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Mercè Claverol∗1, Luis H. Herrera†2, Pablo Pérez-Lantero‡2, and Carlos Seara§1
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Abstract

This abstract reports first the study of upper and
lower bounds for the maximum number of all the com-
binatorially different (α, k)-sets of an n-point set P in
the plane, 0 < α ≤ π and 0 < 2k < n, depending on
the (fixed/variable) values of α and k, relating them
with the known bounds for the maximum number of
k-sets: the O(n 3

√
k) upper bound from Dey [5] and the

neΩ(
√

log k) lower bound from Tóth [7]; and showing
also efficient algorithms for generating all of them.

Second we study the depth of a point p ∈ P ac-
cording to the (α, k)-set criterion (instead of the k-set
criterion). We compute the depths of all the points of
P for a given angle α, and also design a data structure
for reporting the angle-interval(s) of a given depth for
a point of P in O(log n) time (if it exists).

Finally, we define the (α, k)-hull of P for fixed val-
ues of α and k, and design an algorithm for computing
the (α, k)-hull of P for given values of α and k. To do
that, we follow the relevant ideas and techniques from
Cole et al. [4]. Unfortunately, the algorithm is still no
so efficient as we wish, and we believe that their com-
plexities strong depends on the fixed values for the
parameters α and k; more concretely, as α is closer to
π the time complexity is close to the optimal.

1 Preliminaries

Let P be a set of n points in the plane in general po-
sition, i.e., no three points are colinear. A wedge is
the convex region bounded by two rays with common
origin with aperture angle α, 0 < α ≤ π and denoted
by an α-wedge. An (α, k)-set of P is a k-subset K of
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P inside an α-wedge which contain no other point of
P , and this α-wedge is denoted by (α, k)-wedge. Each
(α, k)-set K has (a not-unique and directed) associ-
ated line defined by a point of CH(K) and a point
of P , and which contains a ray of the α-wedge. The
associated line facilitates the counting of the number
of combinatorially different (α, k)-sets of P .

To study all the different cases for the parameters α
and k, we use the notation α0 when α is fixed, and k0

when k is fixed. When these parameters are variable,
we simply use α and k. By fα0

k0
(n) we denote the

maximum number of (α0, k0)-set of P overall n-point
sets; and analogously for fα0

k (n), fαk0(n), and fαk (n).
Related works: The first study of the (α, k)-sets
was done by Claverol [1, 2] by determining upper and
lower bounds on the number of (α, k)-sets for P . Here,
we reproduce part of the results. Later, Erickson et
al. [6] considered generalizations of the Centerpoint
Theorem in which the half-spaces are replaced with
wedges (or cones) of angle α. There are other papers
in the literature focusing in this topic [5, 7].

2 Upper and lower bounds

The results presented here about the upper and lower
bounds for fαk (n) are summarized in Figure 1 and
classified into the four cases for the values (fixed or
variable) of α and k. Almost all of them were obtained
in [1, 2]. Due to the lack of space, we only illustrate
the lower bound for α0 and k0.

α k Upper bound Lower bound
α0 k0 O(n2) fα0

k0
(n)

α0 k O(n3) Ω(n3)
α k0 O(n3 3

√
k0) Ω(n2k0)

α k O(n4) Ω(n4)

Figure 1: Upper and lower bounds for fαk (n), with
fα0

k0
(n) being a function of α0 and k0.

Theorem 1

fα0

k0
(n) ∈ Ω

(
(
π

2α0
− 1)

(
n(k0 − 1)− π

2α0
(k0 − 1)2

))
.

Proof. We construct a set P of n points in convex po-
sition as follows. First, put m+1 points s0, s1, . . . , sm
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in counterclockwise order on the unit circle C (red
points in Figure 2), where m + 1 = b π

2α0
c. These

points are equally spaced on C such that the chord
sisi+1 subtends the angle α0, for i = 0, 1, . . . ,m− 1.

We add to P the sets Si, i = 0, 1, . . . ,m, each
formed by si together with k0 − 2 points of P , all
of them equally spaced, and close enough to the point
si, i.e., the distance between consecutive points, in-
cluding si, is ε, for a small enough ε > 0. Notice
that the length of the arc of the unit circle subtended
by a central angle 2α0 is exactly 2α0, so we can take
ε small enough such that all the points in Si are in
an arc of C of length less than α0. In total, we are
adding (m+ 1)(k0− 1) points to P . Finally, add to P
a set T of n− (m+ 1)(k0 − 1) equally spaced points,
close enough between them to complete the total of
n points (see Figure 2). Notice that this construction
works for small angles α0 such that m + 1 ≥ 2 and
thus, π

2α0
≥ 2, i.e, α0 ≤ π

4 .
Thus, we have α0-wedges containing one point from

T and k0− 1 points from P \T , i.e., k0− 1−u points
from Si and u points from Si+1, for some 0 ≤ i ≤ m−1
and 0 ≤ u ≤ k0 − 2 (see Figure 2). Notice that we
are not selecting the (k0 − 1)-subset Sm when u = 0.
Then, for the set P , we know that the total number
of combinatorially different (α0, k0)-sets is

Ω

(
(
π

2α0
− 1)

(
n(k0 − 1)− π

2α0
(k0 − 1)2

))
.

As π
2α0

is constant, fα0

k0
(n) grows up with k0. Thus,

for k0 = n
4 + 1, fα0

n/4+1(n) ∈ Ω(n2), which is almost

the obtained upper bound. We assume that k0 ≥ 3
since for k0 = 2 we have

(
n
2

)
combinatorially different

(α0, 2)-sets for some small value of α0. �

3 The α-wedge depth with respect to P

The α0-wedge depth of x ∈ R2 with respect to P with
the (α0, k)-set criterion, α0-depth for short, denoted
by DepthPα0

(x), is defined as follows:

DepthPα0
(x) = min

1≤k≤n/2
{k = |P ∩W |},

for any possible closed α0-wedge W with apex at x.
This definition is an extension of the depth with

the k-set criterion, where the k-line passes through
point x. In fact, if α0 = π, we obtain the depth with
the k-set criterion. Thus, for any pi ∈ P and α0,
0 < α0 ≤ π, DepthPα0

(pi) ≤ n/2. The points pi ∈ P
in the boundary of the convex hull of P , CH(P ), have
DepthPα0

(pi) = 1. By the definition, if x is either in
the exterior of CH(P ) or it belongs to the boundary of
CH(P ) but x /∈ P and α0 < π, then DepthPα0

(x) = 0.
Moreover, for α0 small enough, all the points pi ∈ P
have DepthPα0

(pi) = 1, and there are no points x with
DepthPα0

(x) ≥ 2.

k0 − 1

k0 − 1 k0 − 1

k0 − 1

α0

α0
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|T | = n− (m + 1)(k0 − 1)
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C
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T

Figure 2: Equally spaced groups of points Si on C.

Theorem 2 Given P and α0, the sorted list of the
values DepthPα0

(pi), i = 1, . . . , n, can be computed in
O(n2 log n) time and O(n) space. Then, DepthPα0

(pi)
can be computed in O(log n) time.

3.1 Report α such that DepthPα (pi) = k

We consider the problem: Pre-compute a data struc-
ture such that given pi ∈ P and k, 1 ≤ k ≤ n/2, then
the angular interval (αi1, α

i
2) ⊆ [0, 2π) such that for

any α ∈ (αi1, α
i
2) the DepthPα (pi) = k can be reported

in O(log n) time.

Theorem 3 In O(n2 log n) time and O(n2) space we
can compute a data structure such that for a given
pi ∈ P and k, 1 ≤ k ≤ n/2, in O(log n) time we

can reported the angular interval (δki , δ
(k+1)
i ) ⊆ [0, 2π)

such that for any α ∈ (δki , δ
(k+1)
i ) the DepthPα (pi) = k.

4 The (α0, k0)-hulls

A point x inside CH(P ) can be characterized by the
property that any line through x has at least a point
of P in each of the closed half-planes determined by
the line. Generalizing this definition, Cole et al. [4]
defined the k-hull of P , for positive k, as the set of
points x such that for any line through x there are
at least k points of P in each closed half-plane. It
is clear that the k-hull contains the (k + 1)-hull, and
if k is greater than dn/2e then the k-hull is empty.
We extend this definition to the (α0, k0)-hull(P ) for
0 < α0 ≤ π and 1 ≤ k0 ≤ n/2, as follows.
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Definition 4 The (α0, k0)-hull(P ) is the set of points
x ∈ R2 such that any closed α0-wedge with apex at x
contains at least k0 points of P .

Notice that x has to be inside CH(P ), and then, the
(α0, k0)-hull(P ) is contained in CH(P ). For α0 = π,
Definition 4 is equivalent to the k0-hull of P . From
the same definition, we can easily conclude that the
(α0, k0)-hull(P ) contains the (α0, (k0 + 1))-hull(P ).

4.1 The (α0, k0)-hulls for points in convex position

For points in convex position, we select n consecu-
tive sets of k0 consecutive points in CH(P ), say K,
and compute the corresponding arcs, ai,j , of adjoint
circles defined by apices of the α0-wedges containing
K supported in two points, pi and pj , of CH(K).
The endpoints of the arcs occurs when a ray of the
α0-wedge bumps a point of CH(K). There are O(n)
arcs, and the number of intersections between those
arcs is at most O(n2). Doing a sweep-line we compute
the (α0, k0)-hull(P ). If α0 is close to π, the number of
intersections between the arcs is O(n), and the com-
plexities decrease accordingly. See Figure 3.

Theorem 5 The (α0, k0)-hull(P ) can be computed
in O(n2 log n) time and O(n2) space.

Figure 3: Left: (90, i)-hull(P ) contains (90, i + 1)-
hull(P ), i = 1, 2, 3, 4, and (90, 5)-hull(P ) is an empty;
Right: the (90, 3)-hull(P ) as the intersection of re-
gions defined by the three cycles.

4.2 Computing the (α0, 1)-hull(P )

Let ei = pipi+1 be the edges of the boundary of
CH(P ). By Definition 4, the vertices CH(P ) belong
to the (α0, 1)-hull(P ). The two rays of any α0-wedge
with apex at x inside CH(P ) which containing ex-
actly one point of P not in CH(P ) has to intersect
the same edge ei of CH(P ). Thus, we have the next
fact about the (α0, 1)-hull(P ).

Fact 1 The apices of the α0-wedges containing ex-
actly one point which rays cross the edge ei define a
polygonal-curve fi from pi to pi+1. By definition, fi

is not self-intersecting. We call Ri the (closed) re-
gion defined by ei and fi, where Ri = CH(P ) \ Ri
(see Figure 4 Up). The (α0, 1)-hull(P ) is the region⋂
i=1,...,mRi (see Figure 4 Down).

pi
pi+1

ei

ei

fi

pi

pi+1

Figure 4: Up: Region Ri in red, α0 = 90. Down:
(90, 1)-hull(P )=

⋂
i=1,...,mRi in red. In blue the

polygonal-curve fi

The (α0, 1)-hull(P ) can have disconnected regions,
as the points in CH(P ) ∩ P in Figure 4. In fact, if
α0 < π and p ∈ CH(P ) ∩ P , p is an isolated point of
(α0, 1)-hull(P ). Any p ∈ P belongs to (α0, 1)-hull(P )
because a α0-wedge with apex at p always contains at
least p. Based on Fact 1, we describe the steps of an
algorithm for computing (α0, 1)-hull(P ) for a set P of
n points in general position.

1. If π
2 ≤ α0 < π, in O(n log n) time and O(n)

space we compute the (α0, 1)-hull(P ) as follows:
compute the α0-maximal points of P and the
polygonal-curves fi for the edges ei (see Fig-
ure 4 Right). Alegŕıa-Galicia et al. [3] showed
the algorithm for computing the sequence ofO(n)
arcs forming all the fi, i = 1 . . . ,m, where m
is the number of edges of CH(P ). Then, in
O(n log n) time and O(n) space we can do a line-
sweep of the arrangement of all fi, and com-
pute (α0, 1)-hull(P ) formed by a (possible dis-
connected) region defined by the intersection of
all Ri, i = 1 . . . ,m and CH(P ). See Figure 4.

2. If 0 < α0 < π
2 , the computation of all the fi,

i = 1 . . . ,m can be done in O( nα0
log n) time and

O( nα0
) space. But the the computation of (α0, 1)-

hull(P ) can be done in O(n2) time and space be-
cause we compute the (at most) O(n2) intersec-
tion points inside CH(P ) between all the fi.

Theorem 6 If π/2 ≤ α0 ≤ π, the (α0, 1)-hull(P )
can be computed in O(n log n) time and O(n) space.
If 0 < α0 < π/2, the (α0, 1)-hull(P ) can be computed
in O(n2) time and space.
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4.3 The (α0, k0)-hulls for points in general position

We adapt ideas in [4] to the (α0, k0)-hull(P ) concept
as follows. A (directed) line ` is a k0-divider for P if `
has at most k0−1 points of P strictly to its right and
at most n− k0 points of P strictly to its left. For any
orientation θ ∈ [0, 2π) of `, there is a unique k0-divider
denoted by `θ. A special k0-divider is a k0-divider that
contains at least two points. The half-space to the left
of a k0-divider is a special half-space. The k0-hull is
the intersection of the special half-spaces.

The direction of an α0-wedge with apex at x ∈ R2

is defined by the direction of its right ray (in the clock-
wise rotation from its apex x); and it is given by the
angle θ formed by X-axis with the line containing the
right ray. Let W θ

α0
denote a directed α0-wedge.

Definition 7 A directed α0-wedge W θ
α0

is a directed
(α0, k0)-divider for P , if W θ

α0
contains at most k0 − 2

points of P strictly in its interior, and at most n− k0

points of P strictly in its exterior. The boundary of
W θ
α0

must contain at least two points of P . A spe-
cial (α0, k0)-divider is an (α0, k0)-divider for P that
contains at least three points on the boundary.

Given θ ∈ [0, 2π), there are at most O(n) different
directed (α0, k0)-dividers W θ

α0
, e.g., a set P with O(n)

points on the (almost vertical) right chain of CH(P ),
k0 = 4, α0 = π/4, and θ = 0, see Figure 5. For α0 = π
and fixed θ, there are only two (π, k0)-dividers.
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Figure 5: Different directed (α0, k0)-dividers W θ
α0

.

Rotation process: An (α0, k0)-divider passing through
pi and pj can be rotated anchored at pi and pj while
its apex traces an arc ai,j on the adjoint circle defined
by α0 and segment pipj , until the wedge bumps a
point pk, see Figure 6. The poly-curve defined by arcs,
rays, and segments from the wedges at the endpoints
define an unbounded region denoted by Ai,j . The
region Ai,j has the property that for any point x in its
interior there always exists an α0-wedge with apex at
x and direction in the rank between the directions of
the extreme wedges which contains at most k0 points,
see Figure 6. Starting with an orientation, say θ = 0,

the rotation process end at the initial (α0, k0)-divider,
and the apices of the α0-wedges trace a cycle, which
interior is the intersection of the complementary of
the union of all the regions Ai,j .

pi

pj

Ai,j ∪Aj,k ∪Ak,l

Figure 6: Three consecutive (colored) arcs.

Sketch of the algorithm: First, take the orientation
θ = 0, and compute the list L of the (α0, k0)-dividers
with this orientation. For each (α0, k0)-divider, apply
the rotation process above and compute the corre-
sponding cycle, checking the used (α0, k0)-dividers in
L. There are at most O(n) different cycles, formed
by sets of arcs ai,j . The total number of arcs ai,j is
bounded by the number of (α0, k0)-sets, together with
their rotations. The still no fixed question is the up-
per bound of the number of intersection between those
arcs depending on α0. In any case there are at most
O(n4k0

2). We do a line-sweep of the arrangement of
cycles and compute the region(s) of (α0, k0)-hull(P ).

Theorem 8 The (α0, k0)-hull(P ) can be computed
in O(n4k0

2 log n) time and O(n2k0) space.
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