices $C H(P)$ belong to the $\left(\alpha_{0}, 1\right)$-hull (P). The two rays of any α_{0}-wedge with apex at x inside $C H(P)$ which containing exactly one point of P not in $C H(P)$ has to intersect the same edge e_{i} of $C H(P)$. Thus, we have the next fact about the $\left(\alpha_{0}, 1\right)-\operatorname{hull}(P)$.

Fact 1 The apices of the α_{0}-wedges containing exactly one point which rays cross the edge e_{i} define a polygonal-curve f_{i} from p_{i} to p_{i+1}. By definition, f_{i}
is not self-intersecting. We call R_{i} the (closed) region defined by e_{i} and f_{i}, where $\overline{R_{i}}=C H(P) \backslash R_{i}$ (see Figure $4 U p$). The $\left(\alpha_{0}, 1\right)$-hull (P) is the region $\bigcap_{i=1, \ldots, m} \overline{R_{i}}$ (see Figure 4 Down).

Figure 4: Up: Region $\overline{R_{i}}$ in red, $\alpha_{0}=90$. Down: $(90,1)-\operatorname{hull}(P)=\bigcap_{i=1, \ldots, m} \overline{R_{i}}$ in red. In blue the polygonal-curve f_{i}

The $\left(\alpha_{0}, 1\right)$-hull (P) can have disconnected regions, as the points in $C H(P) \cap P$ in Figure 4. In fact, if $\alpha_{0}<\pi$ and $p \in C H(P) \cap P, p$ is an isolated point of $\left(\alpha_{0}, 1\right)-\operatorname{hull}(P)$. Any $p \in P$ belongs to $\left(\alpha_{0}, 1\right)-\operatorname{hull}(P)$ because a α_{0}-wedge with apex at p always contains at least p. Based on Fact 11 we describe the steps of an algorithm for computing $\left(\alpha_{0}, 1\right)$-hull (P) for a set P of n points in general position.

1. If $\frac{\pi}{2} \leq \alpha_{0}<\pi$, in $O(n \log n)$ time and $O(n)$ space we compute the $\left(\alpha_{0}, 1\right)$-hull (P) as follows: compute the α_{0}-maximal points of P and the polygonal-curves f_{i} for the edges e_{i} (see Figure 4 Right). Alegría-Galicia et al. [3] showed the algorithm for computing the sequence of $O(n)$ arcs forming all the $f_{i}, i=1 \ldots, m$, where m is the number of edges of $C H(P)$. Then, in $O(n \log n)$ time and $O(n)$ space we can do a linesweep of the arrangement of all f_{i}, and compute $\left(\alpha_{0}, 1\right)$-hull (P) formed by a (possible disconnected) region defined by the intersection of all $\overline{R_{i}}, i=1 \ldots, m$ and $C H(P)$. See Figure 4 .
2. If $0<\alpha_{0}<\frac{\pi}{2}$, the computation of all the f_{i}, $i=1 \ldots, m$ can be done in $O\left(\frac{n}{\alpha_{0}} \log n\right)$ time and $O\left(\frac{n}{\alpha_{0}}\right)$ space. But the the computation of $\left(\alpha_{0}, 1\right)$ hull (P) can be done in $O\left(n^{2}\right)$ time and space because we compute the (at most) $O\left(n^{2}\right)$ intersection points inside $C H(P)$ between all the f_{i}.

Theorem 6 If $\pi / 2 \leq \alpha_{0} \leq \pi$, the $\left(\alpha_{0}, 1\right)-h u l l(P)$ can be computed in $O(n \log n)$ time and $O(n)$ space. If $0<\alpha_{0}<\pi / 2$, the ($\alpha_{0}, 1$)-hull (P) can be computed in $O\left(n^{2}\right)$ time and space.

4.3 The $\left(\alpha_{0}, k_{0}\right)$-hulls for points in general position

We adapt ideas in [4] to the $\left(\alpha_{0}, k_{0}\right)$-hull (P) concept as follows. A (directed) line ℓ is a k_{0}-divider for P if ℓ has at most $k_{0}-1$ points of P strictly to its right and at most $n-k_{0}$ points of P strictly to its left. For any orientation $\theta \in[0,2 \pi)$ of ℓ, there is a unique k_{0}-divider denoted by ℓ_{θ}. A special k_{0}-divider is a k_{0}-divider that contains at least two points. The half-space to the left of a k_{0}-divider is a special half-space. The k_{0}-hull is the intersection of the special half-spaces.

The direction of an α_{0}-wedge with apex at $x \in \mathbb{R}^{2}$ is defined by the direction of its right ray (in the clockwise rotation from its apex x); and it is given by the angle θ formed by X-axis with the line containing the right ray. Let $W_{\alpha_{0}}^{\theta}$ denote a directed α_{0}-wedge.

Definition 7 A directed α_{0}-wedge $W_{\alpha_{0}}^{\theta}$ is a directed (α_{0}, k_{0})-divider for P, if $W_{\alpha_{0}}^{\theta}$ contains at most $k_{0}-2$ points of P strictly in its interior, and at most $n-k_{0}$ points of P strictly in its exterior. The boundary of $W_{\alpha_{0}}^{\theta}$ must contain at least two points of P. A special $\left(\alpha_{0}, k_{0}\right)$-divider is an $\left(\alpha_{0}, k_{0}\right)$-divider for P that contains at least three points on the boundary.

Given $\theta \in[0,2 \pi)$, there are at most $O(n)$ different directed $\left(\alpha_{0}, k_{0}\right)$-dividers $W_{\alpha_{0}}^{\theta}$, e.g., a set P with $O(n)$ points on the (almost vertical) right chain of $C H(P)$, $k_{0}=4, \alpha_{0}=\pi / 4$, and $\theta=0$, see Figure 5. For $\alpha_{0}=\pi$ and fixed θ, there are only two $\left(\pi, k_{0}\right)$-dividers.

Figure 5: Different directed $\left(\alpha_{0}, k_{0}\right)$-dividers $W_{\alpha_{0}}^{\theta}$.
Rotation process: An $\left(\alpha_{0}, k_{0}\right)$-divider passing through p_{i} and p_{j} can be rotated anchored at p_{i} and p_{j} while its apex traces an arc $a_{i, j}$ on the adjoint circle defined by α_{0} and segment $\overline{p_{i} p_{j}}$, until the wedge bumps a point p_{k}, see Figure 6. The poly-curve defined by arcs, rays, and segments from the wedges at the endpoints define an unbounded region denoted by $A_{i, j}$. The region $A_{i, j}$ has the property that for any point x in its interior there always exists an α_{0}-wedge with apex at x and direction in the rank between the directions of the extreme wedges which contains at most k_{0} points, see Figure 6. Starting with an orientation, say $\theta=0$,
the rotation process end at the initial $\left(\alpha_{0}, k_{0}\right)$-divider, and the apices of the α_{0}-wedges trace a cycle, which interior is the intersection of the complementary of the union of all the regions $A_{i, j}$.

Figure 6: Three consecutive (colored) arcs.
Sketch of the algorithm: First, take the orientation $\theta=0$, and compute the list \mathcal{L} of the $\left(\alpha_{0}, k_{0}\right)$-dividers with this orientation. For each $\left(\alpha_{0}, k_{0}\right)$-divider, apply the rotation process above and compute the corresponding cycle, checking the used (α_{0}, k_{0})-dividers in \mathcal{L}. There are at most $O(n)$ different cycles, formed by sets of $\operatorname{arcs} a_{i, j}$. The total number of $\operatorname{arcs} a_{i, j}$ is bounded by the number of $\left(\alpha_{0}, k_{0}\right)$-sets, together with their rotations. The still no fixed question is the upper bound of the number of intersection between those arcs depending on α_{0}. In any case there are at most $O\left(n^{4} k_{0}^{2}\right)$. We do a line-sweep of the arrangement of cycles and compute the region(s) of $\left(\alpha_{0}, k_{0}\right)$-hull (P).

Theorem 8 The $\left(\alpha_{0}, k_{0}\right)$-hull (P) can be computed in $O\left(n^{4} k_{0}^{2} \log n\right)$ time and $O\left(n^{2} k_{0}\right)$ space.

References

[1] M. Claverol. Problemas geométricos en morfología computacional. PhD Thesis, UPC.
[2] M. Abellanas, M. Claverol, F. Hurtado, C. Seara. (α, k)-sets in the plane. Proc. Segundas Jornadas de Matemática Discreta, 2002.
[3] C. Alegría-Galicia, D. Orden, C. Seara, J. Urrutia. Efficient computation of minimum-area rectilinear convex hull under rotation and generalizations. Journal of Global Optimization, Vol. 79(3), 2021.
[4] R. Cole, M. Sharir, C. K. Yap. On k-hulls and related problems. SIAM J. Comput., 16, 1987.
[5] T. K. Dey. Improved bounds for k-sets, related problems. Discrete Computational Geometry, 19, 1998.
[6] J. Erickson, F. Hurtado, P. Morin. Centerpoint theorems for wedges. Discrete Mathematics and Theoretical Computer Science, 11:1, 2009.
[7] G. Tóth. Points sets with many k-sets. Discrete and Computational Geometry, 26, 2001.

[^0]: *Email: merce.claverol@upc.edu. Supported by MICINN PID2019-104128GB-I00/ AEI/ 10.13039/501100011033, Gen. Cat. DGR2017SGR1640.
 ${ }^{\dagger}$ Email: luis.herrera.b@usach.cl.
 \ddagger Email: pablo.perez.l@usach.cl. Supported by DICYT 041933PL Vicerrectoría de Investigación, Desarrollo e Innovación USACH (Chile), and Programa Regional STICAMSUD 19-STIC-02.
 §Email: carlos.seara@upc.edu. Supported by MICINN PID2019-104129GB-I00/ AEI/ 10.13039/501100011033, Gen. Cat. DGR2017SGR1640.

