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The edge labeling of higher order Voronoi diagrams

Merce Claverol*!, Andrea de las Heras Parrillat!, Clemens Huemer$!, and Alejandra Martinez-Moraian Y2

I'Departament de Matematiques, Universitat Politecnica de Catalunya
2Departamento de Fisica y Matematicas, Universidad de Alcala

Abstract

We present an edge labeling of order-k Voronoi dia-
grams, Vi (S), of point sets S in the plane, and study
properties of the regions defined by them. Among
them, we show that V4 (.5) has a small orientable cycle
and path double cover, and we identify configurations
that cannot appear in V3(5).

1 Introduction

Let S be a set of n points in general position in the
plane (no three collinear, and no four cocircular), and
let 1 <k <n—1bean integer. The order-k Voronoi
diagram of S, Vi (S), is a subdivision of the plane into
cells, also called faces, such that the points in the same
cell have the same k nearest points of S, also called
k nearest neighbors. Voronoi diagrams have appli-
cations in a broad range of disciplines, see e.g. [1].
The most studied Voronoi diagrams of point sets S
are V7 (59), the classic Voronoi diagram, and V,,_1(.5),
the furthest point Voronoi diagram, which only has
unbounded faces. Many properties of V},(S) were ob-
tained by Lee [8], we also mention [4, 9, 10, 13] among
the sources on the structure of Vi (5).

An edge that delimits a cell of V4(.S) is a (possibly
unbounded) segment of the perpendicular bisector of
two points of S. This well-known observation induces
a natural labeling of the edges of V;(S) with the fol-
lowing rule:

e Edge rule: An edge of Vj(S) in the perpendic-
ular bisector of points ¢,j € S has labels i and j. We
put the label 7 on the side (half-plane) of the edge
that contains point i and label j on the other side.
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See Figure 1. Based on the edge rule, we prove a
vertex rule and a face rule. V5 (S) contains two types
of vertices, denoted as type I and type II (also called
new and old vertices [8]), that are defined below.

e Vertex rule: Let v be a vertex of Vj(S) and let
{i,J,€} € S be the set of labels of the edges incident to
v. The cyclic order of the labels of the edges around
vis1,4,7,7,¢,¢ if vis of type I, and it is ¢, j, ¢, 4, j, £ if
v is of type II.

e Face rule: In each face of Vj(5), the edges that
have the same label ¢ are consecutive, and these labels
¢ are either all in the interior of the face, or are all in
the exterior of the face.

Note that when walking along the boundary of a
face, in its interior (exterior), a change in the labels
of its edges appears whenever we reach a vertex of
type II (type I), or possibly at consecutive unbounded
edges of an unbounded face, see Figure 1.

Edges with same label ¢ enclose a region Ry (7) con-
sisting of all the points of the plane that have point
i € S as one of their k nearest neighbors from S.
The union of all these regions Ry (i) is a k-fold cover-
ing of the plane. Ry (7) is related to the k-th nearest
point Voronoi diagram (k — NP VD) of S, that as-
signs to each point of the plane its k-nearest neighbor
from S [10]. This diagram is also called k-th degree
Voronoi diagram in [4]. The region of a point i in
k— NP VD is Ri(i)\Rk—1(¢). In [5] it was proved
that Ry (7) is star-shaped. We further observe that
Ry (i) is contained in its kernel, and we identify the
reflex (convex) vertices on its boundary By/(i) as ver-
tices of type II (type I).

We also show that every Vi (S) admits an orientable
double cover [7] of its edges using, precisely, the cycles
and paths | J,cg Br(i). A cycle and path double cover
of a graph G is a collection of cycles and paths C
such that every edge of G belongs to precisely two
elements of C. Paths are needed in the double cover
C of Vi(S) due to the unbounded edges. A double
cover C is orientable if an orientation can be assigned
to each element of C such that for every edge e of G,
the two cycles, resp. paths, that cover e are oriented
in opposite directions through e [7].

The small cycle double cover conjecture states that
every simple bridgeless graph on n vertices has a cy-
cle double cover with at most n — 1 cycles [2]. Seyf-
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farth [12] proved this conjecture for 4-connected pla-
nar graphs, and also proved that any simple bridgeless
planar graph of size n has a cycle double cover with at
most 3| (n—1)/2] cycles [11]. We show in Property 7
that a higher order Voronoi diagram admits a much
smaller cycle and path double cover compared to its
number of vertices.

We present several more new properties of V(.5).
All of them rely on the edge labeling and on elemen-
tary geometric arguments in the plane. This tech-
nique also allows us to obtain new proofs of known re-
sults about Vi (S). Other techniques used previously
also apply projections of points to R* and hyperplane
arrangements, among others.

We finally focus on the edge labeling of V3(S) and
show that certain configurations cannot appear in
V3(S). We omit all proofs in this abstract.

We define some notation. The points of S are
{1,...,n}. A set of k neighbors defining a cell of V()
is denoted by P, C S and the corresponding face is
denoted by f(Py). If the face is bounded, we denote
it by f(P:). Note that not every possible P;, deter-
mines a face in Vj(9). The (perpendicular) bisector
of two points i,j € S is denoted b;;. And an edge of
Vi (S) on b;; is denoted b;;. A vertex of Vi (S) is the
intersection of three bisectors bup, by and b.,. Equiv-
alently, it is the center of the circle through a,b,c € S.
There are two types of vertices in f(Py), and hence in
Vi(S): If a € P, and b,c € S\ Py, we say that it is of
type I; and if a,b € P, and ¢ € S\ Pg, we say that it
is of type II. It is well known that a vertex of type I in
Vi:(S) is also a vertex of Vj11(5), and a vertex of type
I in Vi (9S) is also a vertex of Vi_1(S) [8]. Further,
the three edges of Vi (S) around the vertex alternate
in cyclic order with the three edges of Vi41(S) (resp.
Vi1 (S ) )

The edges and vertices of V4 (S) form (a drawing
of) a graph, which also contains unbounded edges.
When considering the union of V;(S) and Vj11(S)
(resp. Vi_1), the graph induced by Vi 11(S) (Vi—1) in
a cell f(Pg) of Vi(S) is the subgraph of Vi1 (Vi—1)
whose vertices and edges are contained in f(Py).

2 Properties of the labeling of Vi (S)

Property 1 Fork > 1, every bounded face f?(P.) of
V() contains at least two and at most n— k vertices
of type I, and at least two and at most k vertices of
type 11.

The lower bounds in Property 1 were already given
in [8]. In particular, they imply that for k& > 1, V4 (5)
does not contain triangles, as also proved in [9] with a
different method. As for the upper bounds, there exist
point sets S such that some face of V;,(S) has exactly
n — k vertices of type I and k vertices of type II.
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Figure 1: The edge labeling of V5(S) for a set S of
eight points in convex position. Vertices of type I are
drawn in blue, and vertices of type II in red.

Vi(9)
— Vi1(9)
— Vit1(5)

Figure 2: The graphs induced by Vj;_1(S) and
Vir1(S) in a face f°(Py) are trees. Each of them
creates a subdivision of f*(P) into regions.

The next property concerns the graphs induced by
Vir1(S) and Vi_1(S) inside f(P). It is known that
these graphs are trees [4, 8, 13], see Figure 2.

Property 2 Let f*(Py) be a bounded cell of V;,(S),
for k > 1. Then, on its boundary, not all vertices of
the same type are consecutive. Equivalently, inside
fb(Py), there is an edge of Vi11(S) that crosses an
edge of Vi,_1(9).

The graphs induced by Vj41(S) and Vi1 (.S) inside
a bounded face f°(P;) of Vi(S) determine a subdi-
vision of f%(P) into regions, see Figure 2. All the
regions induced by Vi 1(S) in f°(Py) have the same
k nearest neighbors from S, and a different (k + 1)-
nearest neighbor. Similarly, all the regions induced
by Vi—1(S) in f°(Py) have the same k nearest neigh-
bors and differ in the k-nearest neighbor. Property 3
describes the labeling of the edges in the boundary
of such regions, from which the vertex rule in the in-
troduction can be deduced. There are two types of
boundary edges in the regions: edges of f°(P;) and
edges of Viy1(S) (resp. Vip—1(9)).

Property 3 Let f°(Py) be a bounded cell of Vj,(S),
k > 1, and let R be a region in the subdivision of
f°(Py) induced by Vi, 1(S) (resp. Vi_1(S)). The
edges of Vi11(S) (Vi—1(S)) in the boundary of R have
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Figure 3: V3(S) for S the point set in Figure 1; in
each face, its three nearest neighbors are indicated.
In green, the region R3(2) formed by all the cells of
V3(S) that have point 2 as one of their three nearest
neighbors.  All the cells in R3(2) contain the label
2. The boundary Bs(2) of R3(2) is formed by all the
edges that have the label 2 and this label is always
inside R3(2). Vertices of B3(2) with an incident edge
lying in the interior of R3(2) are of type II, and the
other vertices of B3(2) are of type I.

the unique (k + 1)-nearest neighbor (resp. k-nearest
neighbor) of the points of R as label inside (outside)
R. The edges of f°(Py) in the boundary of R have
this label outside (inside) R.

Figure 4 illustrates Property 3 and the vertex rule.

We now describe properties of the region Ry(i)
formed by all the faces of Vi (S) having point i € S
as one of their defining points; and of its boundary
By(7). First, we observe that for every k > 1, and for
every point ¢ € S, Rg_1(%) C Ry (i).

Property 4 Ry (i) is a connected region. Further-
more, for any bounded face f°(P}) contained in Ry (1),
R (i) \ fb(Py) is a connected region.

Property 5 The boundary By (i) of a region Ry (i) is
formed by all the edges of Vj,(S) that have the label i,
and this label is always inside Ry (i). By(i) is either a
cycle, or one or more paths whose first and last edge
are unbounded edges of V;,(5).

Property 5 is illustrated in Figure 3.

Property 6 The vertices of By(i) that are incident
to an edge of Vi (S) lying in the interior of Ry(i) are
of type II, and the remaining vertices of By(i) are of
type 1. Moreover, for k > 1, if By (i) is a cycle, then
it encloses at least three faces of Vi, (S). If By (i) has
r reflex vertices, then it encloses at least r faces of
Vi (S).
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Let C be the collection of paths and cycles in
Uies Br (i) of Vi.(S). We prove that C forms a double
cover of Vi (S). Let fo° be the number of unbounded
faces (or unbounded edges) in Vi (.9), also equal to the
number of (k —1)-edges of S [4, 13]. It is known that
£ is at least 2k + 1 [6] and at most O(nv/k) [3]. We
use precisely fi° paths for C.

Property 7 Vi (S), which has fg° unbounded faces,
has an orientable cycle and path double cover consist-
ing of f2° paths and of at most max{n — 2k — 1,2k —
n — 1} cycles.

This double cover of a higher order Voronoi diagram
is small compared to its number of vertices; from [4,
8], we deduce that V4 (S) has at least (2k — 1)n — 2k?
vertices, for k < (n — 2)/2. When S is in convex
position, then V(S) has this number of vertices.

The bound on the number of cycles in Property 7
is attained for the point sets S from [6] which have
2k +1 (k — 1)-edges. Property 7 also shows that for
k = |[n/2] and k = [n/2], Vi(S) has an orientable
path double cover with fp° paths. This also holds for
point sets in convex position and any value of k:

Property 8 Let S be a set of n points in convex
position. Then, V},(S) has an orientable path double
cover consisting of n paths.

Property 9 For every i € S, the region Ry(i) of
Vi(S) is star-shaped. Furthermore, the face Ry (i) of
V1(S) is contained in its kernel.

Property 10 Let v be a vertex of By (i). If v is of
type I, then it is a convex vertex of By(i); and if v is
of type 11, it is a reflex vertex of By(1).

3 Not too many alternating hexagons in V5(.5)

A hexagon in Vi (S) is called alternating, if its vertices
alternate between type I and type II, see Figure 5. By
Property 1, V2(S) contains no alternating hexagons.
We consider then V5(S). Figure 5 shows that it is not
possible to label the edges of the hexagons of V5(.5)
while complying with the properties of the labeling.

Property 11 Let v be a vertex of type I in V3(S5).
Then, at most two of the three incident faces to v are
alternating hexagons.

Property 12 Any alternating hexagon in V3(S) is
adjacent to at most three other alternating hexagons.
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Vi—1(S)—
Vi(S)
Vi1(8)—

(b)

Figure 4: (a) The graph induced by Vii1(S) in f®(Py) divides f°(P:) into regions R,,, delimited by bisectors
between the (k + 1)-nearest neighbor m; € S of the points of the region, and another point of S. The cyclic
order of the labels of the edges around a vertex v incident with R, , R,,, and R,,,, is m,, my, ms, my, my, m,.
(b) The graph induced by Vj,—1(S) in f°(Px) divides f°(Py) into regions R;; delimited by bisectors between the
k-nearest neighbor i; € S of the points of R;;, and another point of S. The cyclic order of the labels of the edges
around v i8 4., ig, i, ir, Gg, Gt

Figure 5: Three alternating hexagons incident to ver-
tex v of type I. The labels around w shown in red do
not comply with the properties of the labeling.
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